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1. THE FIFTHS AND MIDDLE-TONE TUNINGS

When tuning key instruments in music, two basic algorithms are known.
The first one is based on the perfect fifths, the second one on the major thirds.
In their pure form, these algorithms lead to two different classical tone systems
- to the Pythagorean (Pythagoras, 582 — 492 B. C.) and Praetorius Tunings
(Michael Praetorius [Schultze], 1571 — 1621). Each other 12-tone system used
in the European music can be obtained by a modification (temperament) of
the algorithm of Pythagorean or the Praetorius Tunings (or the mixture of
both of them). The excellent example of that is the widely spread Equal
Temperament which modifies the Pythagorean Tuning algorithm such that
the interval of every 12 (tempered) fifths in this tuning gives the interval of
the 7 perfect octaves.

For the sake of tuning, it is reasonable to identify the tone pitch with its
relative frequency to the frequency of a fundamental, fixed tone (convention-
ally, such a tone is usually taken a' = 440 Hz in the experience; we take ¢ = 1
for simplicity). So, in fact, we deal with relative frequencies of music intervals.

Describe the algorithm of Praetorius Tuning. Starting with a frequency
¢: and both divide and multiply ¢; by 5/4, we obtain the relative frequencies
g2, qs3, respectively. The next step, the frequency g4, we obtain by the geomet-
rical mean,/q; ¢z, etc., see Figure 1. If we replace the sequence ¢, s, -+ , q12 by
the obvious musical notation (we will use small letters for Praetorius Tuning),
we obtain the sequence:

€, C, gﬂad’ bb)fﬁaaa f7 ¢, 9, eb’b'

All other frequencies of Praetorius Tuning we obtain via the so called octave
equivalency, i.e. multiplying the described 12 values by 2, i is an integer.
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Figure 1. Algorithm of Praetorius Tuning is based on the major thirds

The relative values of Praetorius Tuning within the interval [1,2],c = 1, are
in the Table 1. The set of pipes in an organ is disjoined usually into two parts
(often, two boxes) — ”Side ¢” and ”Side ¢;”. The reason of this arrangement
is the algorithm of Praetorius tuning which prevailed in the 17th century, the
golden age of organ.

Describe the algorithm of Pythagorean Tuning. Start with a frequency
g1 € [1,2). The n-th step, the frequency g, is evaluated as follows:

3 . 3
qn = qn—li if dn-1- 5 <2
or 3 1 3
In =015 5 ian—i'ﬁZZ-
If g = 1, then replacing p;, ps, - - - , p17 by the obvious music notation (we will

use the capital letters for Pythagorean Tuning), we obtain the sequence
Gb,Db) Ab)EbaBlnF) Ca Ga D) A,Ea Ba Fih Cﬁy Glb Dﬁa Aﬁ-

Again, we enlarge these frequencies to the whole halfline (0, 00) (in fact, 16 - 20
000 Hz) via the octave equivalency. The values within the interval [1,2),C =
1, are in the Table 2.
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Pythagorean pentatonic

p1 | 3/2-1/2 Pythagorean Chromatic Decreasing Scale
3/2
P2 p3 | 3/2-1/2
3/2
*-reduced Pythagorean Scale
y:Z) ps | 3/2-1/2
3/2 3/2
Ds D7 Ds

D9 3/2-1/2
3/2
Pythagorean heptatonic p11 P12 | 3/2-1/2
p13 | 3/2-1/2
3/2
P14 pis | 3/2-1/2
3/2
Pythagorean Chromatic Increasing Scale
Dis D17
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Figure 2. Algorithm of Pythagorean Tuning is based on the perfect fifths

Pythagorean Tuning is usually mentioned as to be 17-valued (also: 5, 7,
12 - valued, see Figure 2). We reduce the 17-valued Pythagorean Tuning to
12-values, (and Y; = 256/243,Y; = 2187/2048 in Definition 4), the values
are marked by % in Table 2. An other approach to Pythagorean Tuning is

presented in [3].

2. SEMITONES

Pythagorean Tuning has two semitones, expressed via the unique rationals:

Y: = 256/243,Y; = 2187/2048
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(the minor Pythagorean semitone, diesis, and the major Pythagorean semi-
tone, apotome, and contains only harmonic music intervals (intervals ex-
pressed by rationals), see Table 2 and [1].

Praetorius Tuning (also known as the Middle-tone Tuning), [4], contains
both harmonic (octaves, major thirds, minor sixths) and inharmonic music
intervals, see Table 1.

Excluding octaves, Equal Temperament contains only inharmonic intervals
and is represented by the geometrical progression (( ¥/2)¢) with the quotient
¥/2, the equal tempered semitone.

About semitones (and other constructing intervals) of the the diatonic
scales in general, see [2].

In the present paper there is shown the existence and uniqueness of semi-
tones of Praetorius Tuning and an isomorphism between Pythagorean and
Praetorius Tunings.

THEOREM. The semitones of Praetorius Tuning are given by numbers:
V'78125/16,8/v/3125.

More precisely (see Definitions 1 and 3, Proof of Theorem 2):

THEOREM. According to the symmetry, there exist a unique pair of al-
gebraic numbers (X, X,) for M-generalized geometrical progressions which
yields Praetorius Tuning, where

57/4

X, = o = V/78125/16 ~ 1.044906726,
23 4
X, = 5 8/v/3125 = 1.069984488.

Combine these results with the algorithms above and consequently collect
Table 1 (in the fifth column, there are values in cents, i.e. in the isomorphism
I'; = 1200 - log, I';; in the sixth column, there is a musical denotation).

The music interval e,/gy is the famous so called wolf fifth in Praetorius
Tuning.

The following theorem is very interesting since: (1) Pythagorean and Prae-
torius Tunings are obtained by two very different algorithms; (2) it leads to
many consequences in music theory. The assertion follows when comparing
Table 1 and Table 2.

THEOREM. Praetorius and the x-reduced Pythagorean Tunings (given by
Definitions 3 and 4) are isomorphic (in the sense of Definition 1).
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x3xy  2%°
Xgxi 27*"/*
X;Xi 27'5Y?
X;xi 2%57%1
Xix: 2725t
X3Xx} 2574
X3x3 273512
X3x3 51/4
X3 x4 27152
X5xt 27534
XSxt 225712
X$XxP 2255/
XIx? 2!

1.0

1
V78125/16  1.044907

V5/2
4/V125
5/4
2/V5
V125/8
V5

25/16
V125/4
4/5
V/3125/4
2

1.118034
1.196279
1.25
1.337481
1.397542
1.495349
1.6625
1.671851
1.788854
1.869186
2.0

0.0000
76.0490
193.1569
310.2647
386.3137
503.4219
579.4706
696.5784
772.6274
889.7353
1006.8430
1082.8920
1200.0000

Table 1. Praetorius Tuning

1/10 }/20 20 30

1

Ylyy 28378 256/243
YPYs 27137 2187/2048
}’11}’21 9-332 9/8
Y2y, 28373 32/27

YiY? 27143%  19683/16384

Y12Y22 2-—634
Y3YZ 237!

81/64
4/3

Yy 2103 1024/729

Y3ys 27936 729/512
vi'ys 273! 3/2
Y?°YS 2737 128/81
vyt 271238 6561/4096
YPYy,; 27433 27/16
Yiy,; 24372 16/9

YPYS 271%310  59049/32768

Yy 2773%
YiYS$ 2!

Table 2. The *-reduced Pythagorean Tuning

243/128
2

1.0
1.053497942
1.067871094
1.125
1.185185185
1.201354981
1.265625
1.333333333
1.404663923
1.423828125
1.5
1.580246914
1.601806641
1.6875
1L.7777TTT77
1.802032473
1.898437528
2.0

0.0000
90.2250
113.6850
203.9100
294.1350
317.5950
407.8200
498.04500
588.2700
611.7300
701.9550
792.1800
815.9039
905.8650
996.0900
1019.5500
1109.7750
1200.0000

*
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3. DEFINITIONS AND PROOFS

Denote by N' = {0,1,2,...}. If we denote by £L = ((0,00),-,1,<) the
usual multiplicative group on reals with the usual order, then the L-length
b/a of the interval (a,b),0 < a < b < oo, we call the music interval.

We will use the following conventional notation:

X = (XI)X% T 7Xn) S ['ny v;. = (Vi,layi,Z, v ,V'i,n) € Nn,
|I/1;,.| =V;1 + Vi2 + -+ Vin, Vi, S Viti,. = Vik S Viv1,k (k‘ = 1, 2, . ,n),
X = X{M X0 XY (i,n e N).
DEFINITION 1. For n € N, we say that a sequence (I';) is an n-generalized

geometrical progression if there exist X € L™ and v;; € N (i € N,j =

1,2,...,n) such that
Ti=X"v. <n,. < <vi <] =1

We say that two n-generalized geometrical progressions (I';), (A;) are isomor-
phic if there exist v;. € N, X, Y € L, such that

Fi = X" y Ai =YV,
In this paper, we reduce the general situation to the case n = 2.

DEFINITION 2. Let £ =0,1,2,...,11,12. We say that a matrix (Vi,j)if’k €
N2 x N2 is a (12, k)-matrix, if

0 S Vg, S Via,., |V.L".| = Z,’I, = 12,k

The following definition is based on the algorithm of Praetorius Tuning.

DEFINITION 3. We say that a 2-generalized geometrical progression (I';)
is M-generated by a (12, 4)-matrix if for some X;, X, > 0,

V2. Vy.. Vig.. 3 Vig,. V..
vo, = 0,1y, = -y — —F 1. = -,V = 2 — =y, V= — — — -
? 3 4 ) 2 ) ) 2 ) s 2 4 ") ) 2 47
3 v v 3
4, 12, Vg,
Ve, = sV, V7. = —=+ —2 Vg =2 Uy, ,Vy. =—Vy. +——
2 ) ) 4 2 ’ ) 1 Y9, 441 2 I
Vy,. V12,
Vio, = Mg, — 5V, = ZV4,.+T

and for i > 12, there exists p € N,0 < p < 12, and ¢ € N, such that
Vi. = qls,. + Vp,..
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The following definition is based on the algorithm of Pythagorean Tun-
ing (it defines the x-reduced Pythagorean Scale when Y;,Y, are diesis and
apotome, respectively).

DEFINITION 4. We say that a 2-generalized geometrical progression (I';)
is x-generated by a (12, 7)-matrix if for some Y;,Y, > 0 the first 12 of T; is
evaluated as follows (reordering increasingly)

{(1/1117.1 )/2V7,2)k (mod }/11/12,1 Y2V12,2)}k =3, 145

and for ¢ > 12, there exists p € N,0 < p < 12, and q € N, such that
Vi. = qlha,. + vy, cf. [1].

Proof of Theorem 2. Suppose that there exist X;, X, > 0 in Definition
3. Then it is easy to see that Definition 3 implies Praetorius Tuning if both
X, X, are algebraic.

Prove that there exist unique algebraic X;, X, > 0 satisfying Definition 1.
To show this, consider the following equation system

X{/12.l X;12'2w — 2
X/ X w 5

V4,1 V4,2 é
X, s W =7

where w is an arbitrary real number (a parameter, a shift when tuning) and
values 2, v/5, 2 are given by Praetorius Tuning, [4], (the octave, the Praetorius
fifth, and the major third). We have:

V12,1 log X1 + 113 5log Xo + logw = log 2
viilog X1 +v70log Xy +logw = log V5
valog X1 +vgplog X, +logw = log 3.

Consider vy51,v4; € N, such that

0< £V4,1 - V122’1
< % < U122’1 - %l/“
<y < V1221 —‘% < gw 1 < V—Zl— + V122’1
<2-p4: < ?—1’/4 1+ V122,1 < —1;4 L gy
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The condition v5; = v4;/2 < 4 implies possibilities v4; = 2,4 (v4; # 0
since otherwise vy ; < 0). To v,; = 2 we have possibilities v15; = 3,5,7 (the
last two are symmetric). To v4; = 4 we have possibilities v15; = 2,6, 8, 10.
From these cases only the unique pair (v12,1,v4,1) = (5,2) (symmetrically
(7,2)) is such that it may M-generate a 2-generated geometrical progression.

Solve the equation system above for 11517 = 5,14, = 2. By Definition 1
and Definition 3, the determinant of this equation system is

vigg 12—, 1 vigp 12 1
Vr1 7 — Vi1 1|= Vr1 7 1| =
V41 4 — Vs 1 V4 4 1

= 3v19,1 — 8v71 + 50a1 = Va9 + Svs — 8(va1 /4 + v12,1/2) = 3va1 — g =1

Consequently,
57/4 23
(X1, Xo,w) = (—2‘4—,@,1> =

(\/“ 78125/16,8/+/3125, 1) ~ (1.044906726, 1.069984488, 1.0).

We obtained also, that w = 1 (there is no shift of the fundamental tone when
tuning). 1
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