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One of the applications of singular cohomology in algebraic topology is
given by Eilenberg-MacLane’s classification theorem, which states that when
Y is an Eilenberg-MacLane space K(m,n), i.e., mi(Y) = 0 for all ¢ # n, and
X is an arbitrary CW-complex, then the set [X,Y], of homotopy classes of
continous maps from X to Y, is in one-to-one correspondence with the group
H™(X, ) of singular cohomology of X with coefficients in 7 = m,(Y).

In this paper we extend this cohomology classification theorem to spaces
Y with m;(Y) = 0 for all 4 # 1,2. In order to do this, since the homotopy
type of these spaces is not given by a group but by a categorical group, we
introduce a 2-cohomology set, H2(E,), of a cosimplicial complex of categorical
groups E,, which is inspired from Ulbrich’s cohomology definition [11]. When
E, = EX*, X, a simplicial set and E a categorical group, we obtain the
2-cohomology set of X, with coefficients in E, H?(X,, E), which gives the
cohomology classification theorem.

This 2-cohomology set coincides with the classical H?> when abelian groups
are taken as coefficents, with Ulbrich cohomology when X, is K(G,1), G a
group, and E is a Picard category and with Dedecker’s cohomology H%,, . (G, ®)
of G with coefficients in a crossed module ®,when X, = K(G,1) and E is a
strict categorical group with & its associated crossed module.

Let us recall that a categorical group E = (E, ®,a,,l,r) consists of a
groupoid E, a functor @ : EQ E — E, an object I of E and natural morphisms

G =0aA,BC: (A®B)®C - A®(B®C)
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l=l4:IQA - A r=rp: AQI - A

which satisfy coherence conditions [8], and such that for each object A there
is an object A° and a morphism A° @ A — I. We refer to (8], [6],[10] for the
background about monoidal categories.

1. DEFINITION OF HZ2.

For the definition of the cohomology we consider a cosimplicial complex of
categorical groups and monoidal functors

02
b X
50 o %
m 0

E, = EOZEléEzéEB}"' (1)

€1 €2 €3

which satisfies the usual cosimplicial identities [1]. A 2-cocycle of E, is a pair
(P, g) consisting of an object P of E; and an arrow g : £9(P) ® e2(P) — £1(P)
in E, such that the following diagram (cocycle condition) is commutative:

“olo)el e0e1(P) ® e3e2(P)
lez(g) (2)

£9€1 (P)

eo€o(P) ® eoea(P) ® e3e2(P)
1®ea(g)l

6060(P) ®8361(P) £1(9)

where we have omitted some canonical associativity morphisms and some
canonical structure morphisms of the ¢;’s.

The groupoid of 2-cocycles of E,, Z*(E,), has as objects the 2-cocycles
and as arrows, f : (P,g) — (P',q'), arrows f : P — P’ in E; such that the
diagram

0(P) ® e2(P) —— &1 (P)

Eo(f)®€2(f)l lsl(f) (3)
£0(P") ® e3(P') L &1 (P")

1s commutative.
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Let Z%(E,) denote the set of connected components of Z2(E,). Then we
can define an action of m(E,), the group of connected components of Ey, on
Z2(E,) as follows: for each object Q of Ey and each 2-cocycle (P, g), using the
density of the functor —®¢1(Q), we choose an object ®P and an isomorphism
fopr: 2P ®e1(Q) — £(Q) ® P in E;. Then the action is given by:

Z*(E.)

o (E) x Z*(E,)
(4)
([Q1, [(P,g)]) —— @I [(P,g)] = [(9P2g)]
where 9g : €9(?P) ® e2(?P) — €1(?P) is given by the commutativity of the

diagram:

Qy®1

£0(PP) ® e2(UP) ® £161(Q) ————€1(?P) ® £161(Q)
11®€2(f)

e0(9P) ® e260(Q) ® e2(P) e1(/) (5)
lmm@l

£060(Q) ® €0(P) ® 3(P) — 22— £160(Q) ® 1(P)

(where we have again omitted some canonical morphisms).

It is straightforward to see that (4) is a well define map. Moreover if
h:S®e1(Q) — e(Q) ® P is another isomorphism en E;, with S € Obj(E;),
then we get another 2-cocycle (S,s) connected with (2P,? g) by a 2-cocycle
morphism ¢ : (YP,2 g) — (S, s) defined by the commutativity of the diagram:

P ee(Q T>a(@ P
t®1l I (6)
S@e(Q) —>e(@®P
We may now stablish the following definition:

DEFINITION. Let E, be a cosimplicial complex of categorical groups. The
2-cohomology set of E,, H?(E,), is the set of orbits of Z2(E,) by the above
action of mo(Eyp).
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EXAMPLE 1. Let A, = Aq—% A1 == A, —% A3 --- be a cosim-
plicial complex of abelian groups. The addition in each A, defines in the
groupoid A, = (A, —=0) (with only one object and group of arrows
Ay) a structure of strict categorical group; so we have a cosimplicial complex
of categorical groups A, as in (1). It is easy to see that

H?(4,) = H?( - A 254,25 44 )
~ H2(NA,) = 7%(A,)

where 8 = 5°(—1)%; and N A, is the normalized chain subcomplex of (A,,d),
ie., NA, = ApNKersgN---NKeré,_; and w2(A,) is the cohomotopy group

[1].

Any set X can be considered as a discrete category ( in which the objects are
the elements of X and any arrow is an identity); if E is a categorical group, the
category, EX, of functors from X to E, inherits the categorical group structure
from E. Then for any simplicial set X, and any categorical group E, we can
obtain a cosimplicial complex of categorical groups (with strict morphisms)

52
do

/_\ /‘6
EX. - EXO .————6—)EX1 %EXZ %EX:; .. (7)

€3

where ¢; = dj and §; = sj are the induced morphisms by the face maps d;
and degeneracy maps s;, respectively. Then we define:

DEFINITIONS. Let X, be a simplicial set and E a categorical group. The
2-cohomology set of X, with coefficients in the categorical group E is the
2-cohomology set of EX®, that is

H2(X.,E) — H2(EX.)

Let X be a topological space. We define the singular 2-cohomology set of
X with coefficients in E by

H?(X,E) = H*(S(X),E)

where S(X) is the total singular complex of X.
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EXAMPLE 2. Let X be a topological space and A an abelian group, then
considering the strict categorical group E = (A —=0),H?*(X, A—=0)
is just the usual simplicial 2-cohomology group of X with coeflicients in A,

[9].

ExampLE 3. If X, is K(G,1) with G an arbitrary group and E is a sym-
metric categorical group, that is a categorical group E together with a braiding
c: A® B - B ® A such that ¢> = 1, then H?(X,,E) is just Ulbrich’s co-
homology group H!(G,E) of G with coefficients in the symmetric categorical
group E with trivial G-module structure [11]. And in the particular case of
E = (A—%0), then H?(X,,E) is the classical Eilenberg-MacLane co-
homology group H?(G, A).

On the other hand if X, is K(G,1), and E is a strict categorical group,
then H?(X,,E) coincides with ]I-]I%ec,c (G, ®), Dedecker’s cohomology group of
G with coefficients in ®, where @ is the crossed module associated to E, [5].

Let E, be a cosimplicial complex of categorical groups, as in (1), a nor-
malized 2-cocycle of E, is a 2-cocycle (P, g) of Z2(E,) such that:
1. (P)=1

2. do(g) : do(eo(P) ® £2(P))

3. 61(g) : 61(c0(P) ® e2(P)) [®@P > P =6¢(P)
where (®,P) and (¥, ¥y) are the structure morphisms of dy and d;, respec-
tively.

We denote Z3(E,) the groupoid of normalized 2-cocycles whose morphisms
are those morphisms f € Z2(E,) such that do(f) = 1.

The following theorem stablishes the necessary conditions in order the
inclusion functor J : Z3% (E,)— Z%(E,) be an equivalence.

(r®2)?  p @[ —"2> P = 6pe,(P)

(¥o®1p)o¥
_—

THEOREM. Let E, be a cosimplicial complex of categorical groups such
that the morphism &y : E; — E, is a fibration of groupoids (i.e., for each object
P of E; and each morphism in By, f : 6o(P) — Q, there exists a morphism g :
P — P’ with 8o(g) = f), then the inclusion functor J : Z%(E,)— Z2(E,)
is an equivalence of groupoids. Therefore, the corresponding sets of connected
components are isomorphic, Z3,(E,) = Z*(E,).

Proof. We will give the proof only when the morphisms €; and J; are strict
morphisms (note that is the case when E, = EX*, for X, a simplicial set and
E a categorical group (7)).
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Let (P,g) be a 2-cocycle, applying §2 to g, we get a morphism 62(g) :
do(p) ® do(p) — do(p), and then, using that Jp(P) ® — is an equivalence of
categories, a morphism % : §o(P) — I in Ey .Then since §p is a fibration,
there exists a morphism in E, ¢t : P — P’ such that dy(¢) = ¢; in particular,
do(P') = I. Moreover, we obtain a 2-cocycle (P',g'), where ¢’ is defined by
the conmutativity of the following diagram:

£0(P) ® £2(P) —2— £, (P)
eo(t)®52(t)l lel(t)
e0(P') ® eo(P') L e1(P")

and t : P — P’ defines a morphism in Z2(E,) from (P, g) to (P',g').

Let us now suppose a 2-cocycle (P, g) with §o(p) = I.Then the composition
f =do(g)orp! is an automorphism of P and we can define a 2-cocycle (P, g'),
where g’ = £1(f) 0 g o (eo(f) ® e2(f)) .

It is straightforward to see that (P, g') is a normalized 2-cocycle and, since
f:(P,g) = (P,g') is a morphism of 2-cocycles, we conclude that J is a dense
functor.

Clearly J is a faithfull functor and for the fully, let f : (P,g) — (P',¢') be
a morphism between normalized 2-cocycles . Applying dg to the diagram (3)
we get the commutative diagram:

PRIt >p
f®€150(f)l lf
P/ ® I TL>PI

(note that in the strict case, the normalization conditions for g reduce to
do(g9) = rp and 61(g9) = Ip), then, by the naturality of r, f @ €160(f) = f ® 1
and therefore €16p(f) = 1y, that is, §o(f) = 1;. 1

Remark. If E, = EX*, whith X, a simplicial set and E a categorical group,
it is easy to prove that dg = s : EX1 — EX¢ js a fibration of groupoids and
so, by the above theorem, we can use normalized cocycles to calculate the
2-cohomology set of X, with coefficients in E; H?(X,, E).
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2. CLASSIFICATION THEOREM.

It is well known that, in the abelian case, K (A, n)-complexes give a ho-
motopy representation theorem for singular cohomology. In this section we
obtain an analogous theorem for the cohomology H?(X,,E) we have defined,
and, as an application, we obtain the classification theorem for the set [X,Y],
of homotopy classes of continous maps from X to Y, where Y is a space with
the homotopy type of a CW-complex with only two homotopy groups m; and
2.

The complex we use for representation theorem is the nerve of a cate-
gorical group defined by Carrasco-Cegarra, in [4], as follows: Given E a
categorical group, Nery(E) is the 3-coskeleton of the 3-truncaded simpli-
cial set given by: (Nery(E))o = {I} (Nerga(E)); = Obj(E), (Nera(E))2 =
{(z; Ao, A1, A2) € Mor(E) x Obj(E)3/z: Ag ® Ay — Ay} and (Nery(E))3 the
set of commutative diagrams in E such as

(A®B)®C A8 (B®C)
m0®1l ll@m;;
DeC F AQF

x2 x1

The face and degeneracy operators are given by: d;(z; Ag, A1, A2) = A;,0
i < 2 and dj(zo, 21, %2,23) = 75,0 < j < 3, s0(A) = (ra; A, A1), s ( )
(la;1,AA) and, for z: Ao ® A2 — A1 of E, so(z) = (z,2,74,,74,), S1(z) =
(T4, Z, T, 1l4,) and so(z) = (lag,l4,, %, T).

Nery(E) is a Kan complex (even more, is a 2-hypergroupoid in the sense of
Duskin-Glenn [7]) whose homotopy groups m;(Ners(E)) are trivial for 7 # 1, 2,
while 71 (Nery(EE)) is isomorphic to mo(E), the group of connected components
of E, and ma(Nery(E)) = Autg(I), the group of automorphisms in I. Then
we have:

A

THEOREM. (REPRESENTATION THEOREM) Let E be a categorical group
and let X, be a simplicial set. Then there exists a natural bijection

Simpl(X., Nery(E)) = Obj(Z%(X.,E))

between the set of simplicial maps from X, to Nery(E) and the set of nor-
malized 2-cocycles of X, with coefficients in E.

Moreover, two simplicial maps are homotopic if, and only if, their corre-
sponding 2-cocycles determine the same element in H?(X,,E). Consequently
the above bijection induces another one
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[Xe, Ners(E)] = H?(X,,E)

between the set of homotopy classes of simplicial maps from X, to Nery(E)
and the 2 cohomology set of X, with coefficients in E.

Proof. Since Nery(E) is a reduced 2-hypergroupoid, to give a simplicial
morphism from X, to Ners(E) is equivalent to give a pair of maps P = fi :
X1 — Ob(E) and f2 : X3 — Nery(E) such that

e dify = fid;, 0 < i < 2, that is, for any z € Xo,

f(z2) = (9(z2); Pdo(z2), Pdi(2), Pda(z2))
for some morphism g(z3) : Pdo(z2) ® Pda(z2) — Pda(z2) in E.

e f1so = I and fosy = sif1, k = 0,1. That is, for any zo € X pso(zo) =1
and for any z1 € X1, gso(21) = rp(z,) and gs1(z1) = lp(gy)-

and finally

e The pair of maps fi, f2 can be extended to a simplicial morphism from
X, to Nery(E), which translates into the cocycle condition for the pair

(P,g).

Consequently to give a simplicial morphism from X, to Nery(E) is equiv-
alent to give a normalized 2-cocycle on X, with coefficients in E.

Now let h = (h;) be a homotopy between the simplicial morphisms associ-
ated to the 2-cocycles (P, g) and (P’, g') by the above bijection. As before, this
homotopy is determined by the maps Q = hJ : Xy — Obj(E) and A% : X7 —
(Nera(E))2,7 = 0,1. The simplicial identities with respect to the face opera-
tors allows us to express A} and h? as follows: h? = (cpo; P,d; h? = dlh{, le)
and h! = (p1;Qdo,d1hY, P') ,where @g, 1 : X1 — Mor(E) are maps such
that g(z) : P(z) ® Qdi(z) — dihl(z) and ¢;(z) : Qdo(z) ® P'(z) — d1hi(z).

It is easy to see that the maps @ = hJ,hd and A} can be extended to a
homotopy, between the associated simplicial morphisms to (P,g) and (P',¢’)
if, and only if, the diagram in EX2:
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Pdy ® Pdy ® Qdydy —22> > Pdy ® Qdyd;

ll®(<p1"l¢0)d2

Pdy ® Qdody @ P'dy (o7 wo)dr
l(qofltpo)do@l
Qdody ® P'dy ® P'dy —22 Qdody ® P'd,

is commutative.

Then, considering the composition f = gol_lcpo :P®Qd; = Qdy® P, it
turns out that, by the commutativity of the above diagram, (P, g) is in the
orbit of (P, g'), that is, [Q[(P',¢")] = [(P,9)] (see (5)), and therefore (P',g')
and (P,g) define the same element in H?(X,,E).

Conversely, let Q : Xo — Obj(E) be an object of EX! and let 1 : (P, g) —
(?P',2 ¢') be a morphism of normalized 2-cocycles. If f : ®P' ® Qd; —
Qdy ® P' is the defining map of 2P’ (which, since (P’,g’) is a normalized
2-cocycle, can be chosen such that @ P'sy(z) = I, for all z € Xo, and fso(z) =
ré(lx) olg) + I ® Q(z) > Q(z) ® I), we define a truncated homotopy by

W=IeQ,h = ((rp®lel)oa;,II,le,P,PQble,I®Qd1)) and h! =

(¥ ®1ga) o f Lo (lge ® 1p),I ® Qdo, P ® Qd1, P'), which extends to a
homotopy between the simplicial mophisms associated to (P, g) and (P, ¢’).

In [4] it is proved the existence of an adjoint situation

2
(Gr — categories), ~ _reduced Kan Simplicial Sets (8)

Ners

where (Gr — categories), denotes the category of categorical groups and
monoidal functors which are strict on the unit object, and the functor g9 ap-
plies a pointed Kan simplicial set (not necessarily reduced) to the fundamental
groupoid of its loop complex. The counit morphisms of this adjunction are
isomorphisms while the unit morphisms are weak 2-equivalences. This allows
them to show a new way of how categorical groups give algebraic models for
connected homotopy 2-types. Concretely if X, is a connected Kan simplicial
set with trivial homotopy groups at any dimension but 1 and 2, and * € X,
then X, is homotopy equivalent to Ners(p2(X, *)).
Then, as a consequence of above theorem, we may conclude:
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THEOREM. Let X be any space and let Y be pointed CW-complex with
m;(Y) =0 for all i # 1,2. There exists a bijection

[X,Y] = H*(X, 02(Y))

between the set of homotopy classes of continous maps from X to Y and
the singular 2-cohomology set of X with coeflicients in p3(Y'), the categorical
group associated to the pointed Kan simplicial set S(Y').

Remark. Tt is well known that any categorical group is monoidal equivalent
to a strict one. Then, if X is K(G,1)-space, that is, an aspherical space with
fundamental group G and @ is the crossed module associated to a strict cate-
gorical group monoidal equivalent to py(Y’), the above theorem particularizes
to

[X7 Y] Deck (G (I))

(see example 3). So we obtain, as a particular case, the classification theorem
given by Bullejos-Cegarra in [2].
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