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1. INTRODUCTION AND BASIC PROPERTIES

In this paper we survey some recent results concerning separating polyno-
mials on real Banach spaces. By this we mean a polynomial which separates
the origin from the unit sphere of the space, thus providing an analog of the
separating quadratic form on Hilbert space.

This kind of polynomials were first used by Kurzweil [18,19] in connection
with the problem of uniform approximation of an arbitrary continuous function
by real-analytic ones in separable Banach spaces. As we will see, the existence
of a separating polynomial on a Banach space is a quite restrictive property,
which can be seen as a strong form of smoothness. Conversely, results of
Deville et al. [5,8] show that combining high order of smoothness with some
kind of convexity gives in fact a separating polynomial on the space (see also
[10]). This is presented in Section 2. We also give there some geometric
and structural conditions satisfied by spaces with a separating polynomial,
especially the result of Deville [4] that such a space always contains a copy of
¢, with p an even integer (see also [13]).

Section 3 is devoted to separating polynomials on symmetric spaces, in
both the discrete and the continuous cases. That is, either in spaces with
symmetric basis or in rearrangement invariant function spaces. A symmetriza-
tion procedure is described which allows us to construct symmetric separating
polynomials in this case and, using this, results of Gonzalo, Gonzélez and
Jaramillo [11,13] are given which exactly describe whose of these spaces admit
a separating polynomial in the separable case.

Finally, in Section 4 the existence of separating polynomials on spaces
LP(LY), and in some special subspaces, is studied. In this way we provide
some further examples of spaces with separating polynomials.
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146 R. GONZALO AND J.A. JARAMILLO

Throughout, X will stand for a real Banach space. Recall that a mapping
P : X — R is said to be a continuous k-homogeneous polynomial if there is a
continuous k-linear form A : X X --- x X — R such that for all z € X,

P(z) = A(z,...,z).

A polynomial P from X into R is a finite sum P = Py+ P, +- - -+ P,, where
P, is constant and each P, is a continuous, k-homogeneous polynomial on X for
k=1,...,m. The degree of P is the maximum degree of its summands. Note
that we always consider continuous polynomials. For an extensive treatment
of polynomials on Banach spaces we refer to the books by Dineen [9] or Mujica
[27].

We say that P is a separating polynomial on X if P(0) = 0 and

inf{P(z) : || = 1} > 0.

In other words, if P separates O from the unit sphere of X. Note that, since the
unit sphere is connected, if there is a polynomial P on X such that P(0) =0
and

inf{|P(z)| : ||z]| = 1} > 0.

then either P or —P is a separating polynomial on X.
Next we present some basic facts about separating polynomials.

1.1. As it is easily seen, every finite dimensional space admits a separating
polynomial.

1.2. The nicest example of an infinite dimensional space which admits
a separating polynomial is Hilbert space. Indeed, if B is the bilinear form
defining the scalar product of a Hilbert space H then P(z) = B(z,z) = ||z|?
defines a separating polynomial on H. Conversely, supose that X is a Banach
space which admits an homogeneous separating polynom:al P of degree 2. Let
A be the bilinear symmetric form associated to P, and let o := inf{P(z) :
llz|l = 1} > 0. By homogeneity,

aflz]|* < P(z) = A(z,z) < [|A]lll=]*.
This means that the expression
lzll = (P(2))"*

is a Hilbertian equivalent norm on X.
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1.3. Another examples of spaces with separating polynomials are the
spaces L,(u) for any measure p and p = 2n an even integer. Indeed, the
expression

PN =1 = [ (Ot f € Lanw),

defines a (2n)-homogeneous separating polynomial on such space. In the case
of £5,, if {e;} denotes the usual basis of the space, the expression

P72, zie;) = || 2052, zje; |t = 2052, 23"
defines a 2n-homogeneous polynomial on 45,,.

1.4. Infinite-dimensional spaces L,(u), where p # 2k, do not admit a
separating polynomial [2]. In fact, as it is shown in [15], something stronger
can be said: if either n # kp or p is not an even integer and P is an n-
homogeneous polynomial on ¢,, then for each infinite-dimensional subspace
Z of £, and each € > 0 there exists an infinite-dimensional subspace ¥ C Z
such that [P(y)| < € for all y € Y with |ly|| = 1. This means, in particular,
that there is no homogeneous separating polynomial on ¢, whenever p is not
an even integer. Also, if p is an even integer and there is a k-homogeneous
separating polynomial on £, then £ must be a multiple of p.

1.5. The space ¢y does not admit a separating polynomial. This follows
from the fact proved by Pelczynski [29], that every polynomial on ¢, is weakly
sequentially continuous. Therefore, if P is a polynomial on ¢, such that P(0) =
0 and {e;} is the usual basis, then

inf |Ple;)] =0

and P cannot be separating.

1.6. If X admits a separating polynomial P, then Q(z) = 1(P(z)+P(—=z))
is also a separating polynomial on X and in addition @ is an even function.
Note that Q = Q2 + Q4 + - - - + Q2m, Where each Q5 is 2k-homogeneous.

1.7. If X admits a separating polynomial P, then there also exists an
homogeneous separating polynomial @ on X (see [10]). Indeed, let P = Py +
P, +---+ P, be a separating polynomial, where each P, is k-homogeneous
and P, is constant. Note that Py = 0. Now define

Q _ P12(m!) + P22(m!)/2 4 Pi(m!)/m.

Then @ is a 2(m!)-homogeneous separating polynomial on X.
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1.8. Suppose that X admits a separating polynomial P=P +---+P,,
where each Py is k-homogeneous, and let o := inf{P(z) : ||z| = 1} > 0. Then
the polynomial

m

Qz) = (—) (PL@)* + -+ + (Pu(@))?)

(67

satisfies that Q(z) > 1 whenever ||z| > 1.

1.9. A finite family of polynomials {P,...,P,} on X is said to be a
separating family if, for all z € X with ||z|| = 1, we have

max{|Fi(2)]} 2 1.
Of course, if there is a separating family of polynomials {P,...,P,} on X,
then the space admits a separating polynomial. Indeed, it is enough to consider
P(z) = (Py(z))* 4+ -+ + (Pa.(z))>. What is not clear is whether under the
assumption of having a separating family of polynomials of degree at most m,
a separating polynomial of degree at most m may be found.

1.10. The property of having a separating polynomial is invariant under
isomorphisms; in other words, if there is an isomorphism between two Banach
spaces and one of them admits a separating polynomial, then so the other
does. A finite product of spaces with separating polynomial also admits a
separating polynomial. Therefore, if a finite-codimensional subspace admits a
separating polynomial, then the whole space also does.

1.11. To have a separating polynomial is a hereditary property. As a con-
sequence of this, spaces with separating polynomial do not contain isomorphic
copies of ¢y. For quotient spaces the situation is quite different. Indeed, in
[21.I 4.d.10] a quotient of £, @ ¢, is constructed with the property of containing
isomorphic copies of £, for 2 < r < 4. Therefore, such quotient space does
not admit a separating polynomial. On the other hand, as mentioned in [21.1

2.d.7], £4/5 contains a subspace isomorphic to (@"o Eg’;i) , and therefore
La/3

£4 has a quotient isomorphic to (@“’ Z(" ) but this space does not admit

a separating polynomial. We are grateful to Manuel Gonzélez for providing
us these examples.

1.12. Recall that a property P of Banach spaces is said to be a three space
property when given a Banach space X and a closed subspace Y of X, if both
Y and X/Y have P, then also X has P. We note that to admit a separating
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polynomial is not a three space property. This result can be deduced from [6
V.1.10], and it is also obtained in [11].

1.13. We say that X has a polynomial norm ||.|| if, for some even integer k,
we have that P(z) = ||z||* is a k-homogeneous polynomial on X. Of course, if
X admits an equivalent polynomial norm then it has a separating polynomial.
In fact, we will see that all known examples of spaces which admit a separating
polynomial actually have an equivalent polynomial norm. This suggests the
following question:

QUESTION 1. Is there a Banach space with separating polynomial but with
no equivalent polynomial norm?

Actually, once one can find a convex k-homogeneous separating polynomial P
on X, then the expression ||z|| = (P(z))"/* defines an equivalent polynomial
norm on X. So, the problem is reduced to find from a separating polynomial
a convex separating polynomial.

1.14. We finish this Section with a short comment about separating poly-
nomials and ultrapowers. We refer to [16] for the definition and basic prop-
erties of ultraproducts of Banach spaces. Let U be a nontrivial ultrafilter on
a given set I. For a Banach space X, we denote by X;; the corresponding
ultrapower. It is possible to extend each polynomial P on X to a polynomial
Py, on Xy by defining

Pyu((zi)ier) = li&nP(fEi)'

For details see [22], where this and other extensions are studied, and some
applications are given. It is easily seen that if P is a separating polynomial,
then so is Py. Thus if X admits a separating polynomial (respectively a poly-
nomial norm), then every ultrapower Xy, also admits a separating polynomial
(resp. a polynomial norm).

Recall that a Banach space Y is said to be finitely representable in X if,
for every € > 0 and every finite-dimensional subspace Y, of Y, there exist a
finite-dimensional subspace X, of X and an isomorphism T : Y; — X, such
that

ITI- T <1+e.

It is well known that Y is finitely representable in X if, and only if, Y is
isometric to a subspace of some ultraproduct Xy (see e.g. [16]). Therefore we
obtain that if X admits a separating polynomial (respectively a polynomial
norm), and Y is finitely representable in X, then also Y admits a separating
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polynomial (resp. a polynomial norm). This was essentially observed in [31,
2.3].

2. SEPARATING POLYNOMIALS AND SMOOTHNESS

As we mentioned before, the notion of separating polynomial was intro-
duced in 1954 by Kurzweil [18], in order to obtain the following remarkable
approximation result:

THEOREM 2.1. Suppose that X is a separable Banach space which admits
a separating polynomial. Then, for every ¢ > 0, every Banach space Y, and
every continuous function f : X — Y, there exits a real-analytic function
g : X — Y such that

sup || f(z) — g(z)|| <e.
zeX

In fact, Kurzweil proved that it is possible to obtain not only uniform
approximation but also approximation for the fine topology. In [19] a converse
of this result is given for uniformly convex spaces X. It follows from Deville’s
results (see Theorem 2.2 below) that a converse of Theorem 2.1 actually holds
for spaces X not containing isomorphic copy of c;. The case of ¢y is then
specially relevant, and it would be very nice to know the following:

QUESTION 2. Is it possible to approximate every continuous real function
on ¢y, uniformly on ¢y, by real-analytic functions?

Concerning Theorem 2.1, there is also another interesting question:

QUESTION 3. Does Theorem 2.1 hold for nonseparable spaces X7

The existence of a separating polynomial on a Banach space X has strong
connections with the smoothness of the space. As usual, we say that a real
function on X is C*-smooth if it is k-times Fréchet differentiable and the k-th
derivative is continuous. Recall that a function b : X — R is said to be a bump
function if it has nonempty bounded support, and X is said to be C*-smooth if
it admits a C*-smooth bump function. C*°-smoothness is defined in the same
way. For an extensive treatment of smoothess properties of Banach spaces we
refer to [6].

Now we point out that if X admits a separating polynomial then it is C'*°-
smooth. In order to see it, let P be a polynomial on X such that P(0) = 0 and
P(z) > 1 whenever ||z|| > 1, and consider a C*-smooth function ¢ : R — R
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verifying that ¢(0) = 1 and ¢(¢) = 0 if || > 1. Then ¢ o P is a C°-smooth
bump function on X. Note that, in addition, ¢ o P has uniformly continuous
derivative. It is well known that superreflexive spaces can be characterized
as those spaces which admit a C'-bump function with uniformly continuous
derivative (see e.g. [6 V.3.2]). In this way we obtain that if X admits a
separating polynomial then X is superreflexive.

The typical example of C*°-smooth space without a separating polynomial
is ¢y. The following result, due to Deville [5], shows that this is essentially the
only obstruction.

THEOREM 2.2. Let X be a Banach space without any isomorphic copy of
¢o.- The following are equivalent:

(i) X admits a separating polynomial.
(ii) X is C*°-smooth.

Combining Theorems 2.1 and 2.2 we obtain:

COROLLARY 2.3. Let X be a separable Banach space without any isomor-
phic copy of cy. Then the following statements are equivalent:

(i) X admits a separating polynomial.
(if) X is C°°-smooth.

(iii) For every € > 0 and every continuous function f : X — R, there exists
a real analytic function g : X — R such that

sup | f(z) — g(z)| <e.
zeX

(iv) For every Banach space Y, every € > 0 and every continuous function
f X =Y, there exists a real analytic function g : X — Y such that

sup || f(z) — g(z)|| <e.
reX

In the sequel we study how combining high order of smoothness with cer-
tain properties of convexity we obtain the existence of a separating polynomial.
We say that a function f : X — R is TP-smooth, where 1 < p < oo, if
it has a Taylor expansion of order p around each point. That is, if for each



152 R. GONZALO AND J.A. JARAMILLO

z € X there exists a polynomial P on X of degree < [p], where [p] denotes
the integer part of p, satisfying that P(0) = 0 and

[f (@ +h) = f(z) = P(R)| = o(||A[[")-

Note that if f is m-times Fréchet differentiable on X, then Taylor’s theorem
gives that f is T?-smooth for 1 < p < m. As usual, we say that the space X
is TP-smooth if there is a T?-smooth bump function on X.

Recall that the modulus of convexity of a norm ||.|| is defined by

T +y
Hzll=llyl =1 llz -yl > ¢
2

d(e) := inf {1 —

for0<e<2.

From Pisier [30] (see also [6 IV.4.8]), every superreflexive space admits an
equivalent norm with modulus of convexity of power type ¢, for some g > 2.
This means that there exists a constant K > 0 such that d(¢) > Ke? for all
0<e<2.

Using these properties of smoothness and convexity, the following result is
obtained in [8].

THEOREM 2.4. Suppose that, for some p > 2, X is TP-smooth and admits
an equivalent norm with modulus of convexity of power type p. Then X admits
a separating polynomial of degree < p.

In particular, if X admits a separating polynomial, the above Theorem
shows that the polynomial can be chosen to have degree at most the power
estimate of the modulus of convexity of any equivalent renorming of X.

Theorem 2.4 is similar to Theorem 1 in [10], where a different kind of
smoothness on the space is used, and the convexity condition of the norm is
substituted by a differentiability condition of the dual norm. In this sense,
note that the space X admits a norm with modulus of convexity of power
type p if, and only if, the dual space X* admits an equivalent norm whose
derivative is uniformly (p — 1)~!-Holder on the unit sphere (see e.g. [6 IV.1.12
and IV.5.1]) if, and only if, X* admits an equivalent norm whose derivative is
pointwise (p — 1)~'-Holder on the unit sphere [7].

We recall now a related kind of smoothness. For 1 < p < oo we say,
according to Meshkov [26], that a function f: X — R is HP-smooth if f is m
times Fréchet differentiable, where m is the largest integer strictly less than p,



SEPARATING POLYNOMIALS 153

and the m-th derivative is locally uniformly (p — m)-Ho6lder. That is, for each
z € X there exist a neighbourhood V(z) and a constant M > 0 such that

17 () = F™ (@) < Mlly - 2IP~™,

for all y,z € V().

Note that if f is HP-smooth then it is T9-smooth for 1 < g < p.

As usual, we say that X is HP-smooth if there is a HP-smooth bump
function on X. Deville obtained in [5] the existence of a separating polynomial
using HP-smoothness and a kind of convexity condition formulated in terms of
cotype. Recall that a Banach space X is said to have cotype ¢, for 2 < g < oo,
if there exists a constant C' > 0 such that, for any finite family z;,...,z, € X,

(T lel)s € Ok Ceman | Ty i3l

Note that if X has modulus of convexity of power type q then X has cotype
g, but the converse is not true in general (see e.g. [21.II 1.e.16)).
More precisely, the following result is due to Deville [5].

THEOREM 2.5. Suppose that X is HP-smooth and has cotype q where
p > q. Then X admits a separating polynomial.

The existence of a separating polynomial on a Banach space has strong
geometrical implications, as was shown by Deville in [4]:

THEOREM 2.6. Suppose that X admits a separating polynomial. Then X
has exact cotype 2k and contains an isomorphic copy of s, for some integer
k.

This implies that spaces with a separating polynomial are saturated with
£, subspaces, since the property of having a separating polynomial is heredi-
tary.

The proof of Theorem 2.6 uses the following result, that relates separating
polynomials to cotype, and which requires the use of probabilistic techniques.

THEOREM 2.7. Suppose that there is a finite family of homogeneous poly-
nomials of degree < m on X which is a separating family. Then, X has cotype
m.

In the sequel, we describe the isomorphic copies of £5; in spaces with sep-
arating polynomial. In order to do it, we denote

cot(X) = inf{q : X has cotype g},
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and
é(X) = inf{cot(Y) : Y C X, dim(Y) = oo}.

It is clear that cot(X) > &(X).
On the other hand, the following indices are introduced in [14], related to
different properties of weak summability of sequences:

I(X) =sup{p > 1: X has S, — property} € [1,0]

and
u(X) =inf{p > 1: X has T, — property} € [1, o0].

Recall that, for 1 < p < oo, a Banach space X is said to have S,-property
(respectively T,-property) if every weakly null normalized sequence in X has
a subsequence with an upper /,-estimate (respectively a lower £,-estimate). It
is clear that if X is not a Schur space then [(X) < u(X).
We have that u(X) < cot(X) (see [14]), and they do not coincide in general:
consider, for instance, the space X = (G}le &Y”)Z ; this space has exact
2

cotype 4, and u(X) = 2, since every normalized weakly null sequence has a
subsequence equivalent to the unit vector basis of 4.

On the other hand, [(X) < &(X), and they do not coincide in general, as
the example X = {3/, easily shows.

Finally, note that for simple examples such as X = ¢, @ ¢, we may obtain
that ¢(X) = 2 < 4 = u(X).

In the following Theorem we summarize the various results concerning the
existence of isormorphic copies of £, is spaces admiting separating polynomi-
als.

THEOREM 2.8. Let X be a Banach space with separating polynomial.
Then:

(i) There is an integer n such that cot(X) = u(X) = 2n and X contains an
isomorphic copy of £,,,.

(ii) There is an integer m such that ¢(X) = I(X) = 2m and X contains an
isomorphic copy of £,,,.

(iii) If €y, C X, then 2m < 2k < 2n.

In [6 V.4 and V.5] it is shown that a space with separating polynomial
contains an isomorphic copy of ¢ cob(x) and £z x). On the other hand, and with
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different techniques, in [13] it is proved the existence of isomorphic copies of
¢, xy and £,(x) in such spaces.

Note that from the above results it follows that there is no universal space
for separable spaces with separating polynomials. Indeed, if X were a Ba-
nach space containing all separable spaces with separating polynomial, then
X would contain ¢y, for every integer k, and also would have finite cotype,
but this is not possible. Nevertheless, we may ask the following:

QUESTION 4. For a fixed integer k, is there an universal Banach space X
containing every separable Banach space which admits a separating polyno-
mial of degree at most k7

We finish this Section with a result about smoothness and saturation of
Banach spaces due to Deville [4] (see also [6 V.5.1]).

THEOREM 2.9. Suppose that X is C?**-smooth for some integer k, and it is
saturated with subspaces of cotype 2k. Then, X has a separating polynomial
and has exact cotype 2k.

From this it is possible to obtain Makarov’s theorem [23], where the Hilbert
space case was established: that is, if X is C%-smooth and it is saturated with
£, subspaces then X is in fact isomorphic to a Hilbert space.

3. SEPARATING POLYNOMIALS ON SPACES WITH SYMMETRIC
BASIS AND R.I. FUNCTION SPACES

In this Section we charaterize those spaces with symmetric structrure that
admit a separating polynomial. We begin with spaces with a symmetric basis
(see [21.I] for an extensive treatment). Recall that a Schauder basis {e;}
on a Banach space is said to be symmetric if it is equivalent to all of its
permutations. If X is a Banach space with symmetric basis {e;}, then it is
possible to find an equivalent norm verifying that for every n and a,,...,a, €

R,
' | 251 ase;ll = | 5y aseq i
whenever ¢ is a permutation of the integers. We always consider this norm on
X.

A well known class of spaces with symmetric basis are £, spaces. As we
have seen, such spaces admit a separating polynomial only in the case that p
is an even integer.
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Another remarkable class of spaces with symmetric basis are Orlicz se-
quence spaces £, associated to an Orlicz function M. We also refer to [21.1]
for an account on this topic. Maleev and Troyanski [24,25] studied the highest
order of smoothness of bump functions in these spaces and from their results
it follows that ¢,, admits a separating polynomial only in the case that it is
isomorphic to £, for some even integer p.

These results can be generalized to the context of all symmetric sequence
spaces as it was proved by Gonzalo and Jaramillo [13]. They gave the following
characterization of symmetric sequence spaces with separating polynomial:

THEOREM 3.1. Let X be a Banach space with a symmetric basis. The
following are equivalent:

(i) X admits a separating polynomial.

(ii) X is isomorphic to ¢y, for some integer k.

The continuous analog and the generalization of symmetric sequence spaces
are rearrangment invariant function spaces, or r.i. spaces, in short. We will be
concerned here only with separable r.i. spaces. Every space with a symmetric
basis is, in a natural way, an r.i. space on N (see [21.II] for details; we refer
to [21.1I) or [3] for further information about r.i. spaces). In this context, the
analog to Theorem 3.1 for function spaces on [0, 1] is the following.

THEOREM 3.2. Let X|[0,1] be a separable rearrangement invariant func-
tion space on [0,1]. The following are equivalent:

(i) X[0,1] admits a separating polynomial.

(ii) X0,1] coincides with Ly[0,1] for some integer k, up to an equivalent
renorming.

In order to prove both Theorem 3.1 and 3.2 only techniques of polyno-
mials are used. Of course, the symmetric structure of the space is essential
in these results; indeed, the proof makes use in an strong way of symmetric
polynomials.

Recall that for a Banach space X with symmetric basis {e;}, a polynomial
P on X is said to be symmetric if:

P(Z;‘;l aje;) = P(Z;;l a;eq(j))

for every ay,...,a, € R, every n and every permutation o of integers.
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This notion can be extended to rearrangement invariant function spaces
on [0,1]. Note that the main feature of a r.i. function space on [0,1] is that
for every automorphism o of [0,1] we have that f oo € X[0,1] whenever
f € X][0,1]. Thus, a polynomial on X[0,1] is said to be symmetric if it is
invariant under automorphisms; more precisely if for all automorphism o on
[0,1] it holds:

P(f) = P(f oo).

The nicest example of an N-homogeneous symmetric polynomial, for an
integer N, on spaces with symmetric basis is

PN(Z;L Tie5) = Z}’il m;\r

whenever it is well defined, ie., if 3, |z;|Y < oo for all z = Y, ze; € X.
These are called the elementary symmetric polynomials. In the continuous
case, the elementary symmetric polynomials are defined by

Pulh) = | N Fex

provided f € Ly[0,1] for all f € X[0,1].

It is well known that in finite dimensional spaces every symmetric poly-
nomial can be obtained as an algebraic combination of elementary symmetric
polynomials (see for instance [17]). In [28] it is showed that the situation
is exactly the same for Hilbert and £,-spaces, and also for L,[0,1] whenever
1 < p < oo. This was generalized to the context of all symmetric sequence
spaces and separable r.i. function spaces in [11]. Namely, it was proved there
that every symmetric polynomial on such spaces may be written as an alge-
braic combination of the elementary symmetric polynomials.

There is a kind of symmetrization procedure for polynomials [28, 11] that
allows us to obtain from a given polynomial a new symmetric polynomial pre-
serving some properties of the original one. In the case of symmetric sequence
spaces the procedure is as follows:

For a fixed polynomial P consider the sequence of polynomials { P, } defined
by

Po(X721 aje) = 1 Xoen, P(C7=1 a5€0(5),

where II,, denotes the permutations of {1,...,n}. Since {P,} is a bounded
sequence of polynomials with fixed degree, by [28, Th.4] it is possible to ex-
tract a subsequence pointwise convergent to a polynomial P*, which is now a
symmetric polynomial.
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For r.i. function spaces there is an analogous procedure (see [11] for de-
tails). Using this method, the following result is proved.

THEOREM 3.3. Let X be either a Banach space with symmetric basis or
a separable rearrangement invariant function space on [0,1]. If there is a
separating polynomial on X then there is a symmetric separating polynomial.

Now Theorems 3.1 and 3.2 are obtained by combining the above Theorem
with the description of symmetric polynomials given in [11].

The situation for r.i. function spaces on [0, 00) is not exactly the same, in
the sense that spaces L,;[0,00) are not the only ones that admit a separating
polynomial. Indeed, consider the following interpolation space: for p,q > 1 the
space L,[0,00) N L,[0,00) is defined as the set theoretic intersection endowed
with the norm

I1fllz,nz, = max{||fllp, I £ll4}-

Then for integers n,m, the space Ls,[0,00) N Ly, [0, 00) admits a separating

polynomial, namely
P = [ s [
0 0

Nevertheless, as it is shown in [11], the above examples are the only separable
r.i. function spaces on [0,00) that admit a separating polynomial. More
precisely, we have:

THEOREM 3.4. Let X[0,00) be a separable rearrangement invariant func-
tion space on [0,00). The following are equivalent:

(i) X[0,00) admits a separating polynomial.

(ii) X[0,00) coincides with L,[0,00) N Ly, [0, 00) for some integers n, m, up
to an equivalent renorming.

An application of the results in this Section is the characterization of Or-
licz sequence spaces £, (also obtained in [24,25]), and Orlicz function spaces
Ly[0,1]) and Lp[0, 00) which admit a separating polynomial.

COROLLARY 3.5. Let M be an Orlicz function satisfying the A,-condition
at 0 and co. Then:

t2k

(i) £y admits a separating polynomial if and only if M ~ t** at 0 for some

integer k.
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(ii) La[0,1] admits a separating polynomial if and only if M ~ t** at oo for

some integer k.

(iii) Las[0,00) admits a separating polynomial if and only if M ~ max{t*",
t>™} at 0 and at oo, for some integers m,n.

The last part in “he above Corollary is a consequence of the fact that
the space Ly,[0,00) N Ly,[0,00) coincides with the Orlicz space L[0,00)
associated to the Orlicz function M () = max{t*",*™}.

We consider now spaces with subsymmetric basis, a notion which is weaker
than symmetric basis. Recall that a basis {e,} in a Banach space is said to
be subsymmetric if it is unconditional and, for every increasing sequence {n;}
of integers, {e,,} is equivalent to {e,}. Every symmetric basis is subsymmet-
ric, and the converse is not true in general (see [21.I]). The characterization
obtained in Theorem 3.1 holds, in fact, for spaces with subsymmetric basis.
Thus we have:

THEOREM 3.6. Let X be a Banach space with subsymmetric basis. Then
X admits a separating polynomial if, and only if, X is isomorphic to £y for
some integer k.

This was proved in [13] using smoothness techniques. An alternative proof
is given in [12], which is somewhat analogous to the symmetric case but using
subsymmetric polynomials instead of symmetric polynomials. We say that a
polynomial P is subsymmetric if it is invariant under spreading of the basis,
that is, if

P(Z?=1 aje;) = P(Z?:l ajenj)

for all a;,...,ax € R and n; < --- < ng. The proof of [12] is based on an
explicit description of all subsymmetric polynomials on a Banach space with
subsymmetric basis.

In [13] (see also [12]) a kind of subsymmetrization procedure is described
that allows us to obtain, from a given polynomial on a Banach space X, an
associated subsymmetric polynomial on a spreading model of X. The method
uses Ramsey Theorem much in the same way as in the construction of the
spreading norm itself (we refer to [1] for an account on the theory of spreading
models). More precisely, we have:

THEOREM 3.7. Let {y,} be a normalized weakly null sequence in a Banach
space X, which admits an spreading model E with unconditional basis {e,}.



160 R. GONZALO AND J.A. JARAMILLO

Let P a polynomial on X. Then there exists a subsymmetric polynomial P on
E and a subsequence {z,} of {y,} such that for all a;,...,ar € R:

]P(Z?:l a]'ej) = 1imn1<...<n,‘ P(Z;c:l ajwnj)'
Moreover, if P is a separating polynomial then so is IP.

Note that if, in addition, {y,} is a subsymmetric basis of X, then the
spreading model E is isomorphic to X. Therefore, in this case, the associated
polynomial P is also defined on X.

As a consequence of the above, we obtain the following result.

THEOREM 3.8. Supose that X admits a separating polynomial. Then,
every spreading model built over a normalized weakly null sequence in X is
isomorphic to ¢, for some integer k.

4. SEPARATING POLYNOMIALS ON LP(L9)

The nice characterization of spaces with symmetric or subsymmetric basis
admiting separating polynomial, given in Theorems 3.1 and 3.6, cannot be
generalized to the framework of spaces with unconditional basis, as the exam-
ple ¢, @ £, easily shows. One can ask if, under the assumption of having a
separating polynomial, a space with unconditional basis and #5;-saturated for
a fixed k must be isomorphic to £,;. This is not true, as we can see with the

space
X = (@ Zﬁ”’)
n=1 ls

that consists of all sequences z = (z,), with z, € £™ and ¥, [|z.]8 < oo.
It is easy to see that X has a separating polynomial (in fact, a polynomial
norm). Indeed, the following expression defines a 8-homogeneous polynomial

on X:
n 2
P(z) = |z|* = Z llzall3 = Z (Z( ﬁ)“)
k=1
where z,, = zlel + .- + z"e” and {el,...,e"} is the canonical basis in £

for each n. Now X has unconditional basis and is £g-saturated. In fact, every
weakly null normalized sequence in X has a subsequence equivalent to the
usual basis of 3. On the other hand, X is not isomorphic to £s.
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Actually, this kind of Banach spaces provide interesting examples of spaces

with or without a separating polynomial. For instance, the space (69;'11 Zfin))e
2

is saturated with Hilbert spaces but fails to have a separating polynomial. This
follows by the fact that every ¢,-saturated space with separating polynomial
is indeed a Hilbert space (see Theorem 2.9).

In [8] a systematic study about smoothness and separating polynomials of

the spaces
X = (@ ﬁf;”)
n=1

for 1 < p,q < 00, is made. A main result in this line is the following.

23

THEOREM 4.1. Let 1 < p,q < oo. Then, the following are equivalent:

(i) The space X = (Eszl 2((1"))[ admits a separating polynomial.

14

(ii) Both p and q are even integers, and p is a multiple of q.

The main idea to prove this result is that, although £, is not contained
in X, from a polynomial P on X it is possible to construct an associated
polynomial P on ¢, in the following way:

Let {e;} be the usual basis of £, and for each n consider {es,...,e,} as the
basis of the subspace £{™ of X. For each n consider the polynomial P, on £,
defined by

P.(X32  zje;) = P(ziey + - 4 zpe,).

Then {P,} is a bounded sequence of polynomials with fixed degree, and by
(28, Th.4] there exists a subsequence of {P,} which is pointwise convergent to
a polynomial P on £,

It is easily seen that if P is a separating polynomial then so is P. It can be
shown that, in this case, both P and P can be chosen to be p-homogeneous.
Now we only have to use the fact (see [15]) that if there is a p-homogeneous
separating polynomial on ¢,, then p must be a multiple of ¢ .

The following result used in the proof of Theorem 4.1 may be of indepen-
dent interest.

PROPOSITION 4.2. Suppose that X admits a separating polynomial. If
every weakly null sequence in X has a subsequence equivalent to the usual
basis of £, then there is a 2k-homogeneous separating polynomial on X .
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Now let 1 < p < oo and let (2,u) be a measure space such that the
corresponding LP(y) is infinite-dimensional. Recall that if X is a Banach
space, the Bochner space LP(u,X) = LP(X) is defined as the space of all
measurable functions v : 2 — X such that

[ Iu)lPduts) < oo

First note that, if X admits a m-homogeneous separating polynomial P, amj
p = km is a multiple of m, then L?(X) admits a separating polynomial P
defined by

P() = [ Plu(s)du(s)

The smoothness of spaces L?(X) were studied by Leonard and Sundaresan
[20].

Now consider the case that X = L? for some (probably different) measure
and 1 < g < 0o, where we also suppose that L? is infinite-dimensional. Thus
we obtain the space L?(L?), whose properties regarding smoothness and sep-
arating polynomials were studied in [8]. In closing, we present the following
result from [8].

THEOREM 4.3. Let 1 < p,q < oo and consider the space L?(L?). Then
the following are equivalent:

(i) LP(LY) admits a separating polynomial.

(ii) Both p and q are even integers and p is a multiple of q.

Note that (@52, £) is a subspace of L?(L?). Thus, Theorem 4.3 is in
n=1"gq )

fact a consequence of Theorem 4.1.
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