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Since the birth of Banach space theory, it has been an important goal to
know how are the subspaces of a given Banach space. An interesting part of
that study has been focused in the search of criteria for a Banach space to have
any of the classical sequence spaces as a subspace. Several deep results have
revealed how the presence (or the absence) of such subspaces provides a very
good insight in the internal structure of the Banach spaces involved. Think,
for instance, in the fundamental structural results on the spaces having an un-
conditional basis, due to James (1950); or in the criterion for spaces containing
¢o given by Bessaga-Pelczynski (1958); or in the remarkable Rosenthal’s result
(1974) characterizing spaces containing ¢;.

A particular aspect of this research emerged in the mid-seventies when
Hoffmann-Jgrgensen (1974), in one of the pioneering works on probability on
Banach space, left open the problem of characterizing when L;(u, X) con-
tains a copy of ¢g. Since then, many authors have investigated in which
conditions different vector-valued function spaces contain copies of classical
sequence spaces, especially copies of ¢g, £; and ¢,,. Most of their work centers
on the spaces L,(u, X) and C(K, X), which are the most important examples
of vector-valued function spaces. Thanks to them we know today an (almost)
complete answer to the following question:

When do the spaces C(K,X) and L,(u, X) contain a copy or a comple-
mented copy of ¢y, £y or £, 7

Notice that actually this is not one question, but a collection of questions.
J. Mendoza and myself are writing a monograph which contains a detailed
exposition of all the answers, and I have been asked to give some idea of our
work. In [8] one can find a condensed preliminary version of it, which summa-
rizes almost all known results and contains the adequate references. Therefore,
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our aim here will be first to sketch briefly some aspects of its content, with es-
pecial mention to some curious examples and counterexamples; and secondly,
to comment two concrete points which does not appear in [8]: the behavior of
co-sequences in L,(u, X) and the last solution obtained to the posed question.

Let us begin fixing the notation. X will be a Banach space, K a com-
pact Hausdorff space and (2,3, ) a finite measure space. For 1 < p < oo,
L,(p, X) denotes the Banach space of all X-valued, p-Bochner u-integrable
(u-essentially bounded, when p = oo) functions; and C (K, X) denotes the Ba-
nach space of all continuous X-valued functions defined on K. Both endowed
with their usual norms. The symbols L,(x) and C(K) stand for the case in
which X is the scalar field. To avoid trivial situations the spaces L,(u), C(K)
and X will be supposed to be infinite dimensional. The sum in the sense of
£, or cq of a sequence of Banach spaces (X,) is denoted by (>3- ®X,), and
> eX,).,, respectively.

The first answers to the problem were given by Kwapien and Pisier in
the seventies, who characterized when L,(u, X) contains copies of ¢y and ¢,
respectively. Bourgain provided alternative proofs of these results, and he
obtained some extensions which were crucial to achieve other solutions to
our problem. E. and P. Saab, Cembranos, Freniche and Drewnowski worked
in C(K, X) spaces in the eighties. Around 1990 Bombal, Emmanuele and
Mendoza gave the solutions to the problems on L,(u, X), with 1 < p < oo,
not solved by Kwapien and Pisier theorems. Complemented copies of ¢, in
Lo (p, X) were considered by Leung, Riébiger and Diaz in the early nineties.
The last solution, about complemented copies of ¢; in L., (u, X), is due to
Diaz and Kalton, and it was completed last June.

Most of the results show that we have natural solutions to the problem,
that is, the fact that an X-valued function space contains a copy (or a com-
plemented copy) of ¢y, £; or £, very often holds only if the same occurs in X
or in the corresponding scalar function space (note that the converse is always
trivially true). Thus, since L,(x) never contains ¢ for 1 < p < oo, and it
never contains ¢; for 1 < p < oo, the following results given by Kwapien and
Pisier, respectively, provide natural answers

For 1 <p < oo, L,(14,X) contains a copy of ¢y if and only if X does.

For 1 < p < oo, L,(u, X) contains a copy of £, if and only if X does.

Nevertheless, there are exceptions. The spaces L,(u,X) and C(K,X)
contain complemented copies of ¢, more often than expected. For instance,
Cembranos-Freniche result assures that
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C(K, X) contains a complemented copy of ¢, whatever the space X is.

Thus we can find lots of examples for which C(K,X) contains comple-
mented copies of ¢, but neither C(K) nor X does. One of this examples
particularly curious is C(0N,4,,) (where SN denotes the Stone-Cech com-
pactification of the natural numbers), because C(ON, £y, ) = C(ON, C(AN)) =
C(BNx BN) contains a complemented copy of ¢, while C(8N) = £, does not.

Another striking example can be obtained taking any space X having a
copy of ¢, and no complemented copies of ¢, (for instance X = £.,), because
in that case Lo ([0,1],X) and £, (X) are never isomorphic, whereas we know
that L,,([0,1]) and £, are isometric. This is because Lo ([0,1], X) contains a
complemented copy of ¢y but £,,(X) does not.

Co-SEQUENCES IN L, (p, X)

As we have mentioned, Kwapien (1974) proved that if L;(u, X) contains
a copy of ¢y then X must contain a copy of ¢y, too. The approach given by
Bourgain (1978) of this fact goes further. It says where we can find copies of
co in X, as soon as we have a cg-sequence in L;(u, X) . More precisely, if (f,)
is a co-sequence in Ly (u, X) (that is, a sequence equivalent to the unit vector
basis of ¢), then there is a measurable subset A of 2, with positive measure,
such that (f,(w)) has a cy-subsequence for all w € A. We would ask if it is
possible to have the same subsequence for all w € A. The following simple
example shows that this is not the case:

Let us consider in L, ([0, 1], ¢p) the sequence (fn(.)) = ((r.(.)+1)e,), where
(rn) is the sequence of Rademacher functions in [0,1] and (e,) denotes the
canonical basis of ¢y. It is easy to see that (f,) is a ¢p-sequence in L, ([0, 1], ¢p),
but for each subsequence (f,,) of (f.) and for almost all ¢ € [0, 1] the sequence
(fn, (t)) vanishes for infinite natural numbers k, and so it can not be a cop-
sequence.

At this point it is natural to ask if the behavior of cy-sequences in L, (u, X),
for 1 < p < oo, is the same as those in L;(u, X); or even more, is every co-
sequence in L,(u, X) a cp-sequence in L;(u, X)?7 Maybe this is well known
but we have found no explicit answer in the literature. Looking for a way to
prove this, we found how an argument used by Bourgain in [2] can be applied
here obtaining even more than we asked. It uses a technique which we think
has interest by itself because it provides a non difficult way to transfer certain
problems in L,(p, X) with 1 < p < 0o, to the same problem in L;(u, X). The
key is the following “subsequence splitting lemma” for scalar functions, which



132 P. CEMBRANOS

was noticed by Bourgain [2], although it was contained more or less implicitly
in [6]. It is the sharpest “subsequence splitting lemma” we know. It says us
that every bounded sequence in L, (x) has a subsequence which can be split in
a very good way in two pieces: one piece is disjointly supported and the other
one is uniformly integrable.

LEMMA. (Kadec-Pelczynski-Bourgain) If (f,) is a bounded sequence in
L,(u), then there exist a subsequence (g,) of (f,) and a sequence (A,) of
pairwise disjoint measurable sets such that (xo\4,9n) is uniformly integrable.

Bourgain shows in [2] how to apply this lemma in the study of vector-valued
functions. Following his arguments it is possible to prove the next result

PROPOSITION. Let 1 < p < co. Then we have:

e Every cy-sequence in L,(u, X) is a co-sequence in Ly (p, X).

e Every {,-sequence in L,(u, X) is an {,-sequence in L, (u, X'), whenever
1<r<oo, r#p.

e If L,(u, X) contains a copy of H and H does not contain complemented
copies of £, then L;(u, X) contains a copy of H.

Antecedents of part of this Proposition may be found included in some proofs
in the literature (see, for instance, [9], [5] and [1])

THE LAST SOLUTION

The last problem solved among the ones posed at the beginning has been to
characterize when L, (1, X) contains complemented copies of £;. Since Lo, (1)
never has a complemented copy of ¢, (think, for instance, that it is injective
while 4; is not), if Lo (p, X) has a complemented copy of £;, must X contain
a complemented copy of £,7. The answer is "No”. This was first noticed by
Montgomery-Smith. He realized that an example given by Johnson (in 1972)
provided a counterexample. Let us begin with Johnson’s example:

The space (3 ®¢£})_ has a complemented copy of ¢;.

In fact, if we denote by H the subspace of (3 GDE?)OO of all sequences
of the form ((a;), (a1,az),--.,(a1,az2,-.-,a,),...), with (a) belonging to ¢,
it is possible to prove that H is a l-complemented subspace of (3 @®¢7)_
isometrically isomorphic to ¢;.
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Now, Montgomery-Smith contribution was to notice that if one takes the
space Xo = (30 eaﬁ{‘)m, then L (u,Xo) contains a complemented copy of
(> ®f}) and therefore, a complemented copy of ¢;. Of course, X, has not
even copies of £;, because its dual, (3° @2 ), is separable.

This example was very important because it showed what one can not
expect. It made difficult to give a reasonable conjecture concerning which
Banach spaces X provide L., (u, X) with complemented copies of ;. For this
reason, it was surprising when Diaz (1994) realized that the crucial condition
satisfied by X, is that it contains ¢7’s uniformly complemented. He proved
that whenever we have a space X containing ¢7’s uniformly complemented,
the space Lo, (i, X) has a complemented copy of ¢;. Moreover, he also proved
that in many cases the converse is true.

During some time it was not known if this converse was always true. Some
people tried to show that it was, and in fact we have read several wrong proofs
of this fact. Finally, in last June we have occasion to ask Kalton about this,
while he was visiting our University. He showed us the right way to prove the
result. The key was to use the notion of locally complemented subspace which
can be seen in [7], [3] or [4]. Putting together Diaz and Kalton contributions
‘we have:

THEOREM. (Diaz-Kalton) L., (u, X) contains a complemented copy of ¢,
if and only if X contains ¢}’s uniformly complemented
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