EXTRACTA MATHEMATICAE Vol. 11, Num. 3, 443 -456 (1996)

Some Features of Uncontinuable Solutions
of Impulsive Dynamical Systems

H.D.DiMov AND S.I.NENOV

Higher Institute of Chemical Technology, Sofia, Bulgaria

(Research paper presented by W. Okrasinski)

AMS Subject Class. (1991): 34A37 Received April 20, 1995

1. INTRODUCTION

The investigation of impulsive equations began with the works of V. Mil-
man and A. Mishkis ([4], [5]). The theory of these systems develops intensively
in the last few years. This development is a result of the wide range of appli-
cations of impulsive equations. The impulsive effects of these equations take
place at the moments when the integral curves meet the previously given hy-
persurface. One particular case are the impulsive differential equations with
fixed moments. The mathematical theory of the latter equations is compara-
tively well studied.

In the present paper a class of impulsive autonomous systems is introduced.
These systems are an adequate mathematical model of finite dimensional, par-
tially smooth and indeterminate (in the general case) evolutionary processes.
Each impulsive system is defined by an ordinary system of differential equa-
tions, an impulsive set in phase space and an impulsive operator. For the
system of this class it is characteristic that the impulses occur of the moments
when their phase curves “reach” the boundary of the impulsive set. The evo-
lution of the impulsive autonomous system does not differ from the evolution
of the ordinary system in an arbitrary domain that does not intersect the
impulsive set.

The non-reversibility is the feature differing the behaviour of the solutions
of the impulsive systems from that of an ordinary system. The main goal of
this paper is to study the uncontinuable solutions of impulsive autonomous
systems. We shall also investigate the connections between uncontinuable
solutions, non-reversibility of the system and the “beating” phenomena of the
solutions.
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2. STATEMENT OF THE PROBLEM

Throughout the paper will be used the following notations: N = {1,2,... },
R_ = (—00,0), Ry = (0,00). The n-dimensional Euclidean space (with Eu-
clidean scalar product (-,-) and corresponding norm || - ||) is denoted by R".
If A C R" then IntA (0A) is denoted the set of all inner (limit) points of A
inR*, A= AUOA. Ifa € A;r € R, then B(a,r) = {z € R* : ||z — a|] < r},
B(A,r) = U{B(a,r) : a € A}, dist(A,B) = inf{|la —b|| : a € A,b € B},B C
R™. The space of all C*-smooth functions from 4 C R* in B C R” is denoted
by C*(A,B), k € N. If & € C°(A,R") then ®|A4, is the trace of ® over

Ay C A and Fiz (P|Ap) is the set of all fixed points of the mapping ®|Ay. If
0P 0P
P AR =(— e .
€ C (A, R) then grad,® (&Bl (a),..., % (a))

Let A C R*. We denote the components "of A by {4; : s € S}, where
S C N is an index set. For every s € S we shall denote by {0;A, : j € S;} the
set of all components of dA4,, S; C N. Clearly,

0A = Us U] {3]-As 18 € S,] € Ss}
We shall say that the conditions (H1) hold if:

(H1.>1) For every s € S there exists a function h, € C*(R",R), k € N such
that A; = {z € R" : hy(z) < 0} and grad,h, # 0 for all a € 0A,.

(H1.2) ® € C*(R*,R").

We set A; = A\ B(9A,6), Us = R* \ As and consider the autonomous
system

(1) y=f(y), yeUs,

where f € C*(Us,R"). Let y = y(t,yo) is the solution of the system (1) with
initial condition

(2) y(0,%) = Yo, Yo € Us.
DEFINITION 1. The sets

E\(f,As) ={a € 04, : (f(a),grad,hs) <0}, (Figure l.a),
Ey(f,A;) = {a € A, : (f(a),grad,hs) > 0}, (Figure 1.b),
Esy(f, A) = {a € 0A; : (f(a),grad,h,) =0}, (Figure 1.c),

are named respectively set of points of entry, exit and contact.
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Clearly, the set Fs34(f, A,) is a disjunctive union of the following sets:
Ey(f,As) = {a € Esu(f, A5) : {y(t,a) : t € (—€,€)} \ {a} CR"\ A}
and
Eu(f,Ay) = {a € Bas(f,4,) : {y(t,a) : £ € (=€, )} \ {a} C Int A},

where € € R, is a sufficiently small number.
Let E,(f,A) = U{E,(f,A;) : s € S}, 0 € {1,2,3,4}.

Figure 1.

DEFINITION 2. Let the Conditions (H1) hold. The ordered triple (f, A, ®)
is named impulsive autonomous system on R” if:

1. Es34(f,A) is smooth manifold in A and
COd'I:maA E34(f, A) =dim A — dim E34 (f, A) 7é 0.
2. The equalities:

0A =U{E,(f,A) : 0 €{1,2,3,4}},
O(EL(f, 4) = Ex(f, A), O(Ex(f,A)) = Ei(f, A)
hold.
We shall write the impulsive system (f, A, ®) in the form

(3) &=f(z), ze€U=R"\4,
4) zt = ®(z), z€IA,
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as it is taken in most works about impulsive systems.

Before giving a precise definition of the term impulsive autonomous system
we shall illustrate the motion of the mapping point z(t,z,). Let us suppose
that zo € Us; and ¢t € R,. Then z(0,z¢) = o in the initial moment ¢ = 0.
The mapping point z(t, zo) starts from the point z, and moves along the orbit
of the system (1) defined by z, in the first moment 7; (zo) € R+ such that
z (1 (20), 7o) € DA, for any s € S. The mapping point “jumps” from the
point z (77 (x0), To) to the point z(77 (z0) +0, 7o) = @ (z (17 (20), T0)) € P(A,)
in the moment 77" (z,). After that z(¢,z,) continues its motion along the orbit
of the system (1) defined by the point z(7;" (z¢) + 0, %) in the first moment
75 (z0) € (11 (20), 00) when z (75 (zo) — 75 (20), 2 (15 (z0) +0,z0)) € A and so
on.

In the case when t € R_ the dynamical picture of the process under con-
sideration is similar.

DEFINITION 3. The interval (o, 8) C R, a < 0 < 8 and the mapping
z:(a,0) = R*\ IntA, t— z(t,xo)

will be named an existence interval of solution and solution of the impulsive
systems (3), (4) with initial condition

(5) z(0,20) = zo, o €U,
if the following conditions hold: ‘

1. If r e Ry (7 € R_) is the first moment when y(7,z,) € A, then z(t,zo) =
y(t,zo), t € (0,7] (t € [1,0)) and:

(a) If y(1,20) € Ex(f, A) (y(7,70) € Ex(f, A)) then z(7 +0,20) =
O(z(7,20)) (x(7+0,20) = ®(2(T,20))).
(b) If y(7,z0) € E3(f, A) then z(7 + 0,z0) = z(7 — 0, z0) = z(7, Z0).

2. The group equality z(¢; + t2, o) =  (t2, (t1,Zo)) holds for each two num-
bers t;,t> € (0,8) (t1,t2 € (,0)) such that ¢, +¢2 € (¢, B8).

The unique interval (w™(zy),w™ (o)) for wich the following condition holds:
there exists no extension of the solution z = z(t,z,) on an interval containing
(w™(zo),w" (zp)), will be named maximal existence interval of the solution
z = z(t, zo) of the impulsive problem (3), (4), (5). :

Let us denote by O(zo) = {z(t,z0) : t € (w (z0),wt(z0))} the orbit
of the solution z = z(t, o) of the impulsive problem (3), (4), (5). We
put O(zo; 0, 8) = {z(t,20) : t € (a,8) C (w (o), w" (20))}, OF (o) =
O(z0; 0,w* (o)), O~ (o) = O(-'Eo;w_ (20),0).
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3. PRELIMINARY NOTES

LEMMA 1. Let (f, A, ®) is an impulsive system in R*. Then
COdimaAE34(f, A) =1.

Proof. 1t follows from the Definition of the sets E,(f, A), o € {1,2,34}
that:

1. The sets E;(f, A) and E,(f, A) are open in 9A, that is why dim E,(f, A) =
dim Ey(f, A) = dim 0A.

2. If g € E34(f,A) and V is a neighbourhood of zy in 9A, then the set
E;(f, A)NV is a boundary of the disjunctive sets E;(f, A) and Ey(f, A)
indANYvV.

Hence, the inequality
(6) COd'l:maAE34(f, A) S 1,

follows from the known Theorem of P.S. Alecsandrov [1].
-~ The equality codimgaFs4(f,A) = 1 follows from the Condition 1 of Defi-
nition 2 and (6). N

We consider the impulsive autonomous system (3), (4). Let zo € U. Then
all local features of the solution z = z(t, z,) of the impulsive system (3), (4)
do not differ from the respectively features of the solution of the ordinary
system (3) in a neighbourhood V' C U. For example the point z, determines
an interval (a,3) C R, a < 0 < B of existence and uniqueness of the solution
x = z(t,zo). Moreover, it is not difficult to extend the solutions z = z(t, zq)
in the first moment 7;" in which z = z(t,z,) € dA. Therefore we can see
that the initial condition (5) of the impulsive system under consideration is
replaced with the following less resrictive condition

(7) .’E(O, l'o) =Ty, ITgE U

Actually, if o € 0A = OU then there exists a point z; € U and a number
to € R, such that {z(t,z0) : t € (0,t0)} NJA = 0 and z(ty,z,) = zo or
z(to, o) = z;. Hence, we may accept that the point z; € U is the initial
condition of the impulsive system (3), (4).

The next lemma proves that each point z, € U determines in a unique way
the maximal existence interval of the solution of the impulsive problem (3),

(4), (7).
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LEMMA 2. We consider the impulsive autonomous system (3),(4). Then:

1. Each point zo € U determines a unique maximal existence interval
(w™ (o), w™ (z0)) of the solution z = z(t,z,) of the problem (3), (4), (7).

2. If (3) is a complete system in Us, then:

lim; o0 7,7 (z0), ifpt(zo) = 0
+ _ i—o0 14 0/ 0 ’
(8) w(z0) = { +00, if p*(z) < 00;

_ _ lim;_, o0 Ti ((L‘o), jfp_ (1;0) = 0,
) w™ (z0) —{ e ifp~(a0) < oo,

where {r;t i € {1,...,p (z0)}} ({75 :1€{1,...,p (z0)}}) are all moments
in which z(7;", o) € 0A (z(17,30) € 0A) and 77 < 1}, (157, < 77),
1€ {la s 7p+(1’.0) - 1} (1‘ € {1’ .. 7p_($0) - 1})'

Proof. We shall prove the assertion 2 of the Lemma. The proof of the
statement 1 can be done in a similar way.

Let t € Ry, zo € U. It follows from the closeness of the set A and the
continuity of the solution of the ordinary problem (3), (5) that {z(¢,zo) :
t € R,}NOA = 0 or there exists a least number 71 (7o) € R, such that
z(7i (z0),z0) € OA. In the first case, the completeness of the system (3)
implies that w*(zy) = oo, (p*(z) = 0) i.e. the formula (8) is valid.

Let us consider the second case. Let 71" (z) € R, is the least number in
which z (71 (z0), z0) € 0A and {z(t, o) : t € (0,71 (z0))} N A = 0.

It follows from Definition 2 that z(7{(z0),z0) € E,(f,A), o € {1,3}.
If z(7{ (z0),20) € Ei(f,A) then it follows from Condition 2 of Definition 2
that ®(z(7; (z0),20)) = E2(f, A) and the solution z = z(t,z,) of the im-
pulsive problem (3), (4), (7) can be extended after the moment ;" (z,). If
z(71 (%0), To) € Es(f, A) then the Condition 1.(b) of Definition 3 implies that
the solution z = z(t, ;) is continuous in the moment 71 (z,) i.e. it can be
extended after this moment.

It is not difficult to prove that the number p*(z,) of all moments of impul-
sive effect of the solution of the impulsive problem (3), (4), (7) is either finite
(in the case when w*(zo) = 00) or p*(zo) = 0o and w* (o) = lim;_, 75" (x0)-
This assertion is proved by means of mathematical induction.

If t € R_ then the proof is similar. 1
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4. MAIN RESULTS

4.1. DETERMINED IMPULSIVE DYNAMICAL SYSTEMS. The phenomenon
“fusion” of the solutions of the impulsive system (3), (4), (7) is illustrated in
the following example. We must note that the phenomenon “fusion” of the
orbit of a dynamical system is possible for non-reversible system only.

EXAMPLE 1. Let A = Al U A2 U A3 C R2, A] = {(.’1:1,:):2) LT € [2] -
1,2j], z, € R}, 5 € {1,2,3};

(7T —z1,25), (x1,22) € Ay,
:A— A (z,32) = (9—21,72), (T1,%2) € Ay,
(T—z1,22), (z1,%2) € As

and f(zy,35) = (1,0).
We consider the impulsive system (3), (4). Obviously

O+(0, 0) = {(.’El,$2) 1T € (0, 1],12 - 0} U {(xl,fl)z) 1Ty € (6, OO],.'L'Q = 0},

01(2.5,0) = {(z1,22) : 71 € [2.5,3],2, = 0} U {(z1,%2) : 71 € (6,00], 72 = 1}.

Hence
01 ((0,0);1,00) = 01 ((2.5,0); 0.5, 00).

We shall note that the system (3), (4) represents a non-reversible evolu-
tionary process: If the mapping point “starts” from the initial point (2.5,0) it
can not be “returned” in the point (2.5,0) after the time ¢ > 0.5.

DEFINITION 4. The impulsive system (3), (4) will be called determinable
if for each point , € U and for each two numbers #,,t, € (w™ (o), w " (z0))
for which t; + t; € (w™(2p),w (o)), the group equality z(t; + t2,20) =
z(tq, z(t1, xo)) is valid.

LEMMA 3. Let (3), (4) is a determinable impulsive system in R*, z,z, €
U and O(z,) N O(z,) # 0. Then O(z,) = O(z»).

The proof of Lemma 3 is similar to the proof of the corresponding statement
from the theory of smooth dynamicall systems.

THEOREM 1. Let (3), (4) is an impulsive autonomous system in R*. Then
(3), (4) is a determinable impulsive system if and only if the impulsive operator
®: A — OA is an involution.
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Figure 2.

Proof. 1. Let (3), (4) is a determinable autonomous system.

Let us suppose that the operator ®|F,(f, A) is not involutive. Then there
exists a point a € E;(f, A) such that ¢ = ®%(a) # a where b = ®(a) €
Ey(f,A), ¢ = ®(b) € Ei(f,A). It follows from the Definition of the sets
E\(f,A) and E,(f, A), the inclusions O(a; —t,,0) C U, O(b;0,¢;) C U and
O(c; —t1,0) C U for sufficiently small ¢; € R;.

We put a; = z(—t;,a), by = z(t1,b), ¢; = z(—t;,¢) (Figure 2). It follows
from the condition of determinative that a; = z(0,a,) = z(—2t;,2(2t;,a,)) =
x(—2t1,b,) = ¢;. That is why (see Lemma 3) O(a;) = O(c;) and in particular
a = c. The last equality contradicts to the above supposing. Hence the
operator ®|E;(f,A) is an involution. It proves that ®|F,(f, A) is an also
involution by similar contentions. Hence the operator ®|0A is an involution
since the set E; (f, A)UE,(f, A) is everywhere dense in A (see the Condition 1
of the Definition 2).

2. Let ® : A — OA is an involution, zy € U, t;,t, € (W™ (o), w (z0))
and ¢, + t5 € (W™ (zg),wt (z))-

It follows from Definition 3 that (3), (4), (7) is a local determinative prob-
lem in the interval (7,7, 1), i.e. if t1,¢, € (77 ,71") and ¢, +t5 € (77 ,7{] then
z(ty + ta, o) = z(ts, (t1,T0)). Analogous, if z(ri", 1) € Es(f, A) then (3),
(4), (7) is a local determinative problem in the interval (77, 75) D (77, 7)
and so on.

Let t; < 0 < ty, 0 < t; +1t, and let the interval (¢; +1,,t2) contains a unique
moment 7, in which z(7,z¢) € E;(f, A). It follows from the above said that
z(ty, z(ta, o)) = z(t1,z(t2 — 7,b)) = z(t1,c) where a = z(1,z0), b = P(a),
and ¢ = z(ty — 7,b). On the other hand the inequality 7 — (¢; + ¢2) > 0
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implies that (1 — ty — (7 — ta — t1),¢) = z(—7 + t2 + t1,2(T — t2,¢)). But
(=7 4ty + t1,2(7 — t2,0)) = z(—T +ty + t1,a) = (-7 + ta + t1,z(7,Tp)) =
z(t; + t2,x0). That is why the equations and z(t; + t2,z) = z(t2, z(t1, Zo))
come from the involutionary of the operator ®. |

Another feature of the solutions of the impulsive autonomous system is
illustrated in the following example.

EXAMPLE 2. Let A = A, U A, U A3, Aj = {(.’El,ZEg) T € (] —-0.1,57 +
01)’ Ty € ]R}a .7 € {172’3};

(4 —21,72), (71,72) € Ay,
@ZA-)A, (I)(.’L'l,lll'z) = (3—1171,.1'2), (.’E1,$2) EAg,
(5 —1z1,T2), (T1,%2) € Az

and let f(z;,z2) = (1,0).
We consider the indeterminate impulsive autonomous problem

(10) t=f(z), 1€U =R\ A4,

(11) zt = ®(z), z € 9A,

(12) 2(0,(2.5,1)) = (2.5,1).
Clearly,

07 (2.5,1) = (—00,0.9) U {(z1,2,) : 71 € (2.1,2.5], 25 = 1},

0*(2.5,1) =
{(z1,22) 1 21 €]2.5,2.9], 25 = 1} U {(z1,22) : 21 € (2.1,2.9], 2, = 1}.

That is why = = z(¢, (2.5, 1)) is a periodical solution with period 1, at t € R, ,
ie. z(t+1,(2.5,1)) = z(¢,(2.5,1)), t € R,. The solution z = z(t,(2.5,1)) is
not periodical, at t € R_.

4.2. THE PHENOMENA “BEATING” FOR IMPULSIVE AUTONOMOUS SYS-
TEMS. We shall consider some features of the phenomenon “beating” for
impulsive autonomous systems. Note that this phenomenon is typical for dis-
continuous systems only.

DEFINITION 5. Let (3), (4) is an impulsive autonomous system.
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1. We shall say that the phenomenon “beating” of the solution z = z(¢, )
is absent at t € R, (¢t € R_), if there exists € € R, such that for every
i€ {l,...,p*(zo)} the following inequalities

TIH(CCO) - Tf(xO) >e (1, (z0) — Tit1 (T0) > €)
are valid.

2. We shall say that the phenomenon “beating” is absent for the impulsive
system (3), (4) if the phenomenon “beating” is absent for all solutions
z = z(t,z0), o € U,t € R of the impulsive system.

The main aim of the present subsection is to study the behaviour of the
solutions of impulsive system for which the phenomenon “beating” is not ab-
sent.

DEFINITION 6. We shall name the point z, € U B,-limit (5_-limit) point
of the solution z = z(t, zo) of the impulsive problem (3), (4), (7) if p*(zo) = 00
and there exists a sequence {¢; : i € N} such that lim; ,,, t; = w*(zy) and
lim; oo z(ti, zo) = 21 (p™ (z0) = 00,w™ (zo) > —o0 and there exists a sequence
{t; : 1 € N} such that lim; o, t; = w™(z0) and lim; ,, z(t;, To) = T1).

We shall denote the set of all 8, -limit (5_-limit) points of the problem (3),
(4), (7) by Bi(z0) (B-(0)); B(zo) = Bt (20) U B- (o).

LEMMA 4. Let zy € U, a € B(zo) N Ey(f, A) and ®~'(a) € E3(f,A). Then
wt(zy) = oo.

Proof. We shall accept that a € B4 (z). The case a € f_(x,) is considered
similarly.

Let V, is a neighbourhood of the point a such that V, C Us, V! = V,NJA,
W! = Ey(f,A) V0, W2 = Ey(f,A) N V7.

We shall accept that

Ve =W, U(E(f,A)N Vo) UWL,
(V) = @7 (W,) U (Bs(f, A) N @™ (Vo)) U @~ (Wy),
O (W,) = Ex(f,A) N2 (V7), @7 (W) =Ei(f,A)ne (V)
without loss of the community.

Let b= ®'(a), V2 = @ 1(V0), W} = &1 (W2), W2 = &1 (W1), V; is a
neighbourhood of the point b in Us such that V, N0A = V;? and inf{||f(z)| :
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Figure 3.

z € V,} > 0 (Figure 3), and let V, is an open set in dV; that contains all
points z; € V; for which there exists a number 8 = 6(z;) € R, such that
{z(t,z,) : t € (0,0(z1))} C Int (U NV;) and z(6(z,),z:1) € W,

We denote by by the unique point in 9V} for which there exists 8y € R, such
that {z(t,by) : t € (0,00)} C (UNV,) and z(6,by) = b. Then, it follows from
the definition of 6 : V;, — R, that

(13) lim 6(z) =0, €V, lim 6(z)= b,

z—8V,NOA z—bo

Let us suppose that
(14) wt(zy) < 00.

It follows from Definition 6 that there exists a sequence {¢; : ¢ € N} C
(0,w™*(zg)) so that lim;_,o t; = wt(zo), lim;_e z(t;, To) = a and z(t;, zy) €
Va. We denote by {k; : i € N} the sequence of integer for which ¢; €
(T _1(m0), T4 (%0)), © € N. We shall accept that the sequence {t; : ¢ € N}
is chosen so that k; < kiy1, z(75%,_1(%0), o) € Wy and z(75}, (o), 7o) € W}
for all i € N. It follows from the inequalities 7 _, (zo) < t; < 7, (zo) and from
the equalities lim;_,, z(¢;, zo) = a, lim,-_)oo(’r,j;(xo),T,:_l(a:g)) = 0 that

(15) lim z (75}, _; (20), o) = b.

i—00
Let us choose the sequence of points

{$2ki—l 11 E N} C f/"b
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so that ©(0(zak,-1), Tar,—1) = (75, _; (o), To). Then
(16) lim Zok;—1 = b and _l_i)m 0(z2x,—1) = bo.

follow from equalities (13), (15) and from the definition of the map 6. That is
why 6(zak,_1) > 0(z2k,—1) for all ¢ € N. Therefore

oo oo

(17) wt(zo) > ZG(zzki_l) > 29(3?%1—1) = 00.

i=1 i=1

The inequalities (17) contradict to (14). 1

THEOREM 2. Let x = z(t,z,) is a boundary solution of the impulsive
autonomous system (3), (4), (7) for which w*(z,) < co. Then

1. p*(zo) = 00.
2. The phenomenon “beating” is not absent for the solution z = z(t, o).

3. If z* is a limit point of the sequence v = {z(1;' (z¢),%o) : i € N} then
z* € B(zo) N Ey(f, A).

4. ®(z*) € Ey(f, A) and B(z*) € Ey(f, A).

5. The set of all limit points of the sequence v is a boundary and it has
codimension in OA higher or equal to one.

Proof. 1. Let us suppose that p*(zy) < co. There exists a compact K C U;
such that O(z,) C K because the solution z = z(t, ) is limited. That is why
it follows from the [3], Chapter II, Theorem 3.1 that w(z,) = co. The obtained
contradiction proves the statement 1 of the Theorem 2.

2. The statement 2 of the Theorem follows from Definition 5 and the
equality lim; ., 7' (zo) = w(zo) < 00.

3. It follows immediately from Definitions 5 and 6 that each limit point z*
of the sequence v is B, -limit point of the impulsive system (3), (4). We shall
prove that z* € E4(f, A). Let K is a compact in Us and V' is an open set in
U; such that:

(18) Ot (z) C K, OF(z)NIACV CK,
and 0 < m = inf{||f(z)|| : z € V}.

Let {t; : § € N} is a sequence for which 0 < ¢; < t;;1 < w'(zo),
lim; 00 t; = wt(zo), limj e z(tj,20) = =* and z(t;,z0) € 04, j € N. We
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denote by {k; : j € N} the strictly monotone sequence of integer such that t; €
(T4, _1(20), 74, (o)), 7 € N. Tt follows from the inequalities To1(T0) < t; <
7h, (%) and from lim;_, o (73 (o) — 74 _; (20)) = O that lim; II:(T,:; (z0), o) =
z*. Moreover from

llz(t, z0) — (7, _1 (%0), zo) || < Mt — 7 _, (o)
< M7 (20) — 7, -1 (20)] —— 0,
j—>oco
where t € (T,:;_l(xo),T,;‘;(a:o)) and M = sup{||f(z)|| : z € V}, follows that
there exists j, € N such that for each j > j, the following implications

(19) O(z0; T, -1 (%0), 15, (20)) TV \ 4,

lim (7 (o), @0) — 2(7ii; 1 (20), Z0) | = 0,

are valid.

That is why the implications (19) are valid for every open set V' in Uj for
which (18) is valid and z* € V. Therefore z* € E,(f, A).
4. The statement 4 follows from Lemma 4 and the condition of the bound-
ary of maximal existence interval.

5. The statement 5 follows from the Condition 1 of Definition 2 and the
boundary of solution z = z(t,zo). N

REMARK 1. Let z = z(t,xp) is a boundary solution of the impulsive sys-
tem (3), (4) for which w*(zy) < oo. Then it follows from Theorem 2 that
the motion of the mapping point “concentrates” in sufficiently small neigh-
bourhoods of finite number of points from the set F4(f, A) when ¢ is near to
w* (o).

COROLLARY 1. Let the impulsive autonomous system (3), (4) is defined
in the boundary domain U and E,(f,A) = 0. Then

1. The maximal existence interval of every solution of the impulsive problem
(3), (4), (7) is unlimited.

2. The phenomenon “beating” is absent for the impulsive system (3), (4).

The proof of the Corollary follows from the condition for the boundary of
the set U and Theorem 2.
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COROLLARY 2. Let (3), (4) is an impulsive autonomous system in the
boundary domain U and let

Then

1. The maximal existence interval of every solution of the impulsive problems
(3), (4), (7) is unlimited.

2. The phenomenon “beating” is absent for the impulsive system (3), (4).

Proof. Let o € U. If p*(zo) € N then it follows from [3], Ch.II, Theorem
3.1 (applied to the solution z = z(t, x(T;;(ZO), %)) of the ordinary differential
equation (3) that w(zy) = co. Let p*(zy) = o0o. Let us suppose that wt(zy) <
00. Then from the boundary of the set U and Theorem 2 follows that if z* is
a limit point of the sequence {z(7;" (%), 7o) : i € N} then z* € E,(f, A) and
O~ 1(z*) € Ey(f,A), ®(z*) € E4(f,A). The obtained equalities contradict to

|

(20).
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