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1. THE MAIN RESULT

Let X be an open polydisc with center 0 in C™*! and let f : X — Chbea
holomorphic function such that f(0) = 0 with an isolated singularity at 0. Let
D denote the unit-disc in C and f: X — D a Milnor representative of f ; it
means that X is a Stein and contractible open subset of X and the restriction
of f to X — f71(0) induces a C* locally trivial fibration of X — f~1(0) ([4]).
Let so € D — {0} be a base-point and f~'(s,) the Milnor fibre.

Set E = H"(f~*(s,),C) and let

Jo t HY(f71(s0),C) —» H"(f7'(s,),C)

denote the natural map (H” denotes the cohomology with compact support)
and E* denote the image of E under j,.

In [1] D. Barlet shows that the intersection form on H?(f~(s,), C) induces
a bilinear form k on E*, called the hermitian intersection form, defined by:

Va,be E*: k(a,b) = (2mi)™" trace (a Ub),

where U denotes the cup-product of cohomology classes, and the “trace” de-
notes the isomorphism:

H(f7(s,),C) = C

given by integration on the smooth fibre f~'(s,). This form & is a convenient
tool for the study of singularities of functions obtained by integrating smooth
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forms with compact support, on the fibers of a given holomorphic function
with an isolated critical point. Indeed, k& provides many informations on the
period application, and is closely related to the hermitian canonical form ([1]
and [2]). So, it’s a natural task to understand the behaviour of k in relation
to a parameter which describes a family of singularities not necessarily with
constant Milnor number. Fix s € D — {0} once and for all.

The main result of this work is the following:

THEOREM. Let (Py) be a family of complex polynomials in C[z,y] of de-
gree 3, such that Py(0,0) = 0 and (0,0) is an isolated singularity of Py. Let
s € D — {0}, and consider the family (C) ;) of elliptic curves given by:

PA(zay) =Ss.

Let puy be the Milnor number of the singularity Py, and let By be the multi-
valued horizontal basis of the Gauss-Manin bundle. Denote by (a; ;()))1<ij<u
the matrix in By of the hermitian intersection form k. Then, the rank of By is
2, and moreover, each a; ;()) is either identically zero, or a continuous function
such that a; ;(\) # 0 for |\| small enough.

Proof. For a generic A (i.e. such that Py has an isolated singularity at
(0,0)) consider the homogeneous polynomials:

h)\(xay’t) = 15/\(55,2% t) - 5t37

where Py (z,y,t) denotes the homogeneous polynomial associated with Py (z, ).
Under a suitable linear change of coordinates in P?C, and taking into account
that Py have a critical point at (0,0), we see that the the compactification of
the family (C, ;) is described by the following equations:

ha(X,Y,T) = YT — 4X° — by(T, s) = 0, (1)

where b, (T, s) € C[T] is homogeneous of degree 3 and satisfy by(1,s) # 0.
The affine curves associated with (1) are given by:

y® = 4z — by(1, s). (2)

So, as the modular invariant is 0 for any element of the family, we get that for
any s € D — {0} the curve (C, ;) is isomorphic to the one whose equation is
y? —z3 = 5. From this, we deduce that the hermitian intersection form for P,
has the same rank than that of the cusp singularity. But, as the intersection
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form is nondegenerate (e.g. by Poincaré duality argument), we easily deduce
that the rank for the cusp is 2.

Now, to study the coefficients a; ;()), we first look at each (C, ;) as the
elliptic curve associated to a lattice A, ;. The equation (2) becomes:

y2 = 4z° — g3(Axs),

where g3(A, ) is the classical second elliptic invariant.

For each point (z,y) of (C) ,), there exists one and only one z € C (modulo
(Ays)) such that p'(2) =y and p(2) = z.

Then, the description of a; ;(A) will result from the study of the following
integrals:

/[ qua 1 SZPaQ.S KX,
Tp

where w, are suitable rational d-closed 1-forms (see II.2) below) and 7, are
1-cycles in the evanescent homological basis of the singularity Py ([3]).
Thus, we are led to study the integrals

wrte
| Fo(),0(@) dz, (Je] small enough),

where F) are rational functions with respect to p(z) and p'(z).

Finally, using suitable results on elliptic integrals (e.g. [8]), we get that
each a; ;()) is either zero or is a continuous function outside the discriminant
of P,. This completes the proof of theorem. [

N.B. : In practice, the functions a;;(\) are always explicitly gotten. The
example below gives the detailed steps of the study.

2. APPLICATION TO THE FAMILY : z° + 13 + A\z?y = s

This example is a fundamental one because its study requires to make
explicit all the ingredients needed for the proof of the general case.
Consider the family of elliptic curves X, (s) given in C? by:

2 4+ 9y° + A2y = s,

where s € C* and ) is a complex parameter such that 4\3 + 27 # 0.
1) Uniformization of the curves X,(s) :

For s # 0 and a given A, the curve X,(s) is a non-singular plane cubic
with genus 1, so it’s an elliptic curve. To get its uniformization we first turn
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its equation into the Weierstrass canonical form. Following [7, Chap. III] we
have to choose a flex point I and a coordinate system in which, on one hand,
the tangent line to X, (s) at I coincides with the tangent line at infinity, and
on the other hand, the point I is sent at infinity on the y-axis. The nine flex
points of X, (s) are gotten by intersecting the compact curve X, (s) of P2C
with its hessian. An easy computation shows that one can take I = (1: «: 0)
where « is the real root of z® + Az + 1 (for simplicity we assume A € R).
The desired change of homogeneous coordinates is then given by

t'=0B+2 ) z+(A+3a?)y
Y=y
' =t

Putting

1

Ao — 30

Yy 4o and X—(——Sag——)aw'
— YT 302 200 = \4(36% — 2200)

we easily get for X, (s) the Weierstrass canonical form

1 1/ MAo—230 \?
2 __ 3 - *
Yi=ax +2)\00—392+4<302—2)\00> ) ()

where 0 = 3+ 2Xa and 6 = A+ 3a? (for the complex cubic root we choose the
principal determination of the logarithm). We know then that there exits one
and only one z € C (modulo a lattice A described below) such that p'(z) =Y
and p(z) = X where p denotes the Weierstrass elliptic function.

If we denote by wy and w) the periods of X, (s), we have

g2 (wr,w)) =0 (g, denotes the first Weierstrass invariant)

and thus . )

ot = j = exp <?ﬂ) (see e.g. [5, Chap. VII]).

Wy 3
Remark: 4\3 + 27 # 0 < 36% — 206 # 0.
2) The multivalued horizontal basis of the Gauss-Manin bundle:

If g: C"*! — C is any holomorphic function with an isolated singularity
at 0, we call the Gauss-Manin bundle of g, the vector bundle defined on D—{O}
by
H"(97'(s),C)
seD—-{0}
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and the following projection
s+— H"(g7'(s),C),

where g~'(s) denotes the Milnor fibre of g (see [3] for more details).

Consider now the family of polynomials fy(z,y) = 2% + y* + Az%y. Since
f» are homogeneous polynomials, we know from [4] that their Milnor fibre is
homeomorphic to the corresponding affine fibre. For any fixed A, the function
fx has an isolated singularity at 0. Denote J(fy) the jacobian ideal of fy
and by C{z,y} the algebra of complex convergent series in z and y. We call
Milnor number of the singularity f, the complex dimension u of the artinian
local algebra C{z,y}/J(f\). Clearly, the classes of 1, z,z?,y determine a C-
basis for the local algebra, so we get 4 = 4. Set w = zdy — ydz, an easy
computation gives

_2dh _
dw = 3T, ANw, d(zw)= T, A (zw),
— df}‘ 2 — édfk 2
d(yw) = T A (yw), d(z°w) 37, A (zw).

Then, we know from [1] that the set B of cohomology classes:

B={[ftu] U taul [ vl [ ] )

provides the desired multivalued horizontal basis of the Gauss-Manin bundle.
3) Description of the hermitian intersection form for the family X, (s):
a) Matrix of k in the standard C-basis of homology:

Taking into account the results of 2) we get that, as complex space, X (s)
is the quotient of C by the following lattice:

0

AN=Z+jZ, wherej=exp <%> .

Moreover, the homology group H;(X,(s),C) has a basis {71, 72,73, 74} made
up of the so-called evanescent cycles ([3]).

In our situation, the cycles y; and -, are respectively identified with [0, w,]

and [0,w}] in C/A. The cycles v; and v, are represented by the two loops
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below:

The complex numbers v, and v, are defined modulo A by

{ p(vi) = ai,
p'(vi) = by,

where a; and b; are respectively the image of (1 : o; : 0) and (1 : oy : 0)
under the coordinate transformation used in a) (o, and o, denote the roots of
2% + Az + 1 distinct from a).

The description we have gotten for the evanescent basis gives the following:

LEMMA. In the homolological basis {7, 2,73, Y4}, the matrix of the inter-
section form is

0 ¢ 00
- 0 0 0
A= 0 00O
0 00O

b) Matrix of k£ in the multivalued horizontal basis:
With the notations of the previous paragraph, we get, modulo d-exact
differential forms

' 3 4
w = 2zdy, Tw = 2 z’dy, r*w = 3 z3dy and yw = 3zydy.

Set
w, =w, wy,=z’w, wy=2zw and w; = yw.
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The matrix of change of basis, from the standard homological basis to the dual
one, is
9 = i(Pp,g)1<pg<s Where ¢y = [ w,.
T

In the multivalued horizontal basis B ,the matrix K of k is
K=g¢g'" A g,

where g* denotes the transpose matrix and g the complex conjugation.

Taking into account the configuration of the matrix A, to describe K we
have to compute the period integrals ¢, , with1 <p<4and 1 <q <2 We
get:

LEMMA. Let wy and w) denote the periods of the elliptic curve X, (s). We
have

¢1,1 = F wy and ¢2,1 =J ¢1,1,
G .

¢1,2 = — and ¢2,2 = J2¢1,2,
Wi

¢3,1 = H w) and ¢3,2 =7 ¢3,1,
¢4,1 = ¢4,2 = 0,

where F, G and H are constants depending on A and whose explicit expressions
are given below.

Proof. The method of calculation is almost the same for all the period
integrals, so, we restrict ourselves to ¢;,; and ¢, ;.
Let X,Y the coordinates into which the equation z® + y3 + \z%y = s of
X (8) is written under the Weierstrass canonical form. With notations of 1),
set
1 Xo—36 so s
C=33pmes ™4 D= <4(392 - 2)\06)> ‘

Since (3602 — 2\00)o # 0,we have D # 0, and a direct computation gives

and, we get successively

2
¢1’1:[,w1 = [y 2$d3/=D2 (L + Io).
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dy Ydy
1+C/3<— '9/1 X2

so, using the fundamental relation p'2(2) = 4p%(2) — gap(2) — g5 and its deriva-
tive , we get

But

= 6(.0,\

dy wxte p/l(z)
L= o
(e will denote a complex number with | £ | small enough ). And
wxte 1" wxte
A Y);LQY = /E Pl p iz (;)22)(2) dz = /E p'(z)dz = 0.
Hence,

On the other hand, we have

where ix N ( )
w)+E p/ z B
A :/nﬁ - / .
Y w,\+6 w,\+s Z
I = L 54X = / o =3 / Gy de = 3w
and
2 wx+e 13
_ [ Y _ p"(2)
A _/ X / e
0" (2) /“’**5 _
- [ 2@2(2) ]w;+e +6 . Z) dz =0
Thus

L=-31+C+C0) w,
Consequently, we get
(1+C-06)
T, Y
Now, if we substitute w) for wy in the previous results and if we recall that

wh = J wy, then we easily deduce the announced result for ¢, ;. In the same
way, we get

¢$11 = Fwy where F' =

24

_ % _ . (1+0)
= Sims (1+0=C0) (279 )>.

93(“)/\’ w/A
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N.B. : From the identity () of 1) we directly deduce the value of gs(wy,w}).
Moreover we have

gs(wr,wy)) = wy®gs(1,5) ([5])

and

s(L) = G T3 (1)

so, we obtain the exact value of the periods.
And finally we get
9 (C+C*eo
D?¢
Hence, the coefficients F,G, H are totally described, and the proof of the
lemma is complete. i

H =

We prove now the folowing:

ProposITION. With respect to the multivalued horizontal basis B , the
matrix K of the hermitian intersection form k is

|FU.))\12 0 FHlUJ)\P 0
2
0 - g— 0 0
K=+3 “A ,
FH|w\? 0 |Hwy2 0
0 0 0 0

where F,G,H are the constants computed above. Furthermore, these con-
stants depend continuously on the parameter )\, and satisfy (FGH)(\) #
0 for | A | small enough.

Proof. a) We easily get K from the relation K = g* A g and the compu-
tation of the integral periods made above. b) The explicit expressions of F, G
and H clearly show that these coefficients are continuous functions of A. ¢)
To prove the last assertion of the theorem, we first show that (FGH)(0) # 0.
For A =0 we get: o = —1, 0 =0 = 3 and C = —;. But the identity F(0) =0
implies C = 15 = % thus F(0) # 0. Even so, we get G(0) # 0 because the
identity G(0) = 0 would give C = 0 or C = —1. At last, H(0) # 0 because
the condition H(0) = 0 leds to the approximation I'(3) ~ 1,26... which is false
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(we recall that I'(3) ~ 2,68... ). Hence (FGH)(0) # 0, and we conclude by
continuity. This completes the proof of the Proposition. i
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