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The objective of this article is to study some properties of D F-dF-spaces.
First of all it is proved that Krein-Smulian Property enters into D F-spaces
under suitable situation. It has been established that if a D F-dF-space admits
an absolute base, then it has to be a Montel Schwartz K&6the space. Next, we
observe that a DF-space A(P) is dF iff bounded sets of A(P) are precompact.
It is shown that the unit vectors form a Schauder basis for the associated
sequence space with respect to the weak Schauder basis of a DF-dF-space.
For a DF-dF-Kothe space A(P) C ¢', an infinite dimensional d B-space refuses
to admit a fully-A(P)-basis. A brief discussion about diametral dimension in
the bornology associated with a D F-dF-space appears at the end of the paper.

For the subject of Frechet spaces and D F-spaces we follow [7] and [1], while
for Schwartz and nuclear spaces we turn to [13] and [17]. However, concerning
various aspects of dF'-spaces we refer to [2] and [3].

1. DF-dF-SPACES

In this Section we prove that the Krein-Smulian property holds in a polar-
semi reflexive D F-Schwartz space. Besides, that the gap between a D F-space
and a dF-space can be filled, to a certain extent, via Schwartz spaces.

Following [2], we say that a l.c. TVS E is a dF-space if it is polar-reflexive
and there exists a countable collection £ of compact subsets of E such that
if C' is a compact subset of E, then there exists a K € J such that C C K.

These dF-spaces display the same properties as Fréchet spaces but unlike
Fréchet spaces they are always distinguished. Not only dF'-spaces have nicer
behaviour than the DF-spaces introduced by Grothendieck, but also they
share some of the key properties enjoyed by Fréchet spaces (for instance, Krein-
Smulian property and Ptak’s property) (cf. [2], [3]).
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First of all, let it be known that the concept of dF-space introduced by
Brauner and Grothendieck’s D F-space are incomparable:

EXAMPLE 1.1. Let E[r] be an infinite dimensional Banach space and let
E'[r.] be its dual endowed with the topology of precompact convergence. The
space E'[.] is a dF, non quasi-barrelled space and it is not a DF-space; it
is, however, a gDF and B-complete Schwartz space. Obviously, E itself is
a DF space which is not dF since dF-spaces are semi-Montel in view of [2,
Proposition 1.8].

The discussion is initiated by the following result. It plays a crucial role
in the development of the 1st part of this article.

LEMMA 1.2. (a) E is polar semi-reflexive DF' and Schwartz < E is DF
and Montel < E is DF semi-Montel.
(b) If E is DF semi-Montel then E is separable.

Proof. [17, Proposition 1.4.10] asserts that DF Schwartz spaces are in-
frabarrelled. Since polar semi-reflexive Schwartz spaces are semi-Montel by [3,
Proposition 1.1], polar semi-reflexive D F-Schwartz spaces are Montel. Con-
versely, DF-Montel spaces are always Schwartz by [17, Proposition 1.4.11].
Now (b) follows from [12, (6), p. 371]. &

We have the following proposition which considered per se, speaks to which
extent the gap between the DF-spaces and dF-spaces can be bridged via
Schwartz spaces.

PROPOSITION 1.3. A Lc.TVS E is infrabarrelled dF iff E is a polar semi-
reflexive D F-Schwartz space.

Proof. Immediate consequence of Lemma 1.2 and 2, Proposition 1.8]. 1

ExAMPLE 1.4. We are au fait that Fréchet spaces have the Krein-Smulian
Property (cf. [7], [12]). But incomplete normed spaces (which are bornological
DF-spaces) are unlikely to have Krein-Smulian property. However, Propo-
sition 1.3 underscores that polar-semi reflexive DF-Schwartz spaces admit
Krein-Smulian property in view of [2, Proposition 1.5]. Further, as DF-co
Schwartz spaces are Schwartz spaces by [17, Proposition 1.4.11}, Krein-Smulian
property holds into polar-semi reflexive DF-co Schwartz spaces.
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A closed scrutiny of the proof of Proposition 1.3 and the discussion carried
out by Horvath (cf. [7, p. 247]) enable us to assert that infrabarrelled dF-
spaces are precisely those DF-Schwartz spaces with Krein-Smulian property.
Indeed, we have

THEOREM 1.5. A locally convex space E is an infrabarrelled dF-space iff
E is a DF-Schwartz space with one of the following properties:

(i) E is complete

(ii) E is hypercomplete
(iii) E is a Ptak space
)

(iv) E satisfies Krein-Smulian property.

EXAMPLE 1.6. At this stage it will be interesting to know that there are
complete Schwartz spaces which are also co-Schwartz but fail to be Frechet or
DF. For an illustration consider the space Z found in [13] (cf. p. 101, Ex.
6.2.4). In fact, 2} is an ultrabornological nuclear space.

2. DF-dF-SPACES WITH BASES

This Section 2 identifies topologically a DF-dF-space having an absolute
basis with a Montel Schwartz sequence space.

Infrabarrelled dF-spaces are nothing but Schwartz Kothe sequence spaces
in case they admit absolute bases, as established by the following;

PrOPOSITION 2.1. Let E be an infrabarrelled dF-space with an absolute
basis {z;, fi}. Then E can be topologically identified with a Montel Schwartz
Koéthe space.

This result can be proved in two different ways. Recall that given a l.c.s.
E, 9 denotes the set of all continuous seminorms on F.

Proof. (1) Direct consequence of Proposition 1.3 and [8, Theorem 8, p.
314]. 1

Proof. (I1) Since dF-space are complete, by [13, Theorem 10.1.4], we can -
identify E topologically with the Kothe space A(P):

P={p(z;) : p€ Dg}

Thus, A(P) is a Montel Schwartz space by Lemma 1.2 and Proposition 1.3. 1
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A DF-space which is also a dF-space is called a DF-dF-space.
Since separable D F'-spaces are infrabarrelled (cf. [12, p. 399]), one has

COROLLARY 2.2. Let E be a DF-dF-space with an absolute basis. Then
E can be topologically identified with a Montel Schwartz KGthe space.

Remark 2.3. Observe that by virtue of Lemma 1.2 and Proposition 1.3 a
DF-dF-space is separable. Consequently, D F-dF-spaces are Schwartz spaces.

In the following situation, DF-dF-spaces are obtained from co-Schwartz
spaces:

PROPOSITION 2.4. Suppose E is a polar-semi reflexive DF-co Schwartz
space. Then E is a DF-dF-space.

Note. Notice that since DF-co Schwartz spaces are Schwartz spaces, one
can also apply directly Proposition 1.3 to obtain the dF-character of E.

This immediately leads to
COROLLARY 2.5. Each DF-nuclear space is a DF-dF-space.

Proof. DF-nuclear space are co-nuclear (cf. [13]) and hence co-Schwartz.
So, Proposition 2.4 applies because D F-nuclear spaces are reflexive (hence in
particular, polar-semi reflexive). I

EXAMPLE 2.6. The strong dual of all the Frechet-nuclear spaces found
in [13] are DF-dF-spaces. For instance, (£(A))}, (&%(A))s, &5 and F5
(cf. [13, p. 102]).

Note. A DF-space A(P) is dF iff bounded sets of A(P) are precompact.

3. DF-dF-SPACES AND ASSOCIATED SEQUENCE SPACES

This Section says that the unit vectors form a Schauder basis for the asso-
ciated sequence space with respect to the weak Schauder basis of a DF-dF-
space. Further, it adds that the associated sequence space admits generalized
(absolute) basis in case the given basis is a generalized (absolute) basis.

For various types of bases discussed in this Section we refer to [5] and [11].
Should the need arise, one may be requested to consult [13].
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We turn to the associated sequence space corresponding to a Schauder
basis {z;, f;} in a 1.c.TVS E. Suppose P = {p(z;) : p € Dr}. Then P is
a Kothe set. Correspondingly, we have the associated locally convex space
A>=(P);

A=(P)={y €w : pp(y) = sup{lyilp(z:)} < o0, Vp € Zg}.

In general the unit vectors {e;} is not a Schauder basis for A*(P). But the
unit vectors form a equicontinuous basis for the sequence space A®(P) if E
is a Frechet Schwartz space; (consequence of [9, Proposition 6.8]). Naturally,
question arises, when {e;} will be a Schauder basis for A*(P) if E is a DF-
space? The answer is provided by the following:

PROPOSITION 3.1. Let {z;, fi} be a weak Schauder basis for a DF-dF-
space E. Then {e;,e;} is a Schauder basis for A®(P).

Proof. By Remark 2.3, E is a Schwartz space. So by a result of Terzio-
glu [16] for each p € PDg there corresponds a ¢ € P such that

€ Cp-

{ q(z:) ’

Thus, in view of [9, Theorem 5.2] A®(P) is a Schwartz space. Hence the
required result follows from [9, Proposition 6.7]. §

Remarks 3.2. (i) For any DF-dF-Kothe space A(P), {z;, f;} is a Schauder
basis for A®(P).

(ii) In the light of [9, Proposition 6.8] {e;, e;} is a Schauder basis for A (P)
provided {z;, f;} is a weak Schauder basis for a DF-co-Schwartz space E.

The above result paves the way for the following.

COROLLARY 3.3. Suppose E is a DF-dF-space having an equicontinuous
fully-A(P,)-basis {z;, f;}, where Py is a nuclear Kéthe set. Then {e;,e;} is a
fully-A(Py)-basis for A°°(P).

Proof. First of all, appealing to Proposition 3.1 we find that {e;, e;} is a
Schauder basis for A®°(P). Now take any y € A®°(P), p € Yg and a € B,
arbitrarily. Then by the well known Grothendieck-Pietsch criterion (cf. [10],
[13]) we obtain a b € P, with {a;/b;} € £*. Since {z;, f;} is a fully-A(Fy)-basis
there exists a ¢ € Zg, g = g(p,b) such that p(z;)b; < g(z;), for all i. Now,
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if L =3 ,(a;/b;) < oo, then the required assertion follows from the following
inequality;

Yol <ysei> | p(zi)a; < sup{lyilp(es)bi} <Z ﬂ)

b;
< Lsup{|ylg(z:)}
= Lpg(y). I

Remarks 3.4. (i) Under the above hypothesis, E is not necessarily nuclear;
but in the case of a nuclear G-set P, what we find is that {e;,e;} is a fully-
A(Fy)-basis for A®(P) if {z;, f;} is a fully-A(P,)-basis for a locally convex
space E because in this case E becomes nuclear (cf. [11] and hence A®(P) =
A(P)).

(ii) In view of [5, Proposition 3.2], even if {z;, f;} is only an equicontinuous
weak A(F,)-basis for a DF-dF-space E, the conclusion of the aforesaid result
holds because bounded sets are simple in the nuclear Kéthe space A(F).

A variant of the above result is contained in the following:

PROPOSITION 3.5. Let {z;, f;} be an equicontinuous basis for a DF-dF-
space E such that for each p € 9y there corresponds a g € Dg with p(z;) <
g*(z;) for alli. Suppose {p(z;)} € A(F,) for each p € D, where P, is a Kothe
set. Then {e;,e;} is a fully-A(P,)-basis for A®(P).

Proof. Proposition 3.1 asserts that {e;,e;} is a Schauder basis for A>°(P).
Take any y € A*(P), p € g and a € Fy. The required assertion follows from
the inequality

Z| <y,e > | p(zi)a; < Z lyilg® (z:)a:
< sup{|uilg(@:)} (3 9()a:)
= Cig(y),
where 3" g(z;)a; = C < o0. 1
Similarly, one can obtain

PROPOSITION 3.6. Let E be a DF-dF-space with a weak Schauder basis
{z;, f;} such that for each pair of semi-norms p and g there exists a semi-norm
r € Pg, with p(z;)g(z;) < r(z;), for alli. Suppose A(F,) is a K6the space such
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that for some p € P, {1/p(z;)} € A(F). Then {e;,e;} is a fully-A(P,)-basis
for A*(P).

Remarks 3.7. If either in Proposition 3.5 or Proposition 3.6 A(F,) is re-
placed by £' then {e;,e;} will be a fully-A(P)-basis for A (P).

4. dB-SPACES

This Section tells that, for a Schwartz Kothe space A(P) with A(P) C ¢
an infinite dimensional dB-space fails to admit a fully-A(P)-basis (of course,
similar is the situation in the case of a Banach space (cf. [11]).

Following [2] we say that a locally convex space E is a dB-space provided
E is polar-reflexive and F has a compact subset which absorbs all compact
subsets of E.

EXAMPLE 4.1. The properties of dB-spaces have been investigated in [2]
(cf. [4]). dB-spaces are dF-spaces but the converse is false; even there are
DF-dF-spaces which fail to be dB-spaces. For an illustration, consider the
DF-nuclear space (¢,n(p,w)) (cf. [10]) which becomes a DF-dF-space by
the Corollary 2.5. However, (¢,n(p,w)) can never be a dB-space as nuclear
dB-spaces are finite dimensional by [2, Corollary 1.12].

Remarks 4.2. An infinite dimensional dB-space E fails to be a D F'-space
because otherwise by Remarks 2.3 E would be a infrabarrelled d B-space and
hence by [4, Corollary (B)] E becomes finite dimensional. Therefore a DF-
space A(P) can not be a dB-space.

We pass on to show that an infinite dimensional d B-space does not admit
a fully-A(P)-basis, for a DF-dF-space A(P) with A(P) C ¢'. This makes use
of

LEMMA 4.3. Let E be a sequentially complete space with a fully-A(P)-
basis {z;, f;}, where A(P) is a Schwartz space with A(P) C ¢'. Then E is a
Schwartz space.

Proof. By [11, Proposition 3.8], E can be topologically identified with the
Kothe space A(M);

M—':{p(:l:l)a, : pGQE, CLEP}

Now, by the well-known Schock-Terzioglu criterion (cf. [10]) A(M) is a Schwartz
space because A(P) is so. Thus E is a Schwartz space. |l
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This sets the stage for

ProproSITION 4.4. Let {xz;, f;} be a fully-A(P)-basis for a dB-space E
where A(P) is a DF-dF-space with A(P) C ¢*. Then E is finite dimensional.

Proof. As dB-spaces are complete, the aforementioned result together with
Remark 2.3 gives us the Schwartz character of E. But then [4, Proposition
(A)] provides that dB-Schwartz spaces are finite dimensional. §

Remarks 4.5. Since dB-Schwartz spaces are finite dimensional by [4, Pro-
position (A)], making use of [3, Proposition 2.9] we conclude that dB-co
Schwartz spaces are finite dimensional.

Note. Observe the striking similarity between normed and dB-spaces.

EXAMPLE 4.6. In view of Remarks 4.5 one concludes that 2(Q2), 2(K),
(2(Q)); and (2(K))j are not dB-spaces. Analogously, [2, Proposition 1.11
and Corollary 1.12] implies that the space 2 considered by Pietsch [13, p. 101]
fails to be a dB-space. Similar is the case for its strong dual Z;.

5. DIAMETRAL DIMENSION IN BORNOLOGY
4

This is the final Section of the current discussions which incorporates a
study on the diametral dimension for Schwartz and nuclear bornologies as-
sociated with a dF-space. It has been found that the Schwartz and nuclear
bornologies associated with dB and normed spaces are more or less similar in
nature. This small Section slightly deviates from the main direction of study,
namely, properties of D F-dF-spaces.

The concept of diametral dimension appeared for the first time in the works
of Bessaga, Pelczynski and Rolewicz [1]. From the bornological point of view
we have the notions of A-and y-diametral dimension of a c.b.s. (complete
bornological space) (cf. [6]).

DEFINITION 5.1. Suppose E is a c.b.s. We call A-diametral dimension
(resp. I'-diametral dimension) of E, denoted by Ag(F) (resp. I's(E)), the col-
lection of all sequence of non-negative numbers (a;) wich satisfy the following
condition:

For each A € B(E), there exists B € B(E), A < B, such that a;6;(A, B) —
0 (resp. a;v:(A, B) — 0), where §; is the Kolmogorov’s diameter and +y; is the
i-th section of A with respect to B (cf. [6]).
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If E is a quasi-complete locally convex space the collection of all bounded
sets of £/ (in von Neumann sense) forms a bornology on E. Endowed with this
bornology, E is a c.b.s. denoted by °E.

The A-diametral codimension (resp. I'-diametral codimension) of al.c. TVS
E is the A-diametral dimension (resp. I-diametral dimension) of *E, denoted
respectively by Ag("E) and T's(°E).

DEFINITION 5.2. Let E be al.c.TVS. We call A-diametral dimension (resp.
v-diametral dimension ) of E, denoted by A4 (E) (resp. 'y (E)), the collec-
tion of all sequences of non-negative numbers (a;) satisfying:

For each u € %5 there exists a v € %g, v < u such that a;6;(v,u) — 0
(resp. a;vyi(v,u) — 0).

A c.bs. E is said to be Schwartz (resp. nuclear) if each disk A € B(E)
is absorbed by a disc B € B(E) in such a way that the canonical embedding
® 4 p is compact (resp. nuclear). A quasi-complete 1.c.TVS E is Co-nuclear if

°E is nuclear and E is Co-Schwartz if °E is Schwartz .

Because of Proposition 1.3. Schwartz spaces bridge the gap between DF
and dF spaces. So we confine our attention to the study of Schwartz (nuclear)
bornologies associated with dF-spaces.

Remarks 5.3. Since infrabarrelled dF-spaces are Schwartz spaces by Pro-
position 1.3, it follows from a well-known result (cf. [15]) that

(1,1,...) € Ay (E)

for an infrabarrelled dF-space E. However, if it is a bornological dF'-space we
have;

PROPOSITION 5.4. Let E be a bornological dF-space. Then (1,1,...) €
Ag(E).

Proof. E is a c.b.s. as dF'-spaces are complete. In addition, E is Schwartz
by Proposition 1.3 being infrabarrelled dF. Now [6, Theorem 10(a)] applies
and the conclusion follows. NI

Note. For a DF-dF-space E; (1,1,...) € Ay (E).

Remarks 5.5. If a dF-space E is co-Schwartz, then making use of [6, Corol-
lary 2(a)] we find that
(1,1,...) e ' (E})



DF-dF-SPACES 161

because E is a complete semi-reflexive space. Consequently, we infer that the
following holds in view of [6, Corollary 1(a)];

PROPOSITION 5.6. Let E be a bornological dF-space. Suppose E is Co-
Schwartz, then

(1,1,...) € Ag(E) NIy (E£5) N As(*E).
For a dB-space we have;
PROPOSITION 5.7. Let E be an infinite dimensional dB-space. Then
(1,1,...) € Ag(E) UT% (E;) U Ag(°E).

Proof. If (1,1,...) € Ag(E), then E is Schwartz (cf. [15]), but then dB-
Schwartz spaces are finite dimensional by [4, Proposition (A)]. On the other
hand, if (1,1,...) € 'y (E}) then [6, Corollary 2(a) | implies that E is co-
Schwartz. But, by Remarks 4.5, dB-co Schwartz spaces are finite dimensional.
Similar is the case if (1,1,...) € Ag(°E); of course here we use [6, Corol-
lary 1(a)]. B

Comming to dF-nuclear space, we find that the situation is slightly differ-
ent, as borne out by the following result.

ProPOSITION 5.8. Let E be bornological dF-nuclear space. | Then, for
each positive number k,

(1,2%,3%...) € Ag(E) NT%(E}) N As(°E).

Proof. The first part namely, (1,2%,3%...) € Ag(FE) follows from [6, The-
orem 10(b)] while the other part, that is, (1,2%,3%...) € 'y (E}) is a conse-
quence of [6, Corollary 2(b)] as dF'-space are semi-reflexive and a dF-space E
is nuclear iff EP is nuclear, by [2, Proposition 1.11]. Besides, (1,2¥,3¥...) €
Ag("E) comes from [6, Corollary 1(b)]. I

Note. The above result holds for D F-nuclear spaces.

PROPOSITION 5.9. Let E be a dB-space. Then

(1,2,3,...) € T (E}) UAs("E) U Ay (E).
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Proof. This follows directly from [6, Corollary 1 (b) and Corollary 2(a)],
as dB-co nuclear spaces are finite dimensional because dB-co Schwartz spaces
are finite dimensional, while dB-nuclear spaces are finite dimensional by [2,
Corollary 1.12]. 1

Note. Observe that Proposition 5.7 and Proposition 5.9 are akin to that
of normed spaces.
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