Tauberian Operators on Spaces of Integrable Functions[†]

MANUEL GONZÁLEZ AND ANTONIO MARTÍNEZ-ABEJÓN

Dpto. Matemáticas, Fac. Ciencias, Univ. Cantabria, 39071-Santander, Spain Dpto. Matemáticas, Fac. Ciencias, Univ. Oviedo, 33071-Oviedo, Spain

AMS Subject Class. (1991): 46B20, 47A55

Received December 4, 1995

We study tauberian operators from $L_1(\mu)$ into a Banach space Y, where μ is a non-purely atomic, finite measure. In the case in which μ is a purely atomic measure, our results are also valid but trivial, because in this case $L_1(\mu)$ has the Schur property: weakly convergent sequences are convergent.

In Section 1, we characterize the tauberian operators $T: L_1(\mu) \longrightarrow Y$ as those operators T such that $\liminf_n \|Tf_n\| > 0$ for every disjoint normalized sequence (f_n) in $L_1(\mu)$; or equivalently, the kernel $N(T^{**})$ of the second conjugate of T coincides with N(T). We show that the class of all tauberian operators from $L_1(\mu)$ into Y is open in the class of all operators, and we give several examples of tauberian operators $T: L_1(\mu) \longrightarrow Y$. As a consequence, we prove that $L_1(\mu)$ is contained isomorphically in every quotient of $L_1(\mu)$ by any of its reflexive subspaces.

In Section 2, we show that if an operator $T: L_1(\mu) \longrightarrow Y$ is tauberian, then it is supertauberian (the ultrapowers T_u of T are tauberian operators) and its second conjugate T^{**} is also tauberian. Moreover we characterize T tauberian in terms of the kernel $N(T_u)$ of any of its non-trivial ultrapowers.

Section 3 is devoted to the action of tauberian operators on the dyadic tree of $L_1[0,1]$. We prove that an operator $T:L_1[0,1] \longrightarrow Y$ is tauberian if and only if for every sequence (f_n) contained in the dyadic tree on $L_1[0,1]$ and equivalent to the unit vector basis of ℓ_1 , the sequence (Tf_n) is also equivalent to the unit vector basis of ℓ_1 up to a finite quantity of elements.

In Section 4 we study the admissible perturbations for tauberian operators on $L_1(\mu)$. It is known that the class of tauberian operators is stable under perturbation by weakly compact operators. We identify the perturbation class

[†]Supported in part by DGICYT Grant PB 94–1052 (Spain).

with the class of weakly precompact operators, by showing that an operator $K: L_1(\mu) \longrightarrow Y$ is weakly precompact if and only if T+K is tauberian for every tauberian operator $T: L_1(\mu) \longrightarrow Y$.

We use standard notations: X and Y are Banach spaces, B_X the closed unit ball of X, S_X the unit sphere of X, $\mathcal{B}(X,Y)$ the class of bounded linear operators from X into Y, X^* the dual of X, $T^*:Y^*\longrightarrow X^*$ the conjugate operator of $T\in\mathcal{B}(X,Y)$, and R(T) and N(T) the range and kernel of T. We identify X with a subspace of X^{**} . We denote the positive integers by \mathbb{N} , and the real numbers by \mathbb{R} .

1. Disjoint sequences in $L_1(\mu)$

Let (Ω, Σ, μ) be a non-purely atomic finite measure space. We call $A \in \Sigma$ non-purely atomic if A is not a union of atoms.

DEFINITION 1. ([7]) An operator $T \in \mathcal{B}(X,Y)$ is tauberian if $T^{**^{-1}}(Y) \subset X$; equivalently [7, Th. 3.2], if any bounded sequence $(x_n) \subset X$ admits a weakly convergent subsequence (x_{n_k}) whenever (Tx_n) is weakly convergent.

We denote the class of all tauberian operators from X into Y by $\mathcal{T}(X,Y)$. Next we give the main result of this section.

THEOREM 2. For $T \in \mathcal{B}(L_1(\mu), Y)$, the following statements are equivalent:

- (1) T is tauberian;
- (2) $N(T) = N(T^{**});$
- (3) $\liminf_n ||Tf_n|| > 0$ for every normalized disjoint sequence (f_n) in $L_1(\mu)$;
- (4) there exists r > 0 such that $\liminf_n ||Tf_n|| > r$ for every normalized disjoint sequence (f_n) in $L_1(\mu)$.

COROLLARY 3. The class $\mathcal{T}(L_1(\mu), Y)$ is open in $\mathcal{B}(L_1(\mu), Y)$.

Note that the class $\mathcal{T}(X,Y)$ is not open in general [1], [12]. Now we present some examples of tauberian operators on $L_1(\mu)$.

EXAMPLES. a) If R is a reflexive subspace of $L_1(\mu)$, the quotient operator $Q: L_1(\mu) \longrightarrow L_1(\mu)/R$ is tauberian. The space $L_1[0,1]$ contains a large list of reflexive subspaces. For instance, the closed space generated by the

Rademacher functions is isomorphic to ℓ_2 [9, Th. 2.b.3]. Also, it is known [10, Th. 2.f.5] that for 1 < r < 2 there exists a closed subspace $M_r \subset L_1[0,1]$ isomorphic to $L_r[0,1]$. Note that none of those reflexive subspaces M_r contains the remaining M_p for 1 , because the type is hereditary by subspaces.

- b) If $K \in \mathcal{B}(X,Y)$ is weakly compact and $T \in \mathcal{B}(X,Y)$ is tauberian, it is easy to check that T+K is also tauberian.
- c) Given a reflexive subspace $R \subset L_1(\mu)$, the distance from the quotient operator $Q: L_1(\mu) \longrightarrow L_1(\mu)/R$ to the boundary of $\mathcal{T}(L_1(\mu), L_1(\mu)/R)$ is equal to 1. Thus, if $S \in \mathcal{B}(L_1(\mu), L_1(\mu)/R)$ and ||S|| < 1 then Q + S is tauberian.

Given a measurable subset $C \subset \Omega$ with $\mu(C) > 0$, we denote by $L_1(C)$ the subspace of $L_1(\mu)$ which consists of all functions f such that $f = \chi_C f$. If C is non-purely atomic then $L_1(C)$ is isomorphic to $L_1(\mu)$.

PROPOSITION 4. Let $T \in \mathcal{B}(L_1(\mu), Y)$ be a tauberian operator. For every non-purely atomic measurable set $A \subset \Omega$ with $\mu(A) > 0$ there is a non-purely atomic subset $C \subset A$ with $\mu(C) > 0$ so that the restriction $T \mid_{L_1(C)}$ is an isomorphism.

COROLLARY 5. The class $\mathcal{T}(L_1(\mu), Y)$ is non-empty if and only if Y contains a subspace isomorphic to $L_1(\mu)$. In particular, if M is a reflexive subspace of $L_1(\mu)$ then $L_1(\mu)/M$ contains a subspace isomorphic to $L_1(\mu)$.

2. Supertauberian operators

Tacon [12] introduced the class of supertauberian operators as a refinement of the class of tauberian operators. An operator $T \in \mathcal{B}(X,Y)$ is said to be supertauberian if for every $0 < \varepsilon < 1$ there exists a positive integer $n \in \mathbb{N}$ for which there are not families $\{x_1, \ldots, x_n\} \subset S_X$, $\{f_1, \ldots, f_n\} \subset S_{X^*}$ verifying $f_k(x_m) > \varepsilon$ for $1 \le k \le m \le n$, $f_k(x_m) = 0$ for $1 \le m < k \le n$ and $||Tx_k|| < 1/k$ for $k = 1, \ldots, n$.

Supertauberian operators can be characterized in terms of ultrapowers of Banach spaces [4]. In order to be precise we need to introduce some notation.

An ultrafilter \mathcal{U} on an infinite set I is said to be *countably incomplete* if there is a countable partition $\{I_n : n \in \mathbb{N}\}$ of I verifying $I_n \notin \mathcal{U}$ for all $n \in \mathbb{N}$. Henceforth, \mathcal{U} will be a fixed countably incomplete ultrafilter on an infinite set I.

Consider the Banach space $\ell_{\infty}(I, X)$ which consists of all bounded families $(x_i)_{i \in I}$ in X endowed with the norm $\|(x_i)\|_{\infty} := \sup\{\|x_i\| : i \in I\}$. Let $N_{\iota\iota}(X)$ be the closed subspace of all families $(x_i) \in \ell_{\infty}(I, X)$ which converge to 0 following \mathcal{U} . The *ultrapower of* X *following* \mathcal{U} is defined as the quotient

$$X_{u} := \frac{\ell_{\infty}(I, X)}{N_{u}(X)}.$$

The element of X_{ι} including the family $(x_i) \in \ell_{\infty}(I, X)$ as a representative is denoted by $[x_i]$. The ultrapower X_{ι} contains canonically an isometric copy of X generated by the constant families of $\ell_{\infty}(I, X)$. We identify this copy with X. An operator $T \in \mathcal{B}(X, Y)$ has an extension $T_{\iota} \in \mathcal{B}(X_{\iota}, Y_{\iota})$ given by $T_{\iota}[x_i] = [Tx_i]$.

PROPOSITION 6. [4, Th. 9] An operator $T \in \mathcal{B}(X,Y)$ is supertauberian if and only if $T_{\mathcal{U}}$ is tauberian.

The ultrapower $L_1(\mu)_{\mu}$ was studied extensively by Heinrich [5]. For the convenience of the reader, we give a description of it.

Let $\mathcal{B}(I,\Omega)$ be the set of all families $(x_i)_{i\in I}$ such that $x_i\in\Omega$. The ultrafilter \mathcal{U} induces an equivalence relation \sim on $\mathcal{B}(I,\Omega)$ given by $(x_i)_{i\in I}\sim (y_i)_{i\in I}$ if $\{i\in I: x_i=y_i\}\in\mathcal{U}$. We write

$$\Omega^{u} := \frac{\mathcal{B}(I,\Omega)}{\sim},$$

and $(x_i)^{\iota}$ denotes the element of Ω^{ι} whose representative is $(x_i)_{i\in I}$. If $\{A_i: i\in I\}$ is a family of subsets of Ω , we write $(A_i)^{\iota}:=\{(x_i)^{\iota}: x_i\in A_i\}$. The Boolean algebra Σ_{ι} on Ω^{ι} , defined by $\Sigma_{\iota}:=\{(A_i)^{\iota}: A_i\in\Sigma\}$, generates a σ -algebra Γ_{ι} . The measure μ induces a measure μ_{ι} on Γ_{ι} , univocally defined by its value on the elements $(A_i)^{\iota}\in\Sigma_{\iota}$, given by $\mu_{\iota}((A_i)^{\iota}):=\lim_{\iota}\mu(A_i)$.

There exists a measure space (Θ, Υ, ν) such that $L_1(\mu)_{\mathcal{U}} \cong L_1(\mu_{\mathcal{U}}) \oplus_1 L_1(\nu)$. Recall that a Banach space X is *superreflexive* if every Banach space finitely representable in X is reflexive; equivalently, if any ultrapower $X_{\mathcal{U}}$ is reflexive [5].

From a result of Rosenthal [11], it follows that all reflexive subspaces of $L_1(\mu)$ are superreflexive. Here we obtain this fact from the following result.

PROPOSITION 7. Let E be a subspace of $L_1(\mu)$. Then E is reflexive if and only if $E_{\iota\iota}$ is contained in $L_1(\mu_{\iota\iota})$.

COROLLARY 8. An operator $T \in \mathcal{B}(L_1(\mu), Y)$ is tauberian if and only if T is supertauberian. In this case, $T^{(2n)}$ is tauberian for all $n \in \mathbb{N}$.

For $T \in \mathcal{B}(L_1(\mu), Y)$, we give a better result.

PROPOSITION 9. An operator $T \in \mathcal{B}(L_1(\mu), Y)$ is tauberian if and only if $N(T_u) \subset L_1(\mu_u)$.

3. Tauberian operators and the dyadic tree

In this section we characterize tauberian operators $T: L_1[0,1] \longrightarrow Y$ by its action over the dyadic tree of $L_1[0,1]$. A tree in a Banach space Y is a bounded family

$$\{y_k^n: n=0,1,2,\ldots; 1\leq k\leq 2^n\}\subset Y$$

such that $y_k^n = 2^{-1}(y_{2k-1}^{n+1} + y_{2k}^{n+1})$ for all n and k. An example is the so called dyadic tree on $L_1[0,1]$, given by

$$\chi_k^n := 2^n \chi_{\left(\frac{k-1}{2^n}, \frac{k}{2^n}\right)}.$$

The intervals $(\frac{k-1}{2^n}, \frac{k}{2^n})$ are called dyadic. Any operator $T \in \mathcal{B}(L_1[0,1],Y)$ determines a tree on Y given by $y_k^n := T\chi_k^n$. Conversely, a tree $(y_k^n) \subset Y$ determines an operator in $\mathcal{B}(L_1[0,1],Y)$. We refer to [2] for the details.

THEOREM 10. An operator $T \in \mathcal{B}(L_1[0,1],Y)$ is tauberian if and only if for every sequence (x_n) contained in the dyadic tree of $L_1[0,1]$ and equivalent to the unit vector basis of ℓ_1 , there is a $n_0 \in \mathbb{N}$ such that $(Tx_n)_{n \geq n_0}$ is equivalent to the unit vector basis of ℓ_1 .

4. The perturbation class of $\mathcal{T}(L_1(\mu), Y)$

For a Banach space \mathcal{A} and a subset $\mathcal{S} \subset \mathcal{A}$, Lebow and Schechter [8] define the perturbation class of \mathcal{S} in \mathcal{A} as the set

$$P(S) := \{ a \in A : a + s \in S \text{ for all } s \in S \}.$$

We say that $C \subset A$ is an admissible class for S if $C \subset P(S)$. Here we study the perturbation class of $\mathcal{T}(L_1(\mu), Y)$ in $\mathcal{B}(L_1(\mu), Y)$.

For $S = \mathcal{T}(X, Y)$, the class WCo(X, Y) of all weakly compact operators from X into Y is an admissible class [12]. Moreover, a broader admissible class

for $\mathcal{T}(X,Y)$ can be introduced as follows. An operator $T \in \mathcal{B}(X,Y)$ is said to be R-strictly singular if for any operator L into X such that TL is tauberian, L is weakly compact [3]. The perturbation class $P(\mathcal{T}(X,Y))$ is not well known in general. However, for $X = L_1(\mu)$, we find that $P(\mathcal{T}(L_1(\mu),Y))$ coincides with the class $Ro(L_1(\mu),Y)$ of all weakly precompact operators. Recall that $T \in \mathcal{B}(X,Y)$ is said to be a weakly precompact operator if for every bounded sequence $(x_n) \subset X$, (Tx_n) contains a weakly Cauchy subsequence.

PROPOSITION 11. Let Y be a Banach space such that $\mathcal{T}(L_1(\mu), Y) \neq \emptyset$. An operator $K \in \mathcal{B}(L_1(\mu), Y)$ is weakly precompact if and only if for every $T \in \mathcal{T}(L_1(\mu), Y)$, the operator T + K is tauberian.

Herman [6] call an operator $T \in \mathcal{B}(X,Y)$ almost weakly compact if given a closed subspace $H \subset X$ such that $T \mid_H$ is an isomorphism, one has that H is reflexive.

PROPOSITION 12. For $T \in \mathcal{B}(L_1(\mu), Y)$, the following statements are equivalent:

- (1) T is weakly precompact;
- (2) T is R-strictly singular;
- (3) T is almost weakly compact.

References

- [1] ALVAREZ, T. AND GONZÁLEZ, M., Some examples of tauberian operators, Proc. Amer. Math. Soc., 111 (1991), 1023–1027.
- [2] DIESTEL, J., AND UHL, J., "Vector measures", Math. Surv., vol. 15 Providence, RI, Amer. Math. Soc., 1977.
- [3] González, M., Properties and applications of tauberian operators, *Extracta Math.*, 5 (1990), 91-107.
- [4] González, M. and Martínez-Abejón, A., Supertauberian operators and perturbations, Arch. Math., 64 (1995), 423-433.
- [5] HEINRICH, S., Ultraproducts in Banach space theory, J. reine angew. Math., 313 (1980), 72-104.
- [6] HERMAN, V., Generalizations of weakly compact operators, Trans. Amer. Math. Soc., 132 (1968), 377-386.
- [7] KALTON, N. AND WILANSKY, A., Tauberian operators on Banach spaces, Proc. Amer. Math. Soc., 57 (1976), 251-255.
- [8] LEBOW, A. AND SCHECHTER, M., Semigroups of operators and measures of noncompactness, *J. Funct. Anal.*, 7 (1971), 1-26.
- [9] LINDENSTRAUSS, J. AND TZAFRIRI, L., "Classical Banach spaces I. Sequence spaces", Springer, Berlin Heidelberg New York, 1977.

- [10] LINDENSTRAUSS, J. AND TZAFRIRI, L., "Classical Banach spaces II. Function spaces", Springer, Berlin Heidelberg New York, 1979.
 [11] ROSENTHAL, H.P., On subspaces of L_p, Ann. of Math., 97 (1973), 344-373.
 [12] TACON, D.G., Generalized semi-Fredholm transformations, J. Austral Math. Soc. (Series A), 34 (1983), 60-70.