Compact Cosymplectic Manifolds of Positive Constant φ -Sectional Curvature ¹

MANUEL DE LEÓN AND JUAN C. MARRERO

Inst. de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain, e-mail: ceeml02@cc.csic.es

Departamento de Matemática Fundamental, Fac. Matemáticas, Univ. La Laguna, La Laguna, Tenerife, Spain, e-mail: jcmarrero@ull.es

AMS Subject Class. (1991): 53C15, 53C55, 57R30

Received March 2, 1994

It is well known that the curvature properties of a compact orientable Riemannian manifold affect its topological structure ([7]). If the Riemannian manifold is endowed with an extra geometrical structure (Kähler or cosymplectic) we can define a special type of sectional curvature and derive new topological properties.

Let V be an almost Hermitian manifold with a metric h and almost complex structure J. Denote by $\mathfrak{X}(V)$ the Lie algebra of vector fields on V. The Kähler 2-form Ω is defined by $\Omega(X,Y)=h(X,JY)$ for $X,Y\in\mathfrak{X}(V)$. An almost Hermitian manifold (V,J,h) is said to be Kähler if [J,J]=0 and $d\Omega=0$.

The sectional curvature of the J-invariant planes is called holomorphic sectional curvature (see [9]). For any positive number k, the complex projective space $P_m(\mathbb{C}^{m+1})$ carries a complete Kähler metric of constant holomorphic sectional curvature k [9]. We denote by $P_m(\mathbb{C}^{m+1})(k)$ the Kähler manifold with this structure.

A map F between the almost Hermitian manifolds (V,J,h) and (V',J',h') is said to be a holomorphic isometry if F is an isometry which verifies $F_* \circ J = J' \circ F_*$.

For compact Kähler manifolds we have the two following results (see [4,5,8]):

THEOREM A. A compact Kähler manifold with positive definite Ricci tensor is simply connected.

¹ Supported by the "Consejería de Educación del Gobierno de Canarias" and DGICYT-SPAIN, Proyecto PB91-0142.

THEOREM B. A compact Kähler manifold with positive constant holomorphic sectional curvature is holomorphically isometric to a complex projective space of positive constant holomorphic sectional curvature.

The odd-dimensional counterpart of Kähler manifolds are cosymplectic manifolds. Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold. Then, we have

(1)
$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X) \eta(Y),$$

for all $X,Y\in\mathfrak{X}(M)$, I being the identity transformation. The fundamental 2-form Φ of M is defined by $\Phi(X,Y)=g(X,\varphi Y)$, for $X,Y\in\mathfrak{X}(M)$. An almost contact metric manifold (M,φ,ξ,η,g) is said to be cosymplectic if $[\varphi,\varphi]=0$ and $d\eta=0$, $d\Phi=0$ [1].

On an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ we denote by \mathfrak{F} the foliation defined by the vector field ξ and by \mathfrak{F}^{\perp} the distribution determined by the normal bundle of \mathfrak{F} , i.e., \mathfrak{F}^{\perp} is the distribution given by $\eta = 0$.

A mapping F between the almost contact metric manifolds $(M, \varphi, \xi, \eta, g)$ and $(M', \varphi', \xi', \eta', g')$ is said to be an almost contact isometry if F is an isometry which verifies $F_* \circ \varphi = \varphi' \circ F_*$ and $F^* \eta' = \eta$. The above conditions imply that $F_* \xi = \xi'$.

Let (M,φ,ξ,η,g) be an almost contact metric manifold and x a point of M. A plane section π in the tangent space to M at x, T_xM , is called a φ -section if there exists a unit vector u in T_xM orthogonal to ξ_x such that $\{u,\varphi_xu\}$ is an orthonormal basis of π . Then the sectional curvature $K_xu=R_x(u,\varphi_xu,u,\varphi_xu)$ is called a φ -sectional curvature.

Denote by $T\mathfrak{F}^{\perp}$ the vector subbundle of the tangent bundle of M which consists of the tangent vectors to the distribution \mathfrak{F}^{\perp} and, by $T_x\mathfrak{F}^{\perp}$ the fiber of $T\mathfrak{F}^{\perp}$ over x, for a point x of M. Let S be the Ricci curvature tensor of M. Then S is said to be transversally positive definite if S_x is positive definite on the subspace $T_x\mathfrak{F}^{\perp}$ for all $x \in M$.

On a cosymplectic manifold $(M, \varphi, \xi, \eta, g)$ the vector ξ is parallel [1]. Thus, if S is the Ricci tensor of M then $S(\xi, \xi) = 0$, which implies that S cannot be positive definite. On the other hand, from the results of [6], we deduce that a cosymplectic manifold of positive constant φ -sectional curvature has transversally positive definite Ricci tensor.

The canonical example of simply connected cosymplectic manifold is given by the product of a simply connected Kähler manifold with R. In fact, a complete simply connected cosymplectic manifold is almost contact isometric to the product of a complete simply connected Kähler manifold with \mathbb{R} [2].

The natural example of compact cosymplectic manifold is given by the product of a compact Kähler manifold (V,J,h) with the circle S^1 . The cosympletic structure (φ,ξ,η,g) on the product manifold $M=V\times S^1$ is defined by

(2)
$$\varphi = J \circ (\operatorname{pr}_1)_*, \quad \xi = \frac{E}{c}, \quad \eta = c(\operatorname{pr}_2)^*(\theta), \quad g = (\operatorname{pr}_1)^*(h) + c^2(\operatorname{pr}_2)^*(\theta \otimes \theta),$$

where $\operatorname{pr}_1: M \longrightarrow V$ and $\operatorname{pr}_2: M \longrightarrow S^1$ are the projections of $V \times S^1$ onto the first and second factor respectively, θ is the length element of S^1 , E is its dual vector field and c is a real number, $c \neq 0$ [2]. If the Kähler manifold (V,J,h) is of constant holomorphic sectional curvature k then (M,φ,ξ,η,g) is a cosymplectic manifold of constant φ -sectional curvature k. Thus, for all positive real k, the manifold $P_m(\mathbb{C}^{m+1})(k) \times S^1$ is a compact cosymplectic manifold of constant φ -sectional curvature k.

We remark that if $b_1(M)$ is the first Betti number of a compact cosymplectic manifold M then, since $b_1(M) \geqslant 1$ ([2,3]), we have that the fundamental group of M is infinite. Therefore, we conclude that a compact simply connected manifold cannot admit a cosymplectic structure. Moreover, there exists compact cosymplectic manifolds which are not topologically a global product of a Kähler manifold with the circle S^1 [3].

We need a modification of the notion of almost contact isometry. Let $F: M \longrightarrow M'$ be a diffeomorphism between two cosymplectic manifolds $(M, \varphi, \xi, \eta, g)$ and $(M', \varphi', \xi', \eta', g')$, and let \mathfrak{F}^{\perp} (respectively, $(\mathfrak{F}')^{\perp}$) be the foliation on M (respectively, M') given by $\eta = 0$ (respectively, $\eta' = 0$). F is said to be transversally holomorphic isometric if $F^*\eta' = \eta$ and for all $x \in M$ the mapping $F_{\mid \mathfrak{F}_x^{\perp} : \mathfrak{F}_x^{\perp} \longrightarrow \mathfrak{F}_x^{\perp} : \mathfrak{F}_x^{\perp} \longrightarrow \mathfrak{F}_x^{\perp}$ is a holomorphic isometry between the Kähler manifolds \mathfrak{F}_x^{\perp} and $(\mathfrak{F}')_{F(x)}^{\perp}$, being \mathfrak{F}_x^{\perp} (respectively, $(\mathfrak{F}')_{F(x)}^{\perp}$) the leaf of the foliation \mathfrak{F}^{\perp} (respectively, $(\mathfrak{F}')_{F(x)}^{\perp}$) over x (respectively, F(x)). It is clear that an almost contact isometry is transversally holomorphic isometric.

The following two results are the cosymplectic version of Theorems A and $B\colon$

THEOREM A'. The fundamental group of a compact cosymplectic manifold with transversally positive definite Ricci tensor is isomorphic to \mathbb{Z} .

THEOREM B'. Let $(M, \varphi, \xi, \eta, g)$ be a (2m+1)-dimensional compact cosymplectic manifold with positive constant φ -sectional curvature k. Then there exists a diffeomorphism $F: M \longrightarrow P_m(\mathbb{C}^{m+1})(k) \times S^1$ of M onto the product manifold $P_m(\mathbb{C}^{m+1})(k) \times S^1$ which is transversally holomorphic isometric.

REFERENCES

- BLAIR, D.E., "Contact Manifolds in Riemannian Geometry", Lecture Notes in Math. Vol. 509, Springer-Verlag, Berlín, 1976.
- BLAIR, D.E. AND GOLDBERG, S.I., Topology of almost contact manifolds, J. Diff. Geometry 1 (1967), 347-354.
- CHINEA, D., DE LEÓN, M. AND MARRERO, J.C., Topology of cosymplectic manifolds, J. Math. Pures Appl. 72 (1993), 567-591.
- 4. HAWLEY, N.S., Constant holomorphic curvature, Canad. J. Math. 5 (1953), 53-56.
- 5. IGUSA, J., On the structure of a certain class of Kähler manifolds, Amer. J. Math. 76 (1954), 669-678.
- JANSSENS, D. AND VANHECKE, L., Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27.
- 7. GOLDBERG, S.I., "Curvature and Homology", Academic Press, New York, 1962.
- 8. KOBAYASHI, S., On compact Kähler manifolds with positive definite Ricci tensor,

 Ann. of Math. 74(3) (1961), 570-574.
- 9. KOBAYASHI, S. AND NOMIZU, K., "Foundations of Differential Geometry", Vol. II, Interscience Publ., New York, 1969.