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Let X be a complex Banach space and L(X) the set of all (bounded linear)
operators defined in X with values in X. For T€ L(X) we consider the equation

(1) z—Tz=y,

being z,y € X. The Fredholm integral equation and the Volterra integral equation
are examples of (1). We choose zy:=y and define z,,;:=y+ Tz,. If the sequence
(z,) is convergent, or equivalently if the Neumann series of T in y

(2) E::O Ty

converges, then z:=lim,_ oz, = Ep=¢ T™y is a solution of (1). Obviously, if the
Neumann series (2) is convergent then lim, . T"y=0. Several authors have
studied the converse implication:

(3) lim, o T*y=0 = Yu—oT"y converges.

The first result about this is due to N. Suzuki [6], who proved that if T is a
compact operator then the implication (3) is true. For some classes of operators
other authors have given sufficient or equivalent conditions to the implication (3).

In this paper we give a sufficient condition for that T verifies the
implication (3) such that the results of [6], [5], [2], [1] and [4] are particular cases
of our sufficient condition.

NOTATIONS. In the following X will be a Banach space; L(X) the class of
all operators from X into X; I the identity operator of X; | T| the norm, N(T)
the kernel and R(T) the range of T € L(X). TeL(X) is called injection if T is
injective and has closed range.

For any TeL(X), we consider the following subsets of X:
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Cr:={z€X:lim, o T*z=0} and Sp:={z€X: Yu_o T"z converges}.
It is easy to prove that both subsets are linear subspaces of X. Obviously
Src Cr. Moreover
z€Cr and (I-T)z=z & z€Sr and Yy T2=1z,

hence Sy =(I-T)Cy.
DEFINITION 1. TeL(X) is called a Neumann operator on X if it verifies

the implication (3), that is, if CrcSp. Denote by N(X) the class of Neumann
operators on X.

The class N(X) has not good algebraic properties: it is not stable under
sums, scalar multiples or products.

PROPOSITION 2. Let Te€L(X). The following assertions hold for k=2,3,...
1) Cpi=C,

2) SpkCS,

3) Tke N(X) = TeN(X).

In general the reciprocal of (3) is not true.

In the following theorem, we give a sufficient condition for T'€ N(X), from
which we derive the results previously obtained by other authors.

THEOREM 3. Let Te€L(X). If there ezists a non negative integer k such
that R[(I-T)*] is closed and the restriction of I-T to R[(I—T)¥| is an injection,
then T is a Neumann operator on X.

Recall that A€L(X) is a chain—finite operator if there exists a non
negative integer k such that N(A¥)=N(A*1) and R(A4F)=R(A41).

COROLLARY 4. ([1]) Let TeL(X).

1) I-T is a chain— finite operator = Te N(X).

2) I-T is an injection = T € N(X).

Then Theorem 3 can be applied to operators T such that I—T is not a
chain—finite operator and I-T is not an injection. For example, consider the
operator A € L(cyo®cy) defined by A ((z,),(¥s)):=((0,21,25,-..),(0)), being (0) =
(0,0,...). It is clear that A is neither injective nor a chain—finite operator,
however I—A verifies the Theorem 3, hence I—A is a Neumann operator.
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We denote by Co(X) the class of all compact operators on X. The essential
norm of Te€L(X) is defined by ||T|.:=inf{||T—K|: K€ Co(X)} and the radius
of the essential spectrum of T by r,(T):=lim | Tlli/ " Recall that TeL(X) is a
Riesz operator if r,(T)=0. An operator TeL(X) is called quasi—Riesz if
r(T)<1.

COROLLARY 5. Let TeL(X).

1) T is a quasi—Riesz operator = T e N(X).

2) ([6]) Co(X)CN(X).

3) ([4]) ITlle<1 = TeN(X).

4) ([5]) If for some n=12,... T™ is a strictly singular operator or a strictly
cosingular operator, then T € N(X). v

Finally our aim is to show that the result of Istratescu [2] is a particular
case of Theorem 3. Recall that the Kuratowski measure of noncompacteness
a(D) of a bounded subset Dc X is the infimum of the ¢ >0 such that D admits
a finite cover by sets of diameter less than e. Istratescu [2], [3] introduced the
following concept: T € L(X) is called a locally power a—contraction, denoted by
T e LPC,(X), if there is € <1 such that for each bounded subset DcX, there
exists- p=1,2,... such that a(TPD)<ea(D). In [2, Theorem 3] is proved that
LPC4(X)cN(X). We give an alternative proof by showing that T € LPC,(X) if
and only if T is a quasi—Riesz operator.
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