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The equations of motion for continuous stochastic differential games for two
players are a set of stochastic differential equations:

(1) dz = f(z,t,ul(zt),u(z,t)) + o(z,t,ul(z,t),u?(z,t))dW

where zeR®, W is an m—dimensional Wiener process; u%(z,t) the strategy of
player i, 1=1,2, is a r,—dimensional vector, u® may or not be subject to
restrictions; f is a vector function and o is a nxm matrix function. Having fixed
an initial state z(ty) =z, together with the strategies of players, one obtains,
assuming that (1) has an unique solution, a stochastic trajectory for the state
z(t). The payoffs to each player depend on the strategies employed, and for
player 7 is:

JH(zg,to,ut,u2) = Ezo'to[ ftTO L‘(f,t,ul,uz)dt+Fi(§(7),7)]

where i=1,2, ¢ is the solution of (1) with the initial condition ¢(¢y) =zq and 7
is the stopping time of the game, which may be fixed or may be determined by
the time at which (&(t),t) leaves a certain (n+1)—dimensional domain. Each
player attempts to maximize his own payoffs by choosing his own strategy. For
two—person zero—sum stochastic games the payoff to player 2 is the opposite of
player 1. By calling the payoff to player 1 J=J!, then player 1 attemtps to
maximize J by choosing u!(z,t) and player 2 tries to minimize J by the choice
of u2(z,t). The problem thus consists in finding strategies u!*,u2* that will form
a saddle point for the functional J:

J(zg,to,ul,u?") <J(zg,to,ul™,u?*) <J(zg,t0,ul*,u?)

u' may vary in a certain class %% of admissible strategies for player i, i=1,2.
Having fixed strategies u!,u? and state z at time s, let us set:
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Hasulu?)=E, [ [ L&t ad)dt+F(E(r),r)]
z,s s
where £ is the solution of (1) with the condition ¢(s) =z, and 7 denotes the exit
time of (&(t),t), after moment s, from an open set QCR?*1.
THEOREM. (Minimax Principle) If one has a function 'V(z,s) such that

i) For each ule %! and u2€ %2, the ﬁlmcztion V is in the domain of
the weak infinitesimal operator of ¢, denoted by Ay '™ .
1) For z,s€Q:

— 1 .2
— $e(zs) =max,;, gainf 2, %Z{A: (V) () +L(z'3'"1($'s)’u2(z’s))} -

—min_p_,z5up, ;. %1{151'“2( V)(z,5) +L(z,s,u1(z,s),u2(z,s))} -
= T (1) (1,5) + L (25,01 (2,5),u2(5,5))
where wl*e 1, u2* € %2 is a saddle point.
i) V(z,s) =F(z,s) for (z,8) € QC.
Then ul*,u?* are the optimal strategies for players and
V(z,s) = J(z,5ul*, u?").

Proof 1t is based in the properties of weak infinitesimal operator for the
stochastic differential process ¢ and a Dynkin’s formula (see [2, Vol.1] and also
(3, theorem 5.5.2]).

It is known (see for example [1], [5], [4], etc.) that if V(z,s) is a class
C21(Q), then Ay '™ is the partial differential operator:

Z:‘l'“z( V)(z,8) = Vy(z,8) f(z,5,11(z,5),u¥(z,8)) + $ Tr[ Vp (2,8) a]

where
a=0a((z,5ul(z,s),u2(z,s)) o((z,5,u(z,s),u¥(zs))T.
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