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In this paper it is shown that the class Lyy(EBy,Es,...,E,;F) of weakly
uniformly continuous n—linear mappings from E;XE,X---XE, to F on bounded
sets coincides with the class Lygo(Ey,Ey,...,En;F) of weakly sequentially
continuous n-—linear mappings if and only if for every Banach space F, each
Banach space E; for i=1,2,...,n does not contain a copy of 4.

Here, the above mentioned classes are subspaces of the space
L™(E,,E,,...,E,;F) of all continuous n—linear maps on E;XE;X.--XE, to F,
endowed with the norm

4]l = sup{ | A(21,25,...,2a) ] : T:€ B, ||zil| <1, 1<ign ).
In fact,

Lyy(Ey,Egy....Eq;F) = { A€ L"(Ey,Ey,...,E,;F) : for all balls B(E;)CE;, and
for every € >0, there exists 6;>0 and finite subsets ®;C E¥ such that
z;,5;€B(E;)  with  |¢(y;—2)|<8 (9€®f,i=12,..,n) then
A (Y1925 %0) — A(21,22, .80 <€ }.

Lysc (B, Es,....Eny;F) = { A€ L™ (Ey,Es,...,E,;F) : for all bounded sequences
(z) in E; for which ¢(z7—z;)—0 for some z;€E; for which
(peE], i=1.2,.,n), |A(z™,2D,...,.2™) — A(21,Zg,...,Z,)| — 0 }.

Also we need to consider the subspace Lyc(Ey,Es,...,Eq;F) of weak Cauchy

continuous n—linear maps given by

Lyc(Ey,Eg,....Ey;F) = { A€ L"(E\,E,,....E,;F) : for all bounded sequences
(z7) in E; for which (¢(z7)) is Cauchy (4€Ej,i=1.2,.n),
(A(zm,27,...,2m)) is Cauchy in F}.

From the above definitions, for Banach spaces E,F, it is true that the class
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Lysc(E,F) contains the class Lyy (E,F). So, the key idea in the proof of the
necessity is to show that for each fixed i=1,2,..,n, the class Lygc(E;F) is
contained in the class Lyy(E;,F) and appeal to the result that the classes
Lyy(E,F) and Lygc(E,F) coincide if and only if E does not contain a copy of
¢ due to Aron et al. [1].
Indeed, assume the condition that
L‘?’U (EI:E27"':En;F) =LV1;SC(E1»E2)"')E11;F)'

Let y; be in B;(E;) and yj be in B; (E7) such that yj(y;)=1 for all j different
from a fixed 4. As in [2], consider the map p:L(E;F)— L"(Ey,Es,...,E,;F)
given by

p(A) ey ez,..0) = y1 (1) ¥7 1(€i1) Yin (€is1) ¥ (€n) A(er)-
The map p is injective. Now, it is shown that if T is in Lygo(E;, F) then
T is in Lyy(E;F). Observe pT is in Lygg(E,Es,...,Ey;F). In fact, let ¢ be
weakly null in Ej; for j=1,2,...,n. Then
1 j 1 -1 i+1 '
p(T)(ekV”’e}ir“:eZ) = y’{(ek)"'y’;-l(e]: )'yt+1(e1:+ )"'y:l,(e;:) Te;,

Note ¢ is weakly null in E;

j=1,2,...,i=L,i+1,..,n. Also T€Lygc(E;,F) means Te, is null sequence in F.

implies  y5(ef) is null for all

Thus, p(T)(e,lc,...,e;:) is norm null in F. By given condition pTe
Lyy(Ey,Ey,...,Eq;F). That is, for every >0, there exist finite subsets &=
(®1,99,...,9,)C EIXE3X---XEy and §;>0 for all =1,2,..,n such that if z;,z;
in B(E;) with |¢(zi—z;)| <é; for all ¢€®; for all i=1,2,...,n, then

||pT(zi,...,z,’,)—pT(zl,...,zn)" <E§,
that is
91 (21) -+ yi1 (251) Yiaa (2500) ¥ (22) (Ti = Tzy) | < e

Now, for the choice zj=z;=y; for all j=1,2,...,i-1,i+1,...,n, and the
earlier choice of y;, the above gives |Tz;—Tz;|<e which implies
TeLyy(E;F). Thus for each i=1,2,...,n, we have Lygc(E;,F)cLyy(E;F).
Hence as pointed out earlier, from the result due to Aron et al. [1], it follows that
E; does not contain ¢; for each i=1,2,...,n.

As for the sufficiency part, first we observe that Ly (Ey,Es,...,Ey;F)C
Lysc(Ey,Ey,...,E;;F) is always true from their definitions. So let
A€Lygo(By,Ey,...,E;F). Then we claim that the associated maps
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A;€ L(E;, L™ (E,,Ey,...,E,;F)) given by

A(ei)(eI)CZr--)ei-l’ei+1)"'7en) = A(elile")en)
are compact under the assumption that E; does not contain ¢ for each
1=1,2,...,n. Indeed, let ¢ be any fixed number from 1 to n. Then

-1
A € Lygc(By,Ey,....Ep;F) = A; € Lysc(B;, L™ (Ey,By,....E;1,B 1, B F)).

Therefore A;€ Lyg (E;, L™ *(Ey, By Bi1, Bty BniF)) [3]. Now E; does
not contain ¢ implies that A; is compact. Thus for eacch i=1,2,..,n, A4; is
compact. Then, it is an easy consequence that A € Lyy (Ey,Es,...,Eq; F) [3].
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