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ABSTRACT

The recursive methods are popular in time series analysis since they are
computationally efficient and flexible enough to treat various changes in character
of data. This paper gives a survey of the most important type of these methods
including their classification and relationships existing among them. Special
attention is devoted to i) robustification of some recursive methods, capable of
facing to outliers in time series, and ii) modifications of recursive methods for
time series with missing observations.

1. INTRODUCTION AND BACKGROUND

This background is thought to be a first and introductory chapter in this
paper. We will review different concepts of analysis of time series formulated by
Box—Jenkins methodology, exponential smoothing models, Bayesian forecasting,
state—variable representation of autoregressive and moving average process,
recursive methods and robustness for time series with outliers and missing
observations.

Two main approaches are traditionally used to model an univariate time
series zl,..b.,zt. In general, these models can be written as:

ztzf(t;ﬁ)_'_fh (11)

where f(t;0) is a function of time and unknown coefficients f,¢ is frequently
assumed to be uncorrelated errors. Through the selection of appropriate fitting
functions it is possible to model and represent a variety of nonseasonal and
seasonal time series.

One approach mentioned above is known under the name of discounted least
squares or general exponential smoothing (see Brown [24]). The classical
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exponential smoothing belongs to popular smoothing and extrapolation methods.
Due to its simplicity it is still used frequently in practical time series analysis
although more effective, but more complicatéd methods have been developed.

The exponential smoothing forecast techniques are appropriate only if
observations follow particular restricted time series models. In particular, if for
univariate time series 2i,...,2; it is possible to use the general exponential
smoothing. The parameters ( in (1.1) are estimated either by ordinary least
squares, which weights all observations equally, or by weighted (discounted) least
squares.

Special cases of these models lead to single, double and triple exponential
smoothing procedures, (see Brown and Meyer [26] and Brown [24]).

Furthermore, it should be emphasized that many time series contain
seasonal components, (ciclical patterns that have the tendency to repeat
themselves over a certain fixed period of time). Seasonality is modelled by either
seasonal indicators or trigonometric functions of time.

The traditional approach to modelling seasonal data is to decompose the
series into three components; a trend 7;, a seasonal component S;, and an

irregular (or error) component ¢;:

2;=T;+ S;+ ¢; (the additive decomposition) (1.2)
2y="Tyx S;x ¢ (the multiplicative decomposition) (1.3)

where (1.3) is readily transformed into an additive one by considering logarithmic
transformation. 7T; is the trend component frequently modeled by a low—order
polynomials of time ¢, the seasonal component S; is modeled, as we mentioned
above, by either seasonal indicators or trigonometric functions of time and {¢;}
are assumed to be uncorrelated.

Least squares or the general exponential smoothing approach, employ
Winter’s forecasting methods to estimate the parameters of the seasonal time
series (see Abraham and Ledolter [4]).

A widely used method to describe the mechanism that generates and
explains univariate time series zi,...,z; is the estimation of an autoregressive
integrated moving average model of orders p, d, and ¢, (ARIMA (p,d,q) model),
which is the basic model of Box—Jenkins methodology used for nonseasonal data
(see Box—Jenkins [20]).

To model and to analyze seasonal time series by Box—Jenkins multiplicative
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and nonmultiplicative models (see Box—Jenkins [20]).

The nonstationary series z; should be first transformed into a stationary one
by considering relevant differences y,=Vez,=(1—B)%z;, where B denotes the
backward shift operator (Bz;=2;_1).

Since 1 is then a stationary process, we can use the ARMA, autoregres-
sive—moving average models to describe y;.

The corresponding model can be written as:

¢(B)y, = P+ 3(B) ¢ (1.4)
or
9(B)(1-B)lz =9+ 9(B) ¢ (1.5)

where ¢(B), ¥(B) and {¢} denote the autoregressive operator, the moving
average operator and a white—noise stationary process, respectively and ¥, is a
constant usually referred to as a trend parameter.

For all subsequent considerations the stationarity of the autoregressive
operator are supposed. Therefore the roots of each charasteristic equation must lie
outside the complex unit circle. In the following, we will assume d=0 and the
time series z;=1; and concentrate on the estimation of the process ARMA (p,q)
(see Box—Jenkins [20]).

When the given time series is possibly contaminated by outliers, the bad
performance of least squares estimators for contaminated data show the necessity
of estimating time series parameter robustly, since the presence of outliers can
seriously bias the estimates. There is a need of characterizing time series
contaminated by outliers in appropriate probabilistic models.

Abraham and Box [3], Fox [65] and Martin [118] discuss two
characterizations of outliers in the context of time series models.

In this paper we will consider (Section 8), two basic types of outliers:
additive outliers (AO) and innovation outliers (I0). In order to deal with
recursive methods, robust filtering and smoothing, a vector state—variable
representation of ARMA processes will be described as:

Ti= 0T+ € (1.6)

where z;,...,z; is an ARMA (p,q) process which has a zero—mean value and
which is free, e.g., of additive outliers.

The representation of an ARMA (p,q) process contaminated by additive
outliers can be represented by (1.6) together with equation (1.7) (see, e.g.,
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Stockinger [165]).
w=u+Hz+V, (L.7)

where H=(1,0,...,0), p is a location parameter and V; is the residual vector.

State space model are based on the so—called Markov—property, which
implies the independence of the future of a process from its past, given the present
state. In such a system the state of the process summarizes all the information
from the past that is necessary to predict the future.

State space model is then described by two equations: a measurement
equation, which describes the generation of the observations from a given state
vector, and a system equation, which describes the evolution of the state vector.

Measurement equation: v =H S+ ¢ (1.8)
System equation: S;=A4;5.1+Gy_ +a, (1.9)

Where in equation (1.8), S; is an unobservable state vector that describes
the state of the system at time ¢; y; is an observation vector; H; is a known
matrix and ¢ is the measurement noise, which is a white—noise process with
mean vector zero and covariance matrix E (¢, ¢}).

Equation (1.9) describes the evolution of the state vector; % is a vector of
known inputs, A and G are known matrices, and a; is the process noise, with
mean vector zero and covariance matrix E(a;,a).

It is assumed that the two error terms ¢, a; are uncorrelated at all lags;
E(¢,a;-)=0 for all k.

In order to specify the distribution of the state vector S, ; in (1.9), it is
necessary to start with a distribution for the state vector at time zero. Kalman
[101) and Kalman and Bucy [102] derived the recursive updating equations by a
method of orthogonal projection.

Kalman’s key idea was to fit the model recursively step by step as each new
observation Y; comes in. One can proceed by assuming normality and using
minimum mean square. linear estimation techniques. Both give the same
discussion (see Duncan and Horn [54]).

On the other hand, recursive methods play an important role in the modern
time series analysis where they are successfully used for smoothing, predicting and
estimation in the corresponding time series models. They work usually by
updating a previous constructed value through a correction term depending on the
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new observation.

The recursive methods have some advantages in comparison with
nonrecursive ones. Usually they are flexible enough to treat time series that
canrot be modelled by classical models with constant parameters since their
character changes in time. The other important advantage consist in their
numerical efficiency (e.g., in comparison with the classical regression procedures it
is not necessary to invert matrices of large dimensions) and in smaller demands
on the capacity of the computer memory. It is for this reason the recursive
methods are recommended in situations where one must treat a large number of
signals in real time (on-line). '

Since their beginnings in the fifties of this century the recursive methods
have been developed rapidly in many directions, in addition, various theoretical
aspects of these methods have been investigated (e.g. their stability). Extensive
numerical studies have compared their properties, and the corresponding software
has been developed so that nowadays these methods are contained in commonly
used packages of statistical programs.

This paper gives a survey information on the main directions in the
development of the recursive time series methods and shows some relationships
among them (see Cipra [40]). The methods presented here. have been chosen in
accordance with their importance for practical purposes, and their ad hoc
description is preferred to theoretical derivations. The Kalman filter introduced in
Section 2 seems to be a suitable methodology unifying the presentation of the
majority of the recursive methods described in Sections 3-7, (exponential
smoothing, general exponential smoothing, Box—Jenkins methodology, Bayesian
forecasting, other adaptive techniques). Such a .unifying approach may be
convenient from the point of view of prac;cical users of these methods.

Section 8 is devoted to robustification of recursive time series methods.
Robust time series analysis is an important part of general' robust statistics useful
for data contaminated by heavy—tailed distributions (in practice, one speaks on
time series with outliers), (see Huber [94] and Hampel et al. [78]). There are
numerous methods suggested for treatment of such time series (e.g. M—, GM-—
and CMM—estimation). In this paper, attention is concentrated on the problem of
combining the robust properties with recursive ones.

Finally, Section 9 deals with recursive methods for time series with missing
observations. As far as the time series with missing observations are concerned,
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we will deal with two types: time series containing gaps of missing observations
and time series with irregularly published observations.

Missing observations (either in the form of gaps or in the form of data
published at irregular time intervals) present a usual problem in practical time
series analysis. The natural problem in such situations is a suitable interpolation
or prediction using' incomplete information only. The paper surveys some
possiblities to conduct it in a recursive way.

2. KALMAN FILTER

Originally the Kalman filter and its applications have been developed and
used as a very practical instrument for the adaptative estimation and prediction
of time series not only in technical applications but also for shorter (e.g.
economic) time series. On the other hand, if the Kalman filter is formulated in
the Bayesian way it has a natural statistical interpretation and can be used
conveniently in models of linear regression including time series models (see e.g.
Anderson and Moore [10], Jazwinski [96], Priestley [150], Schneider [158] and
others). A very inspiring work in this direction is one of Meinhold and
Singpurwalla [132].

We shall constrain ourselves to the description of the discrete version of the
Kalman filter for linear models although recently its extensions for non—linear
models have appeared in literature (see e.g. Cipra [38],[43], Haggan, Heravi and
Priestley [77], Jakoby and Pandit [95], Priestley [150]):

y=F¥%+vy (the observation equation) (2.1)
% =G;%_1+w (the state equation) (2.2)

where y; is an (mx1) vector of observations, F; is an (mxn) observation matrix,
¥ is an (nx1) vector of state variables and G; is an (nxn) state transition matrix
or system matrix and v, w; are random vectors.

This model describes by means of the state equation (2.2) the time
development of the state variable 1, of the type nxl. The state variable
characterizes the given system at time ¢ (e.g., it can be formed by the values of
all parameters of a statistical model at time t). The observation equation (2.1)
describes the relations of the state variable to the observation variable y; of the
type mx1 that is at our disposal at time ¢. The matrices F; of the type mxn and
G, of the type nxn are known at time ¢ The observations y,...,3; delivered
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with time ¢ will be denoted by the symbol Yt={y,...,5;}. The residual vectors
v of the type mx1 and w; of the type nx1 fulfil in the classical case the following

assumptions
y~N(0,V3) , w~N(0, W),
E(v,v) =0, E(wywj) =0 for s+t, (2:3)
E(v,w) =0

with variance matrices V; and W, known at time £.
In our a priori knowledge on the system at time {—1 has the form

(%] Y1) - N(F 21, 507) (2.4)

then the Kalman filter provides by means of the following recursive formulas

at—1 at-1
37 =690, (2.5)
S =GN G+ W, (2.6)

predictive values 152_1 and f)z_l for the distribution
(%] YLy~ N(dLE (2.7)
After obtaining the observation y; at time ¢ the Kalman filter calculates by
means of the recursive formulas

at at—1 St-1 o 2 -1 at—1
5 =2 - S R (RE R+ V) T RS (2.9)

the values 19: and E: for the a posteriori distribution

(8] YY) ~N(FL8Y . (2.10)

The relations (2.5) and (2.6) can be looked upon as the predictions for time
t from time t—1, while the relations (2.8) and (2.9) as the corrections of these
predictions after delivering the new observations y; at time ¢. Moreover, one can
also predict the variable y as

- 5t
Yo =Fa? ., (2.11)
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or more generally for k£ steps ahead as

- Gt

Yok =Frr ¥y, (2.12)
where ¥ :+k can be calculated recursively as

qt at
§t =Gad! . (2.13)

The prediction formulas (2.11)—(2.13) can be used only under the condition
that we know or are capable to estimate the values of the matrices F and G for
time of prediction (this is specially the case if the matrices are constant with
time).

The complicated formulas (2.5), (2.6), (2.8) and (2.9) usually reduce to
substantially simpler and easily programmable forms in such special cases that
are important from the practical point of view. It can be demonstrated by means
of the linear regression model with parameters that are constant at time. The
system (2.1)—(2.3) for this model can be written as

k ’
yt:zi:l bilzit+ €=1; bt+ €4, Et”N(O,Ug) , (214)
b= by, (2.15)

i.e. Fy=z; (z; is the last row of the regression design matrix known at time ¢),
Gy =1, Vy=02, W,;=0. After substituing to (2.5), (2.6) and (2.8) we obtain

~1 ~t-1 /ot=1 rat-1 Ni-1
bt= bt—l + [(yt_ztb t_l)/(ztzt_lth‘_U%)]Et_lzt ) (216)

which is the recursive version of the Least Squares method. In comparison with
the nonrecursive one it is not necessary to invert any matrix.

The Kalman filter in statistics motivates numerous research works. One of
the challenging problem is the estimation of the parameters in the system
(2.1)—(2.3) (see e.g. Mehra [131]). The maximum likelihood method and,
especially, its algorithmic form called the EM algorithm seems to give satisfactory
results (see e.g. Cantarelis and Johnston [30], Harvey [87], Harvey and Peters
(89], Schneider [158], Shumway and Stoffer [162] and others). Nowadays there are
even some asymptotic results connected with the Kalman filtering (see e.g. Spall
and Wall [164], Watanabe [174]).
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3. EXPONENTIAL SMOOTHING

The exponential smoothing belongs to the classical recursive time series
methods. In spite of this fact and its numerical simplicity it gives surprisingly
good results in smoothing and predicting.

The exponential smoothing is based on the additive or multiplicative
decomposition model of the time series where the series is decomposed to the
trend, seasonal and random (residual) components. The trend component has
usually the form of a simple mathematical curve (mostly a polynomial of lower
order), the seasonal component is usually modelled by means of seasonal indices
and the random component is supposed to be a white noise (i.e. a sequence of
uncorrelated random variables with zero mean value and constant variance). The
substantial feature of the exponential smoothing principle is its dynamic approach
to time series analysis: by discounting data exponentially to the past of time
series it is capable to respond in a flexible way to various changes ocurring in the
character of particular decomposition components.

Let us demonstrate it by means of the simple exponential smoothing where
one supposes the following model

n=b+¢g (3.1)
i.e. the additive decomposition is formed by a constant trend and a white noise.
The estimate S of the trend at time ¢ (or in other words, the smoothed level of

the time series y; at time t) is looked for by means of the Discounted Least
Squares method minimizing the expression

Zlj‘:o(l“)‘)j(yt-j—b)z = Z?:Oﬁj(yt-j"‘b)z ’

where f=1-a is a discounting factor corresponding to a smoothing constant o
(0<a<1). The approximation consisting in the exploitation of the infinite sum
simplifies substantially the consequent calculations. If deriving according to b we
obtain

5= Xl (l-cPu;.
For the practical purposes it must be rewritten to the recursive form
S =ay+(l-a)S.; . (3.2)

The formula (3.2) demonstrate in a distinctive way the advantages of the
exponential smoothing: the numerical simplicity, small demands on memory
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capacity and the single control of smoothing intensity by means of a. The
prediction at time ¢ for k¥ steps ahead in the model (3.1) obviously has the form

Yk =S¢ - (3.3)
Let the symbol e denote in the following text the one—step—ahead
prediction error, i.e.

e =y~ y(t-1). ' (3.4)
The formula (3.2) can be rewritten as
St = St-l + Qe (35)

showing that the mechanism of the simple exponential smoothing really consists
in the recursive application of the correction term ae.

Much work is devoted to various aspects of the exponential smoothing. If
constraining oneself only to the monographs one can list e.g. Abraham and
Ledolter [4], Armstrong [13], Bowerman and O’Connell [19], Brown [23],[24],
Cipra [39], Coutie [49], Gilchrist [70], Granger and Newbold [75], Holt et al. [93],
Johnson and Montgomery [97], Makridakis and Wheelwright [114], Makridakis et
al. [113], Montgomery and Johnson [135] and others. One of the best survey
papers devoted to the exponential smoothing is by Gardner [68] classifying the
exponential smoothing methods according to the type of trend (constant, linear,
exponential, damped linear), according to the presence of seasonality and
according to the number of smoothing constants.

We shall present the most important models of exponential smoothing in
such a way that for each model the recursive formulas of the type (3.2), the
correction formulas of the type (3.5) and the prediction formulas of the type (3.3)
will be given. Similarly as in Gardner [68], the symbols S;, T, I, will denote the
smoothed level, the smoothed slope of linear trend and the smoothed seasonal
index at time ¢, respectively. The smoothing constants corresponding to S;, Tj,
I, will be denoted by «, 7, 6, respectively, and the lenght of season by p (e.g.
p=12 for monthly observations with the annual seasonality). In addition, we
shall discuss briefly the choice of initial values for the corresponding recursive
formulas (see e.g. Abraham and Ledolter [4], Berry and Bliemel [16], Bowerman
and O’Connell [19], Dalrymple and King [50], Flowers [64], Harrison [80], Chat-
field [34], Chatfield and Yar [35], Makridakis et al. [112], Montgomery and John-
son [135]) and the choice of smoothing constants (in addition to the references
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above see e.g. Gilchrist [70], Ledolter and Abraham [108], Taylor [167], Wade
[173], Winters [178]). If assuming the normality of data then, in addition to the
point predictions, one can also construct the prediction intervals which is closely
related to the investigation of the forecast error varaince (see e.g. Bowerman and
O’Connel [19], Cipra [39], McKenzie [130], Montgomery and Johnson [135], Sweet
[166], Yar and Chatfield [180]).

(A) CONSTANT TREND WITHOUT SEASONALITY (SIMPLE EXPONENTIAL
SMOOTHING):
See the formulas (3.2), (3.3) and (3.5). The recommended choice of the
- smoothing constant « is from the range 0.1<a<0.3. Its more accurate value can
be determined by minimizing the mean squared error of one—step—ahead
prediction over selected grid values of a from the interval <0.1;0.3>. However,
some empirical and theoretical results indicate that sometimes one can use the
values of a lying outside of this interval, e.g. the values a > 0.3 have frequently
shown to be optimal in the comparative study by Makridakis et al. [112], and the
corresponding model is even stable for 0 < a <2 according to Brenner [21]. The
initial value Sy is usually chosen as the arithmetic mean of several initial

observations.

(B) LINEAR TREND WITHOUT SEASONALITY WITH ONE SMOOTHING
CONSTANT (DOUBLE EXPONENTIAL SMOOTHING, BROWN MODEL):

S=oay+(1-a)S.1, ($=51+Ti1 +ae) (3.6)
Ty=a(S=51)+(1-a) Tyy, (Ty=T;1 +a?e) (3.7)
Gek(t) =S+ 2 Tk T, (3.8)

or equivalently
S =ay+(1-a)5_; (3.9)
S = a8 +(1-a)St2] (3.10)
Juk(t) =28~ §1214 k=—(S, - S12) (3.11)

where S[2 is the so called smoothing statistic of the second order defined

recursively by means of the formula (3.10).
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(C) LINEAR TREND WITHOUT SEASONALITY WITH TWO SMOOTHING
CONSTANTS (HOLT MODEL):

Si=ay+(1-a)(Si-1+ Tj-1) , (S=5-1+ Tpy +aey) (3.12)
Ty =v8=54)+ (1= T, (=T +ave) (3.13)
:&“k(t) =St+th . (314)

Practical experiences show that the introduction of two different smoothing
constants for level and slope in the Holt method may improve the previous Brown
method (see e.g. Gardner and Dannenbring [69], Makridakis et al. [112]).

(D) LINEAR TREND WITH ADDITIVE SEASONALITY (ADDITIVE HOLT-
WINTERS MODEL):

S=a(y,—1L-p)+(1 ~0)(S1 + Thoa), (Si=5 + Ty +aey) (3.15)
Ty =5 —S-1) + (1= Tj-1, (T1=Ty1 +avey) (3.16)

L =8y —S)+(1=6)yp, (=T1p+ 6(1-)g;) (3.17)
Yaak(t) :St+th+It—p+k : (3.18)

(E) LINEAR TREND WITH MULTIPLICATIVE SEASONALITY (MULTIPLI-
CATIVE HOLT-WINTERS MODEL):
S=o(yy I-p)+(1=a)(So1+ Tyo1), (8= 521+ Tio1 +aey/ Ip) (3.19)

Ty=AS=S5-1)+ (L =1 Tty (Ty= Tt-__l +ave/1;_p) (3.20)
L= 8y S) +(1=6)L_p, (=1 _p+ §(1-)e/ ) (3.21)
:&t+k(t)=(st+th)[t—p+k . (3'22)

As the choice of smoothing constants for the models with linear trend
(B)—(E) is concerned similar principles as in the model (A) hold. On the other
hand, more effective algorithms for the optimal choice of these constants can be
used than the grid search method is (see e.g. Archibald [12], Bartolomei [14],
Berry and Bliemel [16], Flowers [64]). The generally recommended values are
a~0.2 or smaller ones for the Brown model and the smqothing constants not
exceeding 0.3 for the Holt model and the Holt—Winters model, the Brown model
being stable for 0<a <2 and the Holt model for 0<a<2, 0<y<(4-2a)/a
The initial values of smoothing statistics are frequently constructed in such a way
that one fits a line and seasonal indices modelled by means of zero—one regressors
to a beginning segment of the time series using the classical regression techniques.
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Practical experiences show that in general the models with linear trend are
acceptable for short—term prediction but they incline to overestimate the real
values in long—term prediction. Therefore one recommends to damp the linear
trend in a suitable way if it is to be used for long—term predictions (see e.g. (G)).

(F) EXPONENTIAL TREND WITHOUT SEASONALITY (see Pegels [143],
Roberts [154]):

Si=ay+(1-a)S 1 Ty-q , (5=5;-1 Ty-1 +ae) (3.23)

Ty =AS/S-1) + (1= Tic1 , (Ti=Ty1 +ve /S, ) (3.24)
R k

Uk(t) =5 Ty . (3.25)

(G) DAMPED LINEAR TREND WITHOUT SEASONALITY:

St =ay+(1-a) (S +9T4-1) , (S4=5p-1 +9T; 1 +e) (3.26)
Ty =AS=S-1)+(1=1eTi , (T;=0T; 1 +ave) (3.27)

- k .
vk(t)=5+Y._ ¢ T; (3.28)

where 0<p<1 (for ¢=1 it converts to the Holt model (3.12)—(3.14)). The
long—term predictions based on linear trends of a damped type differ
substantially from the ones based on undamped trends even if ¢ is near to one.
The damped trends are used in the forecast system FORSYS (see Lewandowski
[110]) that has been successful just for long—term predictions in the comparative
study by Makridakis et al. [112].

(H) POLYNOMIAL TREND:

The Brown model (3.9)—(3.11) can be generalized for the polynomial trend
of order n. In this case one must work with n+41 smoothing statistics S,
S2,...,8tn+1] defined analogously as in (3.9) and (3.10). However, practical

results show that the polynomial trends of higher orders starting with n=2 (the
so called triple exponential smoothing) provide worse results if compared with
other methods (see Makridakis et al. [112]).

One can deal with a lot of further interesting topics in the framework of the
exponential smoothing:

There are some multivariate generalizations suggested in literature (see e.g.
Cipra [41], Enns et al. [60], Harvey [88], Jones [99], Pfefferman and Allon [146]).

In some situations the assumption of the uncorrelated random variables ¢,
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(see e.g. (3.1)) is not adequate. Therefore some authors (see e.g. Chatfield [34],
Reid [152]) recommend to improve the prediction g;,(t) by adding the term rf €
to it, where 7, is the estimated autocorrelation between e; and ¢_;.

The important part of the exponential smoothing .methodology is the
monitoring of the forecast errors that may indicate some inadequacies in the
procedure (see e.g. Batty [15], Bonsdorff [18], Bowerman and O’Connell [19],
Brown [24],[25], Gardner [66], Golder and Settle [73], Harrison and Davies [82],
Jun [100], McKenzie [128], Montgomery and Johnson [135], Trigg [168]). For such
a monitoring one frequently uses the so called tracking signal treated by the
cumulative sum (CUSUM) techniques. The related problem is the adaptive
control that performs automatically the necessary changes of the smoothing
constants. The method by Trigg and Leach [169] is very popular; it adapts the
smoothing constant a at time ¢ to the form

ay=|Q/4y (3.29)

where @ and A; are calculated recursively as
Q=ae+(1-a)Qu1 , Ay=cale|+(1-a)A . (3.30)

Chow [37] has suggested to treat parallely three procedures of exponential
smoothing constants e.g. & —0.05, @ and a+0.05 and to select the one with the
optimal prediction property. If the selected constant at time ¢ is « +0.05 the one
must transfer to the smoothing constants «, a+0.05 and «+0.10. Other
references are Bowerman and O’Connell [19], Eilon and Elmaleh [56], Ekern [57],
Gardner [67], Montgomery [134], Raine [151], Roberts and Reed [154].

4. GENERAL EXPONENTIAL SMOOTHING

The term '"general exponential smoothing" (or sometimes "direct
smoothing") means that the exponential smoothing principle consisting in the
Discounted Least Squares method (see the discussion following the equation (3.1))
is used for a general linear model. If at time ¢ we write this model as

k . , . .
yt—j=2i=1bil‘,£i(_])+ft—j: btz(_])+ft—j) J=0)17“'7t_1 (41)

then the estimated parameter vector b} is obtained by minimizing the discounted
least squares

Foro B[y = bia(=4)12, (4.2)
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and the prediction for k steps ahead in the considered time series is constructed
as

Yek(t) = byz(k) - (4.3)
The regressors z of an arbitrary form (e.g. goniometric functions) can be

included in the model (4.1). However, if they fullfil the following recursive
equation

z(t) =Lz(t-1) (4.4)

with a matrix L of the type kxk constant at time ¢ then after some algebraic
manipulations one obtains the following recursive formula for the extimated
parameter vector

by=L"b,_;+he, (4.5)

where the vector h of the type kx1 depends on the form of regressors ¢ and on
teh discount factor A (see e.g. Abraham and Ledolter [4], Brown ([23],
Montgomery and Johnson [135] and others).

Some of the methods from Section 3 are special cases of the general
exponential smoothing. E.g., the Brown model (3.6)—(3.8) can be obtained if one
puts k=2, z,(t)=t, zo(t)=t (itis y;=b; + byt) and

)

On the other hand, the general exponential smoothing used for a time series
with linear trend and additive seasonality gives results that differ from the ones
obtained by the additive Holt—Winters method. Special modifications of the
general exponential smoothing suggested for commercial purposes are known as
the systems SEATREND and DOUBT (see Harrison [79], McKenzie [127]). A
more general approach to the exponentially discounted estimation is presented
e.g. by Ameen [8], Ameen and Harrison [9], Harrison and Akram [81].

5. BOX—JENKINS METHODOLOGY

This methodology has become popular since it offers a systematic approach
to modelling stationary and nonstationary time series with general trend and
seasonality that are common in economic and technical practice. The form and
construction of Box—Jenkins models is described including various details and
numerical examples in many monographs (see e.g. Abraham and Ledolter [4],
Anderson [11], Bowerman and O’Conmell [19], Box and Jenkins [20], Cipra [39],
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Granger and Newbold [75], McCleary and Hay [125], Montgomery and Johnson
[135], Vandaele [171] and others). Let us only remind the general form of the
model ARIMA (p,d,q) that is the basic model of Box—Jenkins methodology used
for nonseasonal data:

¢(B)(1-B)dy, = 3(B)«, (5.1)
where
¢(B)=1-p;B~...—p,BP , §(B) =1+ B+... +9,B, (5.2)
and ¢ is a white noise with o¢2=var(¢). The symbol B denotes the
backward—shift operator fulfilling Biy =y, ; (j=0,1,...). The operator (1-B)?
forms the d—th difference of the original series in the model (5.1), e.g. if d=1
then (1-B)y; =1y~ y-1- The seasonal differences of the type (1-B?)y =4~ %
are typical for the seasonal Box—Jenkins models used for seasonal data (e.g.
p=12 for monthly data).

There are several reasons why the Box—Jenkins models are involved in this
survey of recursive time series methods:

(1) Predictions based on the Box—Jenkins models can be constructed
recursively. E.g., let us consider the model ARMA (p,q) of the form ’
V=01lat Tl pt et Yegt...+ Pat—q (53)

(see (5.1) for d=0). Then the prediction y;,;(t) is constructed recursively as

?jhk( t) = [yt+k—1]+ ot ‘pp[yt+k—p]+[ft+k]+ et ﬂq[fhk—q] (5'4)
where

(Y1451 = Y (2), [€45]=0 for j>0
and (5.5)

(Y145) = Yeajs [€645]1 = Youj — Yaj (t+5-1) for j<O
(2) Estimation of parameters of the Box—Jenkins models can be performed
recursively. E.g., let us consider the autoregresive model AR (p,q) of the form
B=%at. -t opupta=¢ zt+¢, (5.6)

where @ =(¢1,..,p) and z;=(y-1,--,Y-p) (see (5.1) for d=g¢=0). Then one
can use the following recursive estimation formulas
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P, =z

. -1% N . >
P=p1t W(?/t-<Pt-1zt)=Sot-1+Ptzz(yt—€0t-1zt),

t-1 "t

(5.7)

(5.8)

(5.9)

(see e.g. Aase [1], Cipra [39], Fahrmeier [62], Graupe [76], Young [181] and

others).

(3) The majority of the exponential smoothing models provide the same

prediction results as some Box—Jenkins models. We shall show the corresponding

Box—Jenkins model for

— simple exponential smoothing (3.2), (3.3), (3.5), (f=1-a):

(1-B)y=(1-8B)e; ;
— Brown model (3.6)—(3.8), (A=1-a):
(1-B)%y,=(1-pB)?%¢ ;
— Holt model (3.12)—(5.14) :
(1-B)%y=[1+(a+ay-2)B+(1-0a)B%¢;
— additive Holt—Winters model (3.15)—(3.18):
(1-B)(1-BP)y= 57 457 e,

where
Y=1, dy=-14+a+ay,
%=ay, 1=2,...,p-1,
dp=-1+a7+6(1-a), ¥p,=(1-a)(1-6);

— general exponential smoothing (4.1)—(4.5):

©(B)(1-B)dy, =9(B)e,

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

where (5.14) is a model ARIMA (p,d,n) with p+d=mn (we shall not specify

its parameters).

The related references are e.g. Abraham and Ledolter [4],[5], Chatfield [33],
Cogger [48], Godolphin and Harrison [72], Ledolter and Abraham [108], Ledolter
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and Box [109], McKenzie [126],[127],[129], Muth [137], Newbold [138], Pandit
and Wu [140].

6. BAYESIAN FORECASTING

The term Bayesian forecasting has been introduced to time series analysis
due to works by Harrison and Stevens (1971,1976). It denotes the predictive
methodology based on the Kalman filter (see Section 2). One of its main
advantages consists in the state space representation of time series models. E.g.,
let us consider a functional model

2y, —3y-1 + y-2=0 (6.1)

and its state space representation

Yo=K (6.2)
M=%#z—1 +6; (6.3)
By=PB-1 - (6.4)

Then the equations (6.2)—(6.4) imply (6.1) but the opposite implication is
not valid since, in contrast to (6.1), the state space representation (6.2)—(6.4)
contains the information on behaviour of level p; and slope f; of the
corresponding time series. In the framework of the Bayesian forecasting the state
space equations (6.2)—(6.4) must be randomized as it is the case in the following
examples:

(A) MODEL WITH CONSTANT LEVEL (STEADY MODEL):

y=ut+e, €~N(0,02), (6.5)
pr=te1+0py, 6py - N(O,w) . (6.6)

In this model the level y; is modelled as a random walk. If denoting
(Lelyrs ) = N(my,cp) (6.7)

then the Kalman filter provides

my=my+a(y—mq1), (6.8)
where
Ct_1+ ‘wt
o =———, q=ay0?. (6.9)
c + w, +0
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In other words, we have obtained the simple exponential smoothing with the
smoothing constant a; changing in time. If w/ af=z§ does not depend on time

then it implies a;= (a;_;+w)/(@;; +w+1) so that in the stable state with
a;=a it must be

a=1[-i+(i+4b)?) (6.10)
The formula (6.10) can be used for the choice of smoothing constant in the
simple exponential smoothing.

(B) MODEL WITH LINEAR TREND:

:l/g=/1¢+6t, El”N(O,(T%) ) (6.11)
py= gy + By +6uy 5 Gy~ N(0,) - (6.12)
By =Bp-1+86; , 86, ~ N(0,1) . (6.13)

If w,/a%:ﬁ; and ut/a%= % do not depend on time then, similarly as for the

model with constant level, in the stable state the corresponding Kalman filter
formulas coincide with the Holt exponential smoothing (3.12)—(3.14), and it
holds

i=7(1-a7)1, w=(a?+a?y-2ay)(1-ay)!. (6.14)
(C) SEASONAL MODEL:

w=pt+ e, € N(O,U%) ) (615)

-1
Y P = b0, 8o~ N(O,T) . - (6.16)
Further details and models can be found e.g. in Fahrmeier (1981), Harrison
and Stevens (1971,1976), Harvey [85],[86],(87], Kahl and Ledolter (1983),
Morrison and Pike (1977). The Bayesian forecasting can be extended to the

multi—process models that transfer with various probabilities to different states
(see e.g. Bolstad [17], Harrison and Stevens (1976), West and Harrison (1986)).

7. OTHER ADAPTIVE TECHNIQUES

There are further recursive time series methods producing estimation and
prediction in an adaptive way (see e.g. the general scheme LRE (Linear Recursive
Estimators) described by Pack, Pike and Downing (1985)).

As an example of possible modifications of the basic recursive methods, let
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us give the method AEP (Adaptive Estimation Procedure, see Carbonne and
Longini (1977), Makridakis and Wheelwright (1978)). If in the model (2.14) we
have no a priori information of the type (2.15) on the behaviour of parameters b
at time ¢ then this method uses the following recursive estimation formula

bilt—l
, r

by= Ai,t—1+/‘ LTt (Y — 1 bgo1), =1,k (7.1)

2 b

where y is a damping factor guaranteeing the stability of the method and

Iy = Vlzitl +(1 _V)fi,t—l ) i‘—‘l,...,k (72)
with a constant v (0 <v <1). The empirical study by Bretschneider, Carbone and
Longini [22] recommends very small values of p (0.01<y <0.06).

8. ROBUSTIFICATION OF RECURSIVE METHODS

The basic objective of the robust time series analysis is the identification of
outliers or/and the treatment of contaminated data by means of special statistical
procedures that are insensitive (robust) with respect to outliers (see e.g. Huber
(1981), Stockinger and Dutter (1987) and others).

The identification of outliers can be based on special statistical models and
tests or on various ad hoc procedures (see e.g. Abraham and Box [3], Chaloner
and Brant (1988), Chernik, Downing and Pike (1982), Fox (1972), Hillmer (1984),
Ledolter (1989), Schmid (1986), Tsay (1988)).

The choice of a robust statistical procedure for a contaminated time series
depends substantially on the type of outliers. There are two basic types of
outliers: additive outliers (AO) and innovation outliers (IO). If we confine
ourselves to the ARMA processes (see (5.3)) then these two types of outliers can
be modelled in the following way:

(1) AO—Model:

Y=+, (8.1)
¢(B)zy=9(B)e, € ~N(0,02), (8.2)
v ~iid F=(1-n)8+nH, P(6=0)=1, (8.3)

where 7 is a constant near to zero (0<7n<1) and H is an absolute continuous
distribution with heavy tails (e.g. Cauchy, Laplace, uniform, normal with a
variance much larger than o2) so that P(y=0)=1-7. In other words, one
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observes the ARMA process z; contaminated by outliers in a small fraction 7 of
observations.

(2) I0—Model:
¢(B)zy =9(B)¢, (8.4)
¢ ~iid G=(1-7)N(0,02)+9H, var(H)>>02, (8.5)

i.e., in the IO-models the outliers arise in such a way that the variance of
innovations increases considerably in a small fraction 7 of observations.

There are various estimation procedures recommended for contaminated
time series data (see the survey by Stockinger and Dutter (1987)): M—estimation
suitable for I0—models (see e.g. Denby and Martin (1979), Martin [118],(1981),
Martin and Yohai (1985), Pham Dinh Tuan (1984)), GM—estimation (Generali-
zed M—) suitable for AO—models (see e.g. Bustos [28], Denby and Martin (1979),
Martin [119], Martin and Yohai (1985)), CMM—estimation (Conditional—Mean—
M-) based on ACM filtering (Approximate Conditional-Mean, see e.g. Martin
[116],[117], Kleiner, Martin and Thomson (1979)) and others. The scope of the
robust time series analysis is very broad nowadays, and in this overview we shall
concentrate our attention only on some robustified recursive methods:

(A) ROBUST KALMAN FILTER: There are a lot of successful attempts how
to robustify the Kalman filter (see Section 2) including the robustification of the
Bayesian forecasting models (see Section 6). E.g., let us consider according to
Cipra and Romera (1991) the Kalman filter with contaninated scalar
observations (i.e. m=1):

v =fid+u, (8.6)
191 = Gt'l’t—l +’U)t , (87)
U ~(1 —W)N(O;Tt)'i'WHt ) Vﬂ.I(fIt)>>7‘t y W~ N(O7 Wt) (88)

Then the predictive recursive formulas (2.5), (2.6) stay unchanged while the
a posteriori recursive formulas (2.8), (2.9) must be robustified in the following
way

=Ly B1f (B0 e k) (g £, 900), (8.9)

" ~ o /o - ’ -1
Li=ntl-nelfifintl(frit fi+n/k)™, (8.10)
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where
-1 A —i 2
b= 9(r (= f98)) (A (-84 0)) (8.11)
and ¢ a suitable robutifying function, e.g. the Huber’s function
T for |z|<c
Yu(z) = (8.12)
csgn(z) for |z|>c

(the constant ¢ depends on 7, e.g. one recommends c=1.645 for 7=0.05).
Other related references are e.g. Ershov and Liﬁtser (1978), Girén, Martinez and
Rojano (1989), Masreliez (1975), Masreliez and Martin (1977), Meinhold and
Singpurwalla (1989), Pefia and Guttman (1988,1989), Poljak and Tsypkin (1980),
Sawitzki (1981), Servi and Ho (1981), Sorenson and Alspach (1971), Stockinger
and Dutter (1987), West (1981), West, Harrison and Mignon (1985). Some
investigations continue on the robustification of nonlinear Kalman filters (see e.g.
Cipra (1990), Cipra and Rubio (1991)).

(B) ROBUST EXPONENTIAL SMOOTHING: It seems very useful for practical
purposes torobustify exponential smoothing procedures. Exponential smoothing
robustifications based on L; norm (replacing the least squares by the least
absolute deviations) or on M—estimation are suggested in Cipra [42],(1991). E.g.,
the robustified simple exponential smoothing based on M—estimation principle
replaces (3.5) by the following recursive formulas (A=1- @)

Sy =81+ My (M1 +B/k) ey, (8.13)
M;= %[Mt-l ~ M} (Mg +B/R)1], (8.14)
ky=9(ef0y1)/(etf 04-1) (8.15)

G =]+ (1), (8.16)

with a robustifying function 9 (see e.g. (8.12)), with a constant v (0<v<1) and
with initial conditions

- 1
Sn=z7:=1 yz/n , Mn = l/n , a’n =Ezf:—_-l(y3 _S‘Il.)2' (817)

Robust nonlinear smoothers have been suggested by Velleman (1980)
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(C) ROBUST RECURSIVE BOX-JENKINS METHODOLOGY: The recursive
Box—Jenkins prodedures can be derived in the framework of the robust Kalman
filtering (see (A)). Some theoretical and practical results connected with such
procedures are given e.g. in Campbell (1982), Cipra and Romera (1991), Englund
Holst and Ruppert (1988,1989), Kitagawa (1987). A recursive construction of
maximum likelihood function for the Box—Jenkins models is described e.g. by
Harvey [85],[86], Harvey and Phillips (1979), Pearlman (1980), Shea (1984).

9. RECURSIVE METHODS WITH MISSING OBSERVATIONS

As far as the time series with missing observations are concerned, there are
two cases that are important from the practical point of view:

(1) a time series y; contains gaps of missing observations such that
sufficient numbers of observations are available before and after each gap;

(2) observations are published at irregular time intervals so that instead
of observations y;,..., one obtains only observations y,...,, at irregular
periods ty,...,t, ({,< -+ <t,).

There is an extensive literature devoted to time series with missing
observations dealing with estimation, interpolation and prediction for such series
(see e.g. Abraham [2], Akaike and Ishiguro [6], Brubacher and Wilson [27],
Damsleth (1980), Dunsmuir and Robinson (1981), Ferreiro (1987), Harvey and
Pierse (1984), Jones (1980), Ljung (1989), Maravall and Pefia (1989), Parzen
(1984), Pourahmadi (1989), Rosen and Porat (1989), Shumway (1984), Shumway
and Stoffer (1982), and others). Here we shall mention briefly some modifications
of recursive methods suggested for time series with missing observations:

(A) KALMAN FILTER WITH MISSING OBSERVATIONS: It is a natural
procedure to replace the missing observations in the Kalman filter by their
_predictive values both in the situation with gaps and in the one with irregularly
published observations (see e.g. Cipra [42], De Jong (1989), Gordon and Smith
(1990), Kohn and Ansley (1986), and others). Moreover, the Kalman filter can
treat very elegantly the multivariate observations with unobservable components
(see e.g. Cipra and Motykova (1987)): if only the components Yigts -+ Yigt
(1 <...<ig<m) of the y, are at our disposal at time ¢ then at this time it
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suffices to replace the observation equation (2.1) by
y:=F:19t+'U: ) (9'1)

where
yi =My, Fi=MF,, Vi=var(vi)=MV,M; (9-2)

and M; is a matrix of the type dxm that has unities in the positions
(1,4),...,(d,iz) and zeroes in the remaining positions.

(B) EXPONENTIAL SMOOTHING WITH MISSING OBSERVATIONS: The
exponential smoothing for nonseasonal time series with gaps has been described
by Aldrin and Damsleth [7]. E.g., in the case of the simple exponential smoothing
with the gap w_g,...,%-1 (i.e., the values ...,y 4 o, ¥%-x-1,% are observed) they
recommend at time ¢ to replace the equation (3.2) by

Si=ay+(1-a)S 4, (9-3)

where
a;=1-a[l+k(1-a)?1, (9.4)

and if continuing the exponential smoothing at times t¢+1, t+2,... then to
preserve the equation (3.2) (see also Cipra [41]).

The exponential smoothing for nonseasonal time series with observations
published at irregular time intervals has been suggested by Wright (1986). E.g.,
in the case of the Holt model one must replace (3.12)—(3.14) by

Sp = oY, +(1=0)[Spo1 4 (B —tn-1) Tpoa] (9-8)
Tp =Y (Sp=Sp-1)(tn—=tn-1) 1+ (1=70) Tpe1 (9.6)
Ttk (tn) = S +KT, (9.7)
where
O =y y(Gat051)h, ay=(1-0)n -1, (9.8)
Yo =Tr(Ga Vo) ?, C=(1—y) 71 (9.9)

(a,7 are the smoothing constants that would be used for the considered time
series if no observations are missing). Moreover, one recommends to put

a0=l—(l—a)‘1, 70:1_(1_7)(1, (9'10)

where ¢ is the average time spacing of the data.
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