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INTRODUCION AND NOTATIONS

One of the most important methods used in the literature to introduce new properties
in a Banach space E, consists in establishing some non trivial relationships between different
classes of subsets of E. For instance, E is reflexive, or has finite dimension, if and only if
every bounded subset is weakly relatively compact or norm relatively compact, respectively.

On the other hand, Banach spaces of the type C(K) and L,(z) play a vital role in the
general theory of Banach spaces. Their structure is so rich that many important concepts
and results of the general theory have been modelled on these spaces. Also, -the
characterization of most important classes of subsets of these spaces, is well known.
However, the situation is completely different for the analogous sﬁaces of vector valued
functions. In general, their structure is quite more involved than that of the scalar function
spaces. ‘

In this talk we shall be mainly concerned with the space L;(u,E). When E = K, most
of the classes of subsets we are interested in, coincide. This is no longer true in the vectorial
case, and we shall try to determine classes of Banach spaces EF for which the natural
extension of the characterizations of several classes of distinguished subsets of L;(u), are
valid in Ly (i, E).

For the sake of convenience, we deal with real Banach spaces. We shall use the standar
terminology in Banach spaces theory, as in [10] and [18]. If E is a Banach space, B(E) will
be its closed unit ball and E* its topological dual. The word operator will always mean
linear bounded operator. A series Xz, in E is said to be weakly unconditionally Cauchy
(w.w.c. in short) if T |z*(z,)| < oo for every z* € E* (equivalently, if {Z,2,: cCIN finite}
is a bounded subset). Throughout the paper, (Q,2,1) will be a finite measure space and for
every p, 1<p<oo, Lp(p,E) will denote the usual Banach space of all (equivalence classes
of) strongly E — valued measurable functions f on £, such that

17l = [/ 1) P au(@) * <o (1< < 00)

or
I/l = ess sup {[| /()| : we 2} < 00.
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1. SOME CLASSES OF SUBSETS OF A BANACH SPACE

As we mentioned at the introduction, one of the main methods to introduce new
Banach spaces properties, follows the following general scheme: let 5% and ¥ be classes of
subsets of Banach spaces (so that, # (E) and ¥ (E) are classes of subsets of E, for every
Banach space E). Then we say that E has property (J¥,¥) if #(E)C ¥ (E). Let us
denote by 2, ¥, ¥¥ and % the classes of bounded, weakly relatively compact, weakly
conditionally compact (i.e., A € ¥¥(E) if every sequence in A has a weakly Cauchy
subsequence) and norm relatively compact subsets. Then we get that finite dimensionality is
just property (.2,.%), and reflexivity is property (.2, #), whereas Rosenthal’s £ —theorem
(see {10, Ch. XI)) establishes that a Banach space has property (2, ¥¢) if and only if it
contains no copy of 4.

Now we shall define two other classes of subsets of a Banach space E:

DEFINITION L.1. A subset A of E is called Dunford — Pettis set (resp., a (V*) set) if
for every weakly null sequence (z},) (resp., for every w.u.c. series ¥z, see the introduction)
in E*, the following holds: ’

lim sup {|z}(z)|:z€ A} =0.
n-mo
(V*) sets were introduced by Pelczynski in [19], whereas Dunford — Pettis set were
defined by Andrews in [1]. Let us denote by P P(E) and 7*(E) the families of

Dunford — Pettis and ( V*)—sets in E. Next lemma is an easy and useful characterization of
these classes in terms of operators:

LEMMA 1.2. Let A be a subset of a Banach space E.
a) ([1]) A € ¥*(E) if and only if T(A) is relatively compact, for every operator T from E
into 4. k
b) ([12]) A € PP (E) if and only if T(A) is relatively compact, for every operator T from
E into c .

Then, the following relationships hold:
Xc¥c¥éc rca (1)
and
HCIIPCV¥E,

and the inclusions are, in general, strict.

If we now apply the general scheme to the classes we have introduced, besides the
properties we have already mentioned, we get:

—Property ( ¥,2%) coincides with property ( ¥#%,9%?), and is called Dunford—
Pettis property. It was introduced by Grothendieck in [15], and has been intensively studied.

—Property ( ¥,%) coincides with property ( ¥'¢,.%) and is the well known Schur
property.
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—Property ( #'%, ¥#) is simply the weak sequential completeness.

—Property ( 7*, #) is called (V*) property. It was introduced by Pelczynski in [19].
From (1) it is obvious that ( V*) property is equivalent to the weak sequential completeness
(property ( #'¢, #)) and property ( 7*, ¥'%¢). This last property was introduced in [3], with
the name of property weak (V*).

. —Property (@, 7*) is equivalent to the non containment of complemented copies of 4
[3, Cor. 1.5].

—Property (2,9 %) expresses precisely the fact that the dual of the Banach space
under consideration, has the Schur property [4, Prop. IL.10].

—Property (P2, ¥#) was called by Leavelle, who introduced it in [17], RDP*
property.

—Finally, property ( P2, %) has been recently studied by Emmanuele in [13].

The general scheme that is under all these properties, allows to prove at once several
common facts shared by all of them. See [4] for more details.

Now, we shall collect some general properties of the classes of subsets that we have
introduced. Most proofs follow easily from definitions and the general theory (see [4]):

LEMMA 1.3. Let % be any of the classes ¥, ¥, ¥€, 9P or 7*.
e) # is preserved by continuous linear images, linear combinations, closed absolutely convez
hulls, finite products and passing to subsets.
b) A belongs to H ‘if and only if every countable subset of A belongs to ¥ .
¢) If'A is a subset of the Banach space E and for each €> 0 there is an A € ¥ (E) such
that A'C A+ eB(E), then A € #(E).

II. DISTINGUISHED SUBSETS OF L;(,E)

The space L;(u) has the Dunford - Pettis property [15] and- the ( #*) property [19].
Hence, in this case, the classes 7*, ¥¢, 92 and ¥ coincide. By the well known
Dunford — Pettis criteria (see, fi., [10, Ch. VII}), they are precisely the bounded and
uniformly integrable subsets. This is no longer true in the vectorial case L;(y,E) and, in
fact, there are no complete characterization of any of the aforementioned classes. This has
been one of the main difficulties to solve the long standing open questions of when Ly(y,E)
inherits "good" properties from Lj(u) and E. As far as we know, the only complete
satisfactory answer was given by Talagrand in [23], proving that L;(u,E) is weakly
sequen'iia.lly complete if and only if so is E. Previously, Talagrand has also proved in [22] the
existence of a Banach space with the Dunford — Pettis property £ (even a Schur space) such
that Ly(u,E) does not have the Dunford — Pettis property, where u is the Lebesgue measure
‘on [0,1]. Some partial answers about when Li(p,E) inherits the weak (V*) or the (V*)
property from E, can be found in [3] and [21].

Next results shows some necessary conditions for a set in Ly(p,E) to belong to any of
the classes we are interested in.
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PROPOSITION I1.1. Let /% be any of the classes ¥, ¥, ¥€, 9P or ¥* and E a
Banach space. If K € 7 (Ly(p,E)), then
a) K is bounded.
b) K is uniformly integrable, i.e.,
lim B“Pp.(A)-uO{fA I flldp: fe K} =0

¢) For every A€ X,
K(A)={f_4fdp:fe K}E X (E).

This is a consequence of Proposition 3.1 of [3], where it is proved that every (V*) set
in Ly(p,E) is uniformly integrable, and the fact that, for every ‘A € I, the map

fe LywB)— [, fdue B
is linear continuous.
From now on, o will always have the same meaning as in the above Proposmon
Conditions a) to ¢) are then the natural extension to the vectorial setting of the

characterization of sets in ¥ (L1(p)). But they are by no means sufficient to guara.ntee that
a subset K belongs to % (Ly(p,E)), as the following example shows:

EXAMPLE II.2. Let p be the Lebesgue measure on Q2=[0,1], E =4, (e,) the usual

unit basis in E and (r,) the sequence of Rademacher functions. Let us consider the set '
K ={rye,: n €N} C Li(,E). ,
Clearly, |ty eqlli =1 and [yl T eqlldu= p(A) for every n € N. Finally, for every 4 €I,
lim, "fA rnend“"=1imn-m |fA rndI" =0

In particular, K(A)€ J(E). Hence K satisfies conditions a)—c¢) of Proposition IIL1.
However, K is not even a (V*)—set. In fact, if ¢}, denotes the nth unit vector in £,s 4,
the sequence ¢, = r, €}, belongs to L.,,( wly) € Li(p,4y)*, and T cp,, is w.u.c., because for every
finite subset o of IN,

| Znec enllo=1
However, <t e,,p,> =1 forevery n. 1

For the sake of brevity, we shall give the following

DEFINITION II.3.

a) A subset K of Ly(u,E) satisfying conditions a) to c) of PIOpOSlthn I1.1, will be called a -
n¥ —set.

b) A Banach space E is said to have property P(u,J¥) if every uc¥—set belongs to
* (Ll(/‘:E ))

So a Banach space E has property P(u,o¥) if the natural extension of the
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characterization of & —sets in Ly(p) is valid for Ly(u,E).
The next proposition follows easily from the definitions and lemma I.3.

PROPOSITION II.4.
a) The family p¥ (E) is stable under linear combinations, taking closed absolutely convez
hulls and passing to subsets. '
b) K C Li(p,E) is a p¥ — set if and only if every countable .mbset of K is a p¥ — set.
¢) If F is another Banach space and T € £(E,F), for every ud% —set K c Ly(u,E), the set
{foT: fe K} C Li(p,F) is also a p¥ — set.
d) If K € Ly(u,E) and for every e >0 a pX¥ —set K, ezists, so that K C K, + eB(Ly(s,E)),
then K is also a p¥ — set.
e) Let § be another of the classes considered in Proposition IL.1. If E has property (¥, %)
(see section I) and property P(u, §) then Ly(u,E) has property (¥, ¥)-

Part e) above shows the interest in knowing when a Banach space has property
P(p,5%). When p is a purely atomic measure, the answer is very easy. In fact, the following
result holds:

PROPOSITION IL.5. If u is purely atomic, every Banach space has property P(p,5%).

The proof is based on the fact that, in this case, y is concentrated on a countable set
(A,) of atoms, and every fe€ Ly(u,E) is constant on each A,. Hence, L;(u,E) is isometric to
4(E), and the uniform integrability of a set K C L;(u,E) means that the corresponding
subset K of {(E) has "uniformly small tails", i.e.

Kc P,(K)+ e, B(4(E)) , for every n € N
where P, is the canonical projection P,(z)=(z1,.-,2,0,0...) and (e,) decreases to 0.
Condition ¢) of the definition of pJ% —set yields that P,(K) € & (4(E)) for every =, and

lemma 1.3 applies.
An immediate consequence is the following:

COROLLARY I1.6. Let % and § be any of the classes we have considered in
Proposition II.1. For a Banach space E, the following assertions are equivalent:
a) E has property (¥, %)-
b) 4(E) has property (¥, ¥ ).

All the above results are probably known. But also the proofs are probably dlfferent for
each property arising from a concrete choice of & and ¥ .

The only known complete characterization of a property P(u,J¥) is, as far as we know,
the corresponding to the case & = ¥

THEOREM IL.7. ([14]) A Banach space E has property P(u, ¥) if and only if both E
and E* have the Radon— Nikodym property with respect to p.

When 4 is the Lebesgue measure on [0,1], the above result was proved independently
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by Ghoussoub and Saab in [16].
The next result is a characterization of the property P(u, 7*).

- THEOREM IL.8. Let p be a non purely atomic measure. For a Banach space E, the
Jollowing assertions are equivalent:

i) E contains no complemented copy of 4.
1) Every bounded and uniformly integrable subset of Li(p,E) is a (V*)— set.
1ii) E has property P(u, ¥*).

That ii) implies i) is obvious, and the proof of ii3) = i) follows the lines of example
I1.2. In fact, let (z,) be a normalized sequence equivalent to the unit basis of 4, spanning a
complemented subspace, and let (z}) be the associated functionals. If (r,) is a sequence of
"Rademacher —like" functions on € (which can be built because x is not purely atomic; see
(5, Th. 9]), the set

K={rmz:n eN}c L(4E)

is a p ¥*—set, but not a (V*)—set. .

The proof that i) = 4i) is more involved: Suppose E contains no complemented copy
of 4 and let K C Li(y,E) be bounded and uniformly integrable. By lemma 1.2, it suffices to
prove that T({j;,: n € N}) is relatively compact, for every sequence (f,) in K and every
opérator T from Ly(4,E) into 4. This is proved by making a careful study of a suitable
representation of T.

As an easy consequence, we get the following:

COROLLARY IL9. If Ly(u,FE) contains an uniformly integrable sequence (f,) equivalent
to the unit basis of {; and spanning a complemented subspace, then E has a complemented
copy of 4.

Property P(u, #'¢) can be characterized as follows:

THEOREM I1.10. Let p be a non purely atomic measure. For a Banch space E, the
following assertions are equivalent:
i) E contains no copy of 4.
i} Every bounded and uniformly integrable subset of Ly(u,E) is weakly conditionally
compact.
i) If p > 1, e1}ery bounded subset of Ly(u,E) is weakly conditionally compact.
iv) E has property P(u, ¥'€).

The statement i) = i) is precisely corollary 9 of [8]. Obviously, i) implies iv), and )
implies i) because corollary 4 of [6] asserts that a bounded subset of Ly(mE) (1< p < 00)
is weakly (conditionally) compact if and omly if it is weakly (conditionally) compact in
Ly(p,E) (in other words, the natural inclusion of Ly(,E) into L;j(uE) is a tauberian
operator).
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The proofs of #i) = 1) and iy) = i) are very similar: If (z,‘) CE is a sequence
equivalent to the unit vector basis of 4, and (r,) are Rademacher —like functions, as in the
proof of Theorem II.7, then (r,®z,) is equivalent to the unit basis of 4 in any space
Ly(1,E) (1< p < ), but K ={r,®z,:n €N} is even a % —set.

The next result follows at once:

COROLLARY II.11.
a) If Li(p,E) contains a uniformly integrable sequence equivalent to the unit basis of 4, then
E contains a copy of 4. '
b) ([20]) If E contains no copy of &, then Ly(u,E) does not contain it either, for 1 < p < co.

As for property P(p, @#), we have only the following partial answer:

THEOREM I1.12. Let E be a Banach space.
a) If E* has the Schur property, then for every p, any bounded and uniformly subset of
Ly(p,E) is a Dunford— Pettis set. In particular, E has property P(u, 92), for every p.
b) If E has property P(p, PP) for some non purely atomic measure p, then E contains no
copy of 4. In particular, if E has the Dunford— Pettis property, then it has property P(u,E)
if and only if E* is a Schur space.

The proof is similar to that of Theorem II.8.

Part a) of the above theorem was proved in [1, Cor. 4], with a different argument. It
follows immediately that L;(u,E) has the Dunford—Pettis property when E* is Schur.
However, as we mentioned before, Talagrand built in [22] a Schur space E such that
Li(\,E) does not have the Dunford— Pettis property (A = Lebesgue measure on [0,1]). On
the other hand, Bourgain proved in [9] that L,(,C(K)) and all its duals have the
Dunford — Pettis property.
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