LIFTING SOLUTIONS OVER GALOIS RINGS

J. GOMEZ-CALDERON, Penn State University, New Kensington, PA 15068 U.S.A.

Let F_q denote the finite field of order q where q is an odd prime power. Let N denote the number of solutions of the equation

$$b_1 x_1^2 + b_2 x_2^2 + ... + b_n x_n^2 = e$$

in the field F_q . Then, see [1, Thms.6.26 and 6.27],

$$N = \left\{ \begin{array}{l} q^{n-1} + v \; (e) \; q^{2}C \; ((-1)^{2} \; b_{1} \; b_{2}...b_{n} \;) \; \; \mbox{if n is even} \\ \\ q^{n-1} \; + q^{2}C ((-1)^{2} \; \; eb_{1}b_{2}...b_{n}) \; \; \mbox{if n is odd,} \end{array} \right. \eqno(1)$$

where C is the quadratic character of F_q and V is the integer - valued function on F_q defined by V (x) = -1 for $x \in F_q^*$ and V (0) = q-1.

In this note we generalize above result from finite fields to Galois rings which are finite extensions of the ring Z_pm of integers modulo p^m where p is a prime and $m \ge 1$. In particular, GR (p^m , r) will denote the Galois ring of order p^{mr} which can be obtained as a Galois extension of Z_pm of degree r. Thus, GR (p^m ,1) = Z_pm and GR (p, r) = F_pr , the finite field of order p^r . The reader can find further details concerning Galois rings in the reference [2].

LEMMA: Let $F(\vec{x}) = F(x_1, x_2, ..., x_n)$ be a polynomial with coefficients in GR (p^m, r) . Assume $\vec{a} = (a_1, a_2, ..., a_n)$ is a solution of the equation $F(\vec{x}) = 0$ in GR (p^m, r) . Let L=L (\vec{a}) denote the set of vectors $\vec{A} = (A_1, A_2, ..., A_n)$ in GRⁿ (p^{m+1}, r) such that $F(\vec{A}) = 0$ over GR (p^{m+1}, r) and $A_i = a_i \mod (p^m)$ for i = 1, 2, ..., n. Then

- (a) Assume $\nabla F(\vec{a}) = (D_{x1}F(\vec{a}), D_{x2}F(\vec{a}),...,D_{xn}F(\vec{a})) \not\equiv 0 \pmod{p}$. Then $|L| = (p^r)^{n-1} = q^{n-1}$
 - (b) Assume $\nabla F(\vec{a}) = 0 \pmod{p}$. Then we have two possibilities:

(b.1) If F (a) = 0 over GR
$$(p^{m+1},r)$$
 then $|L| = (p^r)^n = q^n$

(b.2) If F (a) $\neq 0$ over GR (p^{m+1},r) then |L| = 0.

PROOF: Assume $F(\vec{a}) = F(a_1, a_2, \ldots, a_n) = 0$ over $GR(p^m, r)$ and let $\vec{A} = \vec{a} + (w_1, w_2, \ldots, w_n)$ pm where $w_i \in GR(p,r)$ for $i = 1, 2, \ldots, n$. Then by Taylor's formula

$$F(\vec{A}) = F(\vec{a}) + \sum_{i=1}^{n} D_{xi} (\vec{a}) w_i p^m$$

over GR (p^{m+1},r) . Further, since F (a) = 0 over GR (p^m,r) ,

$$F(\vec{A}) = [k + \sum_{i=1}^{n} D_{xi} F(\vec{a}) w_i] p^m$$

for some k in GR (p^{m+1}, r). Therefore, F (\vec{A}) = 0 over GR (p^{m+1},r) if and only if $k + \sum_{i=1}^{n} D_{xi}F(\vec{a})$ w_i=0 over the field GR (p, r). If $\nabla F(\vec{a}) \neq 0$ (mod p) then the number of i=1

distinct vectors $(w_1, w_2,...,w_n)$ in GR ⁿ (p,r) is $(p^r)^{n-1} = q^{n-1}$.

On the other hand, if $\nabla F(\vec{a}) = 0 \pmod{p}$ then there are no solutions if $k \neq 0$ and q^n solutions if k = 0.

THEOREM: Let b_1, b_2, \ldots, b_n and e denote n+1 units in GR (p^m, r) . Let N' denote the number of solutions of the equation

$$b_1 x_1^2$$
, + $b_2 x_2^2$ +. . .+ $b_n x_n^2$ = e

in the ring GR (p^m,r) . Let $q = p^r$. Then

$$N' = \begin{cases} & [q^{n-1} - q^{\frac{n-2}{2}}C' \ (\ (-1)^{\frac{n}{2}} \ b_1 \ b_2 \dots b_n)] \ q^{(n-1) \ (m-1)} \ \text{if n is even} \\ \\ & [q^{n-1} + q^{\frac{n-1}{2}}C' \ ((-1)^{\frac{n-1}{2}} e \ b_1 \ b_2 \dots b_n)] \ q^{(n-1) \ (m-1)} \ \text{if n is odd} \end{cases}$$

where C' is the quadratic character on GR (pm,r) defined by

$$C'(a) = \begin{cases} 0 \text{ if } a = 0 \text{ mod } p \\ 1 \text{ if a is a square unit} \\ -1 \text{ if a is a nonsquare unit} \end{cases}$$

PROOF: Let $f(\vec{x})$ denote the polynomial

$$f(\vec{x}) = b_1 x_1^2 + b_2 x_2^2 + ... + b_n x_n^2 - e$$

where b_1, b_2, \ldots, b_n and e denote n+1 units of GR (p^m, r) . Let $\vec{a} = (a_1, \ldots, a_n)$ denote a solution of the congruence $f(\vec{x}) = 0 \pmod{p}$. Then $\nabla F(\vec{a}) = 2 (b_1 \ a_1, b_2 a_2, \ldots, b_n a_n) \neq 0 \pmod{p}$. Therefore, by the Lemma, the number of vectors $\vec{A} = (a_1, a_2, \ldots, a_n)$ in GRⁿ (p^m, r)

so that $f(\vec{A}) = 0$ and $A_i = a_i \pmod{p}$, i = 1, 2, ...n, is $q^{(n-1)(m-1)}$. We also apply the Lemma, with n=1, to see that b_i is a quadratic residue of GR (p^m,r) if and only if b_i , the reduction of b_i modulo p, is a quadratic residue of the field GR (p,r). Therefore, combining with (1), we have completed the proof of the theorem.

REFERENCES

- 1. R. Lidl and H. Niederreiter, <u>Finite Fields</u>, Encyclo. Math. and Apps., Vol. 20, Addison-Wesley, Reading, Mass. 1983. (Now distributed by Cambridge University Press).
- 2. B. R. McDonald, Finite Rings With Identity, Marcel Dekker, Ind., New York, 1974.

AMS Classification 12 CO5, 10C02 and 10J05