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LIFTING SOLUTIONS OVER GALOIS RINGS
J. GOMEZ-CALDERON, Penn State University, New Kensington, PA 15068 U.S.A.

Let Fq denote the finite field of order q where q is an odd prime power. Let N denote
the number of solutions of the equation

b1 x124+by x 22+ ... +bp xZ=¢

in the field Fgq. Then, see [1, Thms.6.26 and 6.27],

n-2 n
g1+ v (e) g2C ((-1)2 by by...by ) if niseven

n-1 n-1

g1 +q2C(1)2  ebibp..by) if nis odd,

where C is the quadratic character of Fq and V is the integer - valued function on Fq defined
by V (x) =-1 for xqu' and V (0) =qg-1.

In this note we generalize above result from finite fields to Galois rings which are
finite extensions of the ring Zpm of integers modulo p™ where p is a pﬁmc and m>1. In
particular, GR (p™, r) will denote the Galois ring of order p™f which can be obtained as a
Galois extension of Zym of degree r. Thus, GR (p™,1) = Z pm and GR (p, 1) = Fyr, the
finite field of order p’. The reader can find further details concerning Galois rings in the
reference [2].

LEMMA: LetF (X)=F (x;,x2,..., Xp) be a polynomial with coefficients in
GR (p™, 1). Assume & = (aj, a2,. . . ,an ) is a solution of the equation F () =0 in
GR (p™m ,r). Let L=L (&) denote the set of vectors A= (A1, Ag,. .., Ap)in GR (pm+1 1)
such that F (K) = 0 over GR (p™+1, 1) and Aj = ajmod (p™ ) fori=1,2,...,n. Then
(a) Assume NF (3) = (Dx1F @), DxoF (3),...,.Dxn F (8))%0 (mod p). Then
ILI = (pf )n-1 = gn-1
(b) Assume VF (3) = 0 (mod p). Then we have two possibilities:
(b.1) IfF (a) = 0 over GR (p™+1,r) then IL| = (p")" =qn
(b.2) IfF (a)#0 over GR (p™+! 1) then ILI = 0.

PROOF: Assume F (d) = F (aj, a3,. . .,ap) = 0 over GR (p™ r) and let
A=h+ (W1, W2 ,.., Wy ) p™ where wje GR (p,r) fori =1, 2,.. ., n. Then by Taylor's
formula
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n
FA)=F@) +2 Dsi @ wip™
1=
over GR (p™+1r). Further, since F (4) = 0 over GR (p™,1),
FA)=[k+2DyiF @ wilpm
i=1

for some k in GR (pm+1, 1). Theréfore, F (R) = 0 over GR (p™*+1,r) if and only if
k+ Zn: DyiF @) wi=0 over the field GR (p, r). If VF () # 0 (mod p) then the number of
i=1

distinct vectors (W1, W2,...,wn) in GR ? (p,r) is (p)-1 = g1
On the other hand, if VF (&) =0 (mod p) then there are no solutions if k # o and g™ solutions
ifk=0.

THEOREM: Let by, by,. .. by and e denote n+1 units in GR (p™,r). Let N’ denote the
number of solutions of the equation '

b1x12 +byx02+. . +bpx2p=e
in the ring GR (p™,r). Letq =p’. Then

n:z .
[q™1-q2C ((-1) g bj bp. . .bp)] q @D (m@-1) if n is even

[ 442 C (1) 56 by by..by)] ¢ @D ™D if ns odd

where C' is the quadratic character on GR (p™,r) defined by

Oifa=0modp
C (a)={ lifais asquare unit
-1if a is a nonsquare unit

PROOF: Let f (%) denote the polynomial

fX)=byx12+byxg2+...+byx2;-¢
where by, by,. . ., by and e denote n + 1 units of GR (p™,r). Let3 = (ay,. . .,ap) denote a
solution of the congruence f (X) = 0 (mod p). Then VF (3) =2 (b aj, bpay,...,bpan) # 0
(mod p). Therefore, by the Lemma, the number of vectors -A: = (ay, a2,. . .,ap) in GR™ (pM,r)
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so that f (A) = 0 and Aji=a; (mod p),i=1,2,...n,isq @1 @1 We also apply the
Lemma, with n=1, to see that b; is a quadratic residue of GR (p™,r) if and only if -t:i, the
reduction of b; modulo p, is a quadratic residue of the field GR (p,r). Therefore, combining
with (1), we have completed the proof of the theorem.
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