NEAR LOOP RINGS OF MOUFANG LOOPS

W.B.Vasantha Kandasamy Department of Mathematics Indian Institute of Technology Madras-600 036, India.

AMS 1980 Classification: 17005, 20N05, 16A26.

[1] calls a non-empty set L to be a loop if L is endowed with the following properties. (i) For all $a,b \in L$, $a.b \in L$ where . is a binary operation from L x L \rightarrow L. (ii) For every ordered pair $(a,b) \in L$ x L there is one and only one x such that ax = b in L and only one y such that ya = b in L. (iii) There exists an element $e \in L$ such that ae = ea = a for every $a \in L$ called the identity element of L. L is said to be a Moufang loop if it satisfies any one of the following identities. (xy)(zx) = [x(yz)]x, [(xy)z]y = x[y(zy)], x[y(xz)] = [(xy)x]z. For more properties of loops please refer [1].

<u>Definition 1</u>. Let (L, .,1) be a loop. N a near-ring with multiplicative identity. The loop over the near-ring, that is a near-loop ring denoted by NL with identity is the non-associative near-ring of all formal sums $\alpha = \Sigma \ \alpha(m)m, \ m \in L \ \text{and} \ \alpha(m) \in N \ \text{such that}$ supp $\alpha = \{m/\alpha(m) \neq 0\}$ the support of α is finite; with the following operational rules

- (i) $\Sigma \alpha(m)m = \Sigma \mu(m)m \langle == \rangle \alpha(m) = \mu(m)$ for all $m \in L$.
- (ii) $\Sigma \alpha(m)m + \Sigma \mu(m)m = \Sigma (\alpha(m) + \mu(m))m, m \in L.$
- (iii) ($\Sigma \alpha(m)m$) ($\Sigma \mu(m)m$) = $\Sigma \gamma(m)m$, $m \in L$ where

 $\gamma(m) = \Sigma \alpha(x) \mu(y), xy = m \in L.$

(iv) n $(\Sigma \alpha(m)m) = \Sigma n(\alpha(m)m \text{ for all } n \in \mathbb{N} \text{ and } m \in L.$

Dropping the zero components of the formal sum we may write $\alpha = \Sigma \; \alpha_{\underline{i}} m_{\underline{i}}$, $\underline{i} = 1, 2, \ldots, n$. Thus $n \to n.1$ is an embedding of N in NL. After the identification of

of N with N.1. We shall assume that N is contained in NL. Clearly nm = mn for all $n \in \mathbb{N}$ and $m \in \mathbb{L}$. NL is a non-associative near ring, unlike the group near-ring which are associative structures. Throughout this paper N denotes a right near-ring with identity. For more properties about near-rings please refer [4]. By L we mean only a Moufang loop unless otherwise stated. Lemma 2. Let L be a Moufang loop, N a near-ring with identity. Then the near loop ring NL is a N-group. Proof. NL is a non-associative near-ring. But NL is a group under addition and contains O. We have μ : N x NL \rightarrow NL by (iv) of definition 1. Hence (NL, μ) is a N-group. We can say something about ideals in KL. Proposition 3. Let L be a Moufang loop N a near ring G a subgroup generated by x,y in L. Then for $KG \subseteq KL$, we have (i) The sets of all ideals (right ideals, left ideals, N-subgroup invariant sub near-rings) form inductive Moore systems on NG. (ii) The sets of all ideals (N-subgroups) of an N-group, NL form inductive Moore systems on NL.

<u>Proof.</u> Since every Moufang loop L is di-associative, every pair of elements in L generate a subgroup. So NG is a near-ring, and NG CNL. (i) and (ii) are grue from [4].

Note. Nothing can be said about NL in (i). Theorem 4. Let N be a finitely generated near-ring L a Moufang loop. $G = \langle x,y \rangle$ be the subgroup generated by $x,y \in L$. Then $NG \subseteq NL$ is such that (a) each ideal different from NG is contained in a maximal one. Proof. $NG \subseteq NL$. Since N is finitely generated and $G = \langle x,y \rangle$ is finitely generated NG is a finitely generated near-ring. So each ideal different from NG is contained in a maximal one [4].

<u>Proposition 5.</u> Let N be a near-ring L a Moufang loop. Then the near loop ring NL contains NG such that G is a (subgroup) subsemigroup of (NG.). NG has a near ring of left quotients with respect to G if and only if (a) $G \neq \emptyset$.

- (b) for all $s \in G$: s is (left and right) cancellative
- (c) NG satisfies the left ore condition with respect to G.

<u>Proof.</u> Since L is a Moufang loop, L is diassociative, so every pair of elements generate a subgroup G in L. Hence $G \subseteq L$ and NG is a near ring. G is clearly a semigroup. If in the proof given in [4] take G = S and N to be NG the result is true.

Theorem 6. Let L be a Moufang loop which has no elements of finite order and N a near-ring without divisors of zero. Then the near loop ring NL contains nontrivial commutative domains.

<u>Proof.</u> L is Moufang. So L is diassociative and power associative. Hence every element in L generates a subgroup in L, $G = \langle x \rangle$ is torsion free, since L has no elements of finite order. N has no divisors of zero. Hence NG is a domain by ([2] and [3]). We pose the following problem.

<u>Problem</u>. For what loops L will the near loop ring NL be a domain?

References

- [1] Bruck, R.H., A Survey of Binary Systems, Springer-Verlag (1958).
- [2] Passman, D.S., Infinite group rings, Marcel Dekker (1971).
- [3] Passman, D.S., The Algebraic Structure of Group Rings, Interscience Wiley (1977).
- [4] Pilz, G., Near-Rings, North-Holland Mathematics Studies (1977).