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Introduction

In this work a stochastic differential equations family whose solu -
tions are multidimensional diffusion-type (non necessarily markovians)
processes is considered, and the estimation of a parametric vector e
which relations the coefficients is studied. The conditions for the
existence of the likelihood function are proved and observing conti-
nuously the process, the estimator is obtained. An application for Di-
ffusion Branching Processes is given. This problem has been studied in
some special cases by Brown and Hewitt (1975), Liptser and Shiryayev
(1978) and Sorensen (1983).
The basic model )

Let (a,F,P) be our basic complete probability space, and let a se-
quence of c-algebras (Ft’ OstsT<=) such that sst=> Foe FL e F. We shall
consider the stochastic differential equations family :

dx(t) = Alt,X)edt + AY2(t,X)dW(t)

X(0) =¥ OstsT (1
where (W(t), O<t<T) is a n-dimensional Wiener - process with indepen-
dent components, A(t,X) is a nonanticipating functional, Y is a random
vector F,-measurable such that P(ZE|Y1|< =)=1, and e is a parameter
with values in an open set o< R". Let us consider the case when the ma
trix A(t,X) is know and non degenerate. Let CT be the set of conti-
nuous functions f: [0,7] —R", and let Br = olx: x(s), 0Ss<T). We
shall denote by u, the measure induced in (CT,BT) by the solution of
(1) when 6 is the true parameter.

Theorem
If for each t e[O,T] and x,ye CT the components Aij(t’X) , for
i,J=1,...,n, of A(t,X) satisfy the conditions :
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where k] and k2 are constants, and K(.) is a nondecreasing right—conti
nuous function, 0sK(s)<1. Then for all eee, “e”’“e , where e denote
a fixed value of the parameter, and the correspond1ng Radon- N1kodym de
rivative is :

due ]
T2 (X) = expt(e = 60" (X(T)-Y) - (1/2)(s = 8) (j A(t,X)dt) (o + 6 )}

% (2)
proof
It is enough prove (Liptser and Sh1ryayev (1977) :
1). For i=1,...,n , the equation (t X)B (t,X) = A (t,X) has solu
tion with respect to B (t,X) [ueo] where A, (t, X) (A (t,%) 5.

Ayi (E: X))’ T
I1). For i=1,...,n and #&e® pe(J BL(t,X)B. (t,X)dt x=)=]
o1 i

But since Allz(t,X) is a non-singular matrix and B;(t,X)Bi(t,X)=
AL (£, 0AT (£,0A, (£,X) = A (t,X), 1) and 11) are hold.

Maximum Likelihood Estimation.

Suppose we observe a process X , which we know solves one of the
equations (1) continuously in the time interval [0,T] and that we want
to infer which one it is. For this purpose let us consider the Tikeli-
hood function LT(e) = (dug/du, )(X). From (2) we find that :

T T
1%(6) = (X(T)-Y) - (J A(t,X)dt)e and 1%'(6) = - [ A(t,X)dt
0 0
(3)
where 1T(e) = 1n(LT(e)) and "." denote derivative with respect to 6.
The solution of the likelihood equation 1%(9) =0 is :

T -1
- (xm-v)(j ACE,X)dt)
0

If eTe o , from (3) it is the unique maximum likelihood estimate.
T

The observed Fisher information is J A(t,X)dt , and the statis-
0

T
tic (X(T)-Y , J A(t,X)dt) is sufficient for o.
0

Application for Diffusion Branching Processes.

A Diffusion Branching Process (DBP), is a non negative diffusion
process with X(0) = a0, drift coefficient ox, and diffusion coeffi-

¢



111

cient ax, (a>0), where a , o, and « are constants. The DBP serve in
their own right as models for various physical and bio]ogica1 phenome-
na, but are probably viewed most often as approximations to Galton Wat
son processes. Inference on a DBP will be inference on the two parame-
ters © and o . However, provided we observed X in continuous time,
we can use a version of the Lévy result for the quadratic variation of
Brownian Motion to give us «, (Basawa and Prakasa-Rao (1980), pp:212).
Therefore without loss of generality, take a=1. The estimation of e,
has been considered using a sequential procedure by Brown and Hewitt
(1975). But the DBP with drift coefficient ex, (eeR), diffusion coe-
fficient x, and initial value X(0)=a, are solutions of the stochas-
tic djfferentia] equations family :

dX(t) = eX(t)dt + VX(t)dW(t)
X(0) = a 0¢teT (4)

But (4) is the particular case of (1) when n=1, A(t,X)=X(t), Y=a.
Therefore from (2) the Radon-Nikodym derivative is :

dug 2 2 (7
G (0 = emtlo - s)(X(M-a) - (/21165 o) IOX(t)dt )
° T
and the estimator of 6 is éT = (X(T)-a)/([ X(t)dt). A sufficient sta-
0

T T
tistic for e is (X(T), J X(t)dt), and J’ X(t)dt is the observed Fi
0 0

sher information.
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