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1. In the terms of the above paper (of this journal), we have

PROPOSITION (1). Let P,QeP,,, then
min {rp(8),ro(6)} <
< rpa(1-1)(8) € trp(8) + (1-t)rq(8) <
< max {rp(6),rq(6)}
for each te(0,1) and 6€[0,2n], with equality iff rp(8)=ry(6).

PROPOSITION (2). Let P,QeP,, with P#Q. Then if 0€[0,2n] and rp(8)>rq(0),
we have rip,(1-1)q(8)4rp(0), When tyl, and rip.-4)o(8)¥ro(8), when tvO0.

Finally, as a consequence of (1), (2) and a simple topological result,

we have a method of constructing polynomials in P(B) or #'(B).

PROPOSITION (3). Let PeP%(B) (PeP {B)), and QePy, be such that
rp(8) = r(8) = rp(8) < ro(8) (>)
Then there exists a te(0,1) such that Q,=tP+(1—t)Qe?°(B) (Qie? tB)),

and Sot"‘5=¢’~

2.-We say that Ecle is a star body if

i) E is compact, and

ii) xeE implies AxeInt(E), for Ae(-1,1).

Let ¥ be the family of all star bodies in R? and 6, the family of all
convex star bodies, i.e. the family of all convex, compact, symmeiric sets
in R? with nonempty interior.

For each star body Ee¥ we define the radius function of E by rg(e) =
=sup{t>0:t(cosB,sin@)eE} for 6¢€[0,2n]. This function 1is continuous (see
(3], p.16).

Now we consider two types of convergence of star bodies.

Let E,E,,E;,...€#. We say that E5E uniformly (E,»>.E) iff “"En—"}:“ &0

We say that EE in the Hausdorff metric (E,»E) if dy(E,,E)»>O where,
for A,Cef, dy(A,C)=inf{t>0: AcC+tB, CcA+tB}).
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THEOREM (4). Let E,E,E,,...€¥. Then
a) E».E implies E 4E.
b) If E,E €6, then E > iff E 34E.

3.-We generalize the Loewner result (see [1]) in two ways: first we
consider 2k-polynomial spheres, and in the second we consider two criteria
of approximation -width and radius-. (Actually we also consider the area
criterion, but it is left for a later paper). _

By (3) we can prove that the polynomial sphere of the best approxi-
mation width-exterior (radius-exterior) -with polynomials of degree 2k-,

touches S in at least 2k+2 ipoints -k+1 and their opposite-.
THEOREM (5). Let BQEB;(B) or Boeii:(B). Then SyNS has at least 2k+2 points.

We have a complementary result of (5), that we can call draw-back
theorem. We can say loosely speaking, that the sphere of the best approxi-
mation touches S in at least 2k+2 points and alternately moves away from S

reaching the "same" maximal distance at also 2k+2 points (at least).

THEOREM (6). (a) Let BQeB‘:(B). Then there exist 2k+2 different points
u€Sq, such that for i=l,...,2k+2, w(Q)=sup{lizll:zeSp}=llyll. (b) Let
BoefB:(B). Then there exist distinct angles 6o,...,6,€ €[O,m), such that for
i=0,...,k, ro(8;)-r(e)=lrg-ri_.

As a consequence of the contact (5), and draw-back (6), theorems we
can prove the unicity of best exterior-approximation.
THEOREM (7). (a) There exists a unique QeP%(B), such that Boeﬂ‘f(B).
(b) There exists a unique QeP°(B) such that BQEB:(B).

From the preceding results we can define the width and radius exterior
best approximation operatofs: We:6—Int[Py ] Re:€;—Int[Py] such that for
each BeB,, W.(B)=QeP 1B), BgeB,(B) and R,(B)=PeP IB), BpeB.[B).

THEOREM (8). Let C,C,,C,,...€6; such that C,»yC, then: (a) P,=W.(C,)»W.(C)=
=P. (b) Bp Bp. (c)Bp -uBp.

THEOREM (9). Let C,C,,C,,...€6,, such that C»yC. Then R.(C,)=P,—R.(C)=P,
and then Bpn-)qu, and Bpn-)HBp.

4.-It is interesting to observe that the similarity between width and

radius cases is only aparent, as we saw in the existence theorems [2]. And
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that this is even more evident when we work in the interior approximation,
rather than in the exterior approximation.

THEOREM (10). (a) Let BQeB:(B), then SgnS has at least 2k+2 points. (b) Let
BQEB:(B). Then there exist 6,,...,08,,€[0,m) such that, for i=l,...,k+l,
lir-rqll =r(8;)-rq(6,).

In the width-interior case the situation is really notable, because we
have proved already both theorems -in the exterior case~. We have that the
contact-interior theorem is the same (essentially) as the draw-back exte-
rior theorem. Conversely the draw-back-interior theorem is the same as the
contact-exterior one. And this is so because we have that the width-inte-
rior best approximation polynomial body Bg, is supported, exteriorly by the
unit ball B, and interiorly by the homotecy of B of ratio w(Q)_l.

THEOREM (11). (a) Let BgeBs(B). Then SqnS has at least 2k+2 different
points. (b) Let BQeﬂ,,l,(B). Then there exist at least, uj,...,Uz42€Sq, such
that llui=inf{llull:ueSg)=w Q).

The unicity theorems are consequence, as in the exterior case, of the
contact and draw-back theorems. We have
THEOREM (12). The sets B,,(B) and BL(B) are singletons.

5.-Now we can define the width and radius interior best approximation
operators Wy€,—Int[Py], R;:E;—Int[P,], such that for BeE;,, we have
W,(B)=Q, with BgeB,(B), and ®,(B)=P, with BpeB,(B).

Now the continuity of the operator W; is trivial, because we know that
the width function w:P,—l[1,»], defined by w(P)=[IPI/min{P(u):ues)*** is
continuous on Int(P,), and Wl(B)=w-2k[We(B)]W,(B). We have
THEOREM (13). (a) The operator W;:8,—Int[P,] is continuous. ‘(b) The

operator R;:8,—Int[P,,] is continuous.
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