APPROXIMATION OF CONVEX BODIES BY POLYNOMIAL BODIES II: WIDTH AND RADIUS CASES

Tu Meri Iosef

Ricardo Faro Rivas. Dpto. de Matematicas. Fac. de Ciencias Univ. de Extremadura. 06071 BADAJOZ. SPAIN AMS Class.: 52A10, 41A50, 41A52

1. In the terms of the above paper (of this journal), we have

PROPOSITION (1). Let $P, Q \in \mathcal{P}_{2k}$, then

$$\begin{aligned} & \min \ \{r_{P}(\theta), r_{Q}(\theta)\} \le \\ & \le r_{tP+(1-t)Q}(\theta) \le tr_{P}(\theta) + (1-t)r_{Q}(\theta) \le \\ & \le \max \ \{r_{P}(\theta), r_{Q}(\theta)\} \end{aligned}$$

for each $t \in (0,1)$ and $\theta \in [0,2\pi]$, with equality iff $r_P(\theta) = r_0(\theta)$.

PROPOSITION (2). Let $P,Q\in\mathcal{P}_{2k}$, with $P\neq Q$. Then if $\theta\in[0,2\pi]$ and $r_P(\theta)>r_Q(\theta)$, we have $r_{tP+(1-t)Q}(\theta) r_P(\theta)$, when $t_{\uparrow}1$, and $r_{tP+(1-t)Q}(\theta) r_Q(\theta)$, when $t^{\downarrow}0$.

Finally, as a consequence of (1), (2) and a simple topological result, we have a method of constructing polynomials in $\mathcal{P}^{e}(B)$ or $\mathcal{P}^{l}(B)$.

PROPOSITION (3). Let $P \in \mathcal{P}^{e}(B)$ $(P \in \mathcal{P}^{l}(B))$, and $Q \in \mathcal{P}_{2k}$ be such that $r_{\rm P}(\theta) = r(\theta) \Rightarrow r_{\rm P}(\theta) < r_{\rm O}(\theta) \quad (>)$

Then there exists a $t \in (0,1)$ such that $Q_t = tP + (1-t)Q \in \mathcal{P}^{\bullet}(B)$ $(Q_t \in \mathcal{P}^{\bullet}(B))$, and $S_{Q_{+}} \cap S = \emptyset$.

- 2.-We say that $E \subset \mathbb{R}^2$ is a star body if
- i) E is compact, and
- ii) $x \in E$ implies $\lambda x \in Int(E)$, for $\lambda \in (-1,1)$.

Let $\mathcal S$ be the family of all star bodies in $\mathbb R^2$ and $\mathcal C_s$ the family of all convex star bodies, i.e. the family of all convex, compact, symmetric sets in \mathbb{R}^2 with nonempty interior.

For each star body $E \in \mathcal{G}$ we define the radius function of E by $r_E(\theta) =$ $=\sup\{t>0:t(\cos\theta,\sin\theta)\in E\}$ for $\theta\in[0,2\pi]$. This function is continuous (see [3], p.16).

Now we consider two types of convergence of star bodies.

Let $E, E_1, E_2, \dots \in \mathcal{F}$. We say that $E_n \rightarrow E$ uniformly $(E_n \rightarrow_u E)$ iff $\|r_{E_n} - r_E\|_{\infty} \rightarrow 0$.

We say that $E_n \rightarrow E$ in the Hausdorff metric $(E_n \rightarrow_H E)$ if $d_H(E_n, E) \rightarrow 0$ where, for A,Ce \mathscr{S} , $d_H(A,C)=\inf\{t>0: A\subset C+tB\}$.

THEOREM (4). Let $E, E_1, E_2, ... \in \mathcal{G}$. Then

- a) $E_n \rightarrow_u E$ implies $E_n \rightarrow_H E$.
- b) If $E, E_n \in G_s$ then $E_n \to_u E$ iff $E_n \to_H E$.
- 3.-We generalize the *Loewner* result (see [1]) in two ways: first we consider 2k-polynomial spheres, and in the second we consider two criteria of approximation -width and radius-. (Actually we also consider the area criterion, but it is left for a later paper).
- By (3) we can prove that the polynomial sphere of the best approximation width-exterior (radius-exterior) -with polynomials of degree 2k-, touches S in at least 2k+2 points -k+1 and their opposite-.

THEOREM (5). Let $B_0 \in \mathcal{B}_w^{\bullet}(B)$ or $B_0 \in \mathcal{B}_r^{\bullet}(B)$. Then $S_0 \cap S$ has at least 2k+2 points.

We have a complementary result of (5), that we can call draw-back theorem. We can say loosely speaking, that the sphere of the best approximation touches S in at least 2k+2 points and alternately moves away from S reaching the "same" maximal distance at also 2k+2 points (at least).

THEOREM (6). (a) Let $B_{Q} \in \mathcal{B}_{\mathbf{e}}^{\mathbf{e}}(B)$. Then there exist 2k+2 different points $u_1 \in S_Q$, such that for $i=1,\ldots,2k+2$, $w(Q)=\sup\{\|\mathbf{z}\|: \mathbf{z} \in S_Q\}=\|u_1\|$. (b) Let $B_Q \in \mathcal{B}_{\mathbf{r}}^{\mathbf{e}}(B)$. Then there exist distinct angles $\theta_0,\ldots,\theta_k \in \{0,\pi\}$, such that for $i=0,\ldots,k$, $r_Q(\theta_1)-r(\theta_1)=\|r_Q-r\|_{\infty}$.

As a consequence of the contact (5), and draw-back (6), theorems we can prove the unicity of best exterior-approximation.

THEOREM (7). (a) There exists a unique $Q \in \mathcal{P}^{\bullet}(B)$, such that $B_{Q} \in \mathcal{B}_{w}^{\bullet}(B)$. (b) There exists a unique $Q \in \mathcal{P}^{\bullet}(B)$ such that $B_{Q} \in \mathcal{B}_{r}^{\bullet}(B)$.

From the preceding results we can define the width and radius exterior best approximation operators: $W_e:\mathcal{C}_s \longrightarrow \mathrm{Int}[\mathcal{P}_{2k}]$ $\mathcal{R}_e:\mathcal{C}_s \longrightarrow \mathrm{Int}[\mathcal{P}_{2k}]$ such that for each $B\in\mathcal{C}_s$, $W_e(B)=Q\in\mathcal{P}^{\mathsf{R}}(B)$, $B_0\in\mathcal{B}^{\mathsf{R}}_w(B)$ and $\mathcal{R}_e(B)=P\in\mathcal{P}^{\mathsf{R}}(B)$, $B_p\in\mathcal{B}_r(B)$.

THEOREM (8). Let $C, C_1, C_2, ... \in \mathcal{C}_s$ such that $C_n \to_H C$, then: (a) $P_n = \mathcal{W}_e(C_n) \to \mathcal{W}_e(C) = P$. (b) $B_p \to_u B_p$. (c) $B_p \to_H B_p$.

THEOREM (9). Let $C, C_1, C_2, \dots \in \mathcal{C}_s$, such that $C_n \to_H C$. Then $\mathcal{R}_e(C_n) = P_n \longrightarrow \mathcal{R}_e(C) = P$, and then $B_{P_n} \to_H B_{P_n}$, and $B_{P_n} \to_H B_{P_n}$.

4.-It is interesting to observe that the similarity between width and radius cases is only aparent, as we saw in the existence theorems [2]. And

that this is even more evident when we work in the interior approximation, rather than in the exterior approximation.

THEOREM (10). (a) Let $B_Q \in \mathcal{B}^1_r(B)$, then $S_Q \cap S$ has at least 2k+2 points. (b) Let $B_Q \in \mathcal{B}^1_r(B)$. Then there exist $\theta_1, \dots, \theta_{k+1} \in [0,\pi)$ such that, for $i=1,\dots,k+1$, $\|r-r_Q\|_m = r(\theta_1) - r_Q(\theta_1)$.

In the width-interior case the situation is really notable, because we have proved already both theorems -in the exterior case-. We have that the contact-interior theorem is the same (essentially) as the draw-back exterior theorem. Conversely the draw-back-interior theorem is the same as the contact-exterior one. And this is so because we have that the width-interior best approximation polynomial body B_Q , is supported, exteriorly by the unit ball B_Q , and interiorly by the homotecy of B_Q of ratio $w(Q)^{-1}$.

THEOREM (11). (a) Let $B_Q \in \mathcal{B}_w^1(B)$. Then $S_Q \cap S$ has at least 2k+2 different points. (b) Let $B_Q \in \mathcal{B}_w^1(B)$. Then there exist at least, $u_1, \dots, u_{2k+2} \in S_Q$, such that $\|u_1\| = \inf\{\|u\| : u \in S_Q\} = w^{-1}(Q)$.

The unicity theorems are consequence, as in the exterior case, of the contact and draw-back theorems. We have **THEOREM** (12). The sets $\mathcal{B}^1_w(B)$ and $\mathcal{B}^1_r(B)$ are singletons.

5.-Now we can define the width and radius interior best approximation operators $W_1: \mathcal{C}_s \longrightarrow \operatorname{Int}[\mathcal{P}_{2k}]$, $\mathcal{R}_1: \mathcal{C}_s \longrightarrow \operatorname{Int}[\mathcal{P}_{2k}]$, such that for $B \in \mathcal{C}_s$, we have $W_1(B) = Q$, with $B_0 \in \mathcal{B}_u^1(B)$, and $\mathcal{R}_1(B) = P$, with $B_p \in \mathcal{B}_r^1(B)$.

Now the continuity of the operator W_1 is trivial, because we know that the width function $w:\mathcal{P}_{2k}\longrightarrow [1,\infty]$, defined by $w(P)=[\|P\|/\min\{P(u):u\in S\}]^{1/2k}$ is continuous on $\operatorname{Int}(\mathcal{P}_{2k})$, and $W_1(B)=w^{-2k}[W_e(B)]W_e(B)$. We have

THEOREM (13). (a) The operator $W_1: \mathcal{C}_s \longrightarrow \operatorname{Int}[\mathcal{P}_{2k}]$ is continuous. (b) The operator $\mathcal{R}_1: \mathcal{C}_s \longrightarrow \operatorname{Int}[\mathcal{P}_{2k}]$ is continuous.

REFERENCES

- [1] DAY, M.M.: "Some characterizations of inner-product spaces". Trans. Amer.Math.Soc., 62, 320-337, 1947.
- [2] FARO RIVAS, R.: "Approximation of symmetric convex bodies by polynomial bodies I. Existence theorems" (to appear in J.Approx.Theory).
- [3] LEKKERKERKER, C.G.: "Geometry of numbers". North-Holland, 1969.

(To appear in the Journal of Approx. Theory)