A NOTE ON RELATIVE F.B.N. RINGS

M. J. Asensio and B. Torrecillas

Departamento de Algebra, Universidad de Granada. 18071 GRANADA, SPAIN
A.M.S. Classification (1980) 16A63.

It is a well known fact that in commutative noetherian rings there exists a bijection between the prime ideals of the ring and the isomorphism classes of indecomposable injective modules (e.g. see [7]). In the noncommutative case, in general, this bijection no longer holds. Thus arises the study of the so called fully bounded noetherian rings.

The torsion-theoretic generalization of noetherian rings, i.e. the \mathfrak{F} -noetherian rings, where \mathfrak{F} is a Gabriel filter, has widely been studied (for example see [2], [7] and their references).

In [1] a torsion-theoretic generalization of the fully bounded rings is given, assuming the \Im -noetherian condition, that is, the ascending chain condition for the \Im -saturated left ideals. This new class of rings includes examples so interesting as \Im -artinian rings, (see [2] for more details), commutative \Im -noetherian rings and some extensions of commutative rings by central algebras and stable Gabriel filters, studied in [6]. Concretely, let R be a commutative ring and Λ an unital central R-algebra. Let \Im be a stable Gabriel filter over R and let \Im be the filter $\{I \subseteq \Lambda, (\Lambda/I)_p = 0, \ \forall \ p \in \operatorname{Spec}_{\Im}(R)\}$. Assume that for every $p \in \operatorname{Spec}_{\Im}(R)$, R_p is noetherian and Λ_p is a finite R_p -algebra. Then there exists a bijection between the isomorphism classes of \Im -torsionfree indecomposable injective Λ -modules and the \Im -saturated prime ideals of Λ . Similar results are obtained also working in separable and central algebras.

In this note we give a characterization of these rings in terms of its relative Krull dimension, introduced by Jategaonkar in [5]. As it is well-known, every noetherian module has Krull dimension. It seems to be reasonable asking for the relationship between the 3-noetherian condition and the relative Krull dimension, and, if it is possible, using this machinery of relative Krull dimension for the study of 3-noetherian rings.

Throughout this paper, we follow the notation and terminology of [6]. By following Jategaonkar, for a module M, the relative Krull dimension of M, denoted $K_{\mathfrak{F}}$ -dim(M), is defined inductively as follows: If M is \mathfrak{F} -torsion then $K_{\mathfrak{F}}$ -dim(M) = -1. If M is \mathfrak{F} -artinian then $K_{\mathfrak{F}}$ -dim(M) = 0. If

 α is an ordinal and $K_{\mathfrak{F}}-\dim(M)$ \not { } α , then $K_{\mathfrak{F}}-\dim(M)=\alpha$ provided there is no infinite descending chain $M_{\mathfrak{F}}=X_0\supseteq X_1\supseteq ...$ of subobjects X_i of $M_{\mathfrak{F}}$, the localized of M in the quotient category $(R,\mathfrak{F})-M$ od, such that for $i=1,\ 2,\ ...\ K_{\mathfrak{F}}-\dim(X_{i-1}/X_i)$ \not { } α .

We define $K_{\mathfrak{F}}-\dim(R)=K_{\mathfrak{F}}-\dim({}_{R}R)$. A module M, which is not $\mathfrak{F}-$ torsion, is said to be α -critical with respect to \mathfrak{F} if $K_{\mathfrak{F}}-\dim(M)=\alpha$ and $K_{\mathfrak{F}}-\dim(M/N)<\alpha$ for each $\mathfrak{F}-$ saturated submodule N which properly contains t(M).

The proofs of Theorem 2.1 and Proposition 1.3 of [4] remain valid in the above setting. Thus any \mathfrak{F} -noetherian module has relative Krull dimension with respect to \mathfrak{F} , and every module with relative Krull dimension contains a relative α -critical module. If the module, in addition to having relative Krull dimension is not \mathfrak{F} -torsion, then we can assert that such relative α -critical submodule is also \mathfrak{F} -saturated. These assertions are proved in [3].

Also in [3], it is proved that the \Im -torsionfree indecomposable injective R-modules, where R is a ring with relative Krull dimension, are the injective hulls of the \Im -torsionfree relative α -critical modules. Thus, if E=E(C) is a \Im -torsionfree indecomposable injective, with C \Im -torsionfree and relative α -critical, we define the relative critical dimension of E, denoted by Cr_{\Im} -dim(E), as the relative Krull dimension of C. It is proved that this definition is independent of the chosen submodule C, because if C is a \Im -torsionfree and relative α -critical R-module, then K_{\Im} -dim(C) is minimal among relative Krull dimensions of nonzero submodules of E(C).

The next propositions show us the relationship between R and an arbitrary relative critical R-module in terms of its relative Krull dimension. They are the key in our purpose:

Proposition 1. Let R be an \Im -torsionfree semiprime ring with K_{\Im} -dim $(R)=\alpha$ and assume that D is a relative α -critical R-module. Then D contains an isomorphic copy of a relative α -critical left ideal of R.

Proposition 2. Let R be an \Im -torsionfree prime ring with relative Krull dimension. Let C be an \Im -saturated and relative critical left ideal in R. Then K_{\Im} -dim $(R) = K_{\Im}$ -dim(C).

We use this machinery in the \Im -noetherian case and for \Im -torsionfree modules. In this case, we define the associated ideal of a \Im -torsionfree module as in the absolute case and everything works in a similar way. If the module is \Im -torsionfree and uniform, the associated ideal is an

3-saturated prime ideal (c.f. [2]).

If E is an \Im -torsionfree indecomposable injective R-module then it will be of the form E = E(C) with C \Im -torsionfree and relative critical. If R is \Im -noetherian, Ass(E) is an \Im -saturated prime ideal. We can choose a relative critical cyclic submodule C' such that ann(C') = P = ass(C). As C' is an R/P-module, we would have K_{\Im} -dim(C') $\leq K_{\Im}$ -dim(R/P).

Proposition 3. Let R be an \Im -noetherian ring and \Im an \Im -saturated prime ideal. Then there exists an \Im -torsionfree indecomposable injective R-module E, unique up to isomorphism, such that $Ass(E) = \Im$ and $Cr_{\Im}-\dim(E) = K_{\Im}-\dim(R/\Im)$.

Now, we can enounce our theorem of characterization:

Theorem 4. Let R be an \mathfrak{F} -noetherian ring. Then the following statements are equivalent:

- 1) The mapping $E \longrightarrow Ass(E)$ gives a bijection between isomorphism classes of \Im -torsionfree indecomposable injective R-modules and \Im -saturated prime ideals of R.
- 2) For each \Im -torsionfree indecomposable injective R-module E, we have Cr_{\Im} -dim $(E) = K_{\Im}$ -dim(Ass(E)).
- 3) For each \Im -saturated prime ideal of R, the ring R/ \Re has the following property: each essential left ideal I/ \Re in R/ \Re , where I is \Im -saturated, contains a nonzero two-sided ideal.

REFERENCES

- [1] G. Aguilar, M. Arroyo and C. Signoret, A torsion-theoretic generalization of fully bounded noetherian rings. To appear Comm. in Algebra
- [2] T.Albu and C. Nastasescu, Relative finiteness in module theory. Texts in Pure and App. Math. 84, (Marcel Dekker, New York, 1984).
- [3] M.J. Asensio and B. Torrecillas, Relative Krull dimension and F.B.N. rings. Preprint.
- [4] R. Gordon and J.C. Robson, Krull dimension, Memoirs of the A.M.S. 133, 1973.
- [5] A.V. Jategaonkar, Relative Krull dimension and prime ideals in right noetherian rings, Comm. in Algebra 2, 1974, 429-468.
- [6] C. Nastasescu, Decomposition tertiaire et primaire dans un anneau, Bull. Math. Roumaine 18, 1974, 339-354.
- [7] B. Stenstrom, Rings and modules of quotients, Springer, Berlin, 1976.
- [8] B. Torrecillas, Δ -modules and semicocritical modules, Comm. in Algebra 14, 1986, 1879-1900.