#### ON THE LENGTH OF THE ABSOLUTE SAMUEL STRATUM

Juan A. Navarro González and Juan B. Sancho de Salas Dpto. de Matemáticas, Universidad de Extremadura Avda. de Elvas s/n, 06071-BADAJOZ (Spain)

1980 <u>Mathematics Subject Classification</u>: 14B05 Key words: Samuel Stratum, infinitely near point, maximal contact.

Throughout this note x will be a point of a scheme X of finite type over the field of complex numbers,  $\mathcal O$  will be the local ring of X at x and M will be its maximal ideal. The <u>Hilbert-Samuel function</u> of X at x is defined by:

$$H_{X,x}(n) = length(M^n/M^{n+1})$$

The flatness strata ([1]) of the sheaves of jets  $J_X^n$  are said to be the (scheme-theoretic) Samuel strata of X. The Samuel stratum of X passing through x is denoted by  $S_X(X)$  and  $J_{X,X}$  will be its ideal in  $\mathcal{O}$ .

We define the <u>tangent cone</u> to X at x as  $C_X(X) = \operatorname{Spec}(\operatorname{Gr}_M \mathcal{O})$  and the Samuel stratum of  $C_X(X)$  passing through the vertex is said to be the <u>strict tangent space</u> to X at x. It is denoted by  $T_X(X)$  and it is a vector subspace because the characteristic of the residue field C(X) is zero.

A monoidal transformation  $X' \longrightarrow X$  is said to be <u>permissible</u> if the center is regular and X is normally flat along it.

If  $X_i \longrightarrow X_1 \longrightarrow X$  is a sequence of permissible monoidal transformations, for each point x' of  $X_i$  above x we have  $H_{X_i,x'} \le H_{X,x}$  (counted with appropriate transcendence degrees). If the equality holds, then x' is said to be an <u>infinitely near</u> H-point of X at x (From now on, H will be the function  $H_{X_i,x}$ ).

Our results are based on the following theorem:

Theorem: Let  $X' \longrightarrow X$  be a permissible monoidal transformation and let  $x' \in X'$  be an infinitely near H-point of X at x. If  $g \in J_{X,x}$ , then g/t belongs to  $J_{X',x'}$  where t=0 is a local equation for the exceptional divisor at x'.

### Length of the Samuel stratum

If  $J_{X,x}$  is the ideal of  $\mathcal O$  corresponding to the Samuel stratum  $S_{x}(X)$ , it seems natural to consider the length  $s_{X,x}$  of  $\mathcal O/J_{X,x}$  as a significant invariant in the study of singularities. Our aim is to study the effect of permissible monoidal transformations on this invariant.

Let X'  $\longrightarrow$  X be a permissible monoidal transformation and let x be the generic point of its center. By [3] we know that, for any point x' of X' above x, the Hilbert-Samuel function does not increase and that if  $H_{X',x'} = H_{X,x}$  then x' is a point of the projectivization  $P(T_XX)$  of the strict tangent space to X at x.

We prove, when  $s_{X,x}$  is finite, that the singularity of X' at the generic point of  $\mathbb{P}(T_X^X)$  is always better than the singularity of X at x:

**Theorem:** Let x be the generic point of the center of a permissible monoidal transformation  $X' \longrightarrow X$  and let y be the generic point of  $\mathbb{P}(T_{\chi}X)$ . If  $s_{\chi,\chi}$  is finite and y is an infinitely near H-fold point of X at x, then

$$s_{X',y} < s_{X,x}$$

**Corollary:** If  $s_{X,x}$  is finite and the dimension of  $T_X \times S_X \times S$ 

# Maximal contact

If X is a closed subscheme of a regular scheme Z of finite type over the complex numbers, we say that a subscheme W of Z has  $\underline{\text{maximal}}$   $\underline{\text{contact}}$  with X at x if W is regular at x and for any infinitely near H-fold point x' of X at x we have

$$x' \in W$$
 and  $T_{x'}(X) \subseteq T_{x'}(W)$ 

(Naturally in these conditions X and W must be replaced by their respective strict transforms).

**Theorem:** Let W be a subscheme of Z regular at x. If W contains the Samuel stratum  $S_{x}(X)$  then W has maximal contact with X at x.

#### Examples:

1) Let  $f(x_1,\ldots,x_n)=0$  be an hypersurface and let x be a point of multiplicity m. If you find m-1 derivations  $D_1,\ldots,D_{m-1}$  such that the multiplicity of  $g=D_1(\ldots D_{m-1}(f))$  at x is 1 (it is always possible to find such derivations when the characteristic of the base field is zero: take generic directions!), then the hypersurface g=0 has maximal contact with the given hypersurface f=0 at x.

If X is the hypersurface defined by

$$f = z^{m} + \sum_{i=1}^{m} A_{i}(t_{1}, ..., t_{n}) z^{m-i} = 0$$
 ,  $A_{i} \in (t_{1}, ..., t_{n})^{i+1}$ 

then the multiplicity of X at the origin is m and  $\partial^{m-1}f/\partial z^{m-1}=(m-1)!$   $(mz+A_1)$ . Hence, the hypersurface  $z+A_1(t_1,..,t_n)/m=0$  has maximal contact with X at the origin.

2) Let X be the plane curve defined by  $z^3 = t^5$ . Then the ideal of the Samuel stratum of X at the origin is  $(z,t^3)$ , but the curve  $z=t^2$  has maximal contact with X at the origin. Hence, the condition  $S_X(X) \subseteq W$  is not necessary for W to have maximal contact with X at x.

# References

- [1] J. GIRAUD: Sur la théorie du contact maximal, Math. Zeit. 137 (1974) 285-310.
- [2] H. HIRONAKA: Idealistic exponents of singularity, in Algebraic Geometry, supplement to the Amer. Jour. of Math. (1977).
- [3] S. SINGH: Effect of a permissible blowing-up on the local Hilbert functions, Invent. Math. 26 (1974), 201-212.

(To appear in Journal of Algebra)