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A p-Banach space C X,|Lll > 0<p=<1, is said to be stable if
©o Lig Lig Hx sy IT=1ig Lig 1x oy, ]I
whenever an)n and me)m belong to B=(xeX; Il x Il £ 1> and U, V~

are non-trivial ultrafilters on IN. If (% holds for every
weakly compact subset B of X, then CX,ILI1 D> is called a weakly
stable p-Banach space. The stable Banach spaces were
introduced by Krivine and Maurey in (8], and their main
property is that they contain lp for some p, 1<p{w,. The
stable p-Banach spaces were considered for the first time 1in
[2) and Krivine-Maurey’s result was extend;d to this setting.
The weakly stable Banach spaces have been recently
defined in (1] and they contain lP or c_. Most of the wusual
Banach spaces are stable (some of them appear in [61); €y the
typical non-stable Banach space, is weakly stable. If an)n is
a sequence on c w—convergent to y, then, by passing to a
suitable subsequence, x = yn+ z where supp ynn supp z = 2,
Cyn)n converges to y and Czn)n is a block basis sequence,

[4]1. This enables a representation of the types on o defined

by weakly convergent sequences as (x> = %iﬂ I x+xn|L =
max< || x+y IL. a > with a = %%g IlanL; wich gives the weakly
stability of Cco"leD; Cin [1] a different proof is given).

Similar techniques can be used to prove the weakly
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stability of the Orlicz spaces h". and the modular spaces,
when M is a non degenerate p-convex Orlicz function wich does
not verify the 'Az condition.

The stability Cweakly stabilityd) depends on the norm
considered on X. In fact, for each stable space equivalent
non-stable "norms" may be built. This was done for lp in (71,
for stable Banach spaces with unconditional basis in [11] and
for L‘ in [3]. In this note we report the general result [5]
and some related things.

Scome notations are needed. As usualy, the Banach-Mazur
distance between isomorphic p—Banach. spaces is defined by
dCX,YO=Anf< | T 1111 T 1 ;T:X——Y is an onto isomorphism>.
Note that d(X,Y¥>=1 does not imply that X and Y are isometric.
We denote by N the associated quotient metric space consisting
of equivalent classes, modulo distance equal to one, of all
the norms on X wich are equivalent to the original one.

If X i= an infinite dimensional stable (weakly stable)
p-Banach space, the set S=q]| . il e N;Ill. |l is stable) is
closed and nowhere dense in N.

Observe that there is not ambiguity in the above proposition
because of all the "norms" belonging to a class are either

stable or non-stable at the same time.

If II.II1 and II.IIz belong to S and d(ll.ll! » II.IIz) > 1 then
LY = CC1-tD II.II‘p-o- t lI.lI;’)‘/p is a p-convex continuous
mapping from [0,1] into S connecting II.II‘ and II.IIz , so, S is

arcwise conected. Thus, the stable '"'norms" are limit points of
stable "norms" whenever # N > 1. We think that the last
condition is redundant and the diameter of S 1is always
infinite, but, at present, we have only been able to prove it

for stable spaces having a non-trivial cotype.
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However the existence of a non-trivial cotype is not
necesary in order to ensure # N > 1. For instance, when X =
1¢1% it is shown in [S] that # N > 1.

The same property holds for the weakly stable space €q

Using similar ideas to those in our proof of weakly stability

of cyr it can be shown that IHxIll = Il x IL+ |e:CxD| +

max(!(e:-e:"bxl ; k>1> is an equivalent weakly stable norm on
c, - If llx =1l T IL < c|lx1l., by considering the type
defined by CT(en—en_t))n on Cco.lLIL) and the representation

of the types in this space, it is easy to see that C > 4./3.
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