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In this paper wé generalize to the non-metrizable spaces the

D—climension'intvr'qduced by D.V. Henderson in (5] for metrizable
spaces. This dimension is a transfinite extension of the large in-
ductive dimensiorn "Ind" for normal <(Ta) spaces. We stablish the
subspace and the locally finite sum theorems for strongly heredita-
rily normal spaces; other properties of the D-dimension are
stablished for paracompact and perfectly iormal (Tsa) spaces.

For every ordinal number «, let (o be the largest limit or-
dinal which is ¢a, and let na) be th: finie ordinal such that
a=x(a)+n(a). We considere the extra symbols A and -1 with the
conventions that for each ordinal a we have -1<a<a and X(-1)=0,

x(a)=4a, n(-1)=-1, nda>=0.

Definition 1. Let X be a Ta-space and B an ordipnal or -1 with
A(B)=y. A B-D-representation of X is an expression:
X =) Ax

oTxew
such that:

a) For 0¢asy, Ax i1s a closed set of X with Ind(4x)<>,

b) For every 8¢y the set [ | {AxI&¢aly} is closed in X.

¢) Ind(Ax)=n(B).

d) For every xeX there exists a largest ordinal & such that

x€As.
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Definition 2. For a Ts-space X, the D-dimension of X - D(X) - is
defined as an ordinal, -1 or 4 according the following conditions:

D1. D(X)=-1 if and only 1f X=0.

D2. If X#0, D(X) 1s the smallest ordinal B (if any exists)
such that X has a B-D-representation.

D3. If X#8 and no such B exists we set D(X)=a.

It is clear that the D-dimension is a transfinite extension of
the large inductive dimension in the sense of that if either Ind(XD
or D(X> is finite, they are equal.

Theorem 1. (Subspace thearem). If X i1s a strongly hereditarily
normal space and N<X, D(M)SD(X).

Theorem 2. (Locally finite sum theorem). Let X be a strongly here-
ditarily normal space which is the union of a locally finite family
Q of closed sets such that for each CeQ, D(C)$B. Then, we have
DX)<B.

Cordllary. If a strongly hereditarily nc.mal space X is the union
of a finite family 2 od closed sets we have D(X)=mAx{(D(C)/CeQ)}.

A relation between the D-dimension and the large transfinite

inductive dimension "triInd"” is given in the next theorem:

Theorem 3. Let X be a paracompact, Tsa-space. If trind(X) exists,
trind(X)<D(X).

For an ordinal o let lal be the cardinal of a. We denote by

w(X) the weight of the space X. Now, we have:
Theorem 4. For a paracompact, Tsa-space, 1f D(X)<a, IDX)I<w(X).
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