D-DIMENSION IN NOW-METRIZABLE SPACES

by

Regino Criado and Juan Tarrés

Departamento de Geometría y Topología. Facultad de C. Matemáticas Universidad Complutense. 28040, MADRID

(1980) AMS Subject Class. 54F.45

In this paper we generalize to the non-metrizable spaces the D-dimension introduced by D.W. Henderson in [5] for metrizable spaces. This dimension is a transfinite extension of the large inductive dimension "Ind" for normal (T_4) spaces. We stablish the subspace and the locally finite sum theorems for strongly hereditarily normal spaces; other properties of the D-dimension are stablished for paracompact and perfectly normal (T_{54}) spaces.

For every ordinal number α , let $\lambda(\alpha)$ be the largest limit ordinal which is (α) , and let $n(\alpha)$ be the finite ordinal such that $\alpha=\lambda(\alpha)+n(\alpha)$. We considere the extra symbols Δ and -1 with the conventions that for each ordinal α we have $-1<\alpha<\Delta$ and $\lambda(-1)=0$, $\lambda(\Delta)=\Delta$, n(-1)=-1, $n(\Delta)=0$.

Definition 1. Let X be a T_4 -space and β an ordinal or -1 with $\lambda(\beta) = \gamma$. A β -D-representation of X is an expression:

$$X = \bigcup_{\alpha \in X} A_{\alpha}$$

such that:

- a) For $0 \leqslant \alpha \leqslant \gamma$, A_{∞} is a closed set of X with $\operatorname{Ind}(A_{\infty}) < \infty$.
- b) For every $\delta(\gamma)$ the set $\bigcup \{A_{\alpha} | \delta(\alpha(\gamma))\}$ is closed in X.
- c) $Ind(A_{\times})=n(\beta)$.
- d) For every x ϵX there exists a largest ordinal δ such that x ϵA_{δ} .

Definition 2. For a T_4 -space X, the **D-dimension** of X - D(X) - is defined as an ordinal, -1 or Δ according the following conditions:

- D1. D(X) = -1 if and only if $X = \emptyset$.
- D2. If $X\neq\emptyset$, D(X) is the smallest ordinal β (if any exists) such that X has a β -D-representation.
 - D3. If $X\neq\emptyset$ and no such β exists we set $D(X)=\Delta$.

It is clear that the D-dimension is a transfinite extension of the large inductive dimension in the sense of that if either $\operatorname{Ind}(X)$ or D(X) is finite, they are equal.

Theorem 1. (Subspace theorem). If X is a strongly hereditarily normal space and $M \subset X$, $D(M) \in D(X)$.

Theorem 2. (Locally finite sum theorem). Let X be a strongly hereditarily normal space which is the union of a locally finite family Ω of closed sets such that for each $C \in \Omega$, $D(C) \leqslant \beta$. Then, we have $D(Y) \leqslant \beta$

Corollary. If a strongly hereditarily normal space X is the union of a finite family Ω od closed sets we have $D(X) = \max\{D(C) \mid C \in \Omega\}$.

A relation between the D-dimension and the large transfinite inductive dimension "trInd" is given in the next theorem:

Theorem 3. Let X be a paracompact, T_{Sa-} space. If trInd(X) exists, $trInd(X) \in D(X)$.

For an ordinal α let $|\alpha|$ be the cardinal of $\alpha.$ We denote by w(X) the weight of the space X. Now, we have:

Theorem 4. For a paracompact, T_{sa} -space, if $D(X) < \Delta$, |D(X)| < w(X).

REFERENCES

(1] C.H. DOWKER. "An imbedding theorem for paracompact metric spaces". Duke Math. Journal 14(1947), 639-645.

- [2] R. ENGELKING. "General Topology". North-Holland. Amsterdam, Varszawa. 1977.
- [3] ----- "Dimension Theory". North-Holland. Amsterdam,
 Warszawa. 1978.
- [4] ----- "Transfinite Dimension". Surveys in General To-pology, ed. G.M. Reed. New York (1980), 131-161.
- [5] D.W. HENDERSON. "D-Dimension I. A New Transfinite Dimensio.".

 Pacific Journ. Math. 26(1968), 91-107.
- (6) ----- "D-Dimension II. Separable spaces and Compactifications". Pacific Journ. Math. 26(1968), 109-113
- [7] F. HAUSDORFF. "Set Theory". 2nd Ed. Chelsea Publ. Co. New York. 1962.
- [8] W. HUREWICZ and H. WALLMAN. "Dimension Theory". Princeton Univ Press. 1941.
- [9] L.A. LUXEMBURG. "On Compactifications of Netric Spaces with Transfinite Dimensions". Pacific J. Math. 101(1982) 399-450
- [10] ----- "On Universal Infinite-Dimensional Spaces". Fund
 **Math. 122(1984), 129-147
- [11] NAGATA, J.I. "Modern Dimension Theory" North-Holland. Amsterdam. 1965
- [12] ---- "A Survef of Dimension Theory". Gen. Top. Appl. 1(1971), 65-77.
- [13] E. POL and R. POL. "A Hereditarily Normal Strongly Zero-Dimen sional Space Containing Subspaces of Arbitrarily large Dimension". Fund. Math. 102(1979), 136-142.
- [14] A.R. PEARS. "Dimension Theory of General Spaces". Cambridge Univ. Press. 1975.
- [15] L.POLKOWSKI. "On Transfinite Dimension". Coll. Math. 50(1985) 61-79.
- [16] W. SIERPINSKI. "Cardinal and Ordinal Numbers". 2ª Ed. P.W.N. Warszawa. 1965.
- [17] G.H. TOULMIN. "Shuffling Ordinals and Transfinite Dimension".

 Proc. London Math. Soc. 4(1954), 177-195.