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Abstract As it is well known, teaching simulators are 
very useful resources to teach the practices of the subjects 
and that students understand in a more optimal way the 
theoretical concepts taught. Specifically, this work 
presents a teaching simulator, SICOME 2.0, which is used 
in the practices of Computer Architecture and allows an 
interactive simulation on a Simple Computer Architecture.  
The work also describes the practices carried out in the 
subject with this simulator. The experience with this 
simulator is very satisfactory and the results obtained 
show that it helps to improve the comprehension of the 
subject. 
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I. INTRODUCTION

The use of simulators in practices is a very useful tool that 
helps to improve the comprehension of the subjects [1]-[5].
Specifically, the teaching area of Computer Architecture at the 
University of Cordoba has developed a set of simulators that 
are used as resources in the teaching of subjects related to this 
area [6]-[8]. 

On the other hand, in Computer Architecture, a system 
based on a Simple Computer Architecture [9]-[10] is a tool 
widely used to explain fundamental aspects of the subject. 
Based on this system, a teaching simulator (SICOME 1.0) [8]
was developed. However, this simulator presented a set of 
problems that made it difficult to develop the practices. 
Among the main disadvantages of this simulator were that in 
SICOME 1.0, the micro-programmed controller was the only 
one existing in the computer and besides, the bifurcation 
control logic (LCB) was already defined previously, so the 
user only had to analyze the truth table of the control logic to 
decide which would be the coding used in each case. 

For this reason, it has been decided to correct these 
shortcomings presented in the previous simulator and a second 
version (SICOME 2.0) has been developed based on the Java 
architecture of Sun Microsystems that significantly improves 
the previous teaching environment. This new version can work 
by implementing a micro-programmed or hardwired unit 
control, allowing students to analyze the differences between 
creating an instruction set in one way or another. The truth 
table for the control logic in micro-programmed control is not 
previously defined as in the older version so that the user has 

to define it and introduce it in the computer through a 
graphical interface. This allows the development of a greater 
number of instructions and students acquire a better 
knowledge of the subject by creating their own control logic.
This version also includes a greater number of 
microoperations compared to the previous version, which also 
facilitates the development of a greater number of instructions 
by performing them in a more optimal way. 

The structure of the article is as follows. A detailed 
description of SICOME 2.0 is included in section II. Section 
III shows the practices of Computer Architecture developed 
with this simulator. A description of the experience of using 
this simulator in practices is included in Results section. 
Finally, the article ends by showing the conclusions of the 
work. 

II. DESCRIPTION OF SICOME 2.0

The simulator consists of a graphical interface that includes 
a menu bar and tools, a Simple Computer Architecture 
scheme, a representation of the contents of the computer's 
memory, and a status console. An illustration of the graphical 
interface of SICOME 2.0 is shown in Fig. 1. The Simple 
Computer Architecture scheme shows the contents of the 
registers and memory, controller, arithmetic/logic unit and the 
available set of microoperations. As it is illustrated in Fig. 1 
the arithmetic/logic unit control includes a QR register for the 
development of multiplication and division algorithms. The 
memory display consists of a series of fields indicating the 
addresses, the contents of these addresses and the instruction 
to which it is equivalent according to the instruction set that is 
loaded at any given time. Finally, the status console allows the 
user to know the state of the simulation.  

It should be noted that the simulator can work by 
implementing a micro-programmed or hardwired control unit. 
The graphical representation of the micro-programmed 
controller is shown in Fig. 2. This figure also includes the 
flags that can be used in the control logic which it has to be 
introduced by the user as it will be described in the subsection 
III-B. As it is shown, the controller has a sequence counter 
register (SC) that allows making loops in the instructions. 
CROM is a memory whose output is the activation code of the 
computer terminals, associated LCB code and jump direction 
in the instruction or load value of the SC register (when it is 
applicable); CMAR is a counter register whose output is the 
input address of the CROM. Mapping logic converts the code 
provided by the OPR register into the address where the 
corresponding instruction begins in the CROM; the LCB, 



according to the code provided by the CROM and flags, 
determines whether the CMAR should be increased (output I) 
or load the address provided by the CROM (output B) or that
provided by the mapping logic (output R). The LCB also 
determines if the activation of computer terminals provided by 
the CROM is enabled (output E).

Fig. 3 shows the graphical representation of the hardwired 
control unit. It includes the OPR register and the internal 
counter of the controller. It also has, like the micro-
programmed controller, a SC register. In the center of the 
figure, instruction and time decoders are illustrated, which 
together with the flags will activate some of the existing 
microoperations, once these signals go through the block that 
simulates the control of the logic gates. This last block 
represents the activation logic of the microoperations in 
hardwired control and it must be defined by the user, as it will 
be described in section III-C. 

Other important feature of this simulator is that the datapath 
of an instruction through each stage is highlighted with 
different colors allowing to analyze signals and buses that are 
activated during the simulation as well as analyzing the 
content of the registers and memory. Finally, it should be 
noted that the simulator also includes tools that allow to carry 

out a continuous simulation, execute a complete instruction or 
to simulate cycle by cycle. 

III. COMPUTER ARCHITECTURE PRACTICES USING SICOME 

2.0

With SICOME 2.0, three practices of the subject Computer 
Architecture of second course of Computer Engineering at the 
University of Cordoba, are developed. The aim of this subject 
is to provide students with the basic knowledge of the 
different units that form a computer based on Von Neumann 
Structure/Architecture. In this subject the units of calculation, 
control, memory, and input/output of a computer are studied, 
taking as a reference the structure of a Simple Computer 
Architecture. Other practices of the subject are developed with 
OrCAD software and consist of designing a control unit using 
shift registers for the architecture of a Simple Calculator that 
is provided already designed to the students. With this 
software, students also design micro-programmed or wired 
control units for a Simple Computer Architecture studied in 
the subject. 

The practices developed with SICOME 2.0 and their 
detailed development, are described below.  

Fig. 1. SICOME graphical interface



A. Introduction to SICOME 2.0

The first practice is dedicated to being an introduction to 
the simulator where students develop three test programs and 
simulate them using an instruction set and a control logic
provided. The instruction set provided includes basic 
instructions of addition, storage, jump, clear, rotation, 
negation, increment, subroutine calling, and execution stop.
With this basic instruction set three programs have to be 
carried out. The first one performs a program that calculates
the subtraction of two numbers stored in memory, storing the 
result in a memory location. The subtraction operation  must 

be implemented as the sum of the minuend and the two
complement of the subtrahend. The second exercise is based 
on a program that calculates the sum of the absolute values of
two numbers stored in memory. The result of the addition 
must also be stored in a memory location. In this program, 
students must perform a subroutine that calculates the absolute 
value of a number by making several calls to this subroutine.
Finally the third exercise carries out a program that calculates 
the sum of a set of numbers stored in a memory table and 
stores the result in the accumulator register. The table size is 
known and indicated in a memory location. For this exercise 
students must perform a loop that does the addition operation
the same number of times that elements to add are included in 
the table. The code of the third programm is shown in Fig. 4
where the code structure of the programs in SICOME is 
illustrated. A program includes three different sections. Each 
section is separated from the next section by the character 
"@". The first section is for the area of declaration of variables 
where it is necessary to specify its storage address in memory 
followed by its value, both in hexadecimal code. In the 
example shown in Fig. 4, memory location C includes the 
number of elements to be added, while the next memory 
location indicates the position of the first element to be added; 
this position will be increased to add the rest of the numbers in 
the table whose values have been stored in memory location E
to address 12. The next section indicates the starting memory 
address of the program. Finally, the code includes the program 
instructions. Programs can also include comments that must be 
preceded by the "#" character and must be included in their 
own line so that a same line of code cannot contain a program 
instruction and comment. Instruction set, program and control 
logic are text files that are loaded into SICOME using the 
buttons that include R , P and L symbols in the menu bar 
and that have been highlighted with a green rectangle in Fig. 
1. Once the program is loaded, it is included in the SICOME 
memory display as it is shown in Fig. 1. The simulation tools
are highlighted in a red rectangle and allow to simulate cycle 
by cycle, execute a complete instruction, perform a continuous 
simulation or stop the execution of the program. Using these 
tools, the program is simulated and the result of the sum of the 
five numbers included in the table is stored in the 

Fig. 2. Graphical representation of the micro-programmed controller Fig. 3. Graphical representation of the hardwired control unit

Fig. 4. Structure of a program in SICOME

#Area of declaration of variables
C 5
D E
E  1
F 1
10 1
11 1
12 1
@
#Starting memory address of the programm
0
@
CRA
ADD C
CTA
ITA
STA C
CRA
ADDI D
ISZ D
ISZ C
JMP 6
STA 13
HALT
@



Accumulator register, as it is shown in Fig. 1. Once the 
program execution is finished, the simulator also allows to 
clear memory to load a new program, restart the computer to 
run a new simulation, or reset the computer to introduce a new 
instruction set, program and control logic.  

B. Design of an instruction set in a micro-programmed 
control unit

In this second practice, students design an instruction set 
for a micro-programmed control unit. They also have to 
develop the control logic and carry out test programs, such as 
those proposed in practice 1, to check that the instruction set 
has been developed correctly. The proposed instruction set is 
modified each academic course. An example of an instruction 
set is the following: 

FECTH 

HALT 

LDA m: It loads the contents of m memory 
location  into the Accumulator register 

ONES m: It counts the number of ones in the 
Accumulator register and stores it in m memory 
position 

The flow diagram of ONES instruction is shown in Fig. 5. 
In order to count the number of ones, a loop of 16 iterations is 
performed (because SICOME registers have a size of 16 bits) 
where rotations to the left of the Accumulator are 
implemented, so that the most significant bit of this register is 
shifted to F register. Once the rotation has been carried out, if 
the value of  F is one, n variable, that stores the number of 
ones in the Accumulator register, is increased. For each one of 
the instructions, students have to develop an RTL table as 
shown in Table I for ONES instruction. In this Table the flow 
diagram of Fig. 5 is described with computer microoperations.
To make the loop, the SC register has been used which has a 
load microoperation of a value (in this case it is loaded with 
value 16) and a decrement microoperation which is used to 
decrease the value of the register in a unit each time an 
iteration is performed. There is a flag bit on the computer, Zsc,
which is one if SC register is zero. Each time an iteration of 
the loop is performed, the value of Zsc is analyzed to know if 
the loop has finished or there is a new iteration, jumping in 
this case to the starting direction of the loop. The general 
purpose register GPR is used to store the number of ones of 
the accumulator register.  

In parallel to the construction of RTL table, students 
develop the truth table of control logic (Table II). This table 
includes four control bits (B3, B2, B1 and B0 bits) and flags bits 
(F, Zb, Za, Zac...) that can take the values of 0, 1 and X 
indicating the indifference of the selected flag. For each 
combination of control bits, the values of the different outputs 
available from CMAR (I, B, R and E) are indicated. For this 
example, the four control fields common to all instruction sets 
are included. There is a combination for the case in which the 

Fig. 5. Flow diagram of ONES instruction

Table I. RTL table of ONES instruction in a micro-programmed unit
control

CYCLE MICROOPERATIONS NEXT
ADDR(ONES)+0 0 QR; 16 SC Increase
ADDR(ONES)+1 QR GPR Increase
ADDR(ONES)+2 ROL F, Acc; SC-1 SC Increase

ADDR(ONES)+3 GPR+1 GPR (if F=1)
If Zsc=0 jump to 
ADDR(ONES)+2
If Zsc=1 increase

ADDR(ONES)+4 ROL F, Acc; GPR M
Jump to 

ADDR(FETCH)

Table II. Truth table of control logic

B3 B2 B1 B0 F Zb Za Zac Zsc X Qn Qn+1 As Qs Bs N I B R E

0 0 0 0 X X X X X X X X X X X X 0 0 0 0

0 0 0 1 X X X X X X X X X X X X 1 0 0 1

0 0 1 0 X X X X X X X X X X X X 0 1 0 1

0 0 1 1 X X X X X X X X X X X X 0 0 1 1

0 1 0 0 0 X X X 0 X X X X X X X 0 1 0 0

0 1 0 0 0 X X X 1 X X X X X X X 1 0 0 0

0 1 0 0 1 X X X 0 X X X X X X X 0 1 0 1

0 1 0 0 1 X X X 1 X X X X X X X 1 0 0 1



CMAR is increased (output I=1); the specific field for when 
the address provided by the CROM is loaded (B=1); the case 
associated when the address provided by the mapping logic 
(R=1) is loaded; and finally, a specific combination for 
stopping the execution of the program where the four outputs 
of CMAR have zero value. For the particular case of this 
instruction set, a combination of control bits has been 
designed that uses F and Zsc flags simultaneously. If F bit is 
one, E output is activated to enable the increment of GPR 
register because a bit of  Accumulator with value one has been 
detected; if F is zero, this increment will not be enabled. On 
the other hand, Zsc controls that the loop is finished, 
activating I output to exit of the loop or jumping to the start 
direction of the loop. This truth table of the control logic can 
be included in a text file and loaded in SICOME but the user 
can also specify it using a graphical interface included in the 
simulator.

Finally, students must store the microprograms
corresponding to the instruction set in the CROM memory. 
The microwords stored by the CROM have a length of 28 bits, 
of which the first 16 are used as encoding signals for 
microoperations, the next 4 as control signals, and the last 8 as 
addressing signals or load value of SC counter, as shown in 
Table III. This table includes the coding of fetch cycle and 
execution cycle for HALT, LDA and ONES instructions using 

microwords. The combinations of bits to code the different 
microoperations (bits s15 to s0) can be found in SICOME 
Help. Once the microwords have been completed, a 7-digit 
hexadecimal coding is obtained and included in the instruction 
set file. 

The instruction set file using micro-programmed control is 
a text file in which the name of the instruction is defined, as 
well as its corresponding microprogram. In each line of the 
file, an instruction is declared with the following fields 
separated by spaces: the name of the instruction; a flag that 
indicates if the instruction has a parameter or not; and finally 
the microprogram of the instruction composed of the sequence 
of hex-coded microwords that was obtained in Table III. For 
the example included in this description, the instruction set file 
is illustrated in Fig. 6. To check that the instruction set and 
control logic developed work well, students perform a small 
test as shown in Fig. 7 where the Accumulator register with 
the contents of 0 memory position is loaded. The ONES 
instruction is then used to count the number of ones of the 
Accumulator register and store this count in 1 memory 
position. The instruction set, program and control logic files 
are loaded in SICOME using "R","P" and "L" buttons and then 
a simulation can be performed. At the end of the simulation, it 
is checked if the count stored in 1 position coincides with the 
number of ones of Accumulator register to detect if there has 
been any error in the development of the instruction set or 
control logic.   

Table III. CROM Table

Fig. 6. Structure of an instruction set using micro-programmed control in 
SICOME

$
CB 4000100
CB 201100
CB B000300
$
HALT false 0
LDA true 0009100 0028200
ONES true 0A40110 0005100 0C30100 0004408 1030200

Fig. 7. Test program

0 1C75
@
10
@

LDA 0
ONES 1
HALT



C. Design of an instruction set in a hardwired control unit

In the third practice the students develop the same 
instruction set of the previous practice but using hardwired 
control unit. Similarly to the previous practice, the RTL table 
of each instruction must be designed. The RTL table of ONES 
instruction using hardwired control is shown in Table IV.

Once this table has been finished, students can obtain the 
control expressions that activate each one of the 
microoperations and that for this particular case are shown in 
Table V. These control expressions can be included in the 
simulator using a text file whose format is shown in Fig. 8. As 
can be seen in the figure, the text starts with the special $ 
symbol and places each microoperation in a different line. The 
name of each microoperation is followed by all expressions 
that are part of the logic function of that microoperation. The 
user can use this text file and load it into the simulator using 
"L" button or SICOME also has a graphical interface that 
allows the user to define the logic of microoperations 
activation.  

The instruction set file in this case is shown in Fig. 9.

Each line of the file declares an instruction that consists of 
the following fields separated by spaces: name of the 
instruction; flag that indicates whether the instruction has a 
parameter or not; the number of cycles of the instruction; and 
the identifier of the instruction where the letter q is used 
followed by an index that must match  with the order in which 
the instruction has been defined in the directory. By loading 
the set instruction, the activation logic and using the same test 
program shown in Fig. 7 a simulation can be performed to 
verify that the instruction set is correct.     

IV. RESULTS

The use of SICOME 2.0 in Computer Architecture 
practices has allowed to verify that students improve the 
theoretical knowledge learned because the simulator allows 
them to analyze signals and buses that are activated during the 
simulation as well as analyzing the content of the registers and 
memory.  

Another aspect that is very important to understand the 
structure of a Simple Computer Architecture is that the 
simulator allows them to carry out a continuous simulation, 
execute a complete instruction or to simulate cycle by cycle, 
so that they can easily detect errors in the design of the 
programs and instruction set developed.  

Table IV. RTL table of ONES instruction in a hardwired unit control

CONDITIONS MICROOPERATIONS NEXT
FETCH

t0 PC MAR SR+1 SR
t1 PC+1 PC; M GPR SR+1 SR

t2
GPR(OP) OPR; 
GPR(AD) MAR

SR+1 SR

LDA
q1.t3 0 Acc; M GPR SR+1 SR
q1.t4 GPR+Acc Acc 0 SR

ONES
q2.t3 0 QR; 16 SC SR+1 SR
q2.t4 QR GPR SR+1 SR
q2.t5 ROL F, Acc; SC-1 SC SR+1 SR

q2.t6.F GPR+1 GPR
q2.t6.ZSC SR+1 SR
q2.t6 SC 5 SR

q2.t7 ROL F, Acc; GPR M 0 SR

Table V. Control Expressions

MICROOPERATION CONTROL EXPRESSIONS
GENERIC OPERATIONS

PC MAR t0

PC+1 PC t1

M GPR t1+q1.t3

GPR(OP) OPR t2

GPR(AD) MAR t2

0 Acc q1.t3

GPR+Acc Acc q1.t4

0 QR q2.t3

QR GPR q2.t4

ROL F, Acc q2.t5+q2.t7

GPR+1 GPR q2.t6.F
GPR M q2.t7

SR OPERATIONS
SR+1 SR t0+t1+ t2+ q1.t3+ q2.t3+ q2.t4+ q2.t5+ q2.t6.ZSC

LOAD SR q1.t4(0)+ q2.t6 SC(5)+q2.t7(0)
SC OPERATIONS

SC-1 SC q2.t5

LOAD SC q2.t3(16)

Fig. 8. Text file of control expressions in SICOME

$
PC->MAR: t0
PC+1->PC: t1
M->GPR: t1
GPR(OP)->OPR: t2
GPR(AD)->MAR: t2
0->ACC: t3
GPR+ACC->ACC: t4
0->QR: t3
QR->GPR: t4
ROL FA: t5
GPR+1->GPR: t6
GPR->M: t7
$
SR+1->SR: t0
t6 c
LOAD SR: t4 -0 -5 -0
SC-1->SC: t5
LOAD SC: t3 -16
$

Fig. 9. Structure of an instruction set using hardwired control in SICOME

HALT false 0 q0
LDA true 2 q1
ONES true 5 q2



On the other hand, the structure of the practices also allows 
them to analyze differences by creating a same instruction set 
on a micro-programmed and hardwired control unit. 

The evaluation of the practices is continuous so that the 
attendance and attitude of the students in the development of 
them is evaluated in the final qualification. The students must 
explain to the teachers each of the proposed practices showing 
that the practices are correct and have understood the 
objectives of each one of them and the results obtained. For 
the first practice only one session is used, while for the second 
and third, two sessions are necessary. There are also more 
tutoring sessions so that students can finish the practices, ask 
any questions and defend them in case they have finished 
them. The simulator software is also provided to students for 
installation on their personal computers and they can work 
with it outside the laboratory, analyzing the functioning of 
some complex instructions that are studied in theoretical 
classes or problems. Following this evaluation method, 97% 
of the students approved the practical part of the subject 
during the last academic year. 

V. CONCLUSIONS 

A new version of a simulator for the teaching of Computer 
Architecture has been presented. The great functionality 
offered by the simulator ensures that SICOME 2.0 is a high 
quality teaching tool. The students and teachers of this subject 
are very satisfied with the great advance in the learning of 
students using the simulator in the practices, and consider that 
SICOME 2.0 allows them to reach a high level of 
comprehension in the subject. 
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