
SICOME 2.0: A teaching simulator for Computer
Architecture

Dept. Electronic and Computer Engineering

[mbrox, andresgm, el1movim, eze, cdiego]@uco.es

Abstract As it is well known, teaching simulators are
very useful resources to teach the practices of the subjects
and that students understand in a more optimal way the
theoretical concepts taught. Specifically, this work
presents a teaching simulator, SICOME 2.0, which is used
in the practices of Computer Architecture and allows an
interactive simulation on a Simple Computer Architecture.
The work also describes the practices carried out in the
subject with this simulator. The experience with this
simulator is very satisfactory and the results obtained
show that it helps to improve the comprehension of the
subject.

Keywords Teaching simulator, Computer Architecture
practices, Simple Computer Architecture system

I. INTRODUCTION

The use of simulators in practices is a very useful tool that
helps to improve the comprehension of the subjects [1]-[5].
Specifically, the teaching area of Computer Architecture at the
University of Cordoba has developed a set of simulators that
are used as resources in the teaching of subjects related to this
area [6]-[8].

On the other hand, in Computer Architecture, a system
based on a Simple Computer Architecture [9]-[10] is a tool
widely used to explain fundamental aspects of the subject.
Based on this system, a teaching simulator (SICOME 1.0) [8]
was developed. However, this simulator presented a set of
problems that made it difficult to develop the practices.
Among the main disadvantages of this simulator were that in
SICOME 1.0, the micro-programmed controller was the only
one existing in the computer and besides, the bifurcation
control logic (LCB) was already defined previously, so the
user only had to analyze the truth table of the control logic to
decide which would be the coding used in each case.

For this reason, it has been decided to correct these
shortcomings presented in the previous simulator and a second
version (SICOME 2.0) has been developed based on the Java
architecture of Sun Microsystems that significantly improves
the previous teaching environment. This new version can work
by implementing a micro-programmed or hardwired unit
control, allowing students to analyze the differences between
creating an instruction set in one way or another. The truth
table for the control logic in micro-programmed control is not
previously defined as in the older version so that the user has

to define it and introduce it in the computer through a
graphical interface. This allows the development of a greater
number of instructions and students acquire a better
knowledge of the subject by creating their own control logic.
This version also includes a greater number of
microoperations compared to the previous version, which also
facilitates the development of a greater number of instructions
by performing them in a more optimal way.

The structure of the article is as follows. A detailed
description of SICOME 2.0 is included in section II. Section
III shows the practices of Computer Architecture developed
with this simulator. A description of the experience of using
this simulator in practices is included in Results section.
Finally, the article ends by showing the conclusions of the
work.

II. DESCRIPTION OF SICOME 2.0

The simulator consists of a graphical interface that includes
a menu bar and tools, a Simple Computer Architecture
scheme, a representation of the contents of the computer's
memory, and a status console. An illustration of the graphical
interface of SICOME 2.0 is shown in Fig. 1. The Simple
Computer Architecture scheme shows the contents of the
registers and memory, controller, arithmetic/logic unit and the
available set of microoperations. As it is illustrated in Fig. 1
the arithmetic/logic unit control includes a QR register for the
development of multiplication and division algorithms. The
memory display consists of a series of fields indicating the
addresses, the contents of these addresses and the instruction
to which it is equivalent according to the instruction set that is
loaded at any given time. Finally, the status console allows the
user to know the state of the simulation.

It should be noted that the simulator can work by
implementing a micro-programmed or hardwired control unit.
The graphical representation of the micro-programmed
controller is shown in Fig. 2. This figure also includes the
flags that can be used in the control logic which it has to be
introduced by the user as it will be described in the subsection
III-B. As it is shown, the controller has a sequence counter
register (SC) that allows making loops in the instructions.
CROM is a memory whose output is the activation code of the
computer terminals, associated LCB code and jump direction
in the instruction or load value of the SC register (when it is
applicable); CMAR is a counter register whose output is the
input address of the CROM. Mapping logic converts the code
provided by the OPR register into the address where the
corresponding instruction begins in the CROM; the LCB,

according to the code provided by the CROM and flags,
determines whether the CMAR should be increased (output I)
or load the address provided by the CROM (output B) or that
provided by the mapping logic (output R). The LCB also
determines if the activation of computer terminals provided by
the CROM is enabled (output E).

Fig. 3 shows the graphical representation of the hardwired
control unit. It includes the OPR register and the internal
counter of the controller. It also has, like the micro-
programmed controller, a SC register. In the center of the
figure, instruction and time decoders are illustrated, which
together with the flags will activate some of the existing
microoperations, once these signals go through the block that
simulates the control of the logic gates. This last block
represents the activation logic of the microoperations in
hardwired control and it must be defined by the user, as it will
be described in section III-C.

Other important feature of this simulator is that the datapath
of an instruction through each stage is highlighted with
different colors allowing to analyze signals and buses that are
activated during the simulation as well as analyzing the
content of the registers and memory. Finally, it should be
noted that the simulator also includes tools that allow to carry

out a continuous simulation, execute a complete instruction or
to simulate cycle by cycle.

III. COMPUTER ARCHITECTURE PRACTICES USING SICOME

2.0

With SICOME 2.0, three practices of the subject Computer
Architecture of second course of Computer Engineering at the
University of Cordoba, are developed. The aim of this subject
is to provide students with the basic knowledge of the
different units that form a computer based on Von Neumann
Structure/Architecture. In this subject the units of calculation,
control, memory, and input/output of a computer are studied,
taking as a reference the structure of a Simple Computer
Architecture. Other practices of the subject are developed with
OrCAD software and consist of designing a control unit using
shift registers for the architecture of a Simple Calculator that
is provided already designed to the students. With this
software, students also design micro-programmed or wired
control units for a Simple Computer Architecture studied in
the subject.

The practices developed with SICOME 2.0 and their
detailed development, are described below.

Fig. 1. SICOME graphical interface

A. Introduction to SICOME 2.0

The first practice is dedicated to being an introduction to
the simulator where students develop three test programs and
simulate them using an instruction set and a control logic
provided. The instruction set provided includes basic
instructions of addition, storage, jump, clear, rotation,
negation, increment, subroutine calling, and execution stop.
With this basic instruction set three programs have to be
carried out. The first one performs a program that calculates
the subtraction of two numbers stored in memory, storing the
result in a memory location. The subtraction operation must

be implemented as the sum of the minuend and the two
complement of the subtrahend. The second exercise is based
on a program that calculates the sum of the absolute values of
two numbers stored in memory. The result of the addition
must also be stored in a memory location. In this program,
students must perform a subroutine that calculates the absolute
value of a number by making several calls to this subroutine.
Finally the third exercise carries out a program that calculates
the sum of a set of numbers stored in a memory table and
stores the result in the accumulator register. The table size is
known and indicated in a memory location. For this exercise
students must perform a loop that does the addition operation
the same number of times that elements to add are included in
the table. The code of the third programm is shown in Fig. 4
where the code structure of the programs in SICOME is
illustrated. A program includes three different sections. Each
section is separated from the next section by the character
"@". The first section is for the area of declaration of variables
where it is necessary to specify its storage address in memory
followed by its value, both in hexadecimal code. In the
example shown in Fig. 4, memory location C includes the
number of elements to be added, while the next memory
location indicates the position of the first element to be added;
this position will be increased to add the rest of the numbers in
the table whose values have been stored in memory location E
to address 12. The next section indicates the starting memory
address of the program. Finally, the code includes the program
instructions. Programs can also include comments that must be
preceded by the "#" character and must be included in their
own line so that a same line of code cannot contain a program
instruction and comment. Instruction set, program and control
logic are text files that are loaded into SICOME using the
buttons that include R , P and L symbols in the menu bar
and that have been highlighted with a green rectangle in Fig.
1. Once the program is loaded, it is included in the SICOME
memory display as it is shown in Fig. 1. The simulation tools
are highlighted in a red rectangle and allow to simulate cycle
by cycle, execute a complete instruction, perform a continuous
simulation or stop the execution of the program. Using these
tools, the program is simulated and the result of the sum of the
five numbers included in the table is stored in the

Fig. 2. Graphical representation of the micro-programmed controller Fig. 3. Graphical representation of the hardwired control unit

Fig. 4. Structure of a program in SICOME

#Area of declaration of variables
C 5
D E
E 1
F 1
10 1
11 1
12 1
@
#Starting memory address of the programm
0
@
CRA
ADD C
CTA
ITA
STA C
CRA
ADDI D
ISZ D
ISZ C
JMP 6
STA 13
HALT
@

Accumulator register, as it is shown in Fig. 1. Once the
program execution is finished, the simulator also allows to
clear memory to load a new program, restart the computer to
run a new simulation, or reset the computer to introduce a new
instruction set, program and control logic.

B. Design of an instruction set in a micro-programmed
control unit

In this second practice, students design an instruction set
for a micro-programmed control unit. They also have to
develop the control logic and carry out test programs, such as
those proposed in practice 1, to check that the instruction set
has been developed correctly. The proposed instruction set is
modified each academic course. An example of an instruction
set is the following:

FECTH

HALT

LDA m: It loads the contents of m memory
location into the Accumulator register

ONES m: It counts the number of ones in the
Accumulator register and stores it in m memory
position

The flow diagram of ONES instruction is shown in Fig. 5.
In order to count the number of ones, a loop of 16 iterations is
performed (because SICOME registers have a size of 16 bits)
where rotations to the left of the Accumulator are
implemented, so that the most significant bit of this register is
shifted to F register. Once the rotation has been carried out, if
the value of F is one, n variable, that stores the number of
ones in the Accumulator register, is increased. For each one of
the instructions, students have to develop an RTL table as
shown in Table I for ONES instruction. In this Table the flow
diagram of Fig. 5 is described with computer microoperations.
To make the loop, the SC register has been used which has a
load microoperation of a value (in this case it is loaded with
value 16) and a decrement microoperation which is used to
decrease the value of the register in a unit each time an
iteration is performed. There is a flag bit on the computer, Zsc,
which is one if SC register is zero. Each time an iteration of
the loop is performed, the value of Zsc is analyzed to know if
the loop has finished or there is a new iteration, jumping in
this case to the starting direction of the loop. The general
purpose register GPR is used to store the number of ones of
the accumulator register.

In parallel to the construction of RTL table, students
develop the truth table of control logic (Table II). This table
includes four control bits (B3, B2, B1 and B0 bits) and flags bits
(F, Zb, Za, Zac...) that can take the values of 0, 1 and X
indicating the indifference of the selected flag. For each
combination of control bits, the values of the different outputs
available from CMAR (I, B, R and E) are indicated. For this
example, the four control fields common to all instruction sets
are included. There is a combination for the case in which the

Fig. 5. Flow diagram of ONES instruction

Table I. RTL table of ONES instruction in a micro-programmed unit
control

CYCLE MICROOPERATIONS NEXT
ADDR(ONES)+0 0 QR; 16 SC Increase
ADDR(ONES)+1 QR GPR Increase
ADDR(ONES)+2 ROL F, Acc; SC-1 SC Increase

ADDR(ONES)+3 GPR+1 GPR (if F=1)
If Zsc=0 jump to
ADDR(ONES)+2
If Zsc=1 increase

ADDR(ONES)+4 ROL F, Acc; GPR M
Jump to

ADDR(FETCH)

Table II. Truth table of control logic

B3 B2 B1 B0 F Zb Za Zac Zsc X Qn Qn+1 As Qs Bs N I B R E

0 0 0 0 X X X X X X X X X X X X 0 0 0 0

0 0 0 1 X X X X X X X X X X X X 1 0 0 1

0 0 1 0 X X X X X X X X X X X X 0 1 0 1

0 0 1 1 X X X X X X X X X X X X 0 0 1 1

0 1 0 0 0 X X X 0 X X X X X X X 0 1 0 0

0 1 0 0 0 X X X 1 X X X X X X X 1 0 0 0

0 1 0 0 1 X X X 0 X X X X X X X 0 1 0 1

0 1 0 0 1 X X X 1 X X X X X X X 1 0 0 1

CMAR is increased (output I=1); the specific field for when
the address provided by the CROM is loaded (B=1); the case
associated when the address provided by the mapping logic
(R=1) is loaded; and finally, a specific combination for
stopping the execution of the program where the four outputs
of CMAR have zero value. For the particular case of this
instruction set, a combination of control bits has been
designed that uses F and Zsc flags simultaneously. If F bit is
one, E output is activated to enable the increment of GPR
register because a bit of Accumulator with value one has been
detected; if F is zero, this increment will not be enabled. On
the other hand, Zsc controls that the loop is finished,
activating I output to exit of the loop or jumping to the start
direction of the loop. This truth table of the control logic can
be included in a text file and loaded in SICOME but the user
can also specify it using a graphical interface included in the
simulator.

Finally, students must store the microprograms
corresponding to the instruction set in the CROM memory.
The microwords stored by the CROM have a length of 28 bits,
of which the first 16 are used as encoding signals for
microoperations, the next 4 as control signals, and the last 8 as
addressing signals or load value of SC counter, as shown in
Table III. This table includes the coding of fetch cycle and
execution cycle for HALT, LDA and ONES instructions using

microwords. The combinations of bits to code the different
microoperations (bits s15 to s0) can be found in SICOME
Help. Once the microwords have been completed, a 7-digit
hexadecimal coding is obtained and included in the instruction
set file.

The instruction set file using micro-programmed control is
a text file in which the name of the instruction is defined, as
well as its corresponding microprogram. In each line of the
file, an instruction is declared with the following fields
separated by spaces: the name of the instruction; a flag that
indicates if the instruction has a parameter or not; and finally
the microprogram of the instruction composed of the sequence
of hex-coded microwords that was obtained in Table III. For
the example included in this description, the instruction set file
is illustrated in Fig. 6. To check that the instruction set and
control logic developed work well, students perform a small
test as shown in Fig. 7 where the Accumulator register with
the contents of 0 memory position is loaded. The ONES
instruction is then used to count the number of ones of the
Accumulator register and store this count in 1 memory
position. The instruction set, program and control logic files
are loaded in SICOME using "R","P" and "L" buttons and then
a simulation can be performed. At the end of the simulation, it
is checked if the count stored in 1 position coincides with the
number of ones of Accumulator register to detect if there has
been any error in the development of the instruction set or
control logic.

Table III. CROM Table

Fig. 6. Structure of an instruction set using micro-programmed control in
SICOME

$
CB 4000100
CB 201100
CB B000300
$
HALT false 0
LDA true 0009100 0028200
ONES true 0A40110 0005100 0C30100 0004408 1030200

Fig. 7. Test program

0 1C75
@
10
@

LDA 0
ONES 1
HALT

C. Design of an instruction set in a hardwired control unit

In the third practice the students develop the same
instruction set of the previous practice but using hardwired
control unit. Similarly to the previous practice, the RTL table
of each instruction must be designed. The RTL table of ONES
instruction using hardwired control is shown in Table IV.

Once this table has been finished, students can obtain the
control expressions that activate each one of the
microoperations and that for this particular case are shown in
Table V. These control expressions can be included in the
simulator using a text file whose format is shown in Fig. 8. As
can be seen in the figure, the text starts with the special $
symbol and places each microoperation in a different line. The
name of each microoperation is followed by all expressions
that are part of the logic function of that microoperation. The
user can use this text file and load it into the simulator using
"L" button or SICOME also has a graphical interface that
allows the user to define the logic of microoperations
activation.

The instruction set file in this case is shown in Fig. 9.

Each line of the file declares an instruction that consists of
the following fields separated by spaces: name of the
instruction; flag that indicates whether the instruction has a
parameter or not; the number of cycles of the instruction; and
the identifier of the instruction where the letter q is used
followed by an index that must match with the order in which
the instruction has been defined in the directory. By loading
the set instruction, the activation logic and using the same test
program shown in Fig. 7 a simulation can be performed to
verify that the instruction set is correct.

IV. RESULTS

The use of SICOME 2.0 in Computer Architecture
practices has allowed to verify that students improve the
theoretical knowledge learned because the simulator allows
them to analyze signals and buses that are activated during the
simulation as well as analyzing the content of the registers and
memory.

Another aspect that is very important to understand the
structure of a Simple Computer Architecture is that the
simulator allows them to carry out a continuous simulation,
execute a complete instruction or to simulate cycle by cycle,
so that they can easily detect errors in the design of the
programs and instruction set developed.

Table IV. RTL table of ONES instruction in a hardwired unit control

CONDITIONS MICROOPERATIONS NEXT
FETCH

t0 PC MAR SR+1 SR
t1 PC+1 PC; M GPR SR+1 SR

t2
GPR(OP) OPR;
GPR(AD) MAR

SR+1 SR

LDA
q1.t3 0 Acc; M GPR SR+1 SR
q1.t4 GPR+Acc Acc 0 SR

ONES
q2.t3 0 QR; 16 SC SR+1 SR
q2.t4 QR GPR SR+1 SR
q2.t5 ROL F, Acc; SC-1 SC SR+1 SR

q2.t6.F GPR+1 GPR
q2.t6.ZSC SR+1 SR
q2.t6 SC 5 SR

q2.t7 ROL F, Acc; GPR M 0 SR

Table V. Control Expressions

MICROOPERATION CONTROL EXPRESSIONS
GENERIC OPERATIONS

PC MAR t0

PC+1 PC t1

M GPR t1+q1.t3

GPR(OP) OPR t2

GPR(AD) MAR t2

0 Acc q1.t3

GPR+Acc Acc q1.t4

0 QR q2.t3

QR GPR q2.t4

ROL F, Acc q2.t5+q2.t7

GPR+1 GPR q2.t6.F
GPR M q2.t7

SR OPERATIONS
SR+1 SR t0+t1+ t2+ q1.t3+ q2.t3+ q2.t4+ q2.t5+ q2.t6.ZSC

LOAD SR q1.t4(0)+ q2.t6 SC(5)+q2.t7(0)
SC OPERATIONS

SC-1 SC q2.t5

LOAD SC q2.t3(16)

Fig. 8. Text file of control expressions in SICOME

$
PC->MAR: t0
PC+1->PC: t1
M->GPR: t1
GPR(OP)->OPR: t2
GPR(AD)->MAR: t2
0->ACC: t3
GPR+ACC->ACC: t4
0->QR: t3
QR->GPR: t4
ROL FA: t5
GPR+1->GPR: t6
GPR->M: t7
$
SR+1->SR: t0
t6 c
LOAD SR: t4 -0 -5 -0
SC-1->SC: t5
LOAD SC: t3 -16
$

Fig. 9. Structure of an instruction set using hardwired control in SICOME

HALT false 0 q0
LDA true 2 q1
ONES true 5 q2

On the other hand, the structure of the practices also allows
them to analyze differences by creating a same instruction set
on a micro-programmed and hardwired control unit.

The evaluation of the practices is continuous so that the
attendance and attitude of the students in the development of
them is evaluated in the final qualification. The students must
explain to the teachers each of the proposed practices showing
that the practices are correct and have understood the
objectives of each one of them and the results obtained. For
the first practice only one session is used, while for the second
and third, two sessions are necessary. There are also more
tutoring sessions so that students can finish the practices, ask
any questions and defend them in case they have finished
them. The simulator software is also provided to students for
installation on their personal computers and they can work
with it outside the laboratory, analyzing the functioning of
some complex instructions that are studied in theoretical
classes or problems. Following this evaluation method, 97%
of the students approved the practical part of the subject
during the last academic year.

V. CONCLUSIONS

A new version of a simulator for the teaching of Computer
Architecture has been presented. The great functionality
offered by the simulator ensures that SICOME 2.0 is a high
quality teaching tool. The students and teachers of this subject
are very satisfied with the great advance in the learning of
students using the simulator in the practices, and consider that
SICOME 2.0 allows them to reach a high level of
comprehension in the subject.

REFERENCES
[1]

[2] Nikolic, B., Radivojevi, Z., Djordjevi, J., Milutinovic, V. A Survey
and Evaluation of Simulators Suitable for Teaching Courses in

Education, vol.52, no.4, 2009

[3] lator
tools for teaching computer architecture: Easy CPU, Little Man

Computing, vol.1, no.4, pp. 60-80, 2001

[4]

[5]

[6]
,

Montevideo, 2002

[7] Herruzo, E., Benavides, J.I., Saez, E., Montijano. M.A., Paloamres, J.M.,

2002

[8]

[9] -Hill, 1983
[10] -Hall S.A.,

1983

