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estimulantes conversaciones sobre temas variados, que demuestran que la universidad,

además de ser un establecimiento para la libre circulación del papeleo, también puede

llegar a ser un centro de desarrollo de ideas.
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y la hipocreśıa imperantes, por aplicarme su laissez-faire para dejarme independencia

confiando en mi madurez (¡arriesgada apuesta! ;P), por reflexionar en fŕıo tras discutir
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Introduction

The Lie and Jordan structures coming from associative algebras (with and without

involution) play an essential role in the classification of simple algebras in both nonas-

sociative settings. In the 1950’s, Herstein gave the start to a program of analysis of

these structures, based on a careful study of elementary identities that are constructed

in a step-by-step formulation (what we will call, rather diffusely, ‘a combinatorial ap-

proach’). He began by showing ([Herstein’55]) that for a simple ring R the Jordan ring

R+ is simple, while the ideals of the Lie ring R− either are inside Z(R) or contain [R,R].

He also showed ([Herstein’55(2)]) that any Lie ideal of [R,R] lies inside Z(R), so that

[R,R]/([R,R]∩Z(R)) is always simple whenever R is simple with char(R) 6= 2, 3, proving

that this fact, already observed in the classification theorems, is not due to any finiteness

condition. Following the same motivation, in [Herstein’56] he proved that if R has an

involution and char(R) 6= 2, then the Lie subring of skew elements K and the Jordan

subring of symmetric elements H are simple except if R has dimension 4 or less over its

center. This program has been followed by Baxter (who studied the cases of character-

istic 2 and 3 in [Baxter’56]), Erickson (who generalized the results to prime rings with

involution), Benkart (who determined the Lie inner structure of R and K for simple

rings in [Benkart’76]), Martindale (who introduced in the program the powerful tools of

GPIs theory, as exemplified by [Martindale&Miers’86]) and Fernández López (who de-

termined the Lie inner structure of centrally closed prime rings in [Fernández’14]) among

others, and was also extensively developed in Herstein’s books [TopicsRingTheory] and

[RingsInvolution]. Herstein theory produces a beautiful interplay between the associa-
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INTRODUCTION

tive properties of a ring and its nonassociative structures. So, for example, when R is

simple with involution with char(R) 6= 2 and is more than 4-dimensional over its center,

then the associative subrings generated by H and K are equal to R.

A good part of this dissertation can be ascribed to Herstein program. One of our

main objectives is the determination of the Lie inner structure of K when R is a centrally

closed prime ring with involution, i.e., the classification of its (abelian) Lie inner ideals,

which we achieve in Chapter 3. These inner ideals turn out to appear in classes analogous

to those of R− (called isotropic, standard and special), plus a kind of inner ideal exclusive

to K but that already appears when R is simple with socle, the Clifford inner ideal.

Clifford inner ideals were described by Benkart in terms of bases of the algebra, and

geometrically in [Fernández,Garćıa&Gómez’06(2)] in terms of hyperbolic planes. A ring-

theoretic description of these inner ideals was yet lacking in the literature; we include one

in the mentioned chapter, in terms of minimal ∗-orthogonal idempotents. To determine

the classification of inner ideals of K when R is simple, Benkart resorted to the Lie

structure of R and K as developed by Herstein’s theory. The same could be done in

the prime context, building on results of Lanski and Martindale but, although with the

same combinatorial spirit, we have preferred to reduce the case of K to the case of

R−. For this we prove in Chapter 1 (entirely dedicated to the structure of K), mostly

by a recollection and interrelation of previously known results, that 〈K〉, the subring

generated by K inside R, is prime and contains an ideal of R except if [K,K] = 0 or,

equivalently, except if R is commutative or its central closure is a quaternion algebra

over the extended centroid with an involution of the first kind and transpose type (to

prove this we will need to introduce some concepts from PIs theory, following Erickson).

The existence of the mentioned ideal allows to transport associative properties from R

to 〈K〉 (for example, their extended centroid is the same). In addition, the structure

of 〈K〉 happens to be very near to the structure of K (we just need to add the sums

of squares of K) and therefore many properties of 〈K〉 can be translated to K, after

a twist. With this tool in hand we are able to prove Herstein Lemma for K, a known
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INTRODUCTION

result that states that any adnilpotent element is the sum of a nilpotent element and

a central one, from Herstein Lemma for R, and is this result the one which opens the

gates to the classification of abelian inner ideals (as was already recognized by Benkart

in the simple context), since every element of an abelian inner ideal is a Jordan element,

i.e., an adnilpotent element of index at most 3. As an aside, in Chapter 1 we also show,

by a combinatorial approach which avoids the fundamental theorems of PIs theory, that

if [K,K] = 0 then R satisfies Hall Identity, a polynomial identity of degree 5 that is

satisfied by quaternion algebras. This we do for R arbitrary (except for char(R) 6= 2).

Clifford inner ideals of K, being the ones which have no analogous counterpart in

R−, are the inner ideals which behave more differently. The main reason for this is that

they are the only ones which contain Jordan elements c such that c2 6= 0 but c3 = 0,

called Clifford elements by us. This produces an special case in Herstein Lemma which

guarantees that R has socle and involution of orthogonal type. The study of Clifford

elements is of independent interest, so we carry it out in Chapter 4. Jordan elements are

called that way because associated to any Jordan element a ∈ L there exists a Jordan

algebra La which behaves as a local algebra for L. If L is a nondegenerate Lie algebra

over a field F with char(F ) > 5 which has a Jordan element c ∈ L such that Lc is a

Clifford Jordan algebra, then it can be shown via a grading of L and the TKK of the

Jordan pair of its extremes, which is a finitary orthogonal algebra, that c actually lives

in the skew elements of a simple ring with socle and involution of orthogonal type, and

that in addition verifies c2 6= 0 and c3 = 0, i.e., c is a Clifford element. Conversely,

we are able to show that if R is a centrally closed prime ring with involution such that

char(R) > 5 and with a Clifford element c, then Kc is a Clifford Jordan algebra. To

prove this we find that any symmetric von Neumann regular element of zero square can

be paired with another element of the same qualities, apply this result to c2 (which in

addition is a reduced element) to get a partner d, and develop a series of identities not

afar from Herstein’s theory which culminate by showing that cKc = Cc (with C the

extended centroid) and the fact that the element
√
d := dc+ cd is a regular partner for

c with very nice properties, in addition to being a square root of d. All these properties
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INTRODUCTION

are used to build a trace and a bilinear form on K, which then serve to prove the main

result about Kc.

In another order of things, the development of a general theory of Lie algebras with-

out finiteness conditions (e.g., for the strongly prime ones) will need the establishment

of elementary but fundamental properties which at present are not fully settled. The

Kostrikin radical of L, K(L), is the analogue in the Lie setting of Baer radical in the

associative setting and McCrimmon radical in the Jordan setting, and is thus defined

as the smallest ideal of L such that L/K(L) is nondegenerate. It was studied first in

[Filippov’81] and developed in [Zel’manov’83],[Zel’manov’84]. At the moment it is not

known whether the Kostrikin radical is the intersection of all strongly prime ideals, al-

though some advances have been made in [Garćıa&Gómez’11]. This result would imply

the deep fact that any nondegenerate Lie algebra is a subdirect product of strongly prime

Lie algebras. This fact could then be used to prove many results by standard subdirect

product arguments; for example, it could be used to show that if L is a nondegenerate

Lie algebra, a, b ∈ L and I(a) denotes the ideal generated by a, then [I(a), I(b)] = 0

if and only if [a, [b, L]] = 0, the analogue to the well-known associative property (if R

is semiprime and a, b ∈ R then I(a)I(b) = 0 if and only if aRb = 0). For Lie algebras

over arbitrary rings of scalars even less is known. So, for example, if L is a Lie algebra

over a field of characteristic 0 and I is an ideal of L then K(I) = K(L) ∩ I, but it is

not known whether this result keeps being true for more general rings of scalars. This

property of the Kostrikin radical was used by Zel’manov to set affirmatively a conjecture

of Filippov: given a nondegenerate Lie algebra L, an ideal I of L and a ∈ L such that

ad2
aI = 0, it is always true that a ∈ Ann(I). In Chapter 2 we include a proof of this

fact for Lie algebras over general rings of scalars (due to Fernández López and Gómez

Lozano). Then we build on it to show that, indeed, if L is nondegenerate and free of

6-torsion then [a, [b, L]] = 0 implies [I(a), I(b)] = 0. The approach is combinatorial,

based on identities of Jordan elements and absolute zero divisors, and is developed in a

series of steps which involve identities of increasing complexity.
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Resumen de la tesis (in Spanish)

0.1 Introducción

Las estructuras Lie y Jordan que provienen de álgebras asociativas (con o sin in-

volución) juegan un papel esencial en la clasificación de las álgebras simples en ambos

contextos no asociativos. En los años 1950, Herstein dio comienzo a un programa de

análisis de estas estructuras, basado en un estudio cuidadoso de identidades elementales

que se construyen paso a paso (en lo que llamaremos, de manera difusa, ‘un enfoque

combinatorio’). Comenzó mostrando ([Herstein’55]) que si R es un anillo simple en-

tonces R+ es simple, mientras que los ideales del anillo Lie R− o bien caen dentro de

Z(R) o bien contienen [R,R]. También mostró ([Herstein’55(2)]) que todo ideal Lie de

[R,R] cae en Z(R), de manera que [R,R]/([R,R] ∩ Z(R)) es simple siempre que R es

simple y char(R) 6= 2, 3, lo cual prueba que este hecho, ya observado en los teoremas

de clasificación, no se debe a ninguna condición de finitud. Con la misma motivación,

demostró en [Herstein’56] que si R tiene involución y char(R) 6= 2, entonces el sub-

anillo Lie K de los elementos antisimétricos y el subanillo Jordan H de los elementos

simétricos son simples excepto cuando R tiene dimensión 4 o menos sobre su centro.

Este programa ha sido continuado, entre otros, por Baxter (que estudió los casos de

caracteŕıstica 2 y 3 en [Baxter’56]), Erickson (que generalizó los resultados a anillos

primos con involución), Benkart (quien determinó la estructura interna Lie de R y K en

anillos simples en [Benkart’76]), Martindale (que introdujo en el programa las potentes

herramientas de la teoŕıa GPI, como ejemplifica [Martindale&Miers’86]) y Fernández
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0.1. INTRODUCCIÓN RESUMEN

López (quien determinó la estructura Lie interna de los anillos primos centralmente cer-

rados en [Fernández’14]), y fue también desarrollada de manera extensa en los libros

de Herstein [TopicsRingTheory] y [RingsInvolution]. La teoŕıa de Herstein produce una

bella interacción entre las propiedades asociativas de un anillo y sus estructuras no aso-

ciativas. Aśı por ejemplo, cuando R es simple con involución, char(R) 6= 2 y R tiene

dimensión mayor que 4 sobre su centro, entonces los subanillos asociativos generados

por H y por K coinciden con R.

Buena parte de esta tesis puede ser adscrita al programa de Herstein. Uno de sus

objetivos principales es la determinación de la estructura Lie interna de K cuando R

es un anillo primo centralmente cerrado con involución, es decir, la clasificación de

sus ideales internos (abelianos), que se consigue en el caṕıtulo 3. Estos ideales inter-

nos aparecen en clases análogas a las de R− (llamadas isotrópica, estándar y especial),

más un tipo de ideal interno exclusivo de K, pero que ya aparece cuando R es sim-

ple con zócalo, el ideal interno Clifford. Los ideales internos Clifford fueron descritos

por Benkart en función de bases del álgebra, y también lo fueron geométricamente

en [Fernández,Garćıa&Gómez’06(2)] mediante planos hiperbólicos. Aún no exist́ıa en

la literatura una descripción de estos ideales internos en términos de teoŕıa de anil-

los; mostramos una en el mismo caṕıtulo, en función de idempotentes minimales ∗-

ortogonales. Para determinar la clasificación de los ideales internos de K cuando R es

simple, Benkart utilizó la estructura Lie de R y K tal como estaba desarrollada en la

teoŕıa de Herstein. Lo mismo podŕıa hacerse en el contexto primo utilizando resulta-

dos de Lanski y Martindale pero, aunque manteniendo el esṕıritu combinatorio, hemos

preferido reducir el caso de K al caso de R−. Para conseguir esto, demostramos en

el caṕıtulo 1 (dedicado por entero a la estructura de K), principalmente mediante la

recolección e interrelación de resultados ya conocidos, que 〈K〉, el subanillo generado

por K dentro de R, es primo y contiene un ideal de R excepto si [K,K] = 0.

Los ideales internos Clifford de K, al ser aquellos que no cuentan con contrapartida

en R−, son los ideales internos con un comportamiento más diferente al de los demás.
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RESUMEN 0.1. INTRODUCCIÓN

La razón principal es que son los únicos que contienen elementos Jordan c tales que

c2 6= 0 pero c3 = 0, llamados elementos Clifford por nosotros. Esto garantiza que R

tiene zócalo e involución de tipo ortogonal. En el caṕıtulo 4 llevamos a cabo un estudio

de los elementos Clifford, pues poseen un interés independiente. Los elementos Jordan

son llamados de esta manera porque asociada a cada elemento Jordan a ∈ L existe un

álgebra de Jordan La que se comporta como un álgebra local de L. Si L es un álgebra

de Lie no degenerada sobre un cuerpo F con char(F ) > 5 que posee un elemento Jordan

c ∈ L tal que Lc es un álgebra de Jordan de Clifford, entonces puede demostrarse v́ıa

una graduación de L y la TKK del par de Jordan de sus extremos, que es un álgebra

finitaria ortogonal, que c en realidad vive en los elementos antisimétricos de un anillo

simple con zócalo e involución de tipo ortogonal, que además verifica c2 6= 0 y c3 = 0, es

decir, que c es un elemento Clifford. Rećıprocamente, demostramos en el caṕıtulo 4 que

si R es un anillo primo centralmente cerrado con involución tal que char(R) > 5 y con

un elemento Clifford c, entonces Kc es un álgebra de Jordan de Clifford. Lo logramos

basándonos en resultados del caṕıtulo 1 y desarrollando un enfoque combinatorio al

estilo de la teoŕıa de Herstein.

Por otro lado, para conseguir una teoŕıa general para álgebras de Lie sin condi-

ciones de finitud (por ejemplo, para las fuertemente primas) se necesitaŕıa estable-

cer propiedades elementales pero fundamentales que a d́ıa de hoy no están comple-

tamente determinadas. El radical de Kostrikin de L, K(L) (estudiado originalmente

en [Filippov’81] y desarrollado en [Zel’manov’83],[Zel’manov’84]), es el análogo en el

contexto Lie del radical de Baer en el contexto asociativo y del radical de McCrimmon

en el contexto Jordan. Por el momento se desconoce si el radical de Kostrikin es la

intersección de todos los ideales fuertemente primos del álgebra, aunque se han pro-

ducido algunos avances en este sentido en [Garćıa&Gómez’11]. Si esta conjetura fuera

cierta, entonces cualquier álgebra de Lie no degenerada seŕıa un producto subdirecto

de álgebras de Lie fuertemente primas, un resultado profundo que a su vez podŕıa ser

utilizado para demostrar muchos otros resultados mediante argumentos estándar sobre
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productos subdirectos; por ejemplo, podŕıa ser usado para mostrar que si L es un álgebra

de Lie no degenerada, a, b ∈ L y I(a) es el ideal generado por a, entonces [I(a), I(b)] = 0

si y solamente si [a, [b, L]] = 0, el análogo a la bien conocida propiedad asociativa (si

R es semiprima y a, b ∈ R entonces I(a)I(b) = 0 si y sólo si aRb = 0). Se sabe aún

menos sobre álgebras de Lie sobre anillos de escalares arbitrarios. Por ejemplo, si L es

un álgebra de Lie sobre un cuerpo de caracteŕıstica 0 e I es un ideal de L, entonces

K(I) = K(L) ∩ I, pero no se sabe si este resultado sigue siendo cierto para anillos

de escalares más generales. Esta propiedad del radical de Kostrikin fue utilizada por

Zel’manov para responder afirmativamente una conjetura de Filippov: dada un álgebra

de Lie L no degenerada, un ideal I de L y a ∈ L tal que ad2
aI = 0, es siempre cierto que

a ∈ Ann(I). En el caṕıtulo 2 incluimos una demostración de este hecho para álgebras

de Lie sobre anillos de escalares generales (debida a Fernández López y Gómez Lozano).

Después nos basamos en ella para demostrar que, de hecho, si L es no degenerada y

libre de torsión 6 entonces [a, [b, L]] = 0 implica que [I(a), I(b)] = 0.

0.2 Preliminares

Anillos y álgebras. Por regla general, los anillos considerados en esta tesis son

no necesariamente unitarios, y las álgebras lo son sobre anillos de escalares Φ (que son

conmutativos y unitarios). Toda álgebra asociativa R da lugar a un álgebra de Lie R−

(o simplemente R, por abuso de notación), cuyo grupo aditivo subyacente es el mismo,

cuando se equipa con el producto corchete [x, y] := xy − yx. De manera similar, si

1
2
∈ Φ entonces R da lugar a un álgebra de Jordan lineal R+ con mismo grupo aditivo

subyacente cuando se equipa con el producto 1
2
(x ◦ y), denotando x ◦ y := xy+ yx. Esto

además dota a R de estructura de sistema triple de Jordan con producto cuadrático

Pxy := xyx y producto triple {x, y, z} := xyz + zyx. Si además R es un álgebra con

involución ∗, entonces el conjunto H := Sym(R, ∗) := {x ∈ R | x∗ = x} de los elementos

simétricos de R es un álgebra de Jordan (y un sistema triple) sobre Sym(Φ, ∗) con los
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productos heredados de R+, y el conjunto K := Skew(R, ∗) := {x ∈ R | x∗ = −x} de

los elementos antisimétricos de R es un álgebra de Lie y un sistema triple de Jordan

sobre Sym(Φ, ∗) cuando se equipa con el producto corchete y el producto cuadrático.

Estructuras relacionadas. Dada un álgebra A, denotamos por TF (A) el conjunto

de enteros para los que A es libre de torsión. El álgebra de multiplicación M(A) es

la subálgebra unitaria (asociativa) de EndΦ(A) generada por todos los operadores de

multiplicación a izquierda y derecha. El centroide ΓΦ(A) (o simplemente Γ si A es un

anillo) es el centralizador de M(A) dentro de EndΦ(A). Si a ∈ A denotamos por I(a) el

ideal generado por a en A.

Álgebras asociativas primas y semiprimas. Un álgebra A es prima (semiprima)

cuando IJ = 0 (I2 = 0) implica I = 0 o J = 0 (I = 0), con I, J ideales de A. Si R es un

álgebra asociativa entonces R es prima (semiprima) si y solamente si aRb = 0 (aRa = 0)

implica a = 0 o b = 0 (a = 0). Un anillo es primo (semiprimo) si lo es como Z-álgebra.

Si R es primo con zócalo, diremos que un elemento a ∈ R es minimal si I(a) es minimal.

Un elemento reducido es un elemento a ∈ R minimal tal que aRa = Fa con F un cuerpo.

Los anillos primos con zócalo pueden ser caracterizados como anillos de operadores de

pares duales de espacios vectoriales, lo que permite anexarles un modelo geométrico que

transporta ideas y métodos del contexto de la geometŕıa lineal al algebraico (este modelo

puede consultarse en el apéndice A).

Sea R un anillo semiprimo. Consideramos tanto el anillo de cocientes de Martindale

bilátero (derecha) de R, Q(R), como el simétrico Qs(R) (véase [RingsGIs, Section 2.2]).

El centro de Qs(R) coincide con el de Q(R) y es denominado el centroide extendido de

R, denotado por C(R) (simplemente como C si R es un anillo). El centroide extendido

contiene el centroide y el centro. La clausura central de R es el subanillo CR de Qs(R),

y su clausura central unitaria es R̂ := CR + C. R se dice centralmente cerrado cuando

CR = R. Tanto CR como R̂ son centralmente cerrados, como lo es cualquier anillo

simple. Si R es primo entonces C es un cuerpo. Si C denota la clausura algebraica de C,

entonces la extensión de escalares R := R̂⊗C C es centralmente cerrada.
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Representación adjunta. Sea L un álgebra de Lie, y denotemos por Der(L) el

conjunto de sus derivaciones. Debido a la identidad de Jacobi, la aplicación adjunta que

env́ıa x ∈ L a [x, · ] ∈ Der(L) es un homomorfismo de álgebras de Lie, cuyo núcleo es

Z(L). Las derivaciones del tipo [a, · ] con a ∈ L se denominan derivaciones internas.

El conjunto de las derivaciones internas se denota por Inn(L). La aplicación adjunta se

suele denotar por ad : L → Der(L) con adx(y) := [x, y], aunque en esta tesis también

adoptamos de manera sistemática una notación más clara que denota mediante una letra

mayúscula la adjunta del elemento representado por la misma letra en minúscula. Aśı,

A ≡ ada en Inn(L) con a ∈ L. Debido a la identidad de Jacobi, la aplicación adjunta

transforma identidades del álgebra de Lie en identidades de sus endomorfismos (una

técnica usada originalmente por Kostrikin, véanse [Kostrikin’59] y [AroundBurnside]).

Por ejemplo, si a ∈ L es tal que A2(x) = 0 para todo x ∈ L, entonces adA2(x) también

es 0 y por tanto adA2(x) = ad[a,[a,x]] = [A, [A,X]] = 0 para todo X ∈ Inn(L). Pero

[A, [A,X]] = A2X − 2AXA + XA2 = −2AXA ya que A2 = 0, y en consecuencia

AXA = 0 si 2 ∈ TF(L).

Elementos Lie destacables. Un elemento a ∈ L es un divisor absoluto de cero

si ad2
aL = 0. L se dice no degenerada cuando no posee divisores absolutos de cero no

nulos, fuertemente prima cuando es prima y no degenerada. El radical de Kostrikin de

L, K(L), es el menor ideal de L tal que L/K(L) es no degenerada. Un elemento a ∈ L

es un elemento Jordan si ad3
aL = 0. Un ideal interno de L es un submódulo B tal que

[B, [L,B]] ⊆ B, y es abeliano si además [B,B] = 0. Por ejemplo, si L =
⊕
−n≤i≤n

Li es

una Z-graduación finita, entonces L−n y Ln son ideales internos abelianos de L. Todos

los elementos de un ideal interno abeliano son Jordan y rećıprocamente, si 3 ∈ TF(L) y

a ∈ L es Jordan, entonces ad2
aL es un ideal interno abeliano de L (véase 4.1.3).
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0.3 Caṕıtulo 1: K, elementos antisimétricos

de un anillo con involución

El caṕıtulo 1 está dedicado por entero a la estructura de K cuando R es un anillo

con involución tal que 1
2
∈ Γ (condición asumida impĺıcitamente a partir de ahora).

Recoge resultados útiles e importantes que son necesarios posteriormente en los caṕıtulos

3 y 4. La primera sección es recordatoria: incluye las definiciones relevantes y los

resultados estándar sobre involuciones, el modelo geométrico para anillos primos con

zócalo e involución y los tipos de involución asociados, cuyas propiedades resume la

siguiente tabla (∆ es un anillo de división, F un cuerpo):

Tipo de involución Forma bilineal Anillo de división Elementos

Traspuesta: ortogonal Simétrica F = Sym(F, )̄ ∃a = a∗ minimal

Traspuesta: unitaria Hermı́tica o skew ∆ 6= Sym(∆,̄ ) ∃a = a∗ minimal

Simpléctica Alternante F = Sym(F, )̄ a∗a = 0 ∀a minimal

Además, si R es un anillo primo con involución ∗, ésta puede extenderse a Qs(R).

Entonces se dice que ∗ es de primera clase si es trivial en C, de segunda clase si existe

un elemento no nulo en Skew(C, ∗).

La segunda sección introduce propiedades elementales de K. Exponemos las dos más

relevantes para esta tesis:

• Es bien conocido que si R es semiprimo entonces K, como sistema triple de Jordan, es

no degenerado. Este resultado admite variantes, muy útiles para llevar a cabo cálculos

con identidades:

Lema 1.2.4 (Lemas de reducción).

Sea R un anillo semiprimo con involución. Sean k ∈ K y 0 6= h ∈ H.

1. kKk = 0 implica k = 0.

2. hKh = 0 implica 0 6= hRh ⊆ Ch en R̂.

3. Si I(h) es esencial, entonces hKh = 0 y hKk = 0 implican k = 0.
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Además, si R es primo y hKh = 0, entonces hR̂h = Ch y CR y R̂ tienen zócalo no

nulo e involución de tipo ortogonal.

• Supongamos que a ∈ K es un elemento regular von Neumann de R. Entonces existe

b ∈ R tal que aba = a, elemento al que llamamos una pareja de a. Sean bh := 1
2
(b+b∗)

y bk := 1
2
(b−b∗). Si deseamos una pareja de a que sea también antisimétrica, podemos

tomar b′ := bk, puesto que abha+ abka = aba = a = −a∗ = −(aba)∗ = −abha+ abka,

aśı que 0 = abha y a = aba = abka. Si además queremos una pareja c de a tal que a

sea a su vez una pareja de c, podemos tomar c := b′ab′. Obsérvese que c∗ = (b′ab′)∗ =

−b′ab′ = −c, aśı que c también es antisimétrico. Si además de todo eso a es un

elemento de cuadrado cero, entonces el elemento d := c − c2a es una pareja de a tal

que dad = d y d2 = 0. Pero d no es antisimétrico. Con algo más de esfuerzo se puede

encontrar una pareja de a antisimétrica y de cuadrado cero, lo que denominamos una

bella pareja (este resultado aparecerá en [Brox,Fernández&Gómez(2)]):

Lema 1.2.5 (Lema de la bella pareja).

Sea R un anillo con involución y sea a ∈ K un elemento regular von Neumann tal

que a2 = 0. Sea c como en el párrafo anterior. Entonces el elemento

d := c− 1
2
(ac2 + c2a) + 1

4
ac3a es tal que d ∈ K, ada = a, dad = d y d2 = 0.

Existe un resultado análogo cuando a es simétrico.

La tercera sección desarrolla una técnica que permite transportar resultados de anil-

los primos a K. La mayoŕıa de los hechos relevantes para esta sección ya eran conocidos

por separado, pero pensamos que se gana algo de conocimiento al tenerlos en cuenta de

manera simultánea. Denotemos por 〈K〉 el subanillo asociativo generado por K en R.

Su estructura es conocida ([RingsGIs, Lemma 9.1.5]) y cercana a K: 〈K〉 = K⊕(K◦K),

donde además K ◦K coincide con el subgrupo generado por {k2 | k ∈ K}. Por tanto,

hablando de manera laxa, 〈K〉 es K junto con sus cuadrados. La clave de la técnica

mencionada es el siguiente teorema:
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Teorema 1.3.2 (Buen comportamiento de 〈K〉).

Sea R un anillo primo con involución. Si [K,K] 6= 0 entonces el ideal generado por

[K,K]2 en R es no nulo y está contenido en 〈K〉. En particular 〈K〉 es un anillo primo

cuyo centroide extendido coincide con el de R.

Por tanto, si queremos probar un resultado P para K que sabemos cierto para

anillos primos, siempre que [K,K] 6= 0 podemos usar P para 〈K〉 y demostrar que

K hereda alguna versión de P (quizás deformada) debido a que 〈K〉 = K ⊕ (K ◦ K).

Si necesitamos una relación espećıfica entre P para K y P para R, entonces usaremos

también la conexión entre 〈K〉 y R a través de su ideal común no nulo. La única

restricción insalvable a este proceso es que ocurra [K,K] = 0 (en cuyo caso decimos que

K es excepcional). Afortunadamente, el siguiente teorema demuestra que esto sucede

sólo en casos concretos de dimensión pequeña:

Teorema 1.3.9 (Equivalencias de excepcionalidad).

Sea R un anillo primo con involución. Las siguientes condiciones son equivalentes.

i) R es conmutativo o Z(K) 6⊆ Z(R).

ii) [K,K] = 0.

iii) R es conmutativo o CR = R̂ es un álgebra central simple de dimensión 4 sobre C

(es decir, un álgebra de cuaternios generalizada) con involución de primera clase

y tipo traspuesto, y R ∼= M2(C) con la involución traspuesta.

La demostración que realizamos para ii) ⇒ iii) del teorema previo utiliza los teo-

remas fundamentales de la teoŕıa PI aplicados a anillos primos. Dedicamos la última

sección de este caṕıtulo a demostrar (proposición 1.4.2), mediante un enfoque combi-

natorio más elemental, que si R es cualquier anillo con involución (no necesariamente

semiprimo) tal que [K,K] = 0, entonces R satisface la identidad de Hall, [[x, y]2, z] = 0,

que es satisfecha por las álgebras de cuaternios.
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0.4 Caṕıtulo 2: Elementos ortogonales

en álgebras de Lie

El objetivo de este caṕıtulo es demostrar, siguiendo nuestro art́ıculo [Brox,Garćıa&Gómez’14],

que si L es un álgebra de Lie no degenerada tal que 6 ∈ TF(L) y a, b ∈ L, entonces

[I(a), I(b)] = 0 si y solamente si AB = 0. La implicación directa es obvia, y puesto que

[I(a), I(b)] = 0 si y solamente si a ∈ Ann(I(b)), es suficiente con demostrar que AB = 0

implica a ∈ Ann(I(b)). El caṕıtulo se subdivide en varias secciones con hipótesis de

partida de complejidad creciente (AXY B = 0, AXB = 0 y finalmente AB = 0, con

X, Y ∈ Inn(L) arbitrarios), cuyos resultados son aplicados sucesivamente para demostrar

el paso siguiente. Los casos con más variables entre A y B son más sencillos de tratar,

entre otras cosas, debido a la proposición Hacia Abajo ([Garćıa&Gómez’07, Proposition

1.3]):

Proposición 2.1.7 (Hacia Abajo).

Sea L un álgebra de Lie no degenerada y sean a, b ∈ L tales que AX1 . . . XnB = 0 para

todos los x1, . . . , xn ∈ L. Entonces, si 0 ≤ m ≤ n, se tiene que AX1 . . . XmB = 0 para

todos los x1, . . . , xm ∈ L. Además [a, b] = 0.

La demostración de que si L es no degenerada entonces AXY B = 0 implica a ∈

Ann(I(b)) fue llevada a cabo en [Garćıa&Gómez’07, Proposition 1.5] a partir de la

proposición Hacia Abajo.

Caso AXB = 0

Para demostrar que AXB = 0 implica a ∈ Ann(I(b)) necesitamos contar con ciertas

propiedades básicas de los anuladores de ideales, que a su vez necesitan de varias identi-

dades sobre elementos Jordan y divisores absolutos de cero, que se demuestran mediante

la técnica de Kostrikin:
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Lema 2.1.1 (Fórmula fundamental para elementos Jordan).

Sea L un álgebra de Lie tal que 3 ∈ TF(L) y sea a ∈ L un elemento Jordan.

Sea x ∈ L arbitrario. Entonces ad2
A2(x) = A2X2A2.

Esta identidad ([Benkart’77, Lemma 1.7(i),(iii)]), ad2
ad2a(x) = ad2

aad
2
xad

2
a, toma su

nombre de la fórmula fundamental para álgebras de Jordan UUx(y) = UxUyUx (véase

[TasteJordanAlgebras, páginas 5 a 9]).

Lema 2.1.2 (Identidades para divisores absolutos de cero).

Sea L un álgebra de Lie tal que 2 ∈ TF(L) y sea a ∈ L un divisor absoluto de cero.

Sean x, y ∈ L arbitrarios. Entonces:

1. AXA = 0. 2. AXY A = AYXA. 3. ad2
A(x) = −AX2A.

4. AXY A(z) = AXZA(y) = AY ZA(x). 5. AX2AX2A = 0 si además 3 ∈ TF(L).

También utilizamos que si a ∈ L es un divisor absoluto de cero y 2 ∈ TF(L),

entonces A(L) es un ideal interno abeliano, un caso particular de [Garćıa&Gómez’09,

Theorem 2.3]. Con estas herramientas se prueba el siguiente resultado, útil para reducir

identidades:

Teorema 2.1.5 (Ideal no degenerado como álgebra).

Sea L un álgebra de Lie tal que 6 ∈ TF(L) y sea I un ideal de L que, como álgebra, es

no degenerado. Entonces Ann(I) = {x ∈ L | X2(I) = 0} y además Ann(I) es un ideal

no degenerado.

En la demostración de la proposición principal de esta sección son necesarias identi-

dades espećıficas, que se demuestran mediante la técnica de Kostrikin:

Proposición 2.3.1 (Identidades del caso AXB = 0).

Sea L un álgebra de Lie no degenerada y sean a, b ∈ L tales que AXB = 0 para todo

x ∈ L. Sean x, y, z, w ∈ L arbitrarios. Entonces:

1. AB = BA = BXA = 0 y [a, b] = 0. 2. AXY B = AYXB.

3. AXY B = BYXA. 4. A2XY B = 0 = AXY B2. 5. AXAY ZB = 0 = BXBY ZA.

6. A2XY ZB = 0 = AXY ZB2. 7. A2XY ZWB2 = 0.
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La proposición principal del caso AXB = 0 se demuestra ahora usando las identi-

dades previas para probar que adA2(x)ZWadB2(y) = 0 para todos los x, y, z, w ∈ L, lo

que lleva a a ∈ Ann(I(b)) a través de un lema técnico y del caso AXY B = 0.

Caso AB = 0

La demostración de que AB = 0 implica a ∈ Ann(I(b)) es similar a la del caso

AXB = 0 en cuanto a estructura, pero más compleja en su ejecución. Las identidades

utilizadas en este paso son las siguientes:

Proposición 2.4.2 (Identidades del caso AB = 0).

Sea L un álgebra de Lie no degenerada y sean a, b ∈ L tales que AB = 0.

Sean x, y, z ∈ L arbitrarios. Entonces:

1. BA = 0 y [a, b] = 0. 2. AXB = −BXA. 3. AXB2 = A2XB = A2XY B2 = 0.

4. AXAY B = BXAY A. 5. AXY B2 = AYXB2.

6. A2XY B = 2BXAY A+ 2BY AXA−BXY A2 y

AXY B2 = 2AY BXB + 2AXBY B −B2Y XA.

7. A2XY ZB2 = 2AXAY BZB + 2AXAZBY B + 2AY AXBZB+

+2AY AZBXB + 2AZAXBY B + 2AZAY BXB.

El teorema principal se demuestra probando, gracias al caso AXB = 0, que a es

un elemento Jordan de L/Ann(I(b)) y usando la fórmula fundamental de los elementos

Jordan junto con las identidades previas para mostrar que adA2(X2A2(y))V adB2(Z2B2(w)) =

0 para todos los x, y, z, w, v ∈ L. A partir de aqúı, el caso AXB = 0 y un lema técnico

implican el resultado deseado.
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0.5 Caṕıtulo 3: Ideales internos

Este caṕıtulo comienza con un resumen de la historia de la clasificación de los ide-

ales internos en distintos contextos y de las técnicas usadas en los art́ıculos previos.

Entre ellos cabe destacar [McCrimmon’71] (que los clasifica en álgebras de Jordan1 de

capacidad finita, y en particular en R+ y H, gracias al segundo teorema de estructura),

[Fernández&Garćıa’99] (que extiende la clasificación a álgebras de Jordan no degener-

adas de capacidad infinita mediante el modelo geométrico), [Benkart’76] (que los estudia

en las álgebras de Lie [R,R]/Z([R,R]) y [K,K]/([K,K] ∩ Z(R)) cuando R es simple

artiniano (con involución)), [Benkart&Fernández’09] (que extiende la clasificación pre-

via a anillos simples con zócalo (e involución) mediante el modelo geométrico, y corrige

una omisión en el art́ıculo anterior) y [Fernández’14] (que extiende la clasificación a R

primo centralmente cerrado mediante el lema de Herstein, véase más abajo, para ideales

internos Lie abelianos). Nuestro art́ıculo [Brox,Fernández&Gómez(1)] puede verse como

el siguiente paso natural, pues lleva la clasificación a K cuando R es primo centralmente

cerrado con involución. Para lograrlo, por un lado nos basamos en el modelo geométrico

y por otro trasladamos el lema de Herstein de R a K mediante la técnica basada en

〈K〉 desarrollada en el caṕıtulo 1. La siguiente sección del caṕıtulo revisa brevemente el

desarrollo histórico del resultado que en esta tesis denominamos lema de Herstein, que

establece que (en ciertos contextos y con condiciones de torsión suficientemente bue-

nas) cualquier elemento adnilpotente2 es la suma de uno nilpotente y uno central. La

primera versión de este lema apareció en [Herstein’63] para anillos simples, y fue pos-

teriormente extendido a anillos primos centralmente cerrados ([Martindale&Miers’83])

y a semiprimos centralmente cerrados ([Grzeszczuk’92]). Además existe en la literatura

una versión para K cuando R es primo centralmente cerrado y K no es excepcional

([Martindale&Miers’91]), que como ya hemos mencionado demostramos de manera sen-

cilla en esta tesis mediante la técnica basada en 〈K〉 (incluimos sólo la demostración

1Un ideal interno de un álgebra de Jordan J es un submódulo B tal que UBJ ⊆ B.
2Un elemento a de un álgebra de Lie L se dice adnilpotente cuando existe n ∈ N tal que An(L) = 0.
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para elementos Jordan):

Proposición 3.2.1 (Lema de Herstein para elementos Jordan).

Sea R un anillo centralmente cerrado con involución ∗ tal que char(R) 6= 2, 3, 5 y

[K,K] 6= 0, y sea a ∈ K un elemento Jordan de K. Entonces:

1. Si la involución es de segunda clase entonces a = v + z, donde z ∈ Skew(C, ∗) y

v2 = 0.

2. Si la involución es de primera clase entonces a3 = 0. Más aún, si a2 6= 0 entonces

a2 es un elemento reducido y R tiene zócalo no nulo e involución de tipo ortogonal.

La demostración consiste esencialmente en probar que ad3
aK = 0 implica ad5

a〈K〉 = 0

gracias a que 〈K〉 = K + K ◦K y a la regla de Leibniz y en usar entonces el lema de

Herstein con n = 5 en 〈K〉, que es primo y con mismo centroide extendido que R porque

K no es excepcional. La afirmación sobre la estructura de R cuando la involución es de

primera clase y a2 6= 0 se deduce de los lemas de reducción.

El lema de Herstein es el resultado que abre las puertas de la clasificación de los

ideales internos Lie abelianos de K (como ya hab́ıa sido reconocido por Benkart en el

contexto simple) debido a que todo elemento de un ideal interno abeliano es un elemento

Jordan. Nuestro estudio se fundamenta en el estudio previo para R llevado a cabo en

[Fernández’14], razón por la que revisamos los resultados de dicho art́ıculo en la tercera

sección. Nuestra clasificación comienza en la cuarta sección. Dada un álgebra semiprima

R con involución, definimos varias clases de ideales internos Lie abelianos de K:

• Un ideal interno isotrópico de K es un submódulo V tal que V 2 = 0.

• Supongamos que Skew(Z(R), ∗) 6= 0. Un ideal interno es estándar si es de la forma

V ⊕ Ω con V un ideal interno isotrópico y 0 6= Ω un submódulo de Skew(Z(R), ∗).
• Supongamos de nuevo que Skew(Z(R), ∗) 6= 0. Un ideal interno especial de K es de

la forma inn(V, f) := {v + f(v) | v ∈ V }, donde V es un ideal interno isotrópico y

f : V → Skew(Z(R), ∗) es una aplicación lineal tal que [V, [V,K]] ⊆ ker f .

• Supongamos ahora R primo con zócalo no nulo, de manera que K es una subálgebra

de o(X) que contiene fo(X) (véase 3.4.3). Un ideal interno de K es Clifford si es
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de la forma [x,H⊥] := {[x, z] | z ∈ H⊥}, con x un vector isotrópico no nulo y H un

plano hiperbólico asociado (véase 3.4.14).

A lo largo de varias subsecciones demostramos las propiedades elementales de cada

uno de los distintos tipos de ideal interno. Las más relevantes y complejas son las

asociadas a los Clifford, de entre las que destacamos sus diferentes caracterizaciones

(desde el punto de vista de la teoŕıa de anillos y mediante elementos distinguidos):

Proposición 3.4.18 (Estructura de los ideales internos Clifford).

Sea L un álgebra de Lie tal que fo(X) ≤ L ≤ o(X) y sea B un subconjunto de L.

B es un ideal interno Clifford de L si y solamente si B = κ((1 − e)fo(X)e), donde

κ(x) := x − x∗ es la antitraza y e ∈ F(X) es un idempotente minimal ∗-ortogonal, en

cuyo caso B = κ((1− e)Se) para cualquier subconjunto fo(X) ⊆ S ⊆ L(X).

Proposición 3.4.19 (Caracterización de los ideales internos Clifford).

Sea R un álgebra prima centralmente cerrada con char(R) 6= 2, 3, 5 e involución tal que

[K,K] 6= 0. Si B es un ideal interno Lie abeliano de K tal que b2 6= 0 para algún b ∈ B,

entonces B es un ideal interno Clifford de K.

Gracias a esta última caracterización y a la clasificación del caso R se puede de-

mostrar que todos los ideales internos Lie abelianos de K en el caso primo centralmente

cerrado son de una de las cuatro clases definidas previamente:

Teorema 3.4.20 (Clasificación de los ideales internos Lie abelianos de K).

Sea R un álgebra prima centralmente cerrada de char(R) 6= 2, 3, 5 e involución ∗ tal que

[K,K] 6= 0. Si B es un ideal interno Lie abeliano de K, entonces o bien

1. B = V es isotrópico,

2. B = V ⊕ Skew(C, ∗) es estándar,

3. B = inn(V, f) es especial, o

4. B = κ((1− e)Re) es Clifford.

Además, en los casos (2) y (3) R es unitaria y ∗ es de segunda clase, mientras que en

el caso (4) R tiene zócalo no nulo y ∗ es de tipo ortogonal.
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0.7 Caṕıtulo 4: Elementos Clifford

Sea R un anillo primo centralmente cerrado con involución ∗ de primera clase tal que

char(C) 6∈ {2, 3, 5}. Por el lema de Herstein sabemos que si [K,K] 6= 0 entonces cualquier

elemento Jordan a ∈ K cumple o bien a2 = 0 o bien a2 6= 0 y a3 = 0. Consecuentemente

llamaremos elemento Clifford de R a cualquier elemento Jordan c ∈ K tal que c2 6= 0

y c3 = 0. Los cuadrados de los elementos Clifford poseen propiedades sencillas que son

útiles para realizar cálculos. En concreto son reducidos, lo que determina en parte la

estructura de (R, ∗).

Proposición 4.2.2 (Propiedades de los cuadrados de los elementos Clifford).

Sea c ∈ K un elemento Clifford de R. Entonces:

1. c2Kc2 = 0. 2. c2Rc2 = Cc2. 3. c2k1k2c
2 = c2k2k1c

2 para todos los k1, k2 ∈ K.

4. R tiene zócalo no nulo e involución de tipo ortogonal.

Observemos que c2 es regular von Neumann porque es reducido. Además c2 es

simétrico y de cuadrado cero (puesto que c3 = 0). Por el lema de la bella pareja existe

d ∈ R tal que d∗ = d, d2 = 0, c2dc2 = c2 y d = dc2d. Las bellas parejas de c2, y sus

idempotentes asociados, satisfacen más propiedades interesantes.

Proposición 4.2.3 (Propiedades de la bella pareja).

Sean c un elemento Clifford y d una bella pareja de c2.

1. dKd = 0 y dRd = Cd.

2. Existe un idempotente ∗-ortogonal e ∈ R tal que eRe = Ce, e∗Re = Cc2, eRe∗ = Cd

y e∗Ke = 0 = eKe∗.

3. ec = ce∗ = 0, e∗c2e = e∗c2 = c2e = c2 y ede∗ = ed = de∗ = d.

4. [K,K] 6= 0. En particular R no es un álgebra de matrices 2× 2 sobre C.

5. e∗ 6= 1− e en R̂.

La existencia de elementos Clifford en R está ligada a la existencia de idempotentes

del tipo de la proposición anterior.
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Teorema 4.2.4 (Existencia de elementos Clifford).

R posee un elemento Clifford si y solamente si [K,K] 6= 0 y existe un idempotente

∗-ortogonal e ∈ R tal que eRe = Ce y e∗Ke = 0.

Observemos que si e es un idempotente asociado a c, puesto que e∗ 6= 1− e, tenemos

que el idempotente simétrico g := 1 − e − e∗ es no nulo. El conjunto {e∗, g, e} es un

sistema completo de idempotentes ortogonales y por lo tanto genera la 5-graduación

R = gRe ⊕ (gRe∗ ⊕ e∗Re) ⊕ (gRg ⊕ e∗Re∗ ⊕ eRe) ⊕ (eRe∗ ⊕ e∗Rg) ⊕ eRg. Debido

a las propiedades mostradas más arriba, este conjunto resulta generar también una

3-graduación de K:

Teorema 4.2.5 (3-graduación).

Sean c ∈ K un elemento Clifford, d una bella pareja de c2 y e := dc2. Sea g := 1−e−e∗.

Entonces K = K−1 ⊕K0 ⊕K1 con K−1 := κ(gRe), K0 := κ(eRe)⊕ gKg,K1 := κ(eRg)

es una 3-graduación de K en la que la componente homogénea i-ésima ki de cualquier

k ∈ K coincide con
⊕
m−n=i

κ(emken), con e0 := e∗, e1 := g, e2 := e.

El teorema 4.2.6 demuestra que el elemento Clifford cae en la componente K−1 de

cualquiera de estas 3-graduaciones (componente que de hecho es invariante para todas

las bellas parejas de c2), lo que implica que cKc = Cc, uno de los hechos más relevantes

para el desarrollo de los resultados de este caṕıtulo.

Álgebra de Jordan en un elemento Clifford

Existe un álgebra de Jordan asociada a cualquier elemento Jordan de un álgebra de Lie:

Teorema 4.1.2 (Álgebra de Jordan en un elemento Jordan).

Sea L un álgebra de Lie tal que 3 ∈ TF(L) y sea a ∈ L un elemento Jordan. Entonces

L equipada con el producto x • y := [[x, a], y] es un álgebra, denotada por L(a), tal que:

1. ker(a) := {x ∈ L | A2(x) = 0} es un ideal de L(a).

2. La := L(a)/ ker(a) es un álgebra de Jordan tal que Ux̄(ȳ) = X2A2(y).
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Cuando a es regular von Neumann con pareja b, La es isomorfa a (ad2
aL,+, •), con

x • y := [x, [b, y]] (([Fernández,Garćıa&Gómez’06, Proposition 2.11])).

Si F es un cuerpo con char(F ) 6= 2 y X es un espacio F -vectorial equipado con una

forma bilineal simétrica 〈· , ·〉, el espacio vectorial F ⊕X puede ser dotado de estructura

de álgebra de Jordan con el producto (α + x) • (β + y) := αβ+〈x, y〉 + βx+αy para

α, β ∈ F y x, y ∈ X. Esta álgebra de Jordan es unitaria y especial, pues es isomorfa a

la subálgebra de Jordan del álgebra de Clifford asociativa definida por 〈· , ·〉. Por esta

razón F ⊕ X es llamada en ocasiones un álgebra de Clifford de Jordan, nomenclatura

que seguimos en esta tesis. El resto del caṕıtulo demuestra que el álgebra de Jordan Kc

asociada a un elemento Clifford c es un álgebra de Jordan de Clifford. Para probarlo se

necesitan más herramientas básicas. Por la razón obvia introducimos la notación

√
d := cd+ dc.

Proposición 4.3.2 (Propiedades de la ráız cuadrada de d).

1.
√
d ∈ K1 en la 3-graduación del teorema 4.2.5. En particular

√
d es Jordan.

2. (
√
d)2 = d. 3. (

√
d)3 = 0. 4.

√
dK
√
d = C

√
d. 5.

√
dc
√
d =
√
d. 6. c

√
dc = c.

7. c2 ◦
√
d = c. 8. d ◦ c =

√
d. 9. ad2

c(−
√
d) = c. 10. ad2

−
√
d
c = −

√
d.

11. [[c,
√
d], b] = b para todo b ∈ K−1.

La imagen de
√
d juega el papel de elemento unidad en Kc. La estructura Clifford

de Kc se construye sobre dos formas:

Formas

• El teorema 4.2.6(4) muestra que ckc = µkc para todo k ∈ K. Denotamos tr(k) :=

µk y la denominamos traza de k.

• La proposición 4.2.2(2) muestra que c2xc2 = λxc
2 para todo x ∈ R. Denotamos

〈k, k′〉 := λkk′ para todos los k, k′ ∈ K. Entonces 〈· , ·〉 es una forma bilineal

simétrica sobre C (por la proposición 4.2.2(3)).

La traza ayuda a identificar la estructura de suma directa del álgebra de Jordan

de Clifford: puesto que c y −
√
d son pareja regular (por la proposición 4.3.2(9),(10)),
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tenemos que Kc es isomorfa a (ad2
cK,+, •). Vemos que ad2

cK puede escribirse como

Cc⊕B0, con B0 definido a partir de los elementos de traza cero:

Proposición 4.3.4 (Estructura de ad2
cK).

Sean c un elemento Clifford, d una bella pareja de c2 y e := dc2. Entonces:

1. K−1 = c2 ◦K. En particular B := K−1 es invariante.

2. B = B0 ⊕ Cc, donde B0 := {c2 ◦ k | k ∈ ker(tr)}.

3. B = ad2
cK.

Finalmente, la forma bilineal ayuda a construir el producto Clifford:

Teorema 4.4.2 (Kc es un álgebra de Jordan de Clifford).

El álgebra de Jordan (ad2
cK,+, •) ∼= Kc es un álgebra de Jordan de Clifford en la que

Cc hace de parte escalar, B0 hace de parte vectorial y la forma bilineal asociada de B0

a Cc es 〈c2 ◦ k1, c
2 ◦ k2〉0 := −〈k1, k2〉c.
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List of used symbols

a, b, c, d Fixed elements of an algebra

x, y, z, w, v Arbitrary elements of an algebra

v, z A nilpotent element and a central element

e, f, g Idempotents

x̄ The class of equivalence of x modulo some ideal

~x, ~u,~v Vectors of some vector space, to distinguish them from operators

u, v, w Vectors of some vector space, when ubiquitous

In Identity matrix of size n× n

h, h1, k, k1 h and h1 symmetric elements, k and k1 skew elements

λ, µ, α, β Scalars, usually in the extended centroid

n,m, k Natural numbers (coefficients, exponents and indices)

i, j, k Indices

δij Kronecker delta, δij := 1 if j = i, δij := 0 if j 6= i

b nmc Nearest integer to n
m from below

char(A) Characteristic of the algebra A. In this text, char(A) > n includes also the

possibility char(A) = 0.

TF (A) Integer numbers for which A is free of torsion

∞ Infinity

A,B,C,K The adjoint representations of the elements a, b, c, k, A(x) := [a, x]

I, J One-sided or two-sided ideals

B,C Abelian Lie inner ideals or Jordan inner ideals

V An isotropic inner ideal

T, Ta In an associative algebra, the linear Jordan operator Ta(x) := ax+ xa
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la, ra The left and right multiplication operators, la(x) := ax, ra(x) := xa

lA, rA The left and right multiplication operators of the adjoint representation of a

{f, I} The equivalence class of the essential ideal I and the R-module homomor-

phism f : IR → RR inside Q(R)

expd The exponential automorphism associated to the nilpotent derivation d

[x, y] The commutator or Lie product, in an associative algebra [x, y] := xy − yx

[x, y, z] In an associative algebra, [x, y, z] := xyz − zyx

x • y The Jordan product of a Jordan algebra

x ◦ y Twice the Jordan product in an associative algebra, x ◦ y := xy + yx

pa The quadratic Jordan operator, in an associative algebra pa(x) := axa

{x, y, z} The Jordan triple product, in an associative algebra {x, y, z} := xyz + zyx

Uxy The Jordan U-operator, Uxy := 2x • (x • y)− (x • x) • y

τ(a), κ(a) The symmetric trace and the skew trace, τ(a) := a+ a∗, κ(a) := a− a∗

〈v, w〉 A bilinear or sesquilinear form applied to the vectors v, w

span(S) The submodule of A generated by the set S

〈S〉 The subalgebra of A generated by the set S

I(S) The ideal of A generated by the set S

I(a) The ideal of A generated by the set {a}

Annl(S),Annr(S) The left and right annihilators of the set S

Ann(I) In a semiprime algebra, the annihilator of the two-sided ideal I

N The natural numbers, including 0

Z The integers

Zn The integers modulo n, Zn := Z/nZ

C The complex numbers

H(α, β) The quaternion algebra such that i2 = α, j2 = β

Φ A ring of scalars, i.e., a commutative unital ring

∆ A division algebra

F A field

F The algebraic closure of the field F

X, V,W Vector spaces over some field or division ring

(V,W ) A pair of dual vector spaces over some division ring
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dimF V The dimension of the vector space V over the field F

R An associative algebra

(A,+, ?) Any kind of algebra, with bilinear product ?

L A Lie algebra

Mn(R) Ring of square n× n matrices over the ring R

fo(V, 〈· , ·〉) The finitary orthogonal (Lie) algebra of the vector space V with bilinear form

〈· , ·〉

o(V, 〈· , ·〉) The orthogonal (Lie) algebra of the vector space V with bilinear form 〈· , ·〉

A1 Weyl algebra

∗,¯ Involutions

aT The transpose of the matrix a

K The subgroup of skew elements of a ring with involution, as a Lie algebra or

Jordan triple system

H The subgroup of symmetric elements of a ring with involution

〈K〉 The subring of R generated by K

K(L) The Kostrikin radical of the Lie algebra L

Z(A) The center of the associative or Lie algebra A

Γ The centroid of A as a ring

C The extended centroid of R as a ring

CR The central closure of the semiprime ring R

R̂ The unital central closure of R, R̂ := CR+ C

K̂ The skew elements of the unital central closure of R, K̂ := Skew(R̂, ∗)

Ĥ The symmetric elements of the unital central closure of R, Ĥ := Sym(R̂, ∗)

R The extension of scalars of R̂ to C, R := R̂⊗C C

Q(R) The two-sided right ring of quotients of the semiprime ring R

Qs(R) The symmetric Martindale ring of quotients of the semiprime ring R

Hom∆(V,W ) The ring of homomorphisms of the ∆-vector spaces V and W

EndΦ(A) The ring of endomorphisms of the Φ-module A

M(A) The multiplication algebra of the algebra A

Der(A) The Lie algebra of derivations of the algebra A

Inn(A) The Lie ideal of inner derivations of the algebra A
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δ The differential operator, δ(f) = f ′

A/I Factor ring of the algebra A over its ideal I

La Jordan algebra of L at the Jordan element a ∈ L

sub(B) The subquotient sub(B) := (B,L/ ker(B)) of an abelian inner ideal B ⊆ L

A ≤ B A is a substructure of B

A ∼= B A and B have isomorphic structures

A ≡ B A and B are different notations for the same object

ϕ A morphism between two structures

kerϕ The kernel of the morphism ϕ

im(a) The image of the linear operator a

tr A trace, a linear map tr : V → F from a vector space to its base field

〈· , ·〉 A bilinear form 〈· , ·〉 : V × W → ∆ from two vector spaces to their base

division ring

i),ii),iii) Equivalent conditions
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Preliminaries

In this preamble we set the definitions, notation and conventions that will get used

throughout this dissertation, and quickly review some of the elementary properties of

the relevant structures that get used the most, in a rather schematic and aseptic fashion.

Rings and algebras. By a ring we will understand an associative ring, not neces-

sarily unital. By a ring of scalars we mean a commutative unital ring. The notation Φ

will always be reserved for an underlying ring of scalars. By a Φ-algebra we understand

a Φ-module equipped with a bilinear product. We are mostly interested in associative

and Lie algebras, although (linear and quadratic) Jordan algebras and another Jordan

systems (Jordan triple systems, Jordan pairs) do appear occasionally; we refer the reader

to [TasteJordanAlgebras] and [JordanPairs] for the suitable definitions and conventions.

We usually reserve the letter R for an associative ring or algebra and the letter L for

a Lie algebra3. We choose to elide the algebras’ underlying ring of scalars whenever

possible. When very occasionally an algebra of undetermined kind is needed, we denote

it by A, its product by ?. If a ∈ A we denote the ideal generated by a inside A as IA(a),

I(a) when A is clear from context.

Every associative algebra R gives rise to a Lie algebra R−, with same underlying

additive group, when endowed with the bracket product [x, y] := xy − yx. Similarly, if

1
2
∈ Φ then R gives rise to a linear Jordan R+ with same underlying additive group when

3Except on one occasion, in which we use R and L to denote right and left ideals, and reserve the

letter A for the relevant associative algebra.
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endowed with the product 1
2
(x ◦ y), where we denote x ◦ y := xy + yx. This in addition

endows R with an structure of Jordan triple system with quadratic product Pxy := xyx

and triple product {x, y, z} := xyz+zyx. We will usually abuse the notation and simply

talk about R as either an associative, Lie or Jordan algebra when clear from context.

Similarly, if R is an algebra with involution, then the set H of symmetric elements of R

is a Jordan algebra (and a triple system) with the products inherited from R, and the

set K of skew elements of R is a Lie algebra and a triple system when endowed with the

bracket and the quadratic products of R (see Chapter 1 for more information on this

and other related subjects). Every (associative, Lie, Jordan) algebra can be seen as an

(associative, Lie, Jordan) ring (by “forgetting” the ring of scalars and “peeling” it to

Z), and every ring is in particular a Z-algebra.

Related structures. Given any algebra A, we denote by TF (A) the set of integers

for which A is torsion free. The multiplication algebra M(A) of a linear algebra A is the

unital (associative) subalgebra of EndΦ(A) generated by all left and right multiplication

operators, which in associative algebras we denote respectively by la and ra, for every

a ∈ R. The centroid ΓΦ(A) is the centralizer of M(A) inside EndΦ(A). The notation

Γ will always denote the centroid of A as a ring. Under mild conditions (for example,

Annl(A) = 0 or A2 = A) the centroid is commutative. In an associative algebra the

centroid always contains an homomorphic image of the center of the algebra and, if the

algebra is unital, then4 Z(R) = Γ. If R is simple then ΓΦ(R) is a field.

A derivation of an algebra A is a map d ∈ EndΦ(A) such that d(a ? b) = d(a) ?

b + a ? d(b). The set of all derivations of A, denoted by Der(A), is a Lie subalgebra of

EndΦ(A)−. The expansion of the power of a derivation applied to a product is calculated

by the well-known Leibniz Rule.

4Here and in the remaining of this dissertation, when we embed a ring inside another via a monomor-

phism we see the second one as a superring of the first, and substitute the corresponding isomorphisms

by equalities, by an abuse of notation. So, for example, Z(R) = Γ here actually means that the

monomorphic image of Z(R) inside Γ actually fills Γ.
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Lemma 0.4.3 (Leibniz Rule).

Let A be an algebra and let d ∈ Der(A). Then for every x, y ∈ A and n ∈ N we have

dn(x ? y) =
n∑
i=0

(
n

i

)
di(x) ? dn−i(y),

where we understand that d0 is the identity map of EndΦ(A).

Prime and semiprime associative algebras. An algebraA is said prime (semiprime)

when IJ = 0 (I2 = 0) implies I = 0 or J = 0 (I = 0), where I, J are ideals of A. For an

associative algebra R there exist useful characterizations by elements of these properties:

R is prime (semiprime) if and only if aRb = 0 (aRa = 0) implies a = 0 or b = 0 (a = 0).

A ring is prime (semiprime) if it is so as a Z-algebra. The center of a prime associative

algebra is an integral domain, while the center of a semiprime one is reduced, i.e., has

no nonzero nilpotent elements.

Let R be a semiprime associative algebra for this and the following paragraph. The

left socle and right socle5 of R coincide ([StructureRings, Theorem 1 on page 65]). For

brevity, when R has socle6 we will call an element of R minimal whenever it generates a

minimal right ideal (equivalently, a minimal left ideal7). In particular a minimal idem-

potent is an idempotent which is minimal as an element; equivalently, an idempotent

e ∈ R is minimal if and only eRe is a division ring ([RingsGIs, Proposition 4.3.3]). If R

is prime with socle, a reduced element is a minimal element a ∈ R such that aRa = Fa

with F a field8. In addition, prime rings with socle can be characterized as rings of

5The (left, right) socle is defined as the sum of all the minimal (left, right) ideals of R.
6Anytime we talk about a set ‘with X’ or state that ‘a set has property P’, we mean ‘a set with a

nonzero X’ or ‘a ring for which P is not trivial’. Thus, an algebra with socle is an algebra with nonzero

socle.
7If a ∈ R is a minimal element, then by Brauer Lemma ([Lam1, 10.22]) there exists a minimal

idempotent e ∈ aR such that aR = eR and a = ea (because eax = ax for every x ∈ R implies

(ea − a)R = 0, and R is semiprime). Now by Schur Lemma Ra = Rea ∼= Re, which is a minimal left

ideal.
8In this case F ∼= eRe with e any minimal idempotent of R; equivalently, F ∼= EndR(X) with X any

faithful irreducible R-module.
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operators of dual pairs of vector spaces and then a geometric model can be attached to

them, which transports ideas and tools from the geometric setting to the algebraic one.

Since throughout this dissertation we will make some explicit computations within this

model, we have included our notation and the necessary results in Appendix A.

We will consider the two-sided right Martindale ring of quotients and the symmetric

Martindale ring of quotients associated to R (refer to [RingsGIs, Section 2.2]), which we

denote, respectively, by Q(R) and Qs(R). If I ⊆ R is an essential ideal9 and f : IR → RR

is a homomorphism of right R-modules, we denote the corresponding equivalence class

inside Q(R) as {f, I}. The center of Qs(R) coincides with the center of Q(R) and is

called the extended centroid of R, which is denoted by C(R). By C we will always denote

the extended centroid of R as a ring. The extended centroid contains the centroid

(hence its name), and therefore it also contains the center. The central closure of R

is the subring CR of Qs(R), and hence the unital central closure of R is the subring

CR + C, which we always denote by R̂ := CR + C. R is said to be centrally closed

whenever CR = R inside Qs(R), equivalently, whenever Γ = C (with R seen as a ring).

The rings CR and R̂ are centrally closed, and every simple ring is centrally closed too10.

If R is prime then C is a field. In this case we denote the algebraic closure of C by C, and

denote the corresponding extension of scalars by R := R̂ ⊗C C, which is also centrally

closed. If R is centrally closed prime, then11 either Z(R) = 0 or Z(R) = C, depending

on whether R is unital or not; this is true in particular for simple rings.

Martindale Lemma (the original version is [Martindale’69, Theorem 1]) is a very

powerful tool of prime rings that guarantees that if a certain type of identity is sat-

isfied, then the involved elements must be linearly dependent over C. The proof of

[RingsGIs, Theorem 2.3.4] can be adapted in a straightforward manner to prove the

following (the first item is well known and appears for example in [FunctionalIdentities,

9An ideal I of A is essential if I ∩ J 6= 0 for every nonzero ideal J of A.
10If R is simple then Γ = C because the only essential ideal of R is R itself.
11Since R is prime and Z(R) 6= 0, there exists 0 6= z ∈ Z(R) ⊆ C and so 1 = z−1z ∈ R since R is

centrally closed. This implies that Z(R) = Γ = C.
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Theorem A.7]), the second one is a direct generalization to semiprime rings used in

[Brox,Garćıa&Gómez(2)]).

Theorem 0.4.4 (Martindale Lemma).

1. Let R be a prime ring and let ai, bi ∈ Q(R) with b1 6= 0 be such that
n∑
i=1

aixbi = 0 for

every x ∈ R. Then a1 ∈
n∑
i=2

Cai.

2. Let R be a semiprime ring and let ai, bi ∈ Q(R) with b1 6= 0 be such that
n∑
i=1

aixbi = 0

for every x ∈ R. If in addition every nonzero ideal contained in I(a1) has nonzero

intersection with I(b1), then a1 ∈
n∑
i=2

Cai.

Adjoint representation. Let L be a Lie algebra. Due to Jacobi Identity, the

adjoint map sending x ∈ L to [x, · ] ∈ Der(L) is a homomorphism of Lie algebras, whose

kernel is Z(L). Any derivation of the kind [a, · ] with a ∈ L is called an inner derivation.

The set of all inner derivations is usually denoted by Inn(L). The adjoint map is usually

denoted as ad : L → Der(L) with adx(y) := [x, y]. We will also adopt systematically a

cleaner notation which denotes by a capital letter the adjoint of the element represented

by the same lowercase letter. So, for example A ≡ ada in Inn(L), and AXY is an

associative product inside M(L). We will not limit our use of this notation to operate

in M(L), but we will also usually take advantage of it to operate in L and make the

computations less messy to the eye (because of the disappearance of brackets). With

this notation, Jacobi Identity translates to

XY (z) = ZY (x) + Y X(z).

It is of some importance for us that in associative algebras the inner derivations are

not only Lie derivations, but also associative derivations: [a, x]y+x[a, y] = axy−xay+

xay − xya = axy − xya = [a, xy]. Also, the powers of the adjoint operator have a nice

expansion by Newton Binomial inside the multiplication algebra. If R is an associative

algebra and a ∈ R, then since A(x) = ax− xa we have A = la − ra in M(R), and thus,

5
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since la and ra commute,

An = adna = (la − ra)n =
n∑
i=0

(−1)i
(
n

i

)
ln−ia ria =

n∑
i=0

(−1)i
(
n

i

)
lan−irai .

Due to Jacobi Identity, the adjoint map transforms identities of the Lie algebra

into identities of its endomorphisms, which allow to find new identities by means of

simplifications. This is a useful trick exploited by Kostrikin ([Kostrikin’59]; see also

[AroundBurnside]). So, for example, if a ∈ L is such that A2(x) = 0 for every x ∈ L,

then adA2(x) is also 0 and therefore adA2(x) = ad[a,[a,x]] = [A, [A,X]] = 0 for every

X ∈ Inn(L). But [A, [A,X]] = A2X − 2AXA + XA2 = −2AXA because A2 = 0, and

therefore 2AXA = 0. We use this Kostrikin Trick without further mentioning from now

on. We may sometimes go one level further and write down the adjoint of the element

A ∈ Inn(L). To easily distinguish visually one adjoint from another, we will keep using

ad : L → Inn(L) and will use ad : Inn(L) → EndΦ(Inn(L)). Thus, we may say that

An(x) = 0 implies adAn(x) = 0, but we may equally say that it implies adnA = 0. Then

we are working with the endomorphisms of an associative algebra (which is EndΦ(L))

and hence we have access to its multiplication algebra, so that we may say that An = 0

implies

0 = adnA = (lA − rA)n =
n∑
i=0

(−1)i
(
n

i

)
ln−iA riA =

n−1∑
i=1

(−1)i
(
n

i

)
lAn−irAi ,

a notation which simplifies computations and is worth this little effort. Whenever we

go up this level of abstraction, to ease the reasonings we will warn that we are work-

ing in EndΦ(Inn(L)). Note that Inn(L) is not an associative subalgebra of EndΦ(L)

and therefore adnA = 0 in EndΦ(Inn(L)) does not mean that adnA is identically 0 in

EndΦ(EndΦ(L)); for example it does not necessarily mean that adnA(XY ) = 0. But by

Leibniz Rule we have that adnA(XY ) =
n−1∑
i=1

(
n

i

)
adn−iA (X)adiA(Y ), since adA is also an

associative derivation.
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Lie highlighted elements. An element a ∈ L is called an absolute zero divisor 12

if ad2
aL = 0. L is said to be nondegenerate when it does not have absolute zero divisors,

strongly prime when it is prime and nondegenerate. The Kostrikin radical of L, K(L),

is the smallest ideal of L such that L/K(L) is nondegenerate.

An element a ∈ L is called a Jordan element13 if ad3
aL = 0. An inner ideal of L is

a submodule B such that [B, [L,B]] ⊆ B, which is called abelian if it is also an abelian

subalgebra, i.e., if [B,B] = 0. For example, if L =
⊕
−n≤i≤n

Li is a finite Z-grading,

then L−n and Ln are easily checked to be abelian inner ideals of L. Every element in

an abelian inner ideal is easily shown to be a Jordan element, and conversely, if L is

3-torsion free and a ∈ L is Jordan, then ad2
aL is an abelian inner ideal of L (see 4.1.3).

12We remark that, in the literature, absolute zero divisors have received several different names,

including sandwhich elements and crusts of thin sandwiches (e.g. [Benkart&Fernández’09, page 3833]

and [Zel’manov’83, page 538]).
13The denomination of Jordan elements is adequately selected, as can be verified in Theorem 4.1.2,

for associated to any Jordan element a ∈ L there exists a Jordan algebra La which behaves as a

local algebra for L in the sense of inheritance of important properties, as for example happens with

nondegeneracy.
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Chapter 1

K, skew elements

of a ring with involution

Let R be a ring with involution ∗. In this chapter we collect useful and important

facts concerning the skew elements of rings with involution, K := Skew(R, ∗), which

will be needed in Chapters 3 and 4. The first section includes the relevant definitions

and standard facts about involutions, their classifications, and the geometric model

for prime rings with socle and involution. The second section introduces elementary

properties of K, including the important well-known result we call here the Reduction

Lemma (if R is semiprime then K, as a Jordan triple system, is nondegenerate), which

we lightly generalize, and also our Beautiful Partner Lemma, which associates a regular

skew element of zero square with another one of the same characteristics. The third

section develops a technique which allows to carry results of prime rings to K, building

on the fact that if R is prime then the subring generated by K is prime and contains an

ideal of R, except if [K,K] = 0 or, equivalently, if R is commutative or R̂ is a quaternion

algebra over C with an involution of the first kind and transpose type (for whose proof

we will need to introduce some concepts from PI theory). Most of the facts relevant

for this section were already known separately, but we feel that some knowledge has

been gained by drawing them altogether. We devote the last section to show that if

9



1.1. INVOLUTIONS CHAPTER 1. K

[K,K] = 0 then we do not really need to resort to the fundamental theorems of PI

theory to elucidate the structure of R, even for an arbitrary ring: in that case R always

satisfies Hall Identity, a polynomial identity of degree 5 which is satisfied by quaternion

algebras. We prove this result by elementary combinatorial means.

1.1 Involutions

Given a ring R, an involution ∗ on R is an additive map ∗ : R → R such that

(a∗)∗ = a and (ab)∗ = b∗a∗, i.e., ∗ is antiautomorphism of R of order (one or) two.

Observe that the identity map will be an involution if and only if R is commutative.

If R is an algebra over a ring of scalars with involution (Φ, )̄, then an involution ∗ on

R is an involution on the underlying ring of R which in addition satisfies (λa)∗ = λ̄a∗

for every λ ∈ Φ and a ∈ R. If ¯ is trivial (i.e., if it is the identity map) then ∗ is just

an involution of R as a ring which is also a linear map. By abuse of notation, when

appropriate we will also denote by ∗ the involution on the ring of scalars. Assume for

the remaining of this section that R is a ring with an involution ∗.

An element a ∈ R is said to be symmetric if a∗ = a, skew 1 if a∗ = −a. Clearly, if

2 ∈ TF (R) then the only element which is simultaneously symmetric and skew is 0.

The addition of symmetric elements is symmetric, while the addition of skew elements

is skew. Moreover, opposites also respect the symmetric and skew behaviors. This

shows that the set of symmetric elements, Sym(R, ∗), and the set of skew elements,

Skew(R, ∗), are subgroups of R which have trivial intersection (if 2 ∈ TF (R)). Observe

that x + x∗, xx∗, x∗x ∈ Sym(R, ∗) for every x ∈ R, while x− x∗ ∈ Skew(R, ∗) for every

x ∈ R. In addition, when k is skew we have that (k2)∗ = (k∗)2 = (−k)2 = k2 and thus

k2 is symmetric. For unital rings 1 is always symmetric.

If Γ is commutative then it is a direct exercise to see that ∗ can be extended to Γ,

defining λ∗ ∈ Γ by λ∗x := (λx∗)∗ for every x ∈ R. Since Γ is a unital ring, this extension

1These elements are usually called skew-symmetric, we have chosen to shorten the name.

10
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of ∗ is an antiautomorphism of unital rings and thus the homomorphic image Z of Z

inside Γ is symmetric; moreover, if some element of Z is invertible in Γ, then its inverse

is also symmetric. If R is a semiprime ring, then ∗ can be extended to C in a similar

way, and hence to R̂ = CR+C. In fact, as we show now, the involution can be extended

up to the symmetric Martindale ring of quotients ([RingsGIs, Proposition 2.5.4])2.

Proposition 1.1.1 (Involutions extend to the symmetric ring of quotients).

Let R be a semiprime ring with involution ∗. Then ∗ extends to Qs(R).

Proof. Pick q ∈ Qs(R) and an essential ideal I such that qI + Iq ⊆ R. Since ∗ is

an antiautomorphism, I∗ is also an essential ideal. We define f : I∗ → R such that

f(x) := (x∗q)∗. If y ∈ R and x ∈ I∗, then f(xy) = ((xy)∗q)∗ = ((y∗x∗)q)∗ = (y∗(x∗q))∗ =

(x∗q)∗y = f(x)y, so f is a right-module homomorphism. Hence q∗ := {f, I∗} is well

defined and lies in Q(R). Let us show that for every x ∈ I we have

q∗x∗ = (xq)∗. (1)

In Q(R), q∗x∗ means {f, I∗}{lx∗ , R} = {flx∗ , I∗}. Now for every y ∈ I∗ we have

flx∗(y) = f(x∗y) = f(x∗)y = ((x∗)∗q)∗y = (xq)∗y = l(xq)∗(y). Hence q∗x∗ ≡ {flx∗ , I∗} =

{l(xq)∗ , I∗} ≡ (xq)∗. Let us see now that for every x ∈ I we have

x∗q∗ = (qx)∗. (2)

Fix x ∈ I. By (1) we get x∗q∗y∗ = x∗(yq)∗ = (yqx)∗ = (qx)∗y∗ for every y ∈ I.

Therefore x∗q∗ − (qx)∗ ∈ AnnQ(R)(I
∗) = 0 and x∗q∗ = (qx)∗.

Since for every x ∈ I∗ we have q∗x = (x∗q)∗ ∈ R and xq∗ = (qx∗)∗ ∈ R, I∗ is an essential

ideal of R such that q∗I∗+ I∗q∗ ⊆ R and therefore q∗ ∈ Qs(R) by definition. This shows

that ∗ extends to Qs(R). Since the map f is a composition of three additive maps, ∗ is

itself an additive map. Let us see that for every p ∈ Qs(R) it satisfies

(p∗)∗ = p.

2Actually, the proof can be adapted to show that any antiautomorphism of R can be extended to

Qs(R).

11



1.1. INVOLUTIONS CHAPTER 1. K

Consider the ideal J := I ∩ I∗, which is essential because is the intersection of two

essential ideals3. In addition if x ∈ J then x∗ ∈ J . Then for every x ∈ J we have, by

(1) and (2), (q∗)∗x∗ = (xq∗)∗ = ((qx∗)∗)∗ = qx∗ since qx∗ ∈ R as x∗ ∈ J ⊆ I. This

implies that (q∗)∗ = q since AnnQs(R)J = 0.

Last, we prove that for every p, q ∈ Qs(R) it is

(pq)∗ = q∗p∗.

Choose p, q ∈ Qs(R) and take an essential ideal J such that pJ, qJ, Jp, Jq, pqJ, Jpq ∈ R

(which exists because the intersection of essential ideals is essential). Consider J2, which

is also essential4. Observe that for all x ∈ J2 we have xpq ∈ J2pq = J(Jpq) ⊆ JR ⊆ J

and similarly xp ∈ J . Then, by (1),

(pq)∗x∗ = (xpq)∗ = q∗(xp)∗ = q∗p∗x∗.

This implies that (pq)∗ = q∗p∗ since AnnQs(R)((J
2)∗) = 0.

We will always denote with the same symbol the involution on R and its extension to

Qs(R).

Let R be a prime ring. The involution is said to be of the first kind if its extension

is trivial on C (i.e., if Sym(C, ∗) = C), of the second kind if it is not trivial on C,

equivalently, if there exists 0 6= λ ∈ Skew(C, ∗), for if µ ∈ C is such that µ∗ 6= µ, then

0 6= µ − µ∗ ∈ Skew(C, ∗). If ∗ is of the first kind, then it can also be extended to

R = R̂⊗C C by the rule (x⊗ λ)∗ := x∗ ⊗ λ.

If e ∈ R is an idempotent then e∗ is also an idempotent, since the involution is

an antiautomorphism. An idempotent will be said to be left (resp. right) isotropic if

e∗e = 0 (resp. ee∗ = 0). An idempotent is ∗-orthogonal if it is left and right isotropic.

3If I, J are essential ideals and K is any nonzero ideal, then K ∩ (I ∩ J) = (K ∩ I)∩ J , which is not

zero because J is essential and K ∩ I, being I essential, is a nonzero ideal.
4Let I be an essential ideal and J be any nonzero ideal. Then I ∩ J 6= 0 implies (I ∩ J)2 6= 0 since

R is semiprime and, since (I ∩ J)2 ⊆ I2 ∩ J , we conclude that I2 is essential.
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If R is prime with socle, then the involution is said to be of symplectic type whenever

every minimal idempotent is ∗-orthogonal. If there exists a minimal symmetric idem-

potent then the involution is said to be of transpose type. These two cases are mutually

exclusive ([RingsGIs, Theorem 4.6.2]).

It is possible a characterization of involutions of transpose and symplectic type which

explains their names (here we are following [Martindale&Miers’91, page 1047]). If R is a

prime ring with socle which is not commutative and which has an involution of the first

kind, then (by the geometric model of Appendix A) it turns out that R always contains

a symmetric idempotent e such that eRe ∼= M2(C) as C-algebras. Since eRe inherits

the involution, by choosing matrix units properly it can be shown (see [RingsGIs, pages

163 to 168]) that ∗ in eRe is either the usual transpose for matrices (denoted by T

henceforth) or the symplectic involution for matrices, which we define below. Then the

involution on R is termed of transpose or symplectic type accordingly.

Definition 1.1.2 (Symplectic involution for 2× 2 matrices).

Let F be a field, consider R := M2(F ) and denote s :=

 0 1

−1 0

. Then the map

∗ : R→ R such that a∗ := saT s−1 is an involution called the symplectic involution.

Hence

a b

c d

∗ =

 d −b

−c a

 for the symplectic involution5. A direct computation

reveals the patterns for skew and symmetric elements for 2 × 2 matrices with either

involution.

Lemma 1.1.3 (Structure of skew and symmetric matrix elements).

Let F be a field with char(F ) 6= 2 and R := M2(F ).

5A similar definition can be given for M2n(F ) for every n ≥ 1: just replace the 1’s in the definition

of s by the identity matrix In. Then the application of the involution produces a similar pattern, being

a, b, c, d blocks of n× n matrices in this case. In this dissertation only the 4-dimensional case concerns

us in an explicit manner.
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1. For the transpose involution,

Sym(R,T ) :=


x y

y z

 | x, y, z ∈ F
 , Skew(R,T ) :=


 0 x

−x 0

 | x ∈ F
 .

2. For the symplectic involution,

Sym(R, ∗) :=


x 0

0 x

 | x ∈ F
 , Skew(R, ∗) :=


x y

z −x

 | x, y, z ∈ F
 .

We can see that the transpose case presents symmetric elements of rank 1 (those

nonzero matrices with xz = y2), in particular minimal symmetric idempotents (e.g.

x = 1, y = 0 = z), while all the nonzero symmetric elements are of rank 2 in the

symplectic case (since their determinant is x2). We will show in Proposition 1.1.8 that

the involution is of transpose type if and only if R has a minimal symmetric element6.

There is a similar skew counterpart: in the transpose case all the nonzero skew elements

are of rank 2 (with determinant x2), while the symplectic case presents skew elements of

rank 1 (those with yz = −x2 6= 0) although obviously no skew idempotents (the square

of a skew element is symmetric)7. Other useful observations are the following ones about

commutativity, which are also proved by a direct check.

Lemma 1.1.4 (Commutativity results in M2(F ) with an involution).

1. In the symplectic case:

a) All the symmetric elements are in the center.

b) No nonzero skew element is in the center.

c) The squares of all the skew elements are in the center.

d) No nonzero skew element commutes with all the skew elements.

2. In the transpose case:

a) Some symmetric elements are in the center (those with y = 0, z = x).

b) No nonzero skew element is in the center.

6Recall that we call an element minimal whenever it generates a minimal right ideal, equivalently

in semiprime rings, a minimal left ideal.
7It does present minimal nilpotent elements, for example the matrix with x = 0 = z, y = 1.
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c) The squares of all the nonzero skew elements are nonzero and in the center.

d) All the skew elements commute with each other, with products lying in the center.

1.1.1 Geometric model

for prime rings with socle and involution

As is well known (refer to Appendix A), prime rings with socle possess a geometric

model in terms of dual pairs of vector spaces that allows to pose complicated calculations

with the aid of the powerful tools of linear algebra. Informally speaking, if a prime ring

with socle has in addition an involution, then in its geometric model (V,W ) we may

take W = V (in what is called a selfdual vector space) and then the involution can be

realized as the adjoint involution of LV (V ). Moreover the kind of the inner product

(which, more generally in this case, is a sesquilinear form) is determined by the type of

the involution. This is the important Kaplansky Theorem. Before presenting it officially,

we need to consider some different kinds of sesquilinear form.

Definitions 1.1.5 (Sesquilinear forms).

Let (∆,̄ ) be a division ring with involution and let V be a left vector space over ∆. Then

a sesquilinear form is a biadditive map 〈· , ·〉 : V ×V → ∆ such that 〈αv, βw〉 = α〈v, w〉β̄.

The form is called:

• Nondegenerate if 〈v, V 〉 = 0 forces v = 0 and 〈V, v〉 = 0 forces v = 0.

• Symmetric if ¯ is the trivial involution and 〈w, v〉 = 〈v, w〉. This forces ∆ to be a field.

• Alternate if char(∆) 6= 2, ¯ is the trivial involution and 〈w, v〉 = −〈v, w〉.

This forces ∆ to be a field and 〈v, v〉 = 0.

• Hermitian if 〈w, v〉 = 〈w, v〉.

Note that symmetric forms are a special kind of hermitian forms.

• Skew 8 if 〈w, v〉 = −〈w, v〉.

Note that alternate forms are a special kind of skew forms.

8These sesquilinear forms are usually called skew-hermitian, we have chosen to shorten the name.
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For symmetric and alternate forms, ∆ is a field by the following argument: denote

ε := 1 if the form is symmetric and ε := −1 if it is alternate, and pick α, β ∈ ∆ and

v, w ∈ V such that 〈v, w〉 6= 0. Then αβ〈v, w〉 = α〈βv, w〉 = εα〈w, βv〉 = ε〈αw, βv〉 =

ε2〈βv, αw〉 = β〈v, αw〉 = εβ〈αw, v〉 = εβα〈w, v〉 = ε2βα〈v, w〉 = βα〈v, w〉. Multiplying

by the inverse of 〈v, w〉 at the right we get αβ = βα.

Definition 1.1.6 (Selfdual vector space).

Let (∆,̄ ) be a division ring with involution. A selfdual vector space V is a left vector

space over ∆ equipped with a nondegenerate hermitian or skew form.

With this, more general definition (in the sesquilinear form used) than that of dual

pair, it seems that the previous theory is lost. But this is not the case; if V is a selfdual

vector space we can consider the dual pair (V, V ) with V defined as a right vector space

over ∆ by the action vα := ᾱv. In this way 〈αv, wβ〉 = 〈αv, β̄v〉 = α〈v, w〉β and 〈· , ·〉

is a nondegenerate inner product for (V, V ), which is indeed a dual pair. We denote

L(V ) := LV (V ) and F(V ) := FV (V ). Observe that the adjoint map # : L(V ) → L(V )

is an involution.

Although selfdual vector spaces are defined with either a hermitian or a skew form,

this is not a real dichotomy for our purposes. Suppose that V is a selfdual space over

(∆,̄ ) equipped with a hermitian form 〈· , ·〉. If the form is not symmetric, then there

exists α ∈ ∆ such that ᾱ 6= α. If we denote β := α − ᾱ 6= 0, we get that the map

β : ∆ → ∆ such that λβ := β−1λ̄β is an involution with ββ = −β. Then the form

〈· , ·〉β := 〈· , ·〉β has the following properties:

1. It is skew with respect to the involution β.

This is because

(〈v, w〉β)β = (〈v, w〉β)β = ββ〈v, w〉β = −ββ−1〈v, w〉β = −〈w, v〉β = −〈w, v〉β.

2. Clearly, the adjoint map is kept invariant in the pass from 〈· , ·〉 to 〈· , ·〉β.

Observe that 〈· , ·〉β can never be symmetric with respect to the involution β, since

ββ = −β 6= 0 and thus β is not trivial on ∆.
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Analogously, if V is equipped with a skew form which is not alternate, then after a

change of involution we can equip V with a hermitian form which does not change the

adjoint map.

Hence, since we are mainly interested in modeling, inside the geometric model, the

involution of a ring by means of the adjoint map, and we do not really care about the

specific shape of the associated sesquilinear form, we may say that

If V is a selfdual space then it is either equipped with an alternate form or a hermitian

form. Alternatively, V is either equipped with a symmetric form or a skew form.

We may also say that V is equipped either with a symmetric form, an alternate form,

or a form which can be hermitian or skew, but which has an associated involution in ∆

which is not trivial.

We are now prepared to present the celebrated Kaplansky Theorem (see

[RingsGIs, Theorem 4.6.8]).

Theorem 1.1.7 (Kaplansky Theorem).

Let R be a prime ring with socle and involution ∗ such that char(R) 6= 2. Then there

exists a selfdual vector space V over ∆ such that F(V ) ⊆ R ⊆ L(V ) and ∗ is the adjoint

map restricted to R. Moreover, if ∗ is of transpose type then V can be equipped with a

hermitian form, while if ∗ is of symplectic type then V can be equipped with an alternate

form and ∆ is a field.

Observe that if ∗ is of transpose type then it may be the case that V can be equipped

with a symmetric form. In that case ∆ would also be a field. Such an involution ∗ will

be said to be of orthogonal type9. If ∗ is of transpose type and e is a minimal symmetric

9Our definitions of involution of symplectic and orthogonal type are more restrictive than the ones

usually given for finite-dimensional central simple algebras. For them it is said (see [BookInvolutions,

Definition 2.5]) that an involution of the first kind is orthogonal (symplectic) if, when extended by

scalars to a splitting field, the corresponding sesquilinear form is symmetric (alternate). With our

definition, a division ring cannot be endowed with an involution of symplectic type, since its only
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idempotent, then ∗ is of orthogonal type if the restriction of ∗ to eRe is trivial10.

If the involution is of transpose type but not of orthogonal type, we follow loosely

[BookInvolutions, Page 2] and say that it is of unitary type. Note that the division

ring of an involution of unitary type may be a field, while ¯ is not trivial on it. For

example, the usual conjugation ¯ on C ∼= EndC(C) = F(C) is a unitary involution where

the underlying division ring C is a field such that when equipped also with ¯ gives the

associated hermitian form 〈x, y〉 := xȳ.

Lastly, it should not be misunderstood that an involution of the first kind must be either

orthogonal or symplectic11: under our conventions, an involution is of the first kind if its

extension to the extended centroid is trivial, but the extended centroid is not necessarily

∆, but is isomorphic to its center (by Theorem A.0.4(5)).

As promised after Lemma 1.1.3, we are going to see that in the characterization of

involutions (in the transpose/symplectic classification) the elements do not have to be

idempotent.

Proposition 1.1.8 (Characterization of involutions by elements).

Let R be a prime ring with socle, char(R) 6= 2 and involution ∗.

The following conditions are equivalent:

i) The involution is of transpose type.

ii) R has a minimal symmetric element.

nonzero idempotent is 1 and thus it does not contain nonzero ∗-orthogonal idempotents, while if it

is equipped with an involution of orthogonal type then it must be a field and the involution must be

trivial. In contrast, with the definition coming from central simple algebras, any involution on any

division ring which acts as the identity on its center is either orthogonal or symplectic. An specific

example of a ring with involution of symplectic type in this second sense which is not of symplectic type

in our sense is the quaternions with their usual conjugation. Those more relaxed notions of symplectic

and orthogonal type correspond in our convention, respectively, to involutions of the first kind and

symplectic or transpose type.
10This can be checked by analyzing the proof of [RingsGIs, Theorem 4.6.5] and observing that the

involution on eRe remains unchanged.
11This assertion is indeed true for the usual definition of involution types in central simple algebras.
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iii) There exists a minimal element a ∈ R such that a∗a 6= 0.

Proof. Let ∗ denote the involution of R. By the dichotomy of involutions ∗ is either of

transpose type or of symplectic type. Suppose first that the involution is of transpose

type. By definition there exists a minimal symmetric idempotent e ∈ R. This proves i)

⇒ ii). Moreover, ee∗ = ee = e2 = e 6= 0. This proves i) ⇒ iii).

Now suppose that the involution is of symplectic type. By Kaplansky Theorem (1.1.7)

we can see R as a ring of operators of a selfdual space V over a field F equipped with

an alternate bilinear form 〈· , ·〉. A minimal element is then an operator of rank one,

and every rank-one continuous operator can be written as u⊗ v for some u, v ∈ V , since

F(V ) = V ⊗ V by Lemma A.1.2. We claim that (u⊗ v)∗ = −v⊗ u. To see this we have

to prove that v ⊗ u is the adjoint operator to u⊗ v. Pick x, y ∈ V ; then

〈u⊗v(x), y〉 = 〈〈x, u〉v, y〉 = 〈x, u〉〈v, y〉 = −〈x, u〉〈y, v〉 = −〈x, 〈y, v〉u〉 = 〈x,−v⊗u(y)〉.

So, a symmetric minimal element must satisfy u⊗ v = −v ⊗ u; when applied to x ∈ V

this identity produces 〈x, u〉v = −〈x, v〉u, and since 〈· , ·〉 is nondegenerate this means

that v = αu for some α ∈ F . Then it must be u⊗αu = u⊗ v = −v⊗ u = −(αu)⊗ u =

−uα⊗ u = −u⊗ αu and, since char(R) 6= 2, this implies u⊗ αu = 0. Therefore in this

case R has no symmetric minimal elements, which shows ii) ⇒ i). In addition, since

(u⊗v)∗ = −v⊗u we get that (u⊗v)∗(u⊗v) = (−v⊗u)(u⊗v) = −u⊗ (v⊗u(v)) by the

Absorption Law 1 (A.1.2(4)), and this gives −u⊗ (v ⊗ u(v)) = −u⊗ 〈v, v〉u = 0 due to

〈v, v〉 = 0 because 〈· , ·〉 is alternate. This proves iii) ⇒ i) and finalizes the proof.

For convenience, we include a look-it-up chart with the relationship between sesquilin-

ear forms and involutions.

Involution type Bilinear form Division ring Elements (*)

Transpose: orthogonal Symmetric F = Sym(F, )̄ ∃a = a∗ minimal

Transpose: unitary Hermitian or skew ∆ 6= Sym(∆,̄ ) ∃a = a∗ minimal

Symplectic Alternate F = Sym(F, )̄ a∗a = 0 ∀a minimal

(*) The elements a can be taken idempotent.
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1.2 K := Skew(R, ∗)

Let R be a ring with involution ∗. We denote the subgroups of skew and symmetric

elements of R as

K := Skew(R, ∗) = {x ∈ R | x = −x∗} and H := Sym(R, ∗) = {x ∈ R | x = x∗}.

From this chapter on we will always assume that if R is a ring with involution then K

and H are as above and 1
2
∈ Γ. Since (1

2
)∗ = 1

2
in the extension of the involution to Γ

(see Section 1.1), we get that 1
2
K = K and 1

2
H = H. In this way we may decompose

any element x ∈ R as x = xh + xk, with xh := 1
2
(x+ x∗) ∈ H and xk := 1

2
(x− x∗) ∈ K,

so that

R = H ⊕K.

Hence, for any x ∈ R, we will also assume that xh and xk mean the same as above.

Sometimes in later sections we will talk, generically and simultaneously, about R and

K. In those occasions it will be understood that K are the skew elements of some ring

with involution. So we will make informal statements like ‘It is true for R centrally

closed prime and for K with R as before’, meaning ‘It is true for every centrally closed

prime ring and every Lie algebra of the skew elements of a centrally closed prime ring

with involution’.

When working in the central closure we will denote K̂ := Skew(R̂, ∗) and Ĥ :=

Sym(R̂, ∗). Recall that the involution of a prime ring may be of the first or of the second

kind. The following well-known lemma shows that K̂ is well behaved with respect to K

for the first kind, and that dealing with the second kind in R̂ is usually easy.

Lemma 1.2.1 (Results on K̂).

Let R be a prime ring with involution.

1. If the involution is of the first kind, then K̂ = CK.

2. If 0 6= λ ∈ Skew(C, ∗) then R̂ = K̂ ⊕ λK̂.
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Proof. Recall that R̂ = CR + C.

1. Suppose a ∈ K̂ is such that a = λb + µ, with b ∈ R and λ, µ ∈ C. Then a = −a∗

implies that λb + µ = −λb∗ − µ, and therefore 2λbh = λ(b + b∗) = −2µ. If λ = 0

then µ = 0 and a = 0; otherwise bh = −λ−1µ. In this case we have b = −λ−1µ + bk.

Thus a = λb+ µ = λ(−λ−1µ+ bk) + µ = λbk. In consequence K̂ ⊆ CK. But clearly

CK ⊆ K̂.

2. As R̂ = K̂ ⊕ Ĥ, all we need to show is that Ĥ = λK̂. Pick h ∈ Ĥ, k ∈ K̂.

Since (λk)∗ = k∗λ∗ = λ∗k∗ = λk we have λK̂ ⊆ Ĥ. Since h = λ(λ−1h) and

(λ−1h)∗ = −λ−1h, we get Ĥ ⊆ λK̂.

From elements x ∈ R we can easily get elements in K and H, since x = xh + xk.

We denote τ(x) := x + x∗ ∈ H and κ(x) := x − x∗ ∈ K, and call them, respectively,

the symmetric trace and the skew trace. Then xh = 1
2
τ(x) and xk = 1

2
κ(x). Note that

κ and τ are additive as maps and that κ∗(x) := (x− x∗)∗ = x∗ − x = κ(x∗) = −κ(x).

We say that a subgroup M of R is selfadjoint if and only if M∗ = M . We have under

our belt at least two ways of constructing a selfadjoint subgroup from any subgroup

M , namely Skew(M, ∗) := M ∩ K and κ(M) := {κ(m) | m ∈ M}. The first one

reduces the set to those elements which are already skew, and is therefore contained in

M , while the second one essentially takes the skew part of every element, and therefore

is not contained in M if M is not selfadjoint. Suppose 2M = M . We always have

Skew(M, ∗) ⊆ κ(M), for if k ∈ Skew(M, ∗) then 2k = κ(k) ∈ κ(M). If in addition

M is selfadjoint, then we also have κ(M) ⊆ Skew(M, ∗) and the two notions coincide,

because κ(x) = x−x∗ ∈M∩K = Skew(M, ∗) for every x ∈M (in particular κ(R) = K).

If M is not selfadjoint we may ask how far apart are the two constructions from one

another. The fact that κ(−x) = κ(x∗) produces the observation κ(M) = κ(M∗), which

implies that κ(M) = 2κ(M) = κ(M) + κ(M) = κ(M) + κ(M∗) = κ(M + M∗). Since

2(M +M∗) = M +M∗ and M +M∗ is selfadjoint, we get κ(M) = Skew(M +M∗, ∗).

We can also construct elements in K and H taking into account that some common

operations of skew and symmetric elements lie always inside K, while some others lie
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always inside H. The following ones, which are useful in this section, are confirmed by

a simple check. We denote [a, b, c] := abc− cba. Recall that a ◦ b := ab+ ba.

Lemma 1.2.2 (Operations in K and in H).

Let k, k1, k2 ∈ K and h, h1, h2 ∈ H.

1. In K we have:

k ◦ h, [k1, k2], [h1, h2], Pkh, {k, k1, k2}, {k, h1, h2}, {h1, k, h2}, [h, k1, k2], [k1, h, k2].

2. In H we have:

k2, h1◦h2, k1◦k2, [h, k], Phk, {h, h1, h2}, {h, k1, k2}, {k1, h, k2}, [k1, k2, k3], [k, h1, h2],

[h1, k, h2].

A practical hint (actually a nonrigorous simultaneous proof) is the following:

These operators are either symmetric or antisymmetric. To find if one of them lies in

K or in H it is enough to do a simple computation. Say that s := 0 if the operator is

symmetric (i.e., either (·)2, ◦, p, { · , · } or { · , · , · }) and say that s := 1 if the operator

is skew (i.e., either [ · , · ] or [ · , · , · ]); count the number Nk of skew elements inside the

operator, and compute

S := (−1)Nk+s.

If S = +1 then the resulting element lies in H, while if S = −1 the resulting element

lies in K. For example [h, k1, k2] has S = (−1)2+1 = −1, so the element is in K. We

ought to take care with (·)2 and p, since they carry respectively two and three elements

inside.

Note that we may take combinations of the operators, e.g., as in [k2, h] ∈ K (because

Nk = 2, s1 = 1, s2 = 0, S = (−1)3 = −1). Observe also that we have

h ◦ k = hk + kh = hk − (hk)∗ = κ(hk) = κ(kh),

a simple identity that will show up often in Chapter 4.

We should make the observation, since K is closed for [ · , · ] and { · , · , · }, that it

inherits from R the structure of a Lie ring, and the structure of a Lie algebra and of a
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Jordan triple system over Sym(Φ, ∗) if R is an algebra over (Φ,*). In particular, if R is

a centrally closed prime ring then K is a Lie algebra over Sym(C, ∗), which equals C if

the involution is of the first kind.

If R is a graded algebra with a selfadjoint grading, then K, as a Lie algebra, is graded

too.

Lemma 1.2.3 (Inheritance of gradings).

Let R :=
⊕
g∈G

Rg be an associative or Lie grading with Rg selfadjoint for every g ∈ G.

Then K :=
⊕
g∈G

Kg is a Lie grading, with Kg := Rg ∩K.

Proof. By construction it is obvious that the Kg are Sym(Φ, ∗)-modules, that
∑
g∈G

Kg ⊆

K and that the sum is direct. Let k ∈ K be decomposed in homogeneous components

as k =
∑
g∈G

kg. Then −k =
∑
g∈G

k∗g and, since K∗g = Kg for every g ∈ G, −k∗g is the

homogeneous component of degree g of k, i.e., k∗g = −kg and kg ∈ Rg ∩ K = Kg.

Therefore K ⊆
⊕
g∈G

Kg.

Now observe that [Kg, Kg′ ] ⊆ [Rg, Rg′ ] ∩ [K,K] ⊆ Rg+g′ ∩K = Kg+g′ .

As we know, in prime rings it is satisfied the useful condition that aRb = 0 implies

a = 0 or b = 0, which may be used to reduce larger identities to shorter ones. Sim-

ilarly, in semiprime rings we have got that aRa = 0 implies a = 0. For K we have

analogous results at our disposal. In particular, if R is centrally closed prime and the

involution is of the second kind, then aKa = 0 implies a = 0: by Lemma 1.2.1(2) we

have R = K ⊕ λK for every 0 6= λ ∈ Skew(C, ∗), so that aRa = aKa + λaKa = 0 and

a = 0 because R is prime.

For involutions of the first kind, and for semiprime rings, we can resort to the following

lemmas (item (1) is [TopicsRingTheory, Remark on page 43]12, item (2) is a generaliza-

tion of [Martindale&Miers’91, Lemma 5] and item (3) will appear in [Brox,Garćıa&Gómez(2)]).

12There it is proved by invoking Levitzki Lemma, [TopicsRingTheory, Lemma 1.1].
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Lemma 1.2.4 (Reduction Lemmas).

Let R be a semiprime ring with involution. Let k ∈ K and 0 6= h ∈ H.

1. kKk = 0 implies k = 0.

2. hKh = 0 implies 0 6= hRh ⊆ Ch in R̂.

3. If I(h) is essential, then hKh = 0 and hKk = 0 imply k = 0.

In addition, if R is prime and hKh = 0, then hR̂h = Ch and CR and R̂ have socle and

involution of orthogonal type.

Proof.

1. Pick x ∈ R. Note that kκ(x)k = 0, so that kxk = kx∗k. Then

k(xkx)k = k(xkx)∗k = −kx∗kx∗k = −(kx∗k)x∗k = −kxkx∗k = −kx(kx∗k) = −kxkxk

and since char(R) 6= 2 we have kxkxk = 0. Then it is also true that kxkxkyk = 0

for every y ∈ R. Hence

0 = −kxk(xky)k = −kxk(xky)∗k = kxky∗kx∗k = kxkykxk,

so (kxk)R(kxk) = 0 and kxk = 0 since R is semiprime. Now kRk = 0 implies, again

by semiprimeness, that k = 0.

2. Pick x, y ∈ R. Note that hκ(x)h = 0 and therefore hxh = hx∗h. Then

0 = hκ(xhy)h = h(xhy − (xhy)∗)h = hxhyh− hy∗hx∗h =

= hxhyh− (hy∗h)x∗h = hxhyh−hy(hx∗h) = hxhyh−hyhxh = (hxh)yh−hy(hxh).

By Martindale Lemma for semiprime rings (Theorem 0.4.4), since h 6= 0 and I(hxh) ⊆

I(h), we get hxh = λxh for every x ∈ R. Hence hRh ⊆ Ch and, being h 6= 0, it

cannot be hRh = 0 since R is semiprime.

3. Pick x, y ∈ R. Note that we have hκ(x)h = 0 = hκ(x)k and therefore hx∗k = hxk

and kx∗h = −(hxk)∗ = −(hx∗k)∗ = kxh. Then

0 = h(xky−(xky)∗)h = hxkyh+hy∗kx∗h = hxkyh+hykxh = (hxk)y(h)+(h)y(kxh).
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By Martindale Lemma for semiprime rings, since h 6= 0 and I(hxk) ⊆ I(h), we get

hxk = λxh for every x ∈ R. Pick now x ∈ H. Then xkx ∈ K and h(xkx)k = 0,

hence 0 = (hxk)xk = λxhxk = λ2
xh; but since h is essential, λ2

x = 0, and since C is

a reduced ring, λx = 0. This means that hxk = λxh = 0 for every x ∈ H. Now we

have hHk = 0 and hKk = 0, so that hRk = h(H +K)k = 0. Since I(h) is essential

and R is semiprime we finally get k = 0.

4. Suppose that R is prime and hKh = 0. We reason for R̂; the CR case is analogous.

By the observation previous to this lemma we know that the involution must be of

the first kind. Then by Lemma 1.2.1(1) we know that K̂ = CK and hence hK̂h =

ChKh = 0. By item (2) we get that 0 6= hR̂h ⊆ Ch. Pick a ∈ R̂ such that

hah = λh 6= 0 with 0 6= λ ∈ C; then hCah = Ch since C is a field. Therefore

hR̂h = Ch, i.e., h is a reduced element of R̂. Since C is a field there exists a ∈ R̂

such that hah = h and hence hR̂ = eR̂, where e := ha is an idempotent of R̂. Then

eR̂e = hR̂ha = Cha = Ce, which being a field proves that eR̂ is a minimal right ideal

of R̂ ([RingsGIs, Proposition 4.3.3]). This has two direct consequences: R̂ has socle

and, by Proposition 1.1.8, the involution is of transpose type since h is a minimal

symmetric element. In addition, by the definition of involution of transpose type there

exists a symmetric minimal idempotent f ∈ R̂, with fR̂f ∼= eR̂e since R̂ is prime

([RingsGIs, Theorem 4.3.7(i)]). This implies that fR̂f is a subspace of dimension 1 of

the C-vector space R̂ and therefore fR̂f = Cx for any nonzero x ∈ fR̂f ; in particular

fR̂f = Cf , which shows that, for every x ∈ R̂, (fxf)∗ = (λxf)∗ = λxf = fxf since

f ∗ = f and the involution is of the first kind. This implies that the involution is of

orthogonal type (see the paragraph after Kaplansky Theorem 1.1.7).

Note that in a prime ring any nonzero element generates an essential ideal, so item (3)

is always valid for prime rings.

Suppose a ∈ K is a von Neumann regular element of R. Then there exists b ∈ R such

that aba = a, which we call a partner of a. If we want a partner of a which is also skew,

then we may take b′ := bk, since abha+abka = aba = a = −a∗ = −(aba)∗ = −abha+abka,

25



1.2. K := SKEW(R, ∗) CHAPTER 1. K

so that 0 = abha and a = aba = abka. If in addition we want a partner c of a such that

a is a partner of c, then we may take c := b′ab′; it is checked that ab′a = a and b′ab′ = b′.

Note that c∗ = (b′ab′)∗ = −b′ab′ = −c, so c is still skew. If, in top of all that, a is an

element of zero square, then the element d := c− c2a is a partner of a such that dad = d

and d2 = 0. But d is not skew. To find a partner of a which is skew and of zero square

we need to work a little more (this result will appear in [Brox,Fernández&Gómez(2)]).

Lemma 1.2.5 (Beautiful Partner Lemma).

Let R be a ring with involution and let a ∈ K (resp. a ∈ H) be a von Neumann regular

element such that a2 = 0.

Then there exists b ∈ K (resp. b ∈ H) such that aba = a, bab = b and b2 = 0.

Proof. Denote by ∗ the involution on R. The symmetric and skew proofs are analogous

and we develop both at the same time.

Since a is von Neumann regular it is a = ac′a for some c′ ∈ R. Denote c := c′kac
′
k

(respectively c := c′hac
′
h). Then aca = a, cac = c and c∗ = −c (respectively c∗ = c).

Take b := c− 1
2
(ac2 + c2a) + 1

4
ac3a. Then b∗ = −b (resp. b∗ = b), aba = aca = a,

bab =
(
c− 1

2
(ac2 + c2a) + 1

4
ac3a

)
a
(
c− 1

2
(ac2 + c2a) + 1

4
ac3a

)
=

= (c− 1
2
ac2)a(c− 1

2
c2a) = cac− 1

2
cac2a− 1

2
ac2ac+ 1

4
ac2ac2a =

= c− 1
2
(ac2 + c2a) + 1

4
ac3a = b and

b2 =
(
c− 1

2
(ac2 + c2a) + 1

4
ac3a

) (
c− 1

2
(ac2 + c2a) + 1

4
ac3a

)
=

= c2 − 1
2
(cac2 + c3a) + 1

4
cac3a− 1

2
(ac3 + c2ac) + 1

4
(ac2ac2 + ac4a+ c2ac2a)− 1

8
ac2ac3a+

1
4
ac3ac− 1

8
ac3ac2a =

= c2 − 1
2
(c2 + c3a) + 1

4
c3a− 1

2
(ac3 + c2) + 1

4
(ac3 + ac4a+ c3a)− 1

8
ac4a+ 1

4
ac3 − 1

8
ac4a =

= c2− 1
2
c2− 1

2
c2− 1

2
(c3a+ ac3) + 1

4
(c3a+ ac3) + 1

4
(c3a+ ac3) + 1

4
ac4a− 1

8
ac4a− 1

8
ac4a =

= 0.

Whenever we have two elements in the conditions of the statement of the theorem, we

will say that they are beautiful partners.
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We will put the Beautiful Partner Lemma to work in Chapter 4, Clifford Elements.

There we will study, in a centrally closed prime ring, elements c ∈ K such that C3(K) =

0, c2 6= 0 and c3 = 0. Denote b := c2 ∈ H. The conditions on c imply that b2 = 0 and also

that bKb = 0, so that b is von Neumann regular by the Reduction Lemma (Proposition

1.2.4(2)) and hence possess a beautiful partner, fact that unleashes a bunch of interesting

results, among them that c is also von Neumann regular.

1.3 〈K〉, the subring generated by K

In this section and in Chapter 3, Inner Ideals, we will use 〈K〉, the subring of

R generated by K, to bring to K results valid for prime rings. The following lemma

([RingsGIs, Lemma 9.1.5]) reveals that the algebraic structure of 〈K〉 is near to the

structure of K, and is the keystone to some of our results.

Lemma 1.3.1 (Structure of 〈K〉).

〈K〉 = K ⊕ (K ◦K),

where K ◦K coincides with the subgroup generated by {k2 | k ∈ K}.

Proof. First of all note that a ◦ b = (a+ b)2− a2− b2 implies that K ◦K coincides with

the additive subgroup generated by {k2 | k ∈ K}. Observe that K ◦ K ⊆ H, so that

(K ◦K) ∩K = 0. Since 〈K〉 =
∑
Kn, it is now clear that K ⊕ (K ◦K) ⊆ 〈K〉. Pick

k1, k2 ∈ K. Observe that 2k1k2 = k1 ◦ k2 + [k1, k2], so we have K2 ⊆ K ⊕ (K ◦ K).

Now, since K3 = K2K ⊆ K2 + (K ◦K)K and so on with Kn, it suffices to show that

(K ◦K)K ⊆ K ⊕ (K ◦K). Note that 2k2
1k2 = k2

1 ◦ k2 + [k2
1, k2]. The first monomial lies

in K (S = (−1)3), while the second one equals, using that the adjoint is an associative

derivation, k1[k1, k2] + [k1, k2]k1 = k1 ◦ [k1, k2] ∈ K ◦K.

Apart from its good structure, and related to it, 〈K〉 has another very desirable

property: if R is prime then 〈K〉 is almost always prime. We achieve this by finding

27



1.3. 〈K〉 CHAPTER 1. K

an ideal of R inside 〈K〉. As we show, this happens when [K,K] 6= 0, and a bit

later we prove that [K,K] = 0 if and only if R is commutative or an order in a 4-

dimensional central simple algebra (with involution of transpose type). In these two

special cases, which are of less interest due to the triviality of K as a Lie algebra, 〈K〉

is sometimes prime and sometimes not (see the paragraph after Definition 1.3.10). The

existence of an ideal of R inside 〈K〉 when this dimension condition is asked for was

known to Erickson ([Erikcson’72, paragraph after Theorem 2, remark on page 529]), but

unfortunately he stated his theorems ([Erikcson’72, Theorems 2,3,4]) with a less strict

condition, pointing out as an exception R as an order in a central simple algebra ‘of

dimension at most 9’ (other times ‘at most 16’) because these conditions were enough

to state his main theorem about the Lie ideal structure of K, and it seems that the best

condition of dimension 4 has not been fully assumed in the literature (see for example

[Benkart’76, Theorem 3.8] and [RingsGIs, Lemma 9.1.14]).

Theorem 1.3.2 (Good behavior of 〈K〉).

Let R be a prime ring with involution.

1. If [K,K] 6= 0 then the ideal generated by [K,K]2 in R is nonzero and contained in

〈K〉. In particular 〈K〉 is a prime ring such that C(〈K〉) = C.

2. If K is abelian then 〈K〉 is commutative.

Proof. Suppose first that [K,K] = 0 and let us show that [〈K〉, 〈K〉] = 0. By Lemma

1.3.1 we have 〈K〉 = K + K ◦K, with K ◦K coinciding with the subgroup generated

by {k2 | k ∈ K}. Therefore it is enough to show that [k2
1, k

2
2] = 0. Observe that

[k1, k
2
2] = k2[k1, k2] + [k1, k2]k2 = 0 because adk1 is an associative derivation. Then in

the same vein [k2
1, k

2
2] = k1[k1, k

2
2] + [k1, k

2
2]k1 = 0.

Now suppose [K,K] 6= 0. The existence of an ideal 0 6= I of R contained in 〈K〉

is enough to show that 〈K〉 is prime with extended centroid C, for then, by [Lam1,

Theorem 14.14 and subsequent Remark], 〈K〉 is prime with Qs(〈K〉) = Qs(R) (recall

that the extended centroid is the center of the symmetric ring of quotients). Let I be

the ideal of R generated by [K,K]2. By [RingsGIs, Proof of Lemma 9.1.4], I ⊆ 〈K〉: the
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proof for this is just and beautifully [k1, k2]h = k1(k2 ◦h)− (k1 ◦h)k2 + [h, k1, k2] ∈ 〈K〉.

Therefore it is sufficient to prove that if [K,K] 6= 0, then [K,K]2 6= 0.13

Suppose that [K,K] 6= 0 but [K,K]2 = 0 and consider k := [k1, k2] with k1, k2 ∈

K. Pick k3 ∈ K; then kk3k = [k1, k2](k3[k1, k2]) = [k1, k2]([k3, [k1, k2]] + [k1, k2]k3) =

[k1, k2][k3, [k1, k2]] + [k1, k2][k1, k2]k3 = 0 because [K,K]2 = 0, which implies kKk = 0.

By the Reduction Lemma 1.2.4(1), k = 0. Therefore [K,K] = 0, a contradiction.

The main idea of our 〈K〉 technique is then the following: suppose we are in a

situation in which, given K of a prime ring R such that [K,K] 6= 0, we want to prove

for K a result P we know true for prime rings; we then use P for 〈K〉 and see that K

inherits some (maybe twisted) form of P because of 〈K〉 = K ⊕ (K ◦K). If a relation

between P for K and P for R is needed, then we use also the 〈K〉–R connection through

their common nonzero ideal.

1.3.1 Exceptionality

There is one handicap to the technique schemed above, if we want the result on K

to follow the result on R. How restrictive is the condition [K,K] 6= 0? As we claimed

before, the only exceptions are commutative or of low dimension (over C); we are going

to show in addition another characterization based on Z(K). But first we need a bit of

PIs theory (note that, informally speaking, [K,K] = 0 is a multilinear PI for K over

C). If Φ is a ring of scalars, by Φ〈X〉 we denote the nonunital associative free algebra

on a countable number of generators X ≡ {X1, X2, . . .}. We call the Xi variables and

call polynomials to the elements of Φ〈X〉. We also maintain the rest of denomination

conventions coming from commutative polynomials (monomials, coefficients, degree,

etc), with the obvious changes.

Definitions 1.3.3 (Polynomial identities).

13This could be shown by Herstein’s theory of the Lie ideals of K as in [RingsGIs, Theorem 9.1.13(d),

taking U:=K], but here we have preferred a more elementary approach.
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Let R be a prime ring and let G be an abelian subgroup of (R,+). We say that

p(X1, . . . , Xn) ∈ C〈X〉 is a polynomial identity for G (or PI for short) if p 6= 0 and

p(x1, . . . , xn) = 0 in CR for all n-uples (x1, . . . , xn) ∈ Gn. If p is a PI which is multilinear

as a polynomial we say that p is a multilinear PI. If p ∈ C〈X〉 is a PI for G we also

say that G is PI over C, or that G satisfies a PI over C. Finally, if R is PI over C, the

degree of R will be defined by us as the number d ∈ N such that R satisfies some PI of

degree d but not any PI of degree d− 1 (over C).

By a process of successive linearization we can reduce the degree of any variable

in a PI until it becomes linear, at the cost of introducing new variables. This is an

elementary and fundamental tool of the PIs theory which comes from [Kaplansky’48,

Lemma 2].

Lemma 1.3.4 (PIs can be taken multilinear).

Let R be a prime ring and let G be a subgroup of (R,+) which is PI of degree d over C.

Then G satisfies a multilinear PI of degree at most d.

Now we state two of the fundamental structure results of the theory. The following

version of Kaplansky Theorem is a combination of [FurtherAlgebra, Theorem 8.3.6] and

[RingsGIs, Theorem 6.1.10].

Theorem 1.3.5 (Kaplansky-for-PIs Theorem).

Let R be a primitive ring which is PI over C of degree d.

Then R is central simple over C, of dimension not greater than (d/2)2.

More precisely, R ∼= EndeRe(eR), where e ∈ R is a minimal idempotent.

GPIs theory generalizes and is more complex than PIs theory. For this dissertation

we just need to know that if R is PI, then R is GPI, to unlock the doors of Martindale

Theorem ([RingsGIs, Theorem 6.1.6]).

Theorem 1.3.6 (Martindale Theorem).

Let R be a prime ring. If R is GPI over C then CR has nonzero socle and dimC(eRe) <

∞ for any minimal idempotent e ∈ R.
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With Kaplansky and Martindale Theorems in hand we can completely characterize

the central closure of prime PI rings.

Corollary 1.3.7 (Characterization of prime PI rings).

Let R be a prime PI ring over C of degree d.

Then CR = R̂ is a central simple algebra over C of dimension not greater than (d/2)2.

Proof. By Martindale Theorem (1.3.6) CR has nonzero socle and hence is prime with so-

cle, equivalently, primitive with socle. Let p be a multilinear PI for R of degree at most d,

which exists by Lemma 1.3.4. Let us see that CR also satisfies p. Pick x1, . . . , xn ∈ R and

λ1, . . . , λn ∈ C. Then since p is multilinear we get p(λ1x1, . . . , λnxn) = λ1 . . . λnp(x1, . . . , xn) =

0. So CR is a primitive PI ring. By Kaplansky-for-PIs Theorem (1.3.5) we find that

CR is a central simple algebra over C of dimension not greater than (d/2)2. In addition

R̂ = CR + C = CR, since CR is already unital.

For our purpose we need to relate a PI for K with a PI for R. The following version

of Amitsur Theorem is a combination of [Amitsur’68, Theorem 5] and [RingsGIs, proof

of Theorem 9.1.10].

Theorem 1.3.8 (Amitsur Theorem: PI condition lifts from K to R).

Let R be a prime ring with involution ∗. All the PIs are over C.

1. If ∗ is of the second kind and p is a multilinear PI for K then p is a PI for R.

2. If ∗ is of the first kind and K is PI of degree d then R is PI of degree at most 2d.

We are finally in position to exhibit the structure of prime rings such that [K,K] = 0.

The result ii) ⇒ iii) is a particular case of [RingsGIs, Theorem 9.1.13(a)] (taking U :=

K), whose proof builds on Herstein’s theory of the Lie structure of K and on applying

PIs theory to R; instead we apply PIs theory directly to R̂, to get also information about

this ring (a similar idea appears already in [Erikcson’72, proof of Theorem 2]).

Theorem 1.3.9 (Equivalences of exceptionality).

Let R be a prime ring with involution. The following conditions are equivalent.
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i) R is commutative or Z(K) 6⊆ Z(R).

ii) [K,K] = 0.

iii) R is commutative or CR = R̂ is a 4-dimensional central simple algebra over C with

involution of the first kind and transpose type and R ∼= M2(C) with the transpose

involution.

Proof.

i) ⇒ ii). If R is commutative then trivially [K,K] = 0. Pick z ∈ Z(K) \ Z(R)

and suppose [K,K] 6= 0. By Theorem 1.3.2 we have that 〈K〉 is a prime ring such

that C(〈K〉) = C. Since K = K + K ◦ K and K ◦ K is the subgroup generated by

{k2 | k ∈ K}, we see from [z, k2] = [z, k]k + k[z, k] = 0 that z ∈ Z(〈K〉). Hence z ∈ C,

but also z ∈ R. Therefore z ∈ Z(R), a contradiction.

ii) ⇒ iii). Observe that [K,K] = 0 implies that p(X, Y ) := XY − Y X is a multilinear

PI for K of degree 2. If the involution is of the second kind then by Amitsur Theorem

1.3.8(1) p is also a PI for R, i.e., R is commutative. Suppose then that the involution is

of the first kind. Since p is of degree 2, by Amitsur Theorem 1.3.8(2) we get that R is PI

of degree at most 4. If R is not commutative, by the characterization of prime PI rings

(1.3.7) we get that CR = R̂ is a central simple algebra of dimension 4 over C (and R is

an order in R̂). Consider R := R̂⊗CC; since R̂ has dimension 4 over C, R has dimension

4 over C and is central simple over C, hence by Wedderburn Theorem it is a matrix

algebra over some finite-dimensional division algebra over C. But C is algebraically

closed and thus it is the only finite-dimensional division algebra over itself14. Therefore

R ∼= M2(C). R can be equipped with the extended involution (x ⊗ λ)∗ = x∗ ⊗ λ and,

by choosing matrix units properly, we can assume that ∗ is either the transpose or

the symplectic involution on M2(C) (see Section 1.1). As the tensor product respects

direct sums we know that R̂ ⊗C C = (Ĥ ⊕ K̂) ⊗C C = (Ĥ ⊗C C) ⊕ (K̂ ⊗C C), which

shows that K := Skew(R, ∗) = K̂ ⊗C C. Since the involution is of the first kind, by

14Suppose ∆ is a division algebra over C of dimension n. Then for every a ∈ ∆ the set {1, a, . . . , an}

is linearly dependent and hence a is algebraic of degree at most n. Now the minimal polynomial of a

factorizes in linear factors in C[X] and ∆ has no zero divisors. Therefore a ∈ C.
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Lemma 1.2.1(1) it is [K̂, K̂] = C[K,K] = 0. Therefore [K,K] = [K̂, K̂] ⊗ C = 0 (since

[k⊗λ, k′⊗µ] = kk′⊗λµ−k′k⊗µλ = [k, k′]⊗λµ). This implies, by Lemma 1.1.4(1d,2d),

that the involution on M2(C) is the transpose involution.

iii) ⇒ i). If R is commutative there is nothing to prove. Suppose that R ∼= M2(C)

endowed with the transpose involution. Denote K := Skew(R, ∗) = K̂⊗C C. By Lemma

1.1.4(2b,2d) we get that K ∩ C = 0 and [K,K] = 0. This implies in particular that

K̂ ∩ C = 0 and [K̂, K̂] = 0, since K̂ ∼= K̂ ⊗ 1 ⊆ K and C ⊆ C. Pick 0 6= a ∈ K̂. Since

the involution is of the first kind, by Lemma 1.2.1(1) there exist b ∈ R and λ ∈ C such

that a = λb, with λ 6= 0 because a 6= 0. It is clear that b 6∈ Z(R), because otherwise we

would have a = λb ∈ C, a contradiction. Now [b,K] = [λ−1a,K] = λ−1[a,K] = 0, since

K ⊆ K̂ and [K̂, K̂] = 0. This proves that b ∈ Z(K) \ Z(R).

Observe that when [K,K] = 0 and R is not commutative we can say more about

the structure of R̂. Given a field F such that char(F ) 6= 2 and 0 6= α, β ∈ F , the

quaternion algebra H(α, β) is the 4-dimensional algebra over F with basis {1, i, j, ij}

and multiplication relations i2 = α, j2 = β, ij = −ji (refer to [CSAs, Chapter 1] or

[BasicAlgebra1, Section 7.6]). A quaternion algebra is either a division ring or isomorphic

to M2(F ) ([CSAs, Proposition 1.1.7]), in which case it is termed split. The proof above

shows that if [K,K] = 0 then R̂ is a 4-dimensional central simple algebra over C, that

is, R̂ ∼= Mn(∆) with ∆ a division ring with center C. Since 4 = dimC(R̂) = n2 dimC(∆),

either n = 2, dimC(∆) = 1 and hence ∆ = C and R̂ ∼= M2(C) with the transpose

involution, or n = 1 and R̂ ∼= ∆ with ∆ a 4-dimensional division algebra over C which,

by [CSAs, Proposition 1.2.1], is isomorphic to a division quaternion algebra, equipped

with an involution of the first kind and transpose type15. In any case R̂ is a quaternion

algebra (either split or division).

15By [BookInvolutions, Proposition 2.21], any involution of the first kind and transpose type on

H(α, β) (there called of orthogonal type) is of the form a∗ := uāu−1, where ¯ is the usual conjugation

involution and u is a noncentral unit, skew with respect to conjugation.
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Definition 1.3.10 (K exceptional).

We will say that K is exceptional when R satisfies any of the equivalent conditions of

the previous theorem.

So, if K is not exceptional we have at our disposal the 〈K〉 technique in its entirety.

A concrete example of its use is our proof of Herstein Lemma carried out in Section

3.2.1.

It is known that 〈K〉 is well behaved for semiprimeness: if R is semiprime, then

〈K〉 is semiprime ([RingsInvolution, Theorem 6.5.7]). In contrast, 〈K〉 is not that well

behaved for primeness. Theorem 1.3.9 allows us to identify sufficient conditions for 〈K〉

to be prime (or not) when R is prime.

• If [K,K] 6= 0, then 〈K〉 is prime by Theorem 1.3.2(1).

• If [K,K] = 0 then by Theorem 1.3.9 either R is commutative or R̂ is a 4-dimensional

central simple algebra (i.e., a quaternion algebra) over C with involution of the first

kind and transpose type. Moreover 〈K〉 is commutative by Theorem 1.3.2(2), so it is

prime if and only if it does not contain zero divisors.

– If R is commutative then it is an integral domain, so the subring 〈K〉 is also an

integral domain.

– Suppose R̂ is a quaternion algebra. We know that K̂ = CK because the involution

is of the first kind (Lemma 1.2.1(1)). This and 〈K〉 = K + K ◦ K imply that

〈K〉 ⊆ 〈K̂〉 = CK+C(K ◦K), which proves that 〈K̂〉 is commutative and that 〈K〉

has a zero divisor if and only if it inherits it from 〈K̂〉.

∗ If R̂ is a division algebra, then it is an integral domain and 〈K̂〉 ⊆ R̂ has no zero

divisors.

∗ If R̂ is split, then R̂ ∼= M2(C) with the transpose involution. Then, as we know

from Lemma 1.1.3,

K̂ ∼=


 0 x

−x 0

 | x ∈ C


with k2 ∈ C for every k ∈ K̂. Therefore
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〈K̂〉 ∼=


 x y

−y x

 | x, y ∈ C

,

with x being a sum of squares, which amounts to saying nothing16 since x =

(x+1)2

4
− (x−1)2

4
for every x ∈ C (recall that we always ask for 1

2
∈ Γ in our rings

with involution). If the product of two nonzero matrices of 〈K̂〉 is zero, at least

one of them must have left rank less than 2 (see for example [GeometricAlgebra,

page 151]). Then (x, y) = λ(−y, x) for some λ ∈ C, what implies y = λx = −λ2y

and hence λ2 = −1, since y = 0 implies x = 0 and the matrix would be zero.

Therefore, if C does not contain a square root of −1, 〈K〉 is prime.

∗ On the other hand, if F is a field with a λ ∈ F such that λ2 = −1 and we

consider the simple ring R := M2(F ), then a :=

λx x

−x λx

 , b :=

 y λy

−λy y


with 0 6= x, y ∈ F are (nonzero) zero divisors lying in 〈K〉, since

a =

 0 x

−x 0

− λ
 0 x+1

2

−x+1
2

0

2

−

 0 x−1
2

−x−1
2

0

2 , and similarly for b.

Therefore 〈K〉 is not always prime.

1.4 Hall Identity

In Theorem 1.3.9, to show that when R is prime [K,K] = 0 implies that R̂ is a

central simple algebra of dimension 4 over C we have used Amitsur Theorem (1.3.8),

which for prime (and semiprime) rings guarantees that the degree of the PI for R is at

most 2d whenever the degree of the PI for K is d. For arbitrary rings, Amitsur Theorem

still guarantees that R is PI (over Z) whenever K is PI (over Z), but does not bound

the degree of R. In this section we will prove that if R is an arbitrary ring such that

[K,K] = 0 then R always satisfies a certain PI called Hall Identity, which has degree 5:

16This trick is borrowed from [Joly’70, Exemple (7.10)].
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[[X1, X2]2, X3] (Hall Identity).

As a starting point we show that the two exceptional cases of Theorem 1.3.9 do

indeed satisfy Hall Identity, which is the fact that motivates this endeavour.

Consider the matrix algebra R := M2(F ) over a field F . By the Cayley-Hamilton

Theorem every x ∈ R satisfies x2− tr(x)x+ |x|1 = 0, where 1 is the identity matrix and

tr(x), |x| denote the trace and the determinant of x, respectively. If x, y ∈ R then, as is

well known, tr(xy) = tr(yx) and therefore tr([x, y]) = 0; hence by Cayley-Hamilton we

get [x, y]2 = −|[x, y]|1, and in particular [x, y]2 ∈ Z(R). This argument (which comes

from [PIRings, Examples 1.15(v)]) shows that Hall Identity is a PI for M2(F ).

Consider now the quaternion algebra H := H(α, β) with 0 6= α, β ∈ F for a given

field F . The linear map ¯ such that 1̄ = 1, ī = −i, j̄ = −j, ij = −ij is an involution

called conjugation such that Sym(H,̄ ) = F1 and Skew(H,̄ ) = Fi ⊕ Fj ⊕ Fij. The

center is also Z(H) = F1. Hence the image of the symmetric trace τ(x) = x + x̄ lies

in the center for every x ∈ H. In addition, if x := λ11 + λii + λjj + λkij then the map

q(x) := x̄x = (λ2
1−αλ2

i −βλ2
j +αβλ2

k)1 ∈ F1 defines a quadratic norm q : H→ F . Then

it is clear that x2 − τ(x)x+ q(x)1 = x2 − (x+ x̄)x+ x̄x = 0, which parallels the matrix

case above (in fact, it generalizes it17). Following this parallelism we can see that since

the only symmetric elements are in the center, which is the kernel of the adjoint map,

we have that [x, y] is skew for every x, y ∈ H and therefore τ([x, y]) = 0, since τ adds an

element with its conjugate. Therefore [x, y]2 = −q([x, y])1 ∈ Z(H), and Hall Identity is

a PI for H.

Reciprocally, as proved by Hall in his memoir about projective planes ([Hall’43, Theorem

6.2]), every division ring in which Hall Identity holds is either a field or a quaternion

17It can be proved ([BookInvolutions, paragraph previous to Proposition 2.21]) that when a split

quaternion algebra is represented by 2 × 2 matrices, the conjugation involution is represented by the

symplectic involution ∗ (see Definition 1.1.2). It is then easily checked that for every x ∈ M2(F ) we

have x+ x∗ = tr(x)1 and x∗x = |x|1, where 1 is the identity matrix.
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algebra over its center. According to [PIRings, Examples 1.15(v)], Hall Identity was

actually published in [Wagner’37] for 2 × 2 matrices over a field, but the proof of Hall

surprised Kaplansky because it implied the finite dimensionality of a division ring sat-

isfying Hall Identity, and motivated him to prove that any PI for a division ring would

oblige it to be finite-dimensional, giving birth to one of the founding papers of PIs theory

([Kaplansky’48]).

Our result that [K,K] = 0 implies that R satisfies Hall Identity generalizes the

matrix case since, as observed in Lemma 1.1.4(2d), if we equipM2(F ) with the transpose

involution then all skew elements commute with each other; more in general it generalizes

the quaternion case, as we explain now. If we denote H := H(α, β), then we have that

i ∈ H is invertible with i−1 = α−1i. The map ∗ such that x∗ := ix̄i−1 for every x ∈ H

can be checked to be an involution such that 1∗ = 1, i∗ = −i, j∗ = j and (ij)∗ = ij.

Then K = Fi is 1-dimensional and therefore [K,K] = 0.

Now we prove, by combinatorial means, that if [K,K] = 0 then R satisfies Hall

Identity. First we need to note a consequence of [K,K] = 0.

Lemma 1.4.1 (K2 in the center).

Let R be a ring with involution such that [K,K] = 0. Then K2 ⊆ Z(R).

Proof. Since 2ab = [a, b] + a ◦ b = [a, b] + (a+ b)2− a2− b2 and [K,K] = 0 we have that

K2 = {
n∑
i=1

k2
i | ki ∈ K,n ∈ N}, so it suffices to show that [k2, R] = 0 for every k ∈ K.

Pick a ∈ K and x ∈ R with x = xh + xk. Work inside M(R). Denote T := la + ra,

which commutes with A. Note that A(K) = 0 and that AT (xh) = 0 because T (xh) =

a ◦ xh ∈ K. Then in M(R) we have ada2 = la2 − ra2 = l2a− r2
a = (la + ra)(la− ra) = TA.

Therefore

[a2, x] = ada2(x) = TA(xh + xk) = AT (xh) + TA(xk) = 0.

Hence K2 ⊆ Z(R).
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Proposition 1.4.2 ([K,K] = 0 implies Hall Identity).

Let R be a ring with involution such that [K,K] = 0.

Then [[x, y]2, z] = 0 for every x, y, z ∈ R.

Proof. We can interpret Hall Identity as saying that [x, y]2 ∈ Z(R) for every x, y ∈ R.

To show this we will prove that [x, y]2 ∈ K2, since K2 ⊆ Z(R) by Lemma 1.4.1.

So, pick x, y ∈ R and decompose them as x = k1 + h1, y = k2 + h2, with k1, k2 ∈ K and

h1, h2 ∈ H. Then

[x, y]2 = [k1 + h1, k2 + h2]2 = ([k1, h2] + [h1, k2] + [h1, h2])2 =

= [k1, h2]2 + [h1, k2]2 + [h1, h2]2 + [k1, h2] ◦ [h1, k2] + [h1, h2] ◦ ([k1, h2] + [h1, k2]).

We will study every term separately, showing that all of them lie in K2. Any element

with a letter h is meant to belong to H, and any with a letter k is meant to belong to

K. We use several times that [k, k′] = 0, that kk′ = k′k and that kk′x = xkk′ (because

K2 ∈ Z(R)). We give hints by the use of parentheses.

• [h1, h2]2:

[h1, h2] ∈ K implies that [h1, h2]2 ∈ K2.

• [k, h]2:

Note that hkh ∈ K. Then

[k, h]2 = khkh+ (hkh)k − kh2k − h(k2)h = 2khkh− kh2k − k2h2 =

= 2khkh− (kh2k + k2h2) = 2k(hkh)− k(h2 ◦ k) ∈ K2.

• [k1, h2] ◦ [h1, k2]:

We further decompose in

[k1, h2] ◦ [h1, k2] = (k1h2) ◦ (h1k2)− (h2k1) ◦ (h1k2)− (k1h2) ◦ (k2h1) + (h2k1) ◦ (k2h1).

– (k1h2) ◦ (h1k2) and (k2h1) ◦ (h2k1):

Note that h1(k2k1)h2 = h1h2(k2k1) = h1h2k1k2 and hence we have

(k1h2)◦(h1k2) = k1h2h1k2+h1(k2k1)h2 = (k1h2h1)k2+(h1h2k1)k2 = {k1, h2, h1}k2 ∈ K2.
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Similarly, (k2h1) ◦ (h2k1) = {k2, h1, h2}k1 ∈ K2.

– (h1k2) ◦ (h2k1) and (k1h2) ◦ (k2h1):

First we show that k1hk2 = k2hk1. We use that K1 is an associative derivation.

We have 0 = [k1, h ◦ k2] = [k1, h]k2 + h[k1, k2] + [k1, k2]h + k2[k1, h] = [k1, h]k2 +

k2[k1, h] = k1hk2 − hk1k2 + (k2k1)h − k2hk1 = k1hk2 − hk1k2 + hk1k2 − k2hk1 =

k1hk2 − k2hk1, so that k1hk2 = k2hk1.

This implies that

(h1k2)◦(h2k1) = h1(k2h2k1)+h2k1h1k2 = h1k1h2k2+h2k1h1k2 = {h1, k1, h2}k2 ∈ K2.

In a similar fashion, (k1h2) ◦ (k2h1) = k1{h1, k2, h2} ∈ K2.

• [h1, h2] ◦ [k, h2]:

We further decompose in

[h1, h2] ◦ [k, h2] = [h1, h2] ◦ (kh2)− [h1, h2] ◦ (h2k).

– [h1, h2] ◦ (kh2) and [h1, h2] ◦ (h2k):

First we show that {h1, h2, k} = {h2, h1, k}.

We have 0 = [[h1, h2], k] = h1h2k−kh1h2−h2h1k+kh2h1 = {h1, h2, k}−{h2, h1, k}.

This implies that

[h1, h2] ◦ (kh2) = h1h2kh2 + kh2h1h2 − h2h1kh2 − kh2
2h1 =

= ({h1, h2, k} − {h2, h1, k})h2 + kh1h
2
2 − kh2

2h1 = k[h1, h
2
2] ∈ K2.

Similarly, [h1, h2] ◦ (h2k) = [h1, h
2
2]k ∈ K2.

In conclusion, [x, y]2 ∈ K2 and the result is proven.
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Chapter 2

Orthogonal elements in Lie algebras

For semiprime associative algebras, the orthogonality of the ideals generated by two

elements has a simple characterization in terms of the elements: if R is semiprime

and a, b ∈ R, then I(a)I(b) = 0 if and only if aRb = 0 (equivalently, bRa = 0).

May this characterization be exported to Lie algebras? In this chapter we answer this

question in the affirmative, exposing the results of our paper [Brox,Garćıa&Gómez’14].

As we know, in the associative context semiprimeness and nondegeneracy are equivalent

properties, but in the nonassociative setting this is no longer true, and it turns out

that stronger properties and characterizations are usually found when nondegeneracy

is assumed. This happens even in the prime case, where the stronger notion is that

of strong primeness, i.e., primeness plus nondegeneracy (there exist even simple finite

dimensional Lie algebras which are degenerate). So, for example, a Jordan algebra J

satisfies that {a, J, b} = 0 implies either a = 0 or b = 0 if and only if J is strongly prime

([Bĕıdar,Mikhalëv&Slin’ko’87]), while a Lie algebra satisfies that [a, [b, L]] = 0 implies

either a = 0 or b = 0 if and only if L is strongly prime ([Garćıa&Gómez’07])1.

Hence, the natural translation to Lie algebras of the characterization by elements would

read:

1The list of examples extends to alternative algebras ([Bĕıdar,Mikhalëv&Slin’ko’87]), to Jordan pairs,

and to quadratic Jordan algebras J with the condition UaUJUb = 0 ([Anquela,Cortés&McCrimmon’96]).
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If L is a nondegenerate Lie algebra, then [I(a), I(b)] = 0 if and only if [a, [b, L]] = 0

(equivalently, [b, [a, L]] = 0).

There exists a nice approach to this question in a general setting, which works for non-

degenerate alternative algebras and for nondegenerate Jordan systems, but that, for the

moment, cannot be applied to Lie algebras in general: in those cases, the nondegenerate

radical (the smallest ideal of the system such that the factor system is nondegenerate)

has been proved to be the intersection of all strongly prime ideals2, what implies that

those nondegenerate systems are a subdirect product of strongly prime systems. We do

a generic proof with a generic system (T,+, ?) (all the proofs are similar). If a, b ∈ T

are such that (a ? T ) ? b = 0, then the same condition is satisfied inside every strongly

prime factor of the product, so that ā = 0 or b̄ = 0 in each of them because of the

characterization by elements of strong primeness, and therefore I(a) ? I(b) = 0̄ in each

factor system. This shows that I(a) ? I(b) is contained in every strongly prime ideal of

T , but their intersection is 0, and hence I(a) ? I(b) = 0. The other implication is trivial.

As mentioned earlier, the characterization of strong primeness by elements is available

in Lie algebras, but unfortunately it is not known whether the Kostrikin radical, which

is the nondegenerate radical in the Lie setting, is always the intersection of all strongly

prime ideals. It is known that the answer is yes for Lie algebras over fields of character-

istic 0, for Lie algebras with a finite grading of length n and every number 1, 2, . . . , 4n

invertible, for Lie algebras arising from associative algebras free of 2-torsion, and for

nondegenerate Lie algebras with chain condition on annihilator ideals, among others

(see [Garćıa&Gómez’11] for all these results).

Nevertheless, we are able to show by combinatorial means, building heavily on the

results of [Garćıa&Gómez’07], that the characterization of orthogonality by elements is

true for any nondegenerate Lie algebra free of 6-torsion. Since [I(a), I(b)] = 0 already

implies [a, [b, L]] = 0, and since we have [I(a), I(b)] = 0 if and only if a ∈ Ann(I(b))

(equiv. b ∈ Ann(I(a))) because Ann(I(b)) is an ideal, we settle to the task of showing

2Proved in [Bĕıdar&Mikhalëv’87] and in [Thedy’85].
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that AB = 0 in End(L) implies a ∈ Ann(I(b)). To this end we will work in three

different cases with hypotheses of increasing difficulty (AXY B = 0, AXB = 0 and,

finally, AB = 0): in each case we will establish valid identities (more diffuse in every

step) and then will apply the previous case to prove the studied one. In several steps

we will witness cameos of Jordan elements, which are responsible, jointly with absolute

zero divisors, for the appearance of the condition 6 ∈ TF (L).

2.1 Preliminaries

We prove an interesting identity of Jordan elements that we will need in what follows

([Benkart’77, Lemma 1.7(i),(iii)]).

Lemma 2.1.1 (Fundamental Formula for Jordan elements).

Let L be a Lie algebra such that 3 ∈ TF(L) and let a ∈ L be a Jordan element.

Let x ∈ L be arbitrary. Then ad2
A2(x) = A2X2A2 (the Fundamental Formula).

Proof. We develop the proof in three steps.

1. A3 = 0 implies 0 = ad3
A = (lA − rA)3 in End(Inn(L)). So 0 = −3l2ArA + 3lAr

2
A and

l2ArA = lAr
2
A (1) because 3 ∈ TF(L).

2. Multiplying (1) by lA we get 0 = l2Ar
2
A (2).

3. ad2
A2(x) = (ad2

A(X))2 = (A2X − 2AXA+XA2)(A2X − 2AXA+XA2) =

(A2XA2)X − 2(A2XA)XA+A2X2A2 + 4AXA2XA− 2AX(AXA2) +X(A2XA2) =

A2X2A2 by (1) and (2).

The Fundamental Formula for Jordan elements, ad2
ad2a(x) = ad2

aad
2
xad

2
a, gets its name due

to its resemblance with the Fundamental Formula of Jordan algebras, UUx(y) = UxUyUx

(see [TasteJordanAlgebras, pages 5 to 9]).

We will also need the following properties of absolute zero divisors.
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Lemma 2.1.2 (Identities for absolute zero divisors).

Let L be a Lie algebra such that 2 ∈ TF(L) and let a ∈ L be an absolute zero divisor.

Let x, y ∈ L be arbitrary. Then:

1. AXA = 0.

2. AXY A = AYXA.

3. ad2
A(x) = −AX2A.

4. AXY A(z) = AXZA(y) = AY ZA(x).

5. AX2AX2A = 0 if in addition 3 ∈ TF(L).

Proof.

1. A2 = 0 implies 0 = ad2
A = (lA − rA)2 in End(Inn(L)). Hence −2lArA = 0 and

therefore lArA = 0 because 2 ∈ TF(L).

2. By item (1), 0 = Aad[x,y]A = A[X, Y ]A = AXY A− AYXA,

so that AXY A = AYXA.

3. By item (1),

ad2
A(x) = (adA(X))2 = (AX −XA)2 = (AXA)X − AX2A−X(A2)X + X(AXA) =

−AX2A.

4. By Jacobi Identity, AX(Y A(z)) = AX(AY (z)) + AX(ZA(y)) =

= (AXA)Y (z) + AXZA(y) = AXZA(y) by item (1). Now use item (2) to get

AXY A(z) = AYXA(z) and repeat the same reasoning to get AY ZA(x).

5. By item (1), 0 = AadX4(a)A = Aad4
X(A)A = A[X[X[X[X,A]]]]A = 6AX2AX2A,

since the remaining terms have either AXA or A2 as a factor. Since 6 ∈ TF(L),

AX2AX2A = 0.

The following result is a particular case of [Garćıa&Gómez’09, Theorem 2.3].

Lemma 2.1.3 (Little Kostrikin Lemma (for absolute zero divisors)).

Let L be a Lie algebra such that 2 ∈ TF(L) and let a ∈ L be an absolute zero divisor.

Then A(L) is an abelian inner ideal.

Proof. Pick x, y ∈ R and denote b := A(x), c := A(y). Then by Lemma 2.1.2(1)

BC = adA(x)adA(y) = [A,X][A, Y ] =
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= (AXA)Y −X(A2)Y − AXY A+X(AY A) = −AXY A.

Therefore BC(L) ⊆ A(L). In addition A(L) is abelian because

B(c) = [A,X]A(y) = AXA(y)−XA2(y) = 0, again by Lemma 2.1.2(1).

Now we state several important facts about the ideals of a nondegenerate Lie alge-

bra and their annihilators. The Fundamental Formula for Jordan elements shows that

nondegeneracy is inherited by ideals.

Lemma 2.1.4 (Ideals inherit nondegeneracy).

Let L be nondegenerate Lie algebra such that 3 ∈ TF(L).

Then every ideal I of L is nondegenerate as an algebra.

Proof. Suppose that a ∈ I is such that A2(I) = 0. Then A3(L) = A2([a, L]) = 0 since

[a, L] ⊆ I, i.e., a is a Jordan element of L. Then the Fundamental Formula (2.1.1) shows

that ad2
A2(x) = A2(X2A2) = 0 for every x ∈ L, since X2A2(y) ∈ I for every y ∈ L and

A2(I) = 0. But L is nondegenerate, so ad2
A2(L) = 0 implies A2(L) = 0 and this, again,

implies that a = 0.

Filippov asked ([Filippov’81]), given a nondegenerate Lie algebra L, an ideal I of

L and a ∈ L such that A2(I) = 0, if it is always true that a ∈ Ann(I). Zel’manov

([Zel’manov’83, Corollary 2]) gave the following positive answer, over a field of charac-

teristic 0, using the properties of the Kostrikin radical: define J := I + Za, which is a

subalgebra of L such that A2(J) = A2(I + Za) = A2(I) + A2(Za) = 0. Then a ∈ K(J)

and therefore A(I) ⊆ K(J) (because K(J) is an ideal). We also have A(I) ⊆ I and thus

A(I) ⊆ K(J) ∩ I = K(I) (by [Zel’manov’83, Corollary 1]), but K(I) = 0 because I is

nondegenerate as an algebra. Therefore A(I) = 0 and a ∈ Ann(I).

It is not known if this property of the Kostrikin radical is true in general for nonde-

generate Lie algebras over rings of scalars, but we are able to show, by combinatorial

means, that Filippov question also has a positive answer when L is free of 6-torsion3.

3This comes from a private communication by Férnandez López and Gómez Lozano.
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Theorem 2.1.5 (Ideal nondegenerate as an algebra).

Let L be a Lie algebra such that 6 ∈ TF(L) and let I be an ideal of L which is nonde-

generate as an algebra. Then:

1. Ann(I) = {x ∈ L | X2(I) = 0}.
2. Ann(I) is a nondegenerate ideal.

Proof.

1. Pick a ∈ L. Trivially, A(I) = 0 implies A2(I) = 0. Suppose then that A2(I) = 0.

Since I is an ideal, the uppercase notation for adjoint representations is well defined

while we restrict their arguments to I. Also, the identities of Lemma 2.1.2 keep being

valid for this restriction. So, assume that all implicit arguments are in I. Pick x ∈ L

and denote b := A(x) ∈ I. By Lemma 2.1.2(3) we know that B2 = −AX2A. By the

Little Kostrikin Lemma (2.1.3) b is a Jordan element of I and therefore it satisfies

the Fundamental Formula (2.1.1), which when used for y = x gives in particular

ad2
B2(x) = B2X2B2 = AX2AX2AX2A = 0,

because AX2AX2A = 0 by Lemma 2.1.2(5). Since I is a nondegenerate algebra,

ad2
B2(x) = 0 implies that B2(x) = 0. Note that x here is fixed and related to b = A(x),

so we are not finished yet. B2(x) = 0 translates to AX2A(x) = 0. Choose n ∈ {1, 2}

and y ∈ I. Recall that by Lemma 2.1.2(2) we have AXY A = AYXA. Linearize by

0 = Aad2
x+nyA(x+ ny) = A(X + nY )2A(x+ ny) =

= AX2A(x+ ny) + n2AY 2A(x+ ny) + 2nAXY A(x+ ny) =

= AX2A(x)+n3AY 2A(y)+nAX2A(y)+2nAXY A(x)+n2AY 2A(x)+2n2AXY A(y).

Now, AX2A(x) = 0 = AY 2A(y), and by Lemma 2.1.2(4) we get that AXY A(x) =

AX2A(y) and AXY A(y) = AY 2A(x). Therefore3AX2A(y) + 3AY 2A(x) = 0

6AX2A(y) + 12AY 2A(x) = 0

 .
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This system has determinant 9(1·4−(1·3)) = 9. Since 3 ∈ TF(L) we get4 AX2A(y) =

0 for every x, y ∈ I, i.e., B2(I) = ad2
b(I) = 0 and b is an absolute zero divisor of I.

Since I is a nondegenerate algebra we get A(x) = 0, as we wanted to show.

2. Suppose a ∈ L is such that A2(L) ⊆ Ann(I), i.e., such that [A2(L), I] = 0. Then in

particular [A2(I), I] = 0 with A2(I) ⊆ I, what implies, since I is nondegenerate as an

algebra and so in particular it has trivial center, that A2(I) = 0. Now by the previous

item we get that a ∈ Ann(I). Therefore Ann(I) is a nondegenerate ideal.

Thus, the theorem above applies to any ideal when L is nondegenerate and 6 ∈

TF(L), by Lemma 2.1.4. This property is our principal tool to pass from one step of our

proof to the next. Loosely speaking, we will find later that if AX1 . . . XkB = 0 with k ∈

{0, 1} then there exist 0 6= c ∈ I(a), 0 6= d ∈ I(b) such that adC2(y)X1 . . . Xk+1adD2(z) =

0, what will allow us to use the previous case by the technical lemma we show now.

Lemma 2.1.6 (Technical Lemma).

Let L be a nondegenerate Lie algebra such that 6 ∈ TF(L) and let n ∈ N be fixed.

Suppose that L has the following property: if a, b ∈ L are such that AX1 . . . XnB = 0

for every x1, . . . , xn ∈ L, then a ∈ Ann(I(b)). In that case L also satisfies the following

property: if a, b ∈ L are such that adA2(y)X1 . . . XnadB2(z) = 0 for every y, z, x1, . . . , xn ∈

L, then a ∈ Ann(I(b)).

Proof. Since adA2(y)X1 . . . XnadB2(z) = 0 , by hypothesis we have thatA2(y) ∈ Ann(I(B2(z)))

for every y, z ∈ L. For a fixed z, denote Iz := Ann(I(B2(z))). Then we know that

A2(y) = 0̄ in the factor ring L/Iz. Since L is nondegenerate, I(B2(z)) is nondegenerate

as an algebra by Lemma 2.1.4 and then, by Theorem 2.1.5(2), Iz is nondegenerate and

L/Iz is a nondegenerate Lie ring. Therefore A2(y) = 0̄ for every y ∈ L implies ā = 0̄, that

is, that a ∈ Iz and a annihilates I(B2(z)). Then it is true that AX1 . . . XnadB2(z) = 0

4Let ~a := (a1, . . . , an)T ∈ Ln and M ∈ Mn(Z) be such that M~a = 0. M possess an adjoint matrix

Madj, which satisfies MadjM = |M |In. Then M~a = 0 implies MadjM~a = |M |In~a = |M |~a = 0. It is

then enough that |M | ∈ TF(L) to assure ~a = 0.
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for every z, x1, . . . , xn ∈ L. Repeating the argument in the other side we get that

b ∈ Ann(I(a)) (and therefore that a ∈ Ann(I(b))).

Thus our strategy is more or less the following: given that AX1 . . . XkB = 0, we will

first find suitable c, d such that adC2(y)X1 . . . Xk+1adD2(z) = 0 and then, by the lemma

above and the case k+ 1, we will able to conclude that c ∈ Ann(I(d)), which will imply

that a ∈ Ann(I(b)).

The fact that cases with more variables between A and B are easier to tackle is

caused by the Going Down Proposition ([Garćıa&Gómez’07, Proposition 1.3]).

Proposition 2.1.7 (Going Down).

Let L be a nondegenerate Lie algebra and let a, b ∈ L be such that

AX1 . . . XnB = 0

for every x1, . . . , xn ∈ L. Then, if 0 ≤ m ≤ n,

AX1 . . . XmB = 0

for every x1, . . . , xm ∈ L. In addition [a, b] = 0.

From this point of view, our endeavor can also be understood as an effort to find a

converse Going Up Proposition, which would assure that if AX1 . . . XnB = 0 for every

x1, . . . , xn ∈ L, then also AX1 . . . XmB = 0 for m ≥ n and for every x1, . . . , xm ∈ L: we

would go, by the Going Down Proposition, from AX1 . . . XnB = 0 up to AB = 0 and

then, by a ∈ Ann(I(b)), we would find AX1 . . . XmB = 0 for every m ∈ N.

2.2 AXY B = 0

The case with AXY B = 0 is the first we are able to prove directly, without resorting

to a previous, better case. The following is [Garćıa&Gómez’07, Proposition 1.5]. We

include its proof for completeness of our exposition.
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Proposition 2.2.1 (Case AXY B = 0).

Let L be a nondegenerate Lie algebra and let a, b ∈ L be such that AXY B = 0 for every

x, y ∈ L. Then a ∈ Ann(I(b)).

Proof. Consider the set S := {XY B(z) | x, y, z ∈ L}. Denote I := Ann(S). Note that

A(S) = 0, so that a ∈ I. If we are able to show that I is an ideal of L, then we will have

I(a) ⊆ I and Ann(I) ⊆ Ann(I(a)). Moreover, by the Going Down Proposition, if c ∈ I

then CXY B = 0 implies [c, b] = 0, so that b ∈ Ann(I), and therefore b ∈ Ann(I(a)).

It is clear that I is a submodule. Consider c ∈ I and let us see that [c, x] ∈ I for

every x ∈ L, i.e., that [C(L), S] = 0. Let x, y, z, w ∈ L be arbitrary. By the Going

Down Proposition we know that CB = BC = CXB = BXC = 0. Moreover, since

CXY B(z) = 0, it is 0 = adCXY B(z) = [C, [X, [Y, [B,Z]]]] = −CXY ZB − BZY XC

because all the other terms have no more than two variables between a C and a B.

Hence CXY ZB = −BZY XC. Now

adadC(x)Y ZB(w) = [[C,X], [Y, [Z, [B,W ]]]] =

= CXY ZBW − CXY ZWB − (CXY B)WZ + CXYWBZ − (CXZB)WY+

+CXZWBY + (CXB)WZY − (CXWB)ZY −X(CY ZB)W +XCY ZWB+

+X(CY B)WZ −X(CYWB)Z +X(CZB)WY −X(CZWB)Y −X(CB)WZY+

+X(CWB)ZY − Y Z(BWC)X + Y ZW (BC)X + Y (BWZC)X − YW (BZC)X+

+Z(BWY C)X − ZW (BY C)X −BWZY CX +W (BZY C)X + Y Z(BWX)C−

−Y ZW (BXC)− Y BWZXC + YW (BZXC)− ZBWYXC + ZW (BYXC)+

+BWZYXC −WBZYXC =

= CXY ZBW −CXY ZWB + CXYWBZ + CXZWBY +XCY ZWB−

−BWZYCX − YBWZXC − ZBWYXC + BWZYXC −WBZY XC.

Observe that in ad2
adC(x)Y ZB(w) all the terms will have an internal factor with no more

than two variables between B and C, and hence it equals 0; since L is nondegenerate,

we conclude that adC(x)Y ZB(w) = 0 and [C(L), S] = 0, as we wanted to prove.
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2.3 AXB = 0

In order to find, fromAXB = 0, the appropriate c, d ∈ L such that adC2(z)XY adD2(w) =

0, we will use the identities stated below.

Proposition 2.3.1 (Identities).

Let L be a nondegenerate Lie algebra and let a, b ∈ L be such that AXB = 0 for every

x ∈ L. Let x, y, z, w ∈ L be arbitrary. Then:

1. AB = BA = BXA = 0 and [a, b] = 0.

2. AXY B = AYXB.

3. AXY B = BYXA.

4. A2XY B = 0 = AXY B2.

5. AXAY ZB = 0 = BXBY ZA.

6. A2XY ZB = 0 = AXY ZB2.

7. A2XY ZWB2 = 0.

Proof. We use constantly that X[Y, Z]W = XY ZW −XZYW implies

XY ZW = X[Y, Z]W +XZYW .

1. AB = 0 = BA and [a, b] = 0 are proved by a direct application of the Going Down

Proposition.

To show BXA = 0 note that

0 = adAB(x) = [A, [B,X]] = (AB)X − (AXB)−BXA+X(BA) = −BXA.

2. By item (1), AXY B = A([X, Y ] + Y X)B = A[X, Y ]B + AYXB = AYXB, since

[X, Y ] = ad[x,y].

3. By item (1),

AXY B = AX[Y,B] + (AXB)Y = AX[Y,B] = A[X, [Y,B]] + A[Y,B]X =

= A[X, [Y,B]]+(AY B)X−(AB)Y X = A[X, [Y,B]] = [A, [X, [Y,B]]]+[X, [Y,B]]A =

= −adAXB(y) +XY (BA)−X(BY A)− Y (BXA) +BYXA = BYXA,

since AXB(y) = 0 by item (1).
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4. Multiplying item (3) by A on the left, A2XY B = (AB)Y XA = 0 by item (1).

The case AXY B2 = 0 is analogous.

5. By item (3), AX(AY ZB) = AX(BZY A) = (AXB)ZY A = 0 due to item (1).

6. By items (5) and (1),

A2XY ZB = A[A,X]Y ZB + (AXAY ZB) = A[A,X]Y ZB =

= A[[A,X], Y ]ZB + AY [A,X]ZB =

= A[[A,X], Y ]ZB + (AY AXZB)− AYX(AZB) = A[[A,X], Y ]ZB =

= (A[[A,X], Y ], Z]B) + AZ[[A,X], Y ]B = AZ[[A,X], Y ]B =

= (AZAXY B)− AZX(AY B)− AZY (AXB) + AZYX(AB) = 0.

7. By items (6) and (4),

A2XY ZWB2 = A[A,X]Y ZWB2 + AX(AY ZWB2) = A[A,X]Y ZWB2 =

= (A[[A,X], Y ]ZWB2) + AY [A,X]ZWB2 = AY [A,X]ZWB2 =

= AY (AXZWB2)− AYX(AZWB2) = 0.

Proposition 2.3.2 (Case AXB = 0).

Let L be a nondegenerate Lie algebra such that 6 ∈ TF(L) and let a, b ∈ L be such that

AXB = 0 for every x ∈ L. Then a ∈ Ann(I(b)).

Proof. For every x, y, z, w ∈ L we have:

adA2(x)ZWadB2(y) = (A2X +XA2 − 2AXA)ZW (B2Y + Y B2 − 2BY B) =

= A2XZWB2Y +XA2ZWB2Y − 2AXAZWB2Y + A2XZWY B2 +XA2ZWY B2−

−2AXAZWY B2 − 2A2XZWBY B − 2XA2ZWBY B + 4AXAZWBY B = 0,

due to Proposition 2.3.1:

• (A2XZWB2)Y = X(A2ZWY B2) = AX(AZWY B2) = (A2XZWB)Y B = 0

by item (6).
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• X(A2ZWB2)Y = 0 = X(A2ZWB)Y B by item (4).

• (AXAZWB2)Y = 0 = (AXAZWB)Y B by item (5).

• A2XZWY B2 = 0 by item (7).

Then, since adA2(x)ZWadB2(y) = 0 for every x, y, z, w ∈ L, by the case AXY B (Propo-

sition 2.2.1) and the Technical Lemma (2.1.6) we get that a ∈ Ann(I(b)).

2.4 AB = 0

By the Going Down Proposition, AXB = 0 implies AB = 0, but we have no guar-

antee yet that AXB = 0 can be recovered from AB = 0. That is the reason why the

identities of Proposition 2.4.2 below are less strong that those of Proposition 2.3.1. This

fact notwithstanding, when AB = 0 we can guarantee that terms with enough factors

of A and B are zero in any nondegenerate Lie algebra. This is [Garćıa&Gómez’07,

Proposition 1.2]; we state it without proof.

Proposition 2.4.1 (Mixing).

Let L be a nondegenerate Lie algebra and let a, b ∈ L be such that AB = 0. Let x1, . . . , xk

be a list of elements of L such that some of them are a or b, with at least one of each.

Denote n := |{xi | xi = a, 1 ≤ i ≤ k}| ≥ 1 and m := |{xi | xi = b, 1 ≤ i ≤ k}| ≥ 1. If

k + 1 < 2(n+m) then

X1X2 . . . Xn = 0.

The fact that L is nondegenerate helps to prove identities more restrictive than those

of the Mixing Proposition. The first two items where proved in [Garćıa&Gómez’07,

Lemma 1.1].

Proposition 2.4.2 (Identities).

Let L be a nondegenerate Lie algebra and let a, b ∈ L be such that AB = 0.

Let x, y, z ∈ L be arbitrary.

1. BA = 0 and [a, b] = 0.

2. AXB = −BXA.
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3. AXB2 = A2XB = A2XY B2 = 0.

4. AXAY B = BXAY A.

5. AXY B2 = AYXB2.

6. A2XY B = 2BXAY A+ 2BY AXA−BXY A2 and

AXY B2 = 2AY BXB + 2AXBY B −B2Y XA.

7. A2XY ZB2 = 2AXAY BZB + 2AXAZBY B + 2AY AXBZB+

+2AY AZBXB + 2AZAXBY B + 2AZAY BXB.

Proof.

1. Since AB = 0, ad2
[a,b] = [A,B]2 = (AB − BA)2 = (BA2) = B(AB)A = 0. Since L is

nondegenerate, this implies [a, b] = 0. Then 0 = ad[a,b] = AB −BA implies BA = 0.

2. By item (1),

0 = adAB(x) = [A, [B,X]] = (AB)X −AXB−BXA+X(BA) = −AXB−BXA, so

that AXB = −BXA.

3. These identities are due to the Mixing Proposition.

4. By item (2), AX(AY B) = −(AXB)Y A = BXAY A.

5. By items (2), (4) and (1),

A2XY B = (A[A,X]Y B) +AXAY B = A[[A,X], Y ]B +AY [A,X]B + (AXAY B) =

= −B[[A,X], Y ]A+ (AY AXB)− AYX(AB) +BXAY A =

= −(BA)XY A+BXAY A+BY AXA−BXY A2 +BY AXA+BXAY A =

= 2BXAY A+ 2BY AXA−BXY A2.

The other case is analogous.

6. By items (5) and (3),

A2XY ZB2 = A[A,X]Y ZB2 + AXAY ZB2 =

= (A[[A,X], Y ]ZB2) + AY [A,X]ZB2 + AXAY ZB2 =

= AZ[[A,X], Y ]B2 + AY AXZB2 − AYX(AZB2) + AXAY ZB2 =

= AZAXY B2 − AZX(AY B2)− AZY (AXB2) + AY AXZB2 + AXAY ZB2 =
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AZ(AXY B2) + AY (AXZB2) + AX(AY ZB2).

Now we use item (6) and (4), taking into account that AXB2Y ZA = 0, to find that

the computation above equals

2AXAY BZB + 2AXAZBY B + 2AY AXBZB+

+2AY AZBXB + 2AZAXBY B + 2AZAY BXB.

Theorem 2.4.3 (Case AB = 0).

Let L be a nondegenerate Lie algebra such that 6 ∈ TF(L) and let a, b ∈ L be such that

AB = 0. Then a ∈ Ann(I(b)).

Proof. Denote Ix := Ann(I(x)). By the Mixing Proposition we have that adA3(x)Y B =

[A, [A, [A,X]]]Y B = 0 for every x, y ∈ L and therefore by the AXB case (Proposition

2.3.2) we get A3(x) ∈ Ib for every x ∈ L. This means that a is a Jordan element of

L/Ib. Analogously, b is a Jordan element of L/Ia. We are going to show, thanks to the

Fundamental Formula for Jordan elements, that adad2
A2(x)

(y)V adad2
B2(z)

(w) = 0 for every

x, y, z, w, v ∈ L. We start by analyzing adA2(x)Y adB2(z). By items (3), (6), (7) and (4)

of Proposition 2.4.2 we get:

adA2(x)Y adB2(z) = (A2X +XA2 − 2AXA)Y (B2Z + ZB2 − 2BZB) =

= (A2XY B2)Z +X(A2Y B2)Z − 2AX(AY B2)Z + A2XY ZB2 +X(A2Y ZB2)−

−2AXAY ZB2 − 2A2XY BZB − 2X(A2Y B)ZB + 4AXAY BZB =

= A2XY ZB2 − 2AX(AY ZB2)− 2(A2XY B = ZB + 4AXAY BZB =

= 2AXAY BZB + 2AXAZBY B + 2AY AXBZB + 2AY AZBXB+

+2AZAXBY B + 2AZAY BXB − 4AXAY BZB − 4AXAZBY B−

−4AXAY BZB − 4AY AXBZB + 4AXAY BZB =

= 2AZAY BXB − 2AXAY BZB+
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+2AZAXBY B − 2AXAZBY B+

+2AY AZBXB − 2AY AXBZB.

Note that in this expression the roles of X and Z are skew symmetric. So if we swap x

and z we obtain

adA2(x)Y adB2(z) = −adA2(z)Y adB2(x).

Therefore, if we take as arguments X2A2(y) and Z2B2(w) for x, y, z, w ∈ L, then for

every v ∈ L we get

adA2(X2A2(y))V adB2(Z2B2(w)) = −adA2(Z2B2(w))V adB2(X2A2(y)) = 0,

since A2Z2B2 = 0 by the Mixing Proposition.

Now recall that a is a Jordan element of the factor algebra L/Ib. By the Fundamental

Formula for Jordan elements (Lemma 2.1.1) there exists c ∈ Ib such that ad2
A2(x)(y) =

A2X2A2(y) + c. Note that c ∈ I(a). Analogously, there exists d ∈ Ia ∩ I(b) such that

ad2
B2(z)(w) = A2Z2A2(w) + d. Therefore

adad2
A2(x)

(y)V adad2
A2(z)

(w) = adA2(X2A2(y))V adB2(Z2B2(w)) = 0,

since CVD = 0.

Now, by the AXB case (Proposition 2.3.2) and the Technical Lemma (2.1.6) we get

that A2(x) ∈ IB2(z) for every x, z ∈ L. This implies that adA2(x)Y adB2(z) = 0 for every

x, y, z ∈ L and then, by the same reasoning, we get AXB = 0 for every x ∈ L and

finally a ∈ Ib by the AXB case.

As a corollary we get the Going Up Proposition, which we may mix with the Going

Down one.
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Corollary 2.4.4 (Going Up and Down).

Let L be a nondegenerate Lie algebra such that 6 ∈ TF (L) and let a, b ∈ L be such

that there exists n ∈ N such that AX1 . . . XnB = 0. Then AX1 . . . XmB = 0 for every

m ∈ N.

To finish, another corollary, proven by the fact that the Kostrikin radical is the

smallest ideal whose factor ring is nondegenerate.

Corollary 2.4.5 (Product inside the Kostrikin radical).

Let L be a nondegenerate Lie algebra such that 6 ∈ TF (L) and let a, b ∈ L be such that

[a, [b, L]] ⊆ K(L). Then [I(a), I(b)] ⊆ K(L).

56



Chapter 3

Inner ideals

Loosely speaking, an inner ideal of an structure endowed with some product is a

substructure that absorbs quadratically the entire structure. In more precise terms:

Definitions 3.0.1 (Inner ideal).

• Let J be a Jordan triple system. A submodule B of J is an inner ideal if {B, J,B} ⊆

B, equivalently, if PBJ ⊆ B.

• If J is a Jordan algebra then its inner ideals are the inner ideals of J considered as a

Jordan triple system.

• Let L be a Lie algebra. A submodule B of L is an inner ideal if [B, [L,B]] ⊆ B. In

addition B is called abelian when [B,B] = 0.

• Let R be an associative algebra. A submodule B of R is an inner ideal if BRB ⊆ B.

An inner ideal of R+ will be called a Jordan inner ideal of R, and similarly an inner

ideal of R− will be called a Lie inner ideal of R.

• Let R have in addition a ring involution. By a Jordan inner ideal of K we will mean

an inner ideal of K seen as a Jordan triple system, while by a Lie inner ideal of K

we will refer to an inner ideal of K seen as a Lie algebra.

If R is associative, any inner ideal B is a Jordan inner ideal (since BRB ⊆ B

implies bRb ⊆ B for every b ∈ B) but the converse is not true (this can be seen

considering, for example, the Jordan inner ideal generated by two elements in the free
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associative algebra). An associative inner ideal is not necessarily a Lie inner ideal, and

reciprocally. If J is a Jordan algebra and b ∈ J , then by the Fundamental Formula

UUbJJ ⊆ UbUJUbJ ⊆ UbJ and therefore UbJ is an inner ideal, called a principal inner

ideal of J . If L is a Lie algebra and B ⊆ L is an abelian inner ideal, then every a ∈ B

is a Jordan element, since A3(L) = A(A2(L)) ⊆ [a,B] ⊆ [B,B] = 0. Conversely, if

a ∈ L is a Jordan element then, due to identities close to the Fundamental Formula for

the A2 operator (see 2.1.1), the submodule A2(L) can be proved to be an inner ideal

as in the Jordan case, which is hence called a principal inner ideal of L and which in

addition is abelian ([Fernández,Garćıa&Gómez’06, Lemma 2.7(i)], see Proposition 4.1.3

for a proof). Thus, a Lie algebra has abelian inner ideals if and only if it has Jordan

elements.

The notion of inner ideal is important to classify and determine the structure of

nonassociative algebras. Inner ideals appeared first in the Jordan setting (under the

denomination of ‘quadratic ideals’, for a time). According to [StructureJordan, page

153], the concept was introduced in [Topping’65] for Jordan algebras of operators in

Hilbert spaces. Jacobson then used it to develop an structure theory for Jordan algebras

analogue to Artin’s theory for associative algebras, substituting one-sided ideals by inner

ideals. In [Jacobson’66] he showed that a simple nondegenerate unital Jordan algebra

J which satisfies

a) the descending chain condition on inner ideals of the form UeJ with e idempotent

and

b) that every such UeJ contains a minimal inner ideal,

is either a division algebra, H of a ∗-simple artinian ring, Clifford1 or Albert2. Shortly af-

ter that, McCrimmon generalized these results to the quadratic setting in [McCrimmon’66],

[McCrimmon’69], in which is known as the Second Structure Theorem: a simple non-

1The Jordan algebra F ⊕ V whose product comes from a symmetric bilinear form in a vector space

V over F .
2The symmetric elements of the 3 × 3 matrices over the octonions endowed with the conjugate

transpose involution.
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degenerate unital quadratic Jordan algebra which satisfies a) and b) follows the same

classification as above, throwing several ‘quadratic’ and ‘ample subalgebra of’ qualifiers

in the proper places.

The inner ideal concept was exported to the Lie setting by Faulkner ([Faulkner’73]).

After that Benkart, in her celebrated paper [Benkart’77], gave a characterization of

classical Lie algebras by means of inner ideals: a simple, finite-dimensional Lie algebra

over an algebraically closed field F of characteristic p > 5 is classical if and only if it

is nondegenerate and has a nonzero abelian inner ideal. This generalized a previous

result of Kostrikin ([Kostrikin’67]); Strade had given another, different generalization

in [Strade’73]. Benkart’s result was improved by Premet in [Premet’86], where he re-

moved the existence of an inner ideal from the hypotheses (actually, by showing that

any finite-dimensional algebra over F already has a one-dimensional inner ideal).

In her paper, Benkart also expressed her hope that an artinian theory for Lie alge-

bras could be established building on inner ideals, as it had been done by Jacobson

and McCrimmon for Jordan algebras. Fernández López, Garćıa and Gómez Lozano

followed her proposal in [Fernández,Garćıa&Gómez’08]. They called a Lie algebra ar-

tinian if it satisfies the descending chain condition on inner ideals, and then showed

that if L is a simple Lie algebra over a field of characteristic p > 7 then L is artinian

and nondegenerate if and only if L is either a division Lie algebra, a simple excep-

tional Lie algebra, [R,R]/Z([R,R]) with3 R a simple artinian associative algebra, or

[K,K]/([K,K]∩Z(R)) with R simple with socle and either Z(R) = 0 or dimZ(R) R > 16.

In the same vein, inner ideals serve also to construct a socle theory in the Lie setting.

In [Draper,Fernández,Garćıa&Gómez’08] the socle of a nondegenerate Lie algebra is de-

fined as the sum of all its minimal inner ideals, and it is shown to be an ideal which

is a direct sum of simple ideals and which satisfies the descending chain condition on

principal inner ideals. Moreover, every finite-dimensional classical Lie algebra is shown

3This kind of result is usually stated taking the factor ring modulo Z(R)∩ [R,R], but for semiprime

rings this ideal coincides with Z([R,R]) by [RingsInvolution, Lemma 1.1.8], which shows that if a ∈ R

centralizes [R,R] then a ∈ Z(R).
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to coincide with its socle.

Recently, Baranov and Rowley generalized the Kostrikin-Strade-Benkart Theorem in

[Baranov&Rowley’13]. It turns out that a simple, infinite-dimensional locally-finite Lie

algebra over an algebraically closed field of characteristic 0 has a nonzero abelian inner

ideal4 if and only if it is of diagonal type (equivalently, a Lie subalgebra of a locally

finite associative algebra). Shortly afterwards, but by quite different techniques, Hen-

nig proved a similar result in positive characteristic ([Hennig’14]): a simple, infinite-

dimensional locally-finite Lie algebra over an algebraically closed field of characteristic

p > 7 is locally nondegenerate and has a nonzero abelian inner ideal if and only if it

is of the form [R,R]/Z([R,R]) with R a simple locally finite associative algebra, or of

the form [K,K] with R as before. Observe that these generalizations of the Kostrikin-

Strade-Benkart Theorem cannot suffer an improvement like the one Premet made for

the finite-dimensional case, since by the result of Baranov and Rowley there exist simple

locally-finite Lie algebras of characteristic 0 that do not contain minimal abelian inner

ideals (namely, those which are not of diagonal type).

3.1 Classification results

Since inner ideals are important in the determination of the structure of nonassocia-

tive algebras, it is sensible to try to characterize and classify the inner ideals of those

algebras. This has been done in several contexts, as we will briefly review below. Some of

the tools in which those results are based are the relevant structure theorems, the deter-

mination of minimal and maximal inner ideals, the geometric model for prime rings with

socle (detailed in Appendix A and Section 1.1.1), Herstein’s Lie theory of associative

structures as epitomized by [Herstein’61], and the combinatorial properties of Jordan

elements, with special emphasis in Herstein Lemma (to which we devote the following

4The statement of their theorem does not claim that the inner ideal is abelian, but this can be

checked following the proof.
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section, 3.2). In addition, is also relevant that if L is a Lie algebra and B is an abelian

inner ideal of L of finite length, then L possess a finite Z-grading with B at one extreme

(this was proved with the aid of grid theory in [Fernández,Garćıa,Gómez&Neher’07] and

later by considerations of classical Lie theory in [Draper,Fernández,Garćıa&Gómez’12,

Appendix], for classical Lie algebras). Another important tool is the subquotient of an

abelian Lie inner ideal5:

Let B be an abelian inner ideal of a Lie algebra L. The kernel of B is defined as

the submodule kerB := {x ∈ L | [B, [B, x]] = 0}. The pair of submodules Sub(B) :=

(B,L/ kerB), when equipped with the triple products

{x, ȳ, z} := [[x, y], z] for every x, z ∈ B and y ∈ L

{x̄, y, z̄} = [[x, y], z] for every x, z ∈ L and y ∈ B,

become a Jordan pair called the subquotient ofB (see [Fernández,Garćıa,Gómez&Neher’07,

Lemma 3.2]). Due to this notion we can define a relation between Lie abelian inner ide-

als of different Lie algebras: if B and B′ are abelian inner ideals of L and L′ respectively,

then B and B′ are said to be Jordan-isomorphic if SubLB and SubL′B
′ are isomorphic

as Jordan pairs.

The classification of inner ideals was started in the Jordan setting by McCrimmon,

who in [McCrimmon’71] characterized them in quadratic Jordan algebras of finite ca-

pacity6 by a case-by-case analysis based on the Second Structure Theorem. In particular

he proved that if A is a regular artinian associative algebra then any inner ideal of A+

is of the form eAf with e, f idempotents7, while the inner ideals of H are either of the

form eAe∗, or point spaces (which can only appear with involutions of symplectic type).

Later, Neher ([Neher’91]) also characterized the inner ideals of these algebras, by the use

5This notion is modeled upon the similar notion for Jordan pairs, see

[Fernández,Garćıa,Gómez&Neher’07, Lemma 3.1].
6A Jordan unital ring J is said to be of finite capacity when the identity element decom-

poses as a finite sum of orthogonal idempotents ei such that every UeiJ is a division Jordan ring

([TasteJordanAlgebras, page 96]).
7Note that this implies that every Jordan inner ideal of A is an associative inner ideal.
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of grid theory. Fernández López and Garćıa Rus ([Fernández&Garćıa’99]) extended the

classification to nondegenerate quadratic Jordan algebras of infinite capacity by means

of the geometric model. Their results can be interpreted as saying that if A is a simple

associative algebra with socle then the Jordan inner ideals of A are of the form RL, with

R and L a right and a left ideal of A, respectively8, while the Jordan inner ideals of H

are either of the form9 τ(RR∗), or point spaces (which can only appear with involutions

of symplectic type).

Benkart carried the classification of inner ideals to the Lie setting in [Benkart’76]. She

proved that if A is a simple artinian ring with char(A) 6= 2, 3 then the inner ideals of

[A,A]/Z([A,A]) are of the form eAf , with e, f idempotents such that fe = 0.10 She

built on Herstein’s Lie theory and on the properties of Jordan elements, translated part

of the problem to the Jordan context and used the McCrimmon’s classification previ-

ously mentioned. She also classified the inner ideals of [K,K]/([K,K] ∩ Z(A)) when A

is as before and in addition dimZ(A) A > 16, claiming that they are either of the form

eKe∗ or of a special type we nowadays call Clifford, which arises when A = Mn(Z(A))

with the transpose involution, and which she described as the span of {e1i − ei2} in

some basis {eij}; however, a case was omitted from the classification: point spaces can

also appear when the involution is of orthogonal type, as was recognized and mended in

[Benkart&Fernández’09]. The next steps were the classifications in finitary simple Lie

algebras of characteristic 0 ([Fernández,Garćıa&Gómez’06(2)]) and in Lie algebras aris-

ing from simple algebras with socle (carried as part of [Fernández,Garćıa&Gómez’08]),

8They write these inner ideals as W1⊗V1 with V1,W1 subspaces of a dual pair (V,W ). Observe that

R := W ⊗ V1 and L := W1 ⊗ V are, respectively, a right and a left ideal of FW (V ), by Theorem A.1.3.

By the Product Law for subspaces (A.1.2(3)) we have then that W1 ⊗ V1 = (W ⊗ V1)(W1 ⊗ V ) = RL,

since 〈V,W 〉 6= 0 by nondegeneracy.
9They write these inner ideals as (V1 ⊗ V1) ∩H with V1 a subspace of a selfdual space V . By the

Product Law for subspaces we can write V ⊗ V = (V ⊗ V1)(V1 ⊗ V ) = RR∗, since the involution is the

adjoint and so (u⊗ v)∗ = ±v ⊗ u implies (V ⊗ V1)∗ = V1 ⊗ V .
10Hence all inner ideals of this Lie algebra are abelian and associative inner ideals of A (and thus

also Jordan inner ideals of A).
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which are similar both in results and techniques. They apply the geometric model and a

direct limit argument over the artinian case; since the artinian classification was actually

incomplete at that moment, the point spaces were also missing from those classifications,

omission also mended in [Benkart&Fernández’09]. In conclusion, if A is a simple asso-

ciative algebra with socle and char(A) 6= 2, 3, then every inner ideal of [A,A] is11 of the

form RL with LR = 0, where R and L are12, respectively, a right and a left ideal of

A, while every Lie inner ideal of [K,K] is either of the form κ(RR∗) with R∗R = 0, a

point space, or Clifford, the two last cases only possible with involutions of orthogonal

type. The authors describe Clifford inner ideals in geometric terms as sets of the form

[x,H⊥], where x is an isotropic vector and H is an associated hyperbolic plane (refer

to 3.4.14 below for the corresponding definitions). In [Benkart&Fernández’09], these

results are completed and reproven, using not only the geometric model but also the

notion of subquotient, which allows to reduce the problem to the classification of the

Jordan inner ideals of the subquotients of the maximal abelian inner ideals.

In [Draper,Fernández,Garćıa&Gómez’12] the authors classified the inner ideals of clas-

sical Lie algebras, i.e., of the simple finite-dimensional Lie algebras over an algebraically

closed field of characteristic 0, extending the previous results of Benkart and Fernández

López to include the exceptional Lie algebras (G2, F4, E6, E7 and E8), but adopting a

rather different approach. They exploited the Z-gradings which arise from abelian inner

ideals13 and related them with root systems, expressing the inner ideals as sums of root

spaces.

The next generalization step was achieved in [Fernández’14], where the Lie abelian inner

ideals of a centrally closed prime ring were characterized as being either isotropic, stan-

dard or special (see Section 3.3 below for the definitions), by elementary algebraic consid-

11Observe that A is unital if and only if it is artinian. Therefore, if A is not artinian then Z(A) = 0

because A is simple and thus [A,A] = [A,A]/([A,A] ∩ Z(A)).
12Hence all inner ideals of [A,A] are abelian and associative inner ideals of A.
13In a simple finite-dimensional Lie algebra L every proper inner ideal is abelian and of finite length.

Therefore, associated to every proper inner ideal B of L there is a finite Z-grading of L which has B

as an extreme.
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erations and the aid of Herstein Lemma. Recently, in our paper [Brox,Fernández&Gómez(1)]

we have developed a similar approach (including in addition computations with the ge-

ometric model) to classify the Lie abelian inner ideals of K of centrally closed prime

rings, showing that they are either isotropic, standard, special or Clifford, and we have

described Clifford inner ideals from a ring-theoretic point of view as sets of the form

κ((1− e)Ke), where e is a minimal ∗-orthogonal idempotent. These results are the sub-

ject of Section 3.4. Since they build on the previous ideas and results of [Fernández’14],

we include also a summary of these in Section 3.3.

3.2 Herstein Lemma

In this section we pause to present a result (called Herstein Lemma by us) which

is a fundamental tool when working with Jordan elements in an associative context, and

whose thesis practically determines the whole structure of Lie abelian inner ideals, both

in R and in K.

Given a Lie algebra L, an element a ∈ L is called adnilpotent if its adjoint represen-

tation is a nilpotent derivation, i.e., if An = 0 in End(L) for some n ∈ N. If n is the

index of nilpotency of A, this is, if n is such that An = 0 but there exists b ∈ L such

that An−1(b) = 0, then we call n the index of adnilpotency of a. So, Jordan elements are

adnilpotent elements of index at most 3, absolute zero divisors are adnilpotent elements

of index at most 2, and central elements are the only adnilpotent elements of index

1. Loosely speaking, Herstein Lemma guarantees that, in sufficiently good conditions,

every adnilpotent element of R or K decomposes as the sum of a nilpotent part and a

central part, and furthermore, the index of nilpotency of its nilpotent part is bounded

by (a function of) its index of adnilpotency.

Historically, this result has suffered several generalizations. Herstein ([Herstein’63])

proved it for simple rings of characteristic greater than the index of the adnilpotent ele-

ment. We call these facts collectively Herstein Lemma because, up to our knowledge,
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Herstein was the first person to prove a result of this kind. A bit later, but appar-

ently unaware of Herstein’s paper, Jacobson proved the same result for central simple

algebras, as communicated by Benkart in [Benkart’76, Theorems 3.1 and 3.2]. Later

on, taking advantage of the properties of the extended centroid, Martindale and Miers

([Martindale&Miers’83]) extended the result of Herstein, showing among other things

that if R is a centrally closed prime ring, a ∈ R is an adnilpotent element of index n

and char(R) > n, then a = v + z with z ∈ C and vb
n+1
2
c = 0. Coming from a different

path, Grezeszczuk in [Grzeszczuk’92] extended to semiprime rings important results on

nilpotent derivations (those of [Kharchenko’78], [Chung’85]), which in particular imply

Herstein Lemma for centrally closed semiprime rings.

The validity of Herstein Lemma for K was also studied by Martindale and Miers

([Martindale&Miers’91]), mostly by combinatorial manipulations, when R is a centrally

closed prime ring of characteristic zero. They concluded that if K is not exceptional

(see 1.3.10) and a ∈ K is an adnilpotent element of index n, then either a = v + z with

z ∈ C and v a nilpotent element of index of nilpotency at most bn+1
2
c, or the involution

is of the first kind and ab
n+1
2
c+1 = 0.

The techniques we have developed in Chapter 2 allow us to give a simple proof of

Herstein Lemma for K based on Herstein Lemma for R. We will do a proof just for

Jordan elements, which will be published in [Brox,Fernández&Gómez(1)]. The main

idea is to view K inside 〈K〉 and use the technique described in Section 1.3. A similar

argument for Jordan elements in simple rings was given by Benkart ([Benkart’76, Lemma

4.22]).

Proposition 3.2.1 (Herstein Lemma for Jordan elements).

Let R be a centrally closed prime ring with involution ∗ such that char(R) 6= 2, 3, 5 and

[K,K] 6= 0, and let a ∈ K be a Jordan element of K. Then:

1. If the involution is of the second kind then a = v + z, where z ∈ Skew(C, ∗) and

v2 = 0.

2. If the involution is of the first kind then a3 = 0. Moreover, if a2 6= 0 then a2 is a
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reduced element and R has socle and involution of orthogonal type.

Proof. Let a ∈ K be such that A3(K) = 0. We consider first an involution of the second

kind, so there exists 0 6= λ ∈ Skew(C, ∗). Then a is also a Jordan element of R, since

R = K ⊕ λK by Lemma 1.2.1(2) and thus A3(R) = A3(K) + λA3(K) = 0. By Herstein

Lemma for prime rings ([Martindale&Miers’83, Corollary 1]) applied to R, it suffices

char(R) > 3 to get that a = v + z with v2 = 0 and z ∈ C. Since a∗ = −a we have

v∗+ z∗ = −v− z, so v∗ = −v− z− z∗ and thus [v∗, v] = [v,−v− z− z∗] = 0, i.e., v and

v∗ are nilpotent elements which commute. Therefore v∗ + v = −z − z∗ ∈ C is a central

nilpotent element and hence 0 because R is prime, which forces v∗ = −v and z∗ = −z.

Consider now an involution of the first kind. We work in 〈K〉, the subring generated

by K, which is centrally closed prime with extended centroid C by Theorem 1.3.2 and

which has the same characteristic as R. Recall that 〈K〉 = K +K ◦K and that K ◦K

equals the subgroup generated by {k2 | k ∈ K} (Lemma 1.3.1). By Leibniz Rule,

A5(k2) =
5∑
i=0

(
5

i

)
Ai(k)A5−i(k) = 0 for every k ∈ K since A3(K) = 0 and in every

summand either i ≥ 3 or 5 − i ≥ 3. Hence A5(〈K〉) = A5(K) + A5(K ◦ K) = 0. By

Herstein Lemma for prime rings applied to 〈K〉, it suffices char(R) > 5 to get that

a = v + z with v ∈ 〈K〉 such that v3 = 0 and z ∈ C(〈K〉) = C. Since a = −a∗, by the

same reasoning as before we get z ∈ Skew(C, ∗) = 0, so that a = v and hence a3 = 0.

Now suppose a2 6= 0. Then a2 ∈ H and a2Ka2 = 0 because 0 = A4(k) = −6a2ka2 for

every k ∈ K and char(R) 6= 2, 3. Then, by the Reduction Lemma 1.2.4(2), hRh = Ch

and R (which, being centrally closed, equals CR) has socle and involution of orthogonal

type.

The hypothesis [K,K] 6= 0 of the previous theorem is not superfluous. Recall from

Theorem 1.3.9 that if [K,K] = 0 then either R is commutative or R̂ is a central simple

algebra of dimension 4 over C with involution of the first kind and transpose type. The

case with R commutative is trivially uninteresting, for then every element is central.

We show that Herstein Lemma is false for noncommutative centrally closed prime rings
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with [K,K] = 0, without using explicitly the matrix structure of R.

Counterexample 3.2.2 (K exceptional).

Let R be a noncommutative centrally closed prime ring with involution such that

[K,K] = 0. Let us show that no nonzero adnilpotent satisfies the conclusion of Herstein

Lemma. Pick a nonzero adnilpotent a ∈ K (i.e., any nonzero element), which is nec-

essarily of index 1. By Theorem 1.3.9 the involution is of the first kind, and therefore

a 6∈ C. By Lemma 1.4.1, K2 ⊆ C and therefore a2 ∈ C. Suppose we can decompose

a = v + λ with v nilpotent and λ ∈ C. Then v 6= 0, for otherwise we would have

a = z ∈ C, a contradiction. On the other hand a2 = (v + λ)2 = v2 + 2λv + λ2, so that

v2 +2λv = a2−λ2 ∈ C. But v2 and 2λv are two nilpotent elements which commute, and

thus v2 + 2λv is nilpotent and central, so v2 = −2λv and a2 = λ2. Consider the index of

nilpotency k of v. Note that k ≥ 2. Then 0 = vk = vk−2v2 = vk−2(−2λv) = −2λvk−1,

contradicting the minimality of k unless λ = 0 (recall that we always have char(R) 6= 2).

Then a = v is an element of zero square. We already know that [a,K] = 0; hence

0 = [a, k]a = aka − ka2 = aka for every k ∈ K. Therefore aKa = 0 and, by the

Reduction Lemma 1.2.4(1), a = 0.

3.3 Lie abelian inner ideals of R centrally closed

prime

For simplicity we call an abelian Lie inner ideal just a Lie inner ideal. In

this section we present the classification of Lie inner ideals of a centrally closed prime

ring, which appeared in [Fernández’14]. We are not going to elaborate in the details and

reasonings which lead to these definitions and results, since in our next section we will

present an study of the Lie inner ideals of K, study which parallels in a good amount

the one of that paper (although with the bit more of casuistic with which K always

treats us). So most of the commentaries of the next section would apply here.
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Definitions 3.3.1 (Types of Lie inner ideal).

Let R be a semiprime algebra.

• A Lie inner ideal V of R is said isotropic14 if V 2 = 0.

• Suppose that Z(R) 6= 0. Let V be an isotropic inner ideal and 0 6= Ω be a submodule

of Z(R). Then the submodule V ⊕ Ω is a nonisotropic Lie inner ideal said to be an

standard inner ideal.

• Suppose in addition that R is unital. Let V be an isotropic inner ideal and let

f : V → Z(R) be a functional such that [V, [V,R]] ⊆ ker f . Then the set inn(V, f) :=

{v + f(v) | v ∈ V } is a nonisotropic and nonstandard Lie inner ideal called special15.

As it happens, those types of Lie inner ideals are the only ones that can appear in a

centrally closed prime ring ([Fernández’14, Theorem 5.4]).

Theorem 3.3.2 (Classification of Lie inner ideals of R centrally closed prime).

Let R be a centrally closed prime algebra such that char(R) 6= 2, 3 and let B be a Lie

inner ideal of R. Then either

1. B = V is isotropic,

2. B = V ⊕ C with V isotropic, or

3. B = inn(V, f) is special.

Since R is centrally closed and Γ = C is a field, either Z(R) = 0 or Z(R) = C. Hence in

the previous theorem the standard and special cases can only occur if R is unital (i.e.,

if R has no identity element then all Lie inner ideals are isotropic).

In the same paper it was proved that if a semiprime algebraR over a field has elements

of zero square which are not von Neumann regular then it has special inner ideals

14In [Fernández’14] these inner ideals were originally called Jordan-Lie, but we have abandoned this

denomination because in the classification of K do appear other inner ideals that are Jordan and Lie

at the same time besides the isotropic ones, the Clifford inner ideals.
15In [Fernández’14] these inner ideals were originally called non-standard, but we have abandoned

this denomination because in the classification of K do appear other inner ideals that are not standard

besides the special ones, the Clifford inner ideals.
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([Fernández’14, Corollary 4.2]). The converse is also true; see Proposition 3.4.9 below,

which is straightly adapted to this context. As an aside, we provide here an specific

example of special inner ideal based on Weyl algebra (refer to [Coutinho, Chapters 1&2]

and [Lam1, Examples 1.3c)]), which was not present in that paper.

Example 3.3.3 (Special inner ideal of R).

Given a field F and a polynomial ring F [Y ], we call the Weyl algebra A1(F ) over F to

the differential polynomial ring (F [Y ])[X; δ] (see [Lam1, Example 1.9]), where δ denotes

the derivative operator of R. A1(F ) is simple when char(F ) = 0 ([Coutinho, Theorem

2.1]) and is not von Neumann regular because a degree can be defined for Weyl algebra

just like for usual polynomial rings (see [Beachy, Proposition 1.5.13(b)]).

Let F be a field with char(F ) = 0 and consider the F -algebra R := M2(A1(F )). R is

simple since A1 is simple. Therefore R is centrally closed, i.e., C = F . The element a :=0 X

0 0

 has zero square and is not von Neumann regular, since aRa =

0 XA1X

0 0


and X is not von Neumann regular in A1. Then V := Fa⊕aRa =

0 FX ⊕XA1X

0 0


endowed with f : V → F linear such that f(XA1X) := 0 and f(X) := 1 generates the

special inner ideal

inn(V, f) =


λ λX +XpX

0 λ

 | p ∈ A1, λ ∈ F

 .
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3.4 Lie abelian inner ideals of K

for R centrally closed prime

Throughout this section we present the results of our paper [Brox,Fernández&Gómez(1)],

in which we classified the Lie abelian inner ideals of K for a centrally closed prime ring

R with char(R) 6= 2, 3, 5, following the main scheme crafted in [Fernández’14] and also

building on its results. From now on, let R be an algebra with involution ∗ (and, as

always, 1
2
∈ Γ) over the ring of scalars with involution (Φ, ∗). By a Lie inner ideal of

K we will always understand an abelian inner ideal of the Lie Sym(Φ, ∗)-algebra

K.

As we know, any element of a Lie inner ideal is a Jordan element. If R is a centrally

closed prime ring such that char(R) 6= 2, 3, 5, then by Herstein Lemma (3.2.1) every

Jordan element a ∈ K is either of zero cube or decomposes as v+λ with v2 = 0 and λ ∈

Skew(C, ∗) (which may be zero). It is therefore natural to try to carry this information to

the Lie inner ideals that contain the Jordan elements, task that resolves with a positive

balance, since there comes to exist a great similarity between the structure of Jordan

elements and the classification of Lie inner ideals.

3.4.1 Standard inner ideals

In this section R will denote a semiprime algebra.

Since the starting point should be the easiest one, we begin by analyzing those Lie inner

ideals full of (Jordan) elements of zero square.

Lemma 3.4.1 (Isotropy).

Let V be a submodule of K.

1. V 2 = 0 in R if and only if V is commutative and v2 = 0 for every v ∈ V .

2. If V 2 = 0 then {u, k, v} = [[u, k], v] for every u, v ∈ V and k ∈ K. In particular, V

is a Jordan inner ideal if and only if it is a Lie inner ideal.
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Proof.

1. If V 2 = 0 then uv = 0 = vu for every u, v ∈ V , so obviously [u, v] = 0 and

v2 = 0. On the other hand, if V is commutative then for every u, v ∈ V we have

(u + v)2 = u2 + v2 + 2uv and since x2 = 0 for every x ∈ V we get 2uv = 0, which

implies uv = 0 since 2 ∈ TF (R).

2. By item (1) we know that V is abelian. In addition, for every u, v ∈ V and k ∈ K

we have [[u, k], v] = ukv − k(uv)− (vu)k + vku = ukv + vku = {u, k, v}.

As the nilpotent elements make up the founding basis of Herstein Lemma, so these

inner ideals which consist only of elements of zero square are the cornerstone of our

classification. Let us give them a name.

Definition 3.4.2 (Isotropic inner ideal).

A Lie inner ideal V of K such that V 2 = 0 will be called an isotropic inner ideal.

Next we bring central elements into the equation. Since we are treating with algebras

which are not necessarily unital, it may be the case that Z(R) = 0. Suppose on the

contrary that Z(R) 6= 0 and denote K(Z) := Skew(Z(R), ∗). If V is an isotropic inner

ideal and Ω is a Sym(Φ, ∗)-submodule of K(Z), then B := V + Ω is clearly a Lie inner

ideal of K, since [B, [B,K]] = [V + Ω, [V + Ω, K]] = [V, [V,K]] ⊆ V . In addition, the

sum V + Ω is direct because V is full of nilpotent elements and Z(R) does not contain

any of them, by semiprimeness of R. Let us set another name.

Definition 3.4.3 (Standard inner ideal).

A Lie inner ideal B of K will be called standard if B = V ⊕ Ω, where V is an isotropic

inner ideal of K and Ω is a Sym(Φ, ∗)-submodule of K(Z).

Given an arbitrary Lie inner ideal we would like to attach an isotropic one to it.

We could try and just take its subset of zero square elements, but in view of Herstein

Lemma it is better to take also into account its skew central elements.

Definition 3.4.4 (VB, isotropic set attached to B).

Given a Lie inner ideal B we denote VB := {v ∈ B +K(Z) | v2 = 0}.
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As we see, in VB we are essentially16 considering the nilpotent parts of all Jordan elements

of B of the kind v+z, v2 = 0, z ∈ C which actually have their central parts inside Z(R).

Let us see when can we assure that VB is an inner ideal.

Lemma 3.4.5 (Properties of VB).

Let B be a Lie inner ideal such that B ⊆ VB +K(Z).

Then VB is an isotropic inner ideal such that [B, [B,K]] ⊆ {VB, K, VB} ⊆ B.

Proof. We will show that VB is a submodule of K. It is clear by the definition of VB

that Sym(Φ, ∗)VB ⊆ VB. Let us see that VB is also a subgroup of K. Since B + K(Z)

is a subgroup of K,

VB+VB ⊆ (B+K(Z))+(B+K(Z)) ⊆ B+K(Z) ⊆ (VB⊕K(Z))+K(Z) = VB⊕K(Z).

Thus for any u, v ∈ VB there exist w ∈ VB and z ∈ K(Z) such that u + v = w + z,

with z = 0 since u + v − w is a central nilpotent element and R is semiprime. This

proves that VB + VB ⊆ VB, hence VB is a subgroup of K. Now let us see that VB is

an isotropic inner ideal. By Lemma 3.4.1 uv = 0 for every u, v ∈ VB and {u, k, v} =

ukv + vku = [[u, k], v] for every k ∈ K. In addition {u, k, v}2 = 0 since uv = vu = 0.

Hence {u, k, v} = [[u, k], v] ∈ [[B + K(Z), K], B + K(Z)] = [[B,K], B] ⊆ B with

{u, k, v}2 = 0, so that {u, k, v} ∈ VB by definition. This proves that VB is an isotropic

inner ideal of K satisfying {VB, K, VB} ⊆ B. Note also that by hypothesis [B, [B,K]] ⊆

[VB +K(Z), [VB +K(Z), K]] = {VB, K, VB}.

VB can be used to determine if B is standard.

Theorem 3.4.6 (Characterization of standard inner ideals).

A Lie inner ideal B is standard if and only if the following condition holds:

VB ⊆ B ⊆ VB +K(Z). (ST)

16Note that as of today Herstein Lemma has not been proved for K of a semiprime ring.
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Proof. Suppose first that VB ⊆ B ⊆ VB+K(Z). Then by Lemma 3.4.5 VB is an isotropic

inner ideal. Since VB ⊆ B, by the Modular Law we have

B = B ∩ (VB +K(Z)) = VB ⊕ (B ∩K(Z)),

so B is standard by definition.

Now suppose that B is standard, i.e., B = V ⊕ Ω where V is an isotropic inner ideal

and Ω a Sym(Φ, ∗)-submodule of K(Z). Let us show that VB = V . Since VB contains

in particular all the zero square elements of B we get V ⊆ VB. On the other hand,

VB ⊆ B + K(Z) = (V ⊕ Ω) + K(Z) = V ⊕ K(Z). Thus for every u ∈ VB there exist

v ∈ V , z ∈ K(Z) such that u = v + z. Hence u − v is a central nilpotent element and

therefore u = v since R is semiprime. This proves that VB ⊆ V . Thus B = VB ⊕Ω and

therefore it satisfies (ST).

3.4.2 Special inner ideals

In this section R will denote a unital semiprime algebra whose involution does not

act as the identity on its center, i.e., such that K(Z) 6= 0.

In the definition of standard ideal we have allowed the elements of zero square and

the central elements to dance with each other freely, but we can also have inner ideals

B whose Jordan elements a are such that a = va + za with 0 6= za ∈ K(Z), v2
a = 0 and

vavb = 0 = vbva for every a, b ∈ B, but not necessarily va, za ∈ B. Since [a, [b,K]] =

[va + za, [vb + zb, K]] = [va, [vb, K]] and we need [a, [b,K]] ⊆ B, a good way to guarantee

this is to ask for va ∈ B for some a’s and ask for [B, [B,K]] ⊆ {va | va ∈ B}. This

motivates the following definition.

Definition 3.4.7 (Special inner ideal).

Let V be a nonzero isotropic inner ideal of K and let f : V → K(Z) be a nonzero linear

map such that [V, [V,K]] ⊆ ker f . We define inn(V, f) := {v + f(v) | v ∈ V } and call it

an special inner ideal.
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Let us see that special inner ideals are in fact inner ideals.

Theorem 3.4.8 (Special are inner ideals).

inn(V, f) is a Lie inner ideal of K which is not standard and such that VB = V .

Proof. Set B := inn(V, f). Then:

1. B is a Lie inner ideal of K.

Observe that if u ∈ V then [u + f(u), k] = [u, k] for every k ∈ K because imf ⊆

K(Z). Then, since for every b ∈ B we have b = u + f(u) for some u ∈ V , we get

[B, [B,K]] = [V, [V,K]] ⊆ ker f ⊆ B, the last inclusion due to v = v + f(v) ∈ B for

every v ∈ ker f . In addition [B,B] = [V, V ] = 0 .

2. V ∩B = ker f .

Note that ker f ⊆ B is shown in (1) and that ker f ⊆ V by definition of f . Hence

ker f ⊆ V ∩ B. Now let v ∈ V ∩ B. Then v = u + f(u) for some u ∈ V and thus

v − u = f(u) ∈ V ∩ Z(R) = 0, so v = u ∈ ker f .

3. VB = V .

By definition of B we have V ⊆ B +K(Z), and since V 2 = 0 we get V ⊆ VB by the

very definition of VB. Conversely, pick u = b + z ∈ VB with b = v + f(v) for some

v ∈ V and z ∈ K(Z). Then u = v + f(v) + z implies [v, u] = [v, v + f(v) + z] = 0,

so u − v = f(v) + z is a central nilpotent element and hence is zero because R is

semiprime, which forces u = v ∈ V .

4. B is not standard.

By Theorem 3.4.6 it is enough to show that VB is not contained in B, and by (3) we

have VB = V . Suppose otherwise that V ⊆ B. Then by (2) we get that V = V ∩B =

ker f , which yields a contradiction with f 6= 0.

Actually, how special are special inner ideals? The following proposition gives an

answer.

Proposition 3.4.9 (Characterization of K with special inner ideals).

Let Φ be an integral domain. Then K contains a special inner ideal if and only if there

exists an element v ∈ K which is of zero square and such that vKv ∩ Φv = 0.
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Proof. Let B := inn(V, f) be a special inner ideal. By Lemma 3.4.1(2) and by the

definition of special inner ideal we get that PVK = {V,K, V } = [V, [V,K]] ⊆ ker f . Pick

v ∈ V such that f(v) 6= 0 and let k ∈ vKv ∩ Φv. Then k = λv for some λ ∈ Φ, but

λf(v) = f(λv) = f(k) ∈ f(vKv) ⊆ f(PVK) = 0. This implies λ = 0, since f(v) 6= 0

and Φ is an integral domain. Therefore k = 0. Note also that any v ∈ V is of zero

square.

Now suppose conversely that there exists v ∈ K such that v2 = 0 and vKv ∩ Φv = 0.

Then the sum Φv+vKv is direct and it is easily checked that V := Sym(Φ, ∗)v⊕vKv is

an isotropic inner ideal of K. Given a nonzero z ∈ K(Z) (which exists because ∗ does not

act as the identity in Z(R), by assumption), consider the additive map f : V → K(Z)

defined by f(vKv) = 0 and f(v) = z. Then inn(V, f) is a special inner ideal of K, since

[V, [V,K]] = vKv = ker f and f 6= 0.

In particular, if Φ is a field, then K contains an special inner ideal if and only if it

contains a nonzero element of zero square which is not von Neumann regular, since in

that case vKv ∩ Φv 6= 0 implies v regular (vkv = λv with 0 6= λ ∈ Sym(Φ, ∗), then

vλ−1kv = v).

Despite the fact that special inner ideals are not standard, isotropic inner ideals and

special inner ideals are the same kind of thing from the Jordan point of view.

Proposition 3.4.10 (Special are Jordan-isomorphic to isotropic).

The Lie inner ideals V and inn(V, f) are Jordan-isomorphic for every suitable map f .

Proof. Set B := inn(V, f) for some arbitrary but fixed f . Since b ∈ B implies b =

v + f(v) with v ∈ V and f(v) ∈ K(Z), and kerB = {x | [B, [B, x]] = 0}, it is clear

that kerB = kerV . Denote K := K/ kerB = K/ kerV . Then SubV = (V,K) and

SubB = (B,K). We claim that the pair of linear maps (ϕ, idK) : SubV → SubB is

an isomorphism of Jordan pairs, where ϕ(v) := v + f(v) and idK is the identity on K.

Clearly ϕ : V → B is a linear isomorphism, and for u, v ∈ V and x, y ∈ K, we have

ϕ({u, x, v}) = [[u, x], v]+f([[u, x], v]) = [[u, x], v] = [[u+f(u), x], v+f(v)] = {ϕ(u), x, ϕ(v)}
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since [[V,K], V ] ⊆ ker f and f(V ) ⊆ K(Z), and

{x, v, y} = [[x, v], y] = [[x, v + f(v)], y] = [[x, ϕ(v)], y] = {x, ϕ(v), y},

which completes the proof.

Now we provide an specific example of special inner ideal.

Example 3.4.11 (Special inner ideal of K).

Consider the field F := Z3[i], where i is a root of X2 + 1, and the F -algebra R :=

M2(F [X]), where F [X] is the ring of polynomials in one variable over F . Since F [X] is

prime, R is prime, although R is not centrally closed: the center of R is isomorphic to

F [X], which is not a field and hence cannot be isomorphic to C. The base field possess

a conjugation involution x+ yi := x − yi for x, y ∈ Z3. Observe that Sym(F, )̄ = Z3

and Skew(F, )̄ = Z3i. We can extend the involution from F to F [X] in a straight way,

defining
n∑
k=1

ckXk :=
n∑
k=1

ckX
k, and then we can further extend it to R by taking the

conjugate tranpose, so that

if a :=

p11 p12

p21 p22

 with pij(X) ∈ F [X], then a∗ :=

p11 p21

p12 p22

.

Then it is directly checked that K :=


 p1 q

−q p2

, where p1, p2 are polynomials

whose coefficients are skew with respect to conjugation, i.e., purely imaginary. Since

Z(R) ∼= F [X] we get that K(Z) 6= 0. For example, z :=

i 0

0 i

 lies in K(Z).

Since F is a field, by the observation after Proposition 3.4.9, to find an special inner

ideal it is enough to find an skew element of zero square not von Neumann regular. Con-

sider the element a :=

 i 1 + i

−1 + i −i

X, which lies in K. The modulo 3 restriction

guarantees that a2 = 0:

a2 =

 i 1 + i

−1 + i −i

X

 i 1 + i

−1 + i −i

X =
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=

 i2 + (i+ 1)(i− 1) (1 + i)i− (1 + i)i

(−1 + i)i− (−1 + i)i (i+ 1)(i− 1) + i2

X2 = 0,

since i2 + (i+ 1)(i− 1) = i2 + i2 − 1 = −3 = 0. The polynomial degree guarantees that

a is not von Neumann regular: since we have aRa ⊆ RX2, if a ∈ aRa then a = bX2

for some b ∈ R and so iX = a11 = b11X
2 with b11 ∈ F [X], an impossibility. Therefore

the isotropic inner ideal V := Z3a+ aKa endowed with f : V → K(Z) linear such that

f(a) := z and f(aKa) := 0 generates the special inner ideal

inn(V, f) = {Mp1,p2,qX
2 | p1, p2 ∈ Skew(F [X], )̄, q ∈ F [X]} ⊕ {λM | λ ∈ Z3}

with Mp1,p2,q :=

 p1 − 2p2 − κ(q) + τ(q)i (p1 + p2)(1− i) + q − 2qi

(p1 + p2)(1 + i)− q − 2qi 2p1 − p2 + κ(q) + τ(q)i

 and

M :=

 i(1 +X) (1 + i)X

(−1 + i)X i(1−X)

.

3.4.3 Clifford inner ideals

In our approach to define inner ideals from the properties of their Jordan elements,

as collected in Herstein Lemma, we finally arrive to those Jordan elements a ∈ K such

that a2 6= 0 is minimal in R and a3 = 0. In a centrally closed prime ring those are only

possible if R has socle and involution of orthogonal type, what implies by Kaplansky

Theorem (1.1.7) that R is isomorphic to an algebra of endomorphisms of a selfdual17

space X over a field F , equipped with a nondegenerate symmetric bilinear form 〈· , ·〉,

being the involution on R the adjoint involution inherited from L(X). In this section we

will restrict to that kind of algebras, and moreover we will suppose that dimF X ≥ 3, in

order to get the so-called Clifford inner ideals, which are associated to Jordan elements

such that a2 6= 0. Since Clifford inner ideals already appear in the simple with socle case

(see Section 3.1), we may restrict ourselves mostly to an study inside F(X). Refer to

Sections A.1 and 1.1.1 for the geometric model of continuous and finite-rank operators.

17In here we will use X to denote the vector space, since V is reserved for an isotropic inner ideal.
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Geometric model of K in simple rings with socle

It can be shown that F(X) is a selfadjoint ideal of L(X) ([RingsGIs, page 156]). This

implies that Skew(F(X), ∗) = κ(F(X)). Since Skew(L(X), ∗) is the orthogonal algebra,

denoted by o(X), Skew(F(X), ∗) is called the finitary orthogonal algebra and denoted

by fo(X) ([Baranov’99, 6.Finitary simple Lie algebras]).

If u, v ∈ X we define their bracket [ · , · ] : X ×X → F(X) as [u, v] := u⊗ v− v⊗u. The

linear span of all brackets is denoted by [X,X].

We state now some elementary computational facts about K := fo(X) which will

see use in what follows, in occasions without further remark.

• The adjoint of a rank-one operator is (u⊗ v)∗ = v ⊗ u, since

〈u⊗ v(x), y〉 = 〈〈x, u〉v, y〉 = 〈x, u〉〈v, y〉 = 〈x, u〉〈y, v〉 = 〈x, 〈y, v〉u〉 = 〈x, v ⊗ u(y)〉.

• This implies that κ(u⊗ v) = u⊗ v − v ⊗ u = [u, v] and hence that K = [X,X].

In particular every skew linear operator has even rank.

• In addition all the symmetric operators of rank one are of the form αu⊗u with α ∈ F ,

since (u⊗ v) = (u⊗ v)∗ = v ⊗ u implies, evaluating in x ∈ X, that 〈x, u〉v = 〈x, v〉u,

so that v = αu for some α ∈ F .

• If {vi} is a dual set to {ui}, so that 〈ui, vj〉 = δij, then the reverse product is

〈vj, ui〉 = 〈ui, vj〉 = δij.

• If a ∈ K, then 〈au, u〉 = 0 for every u ∈ X, i.e., a is alternating, because

〈au, u〉 = 〈u, a∗u〉 = −〈u, au〉 = −〈au, u〉.

The converse is also true (this is the skew version of [McCrimmon’66, Lemma 6]).

Lemma 3.4.12 (Structure of the orthogonal complement of a vector).

Let 0 6= u ∈ X. Then {u}⊥ = Ku.

Proof. Ku ⊆ {u}⊥, since every a ∈ K is alternating. If {u}⊥ = 0 then trivially

{u}⊥ ⊆ Ku. Otherwise, take 0 6= w ∈ {u}⊥ and choose v ∈ X such that 〈u, v〉 = 1,
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which can be done thanks to the existence of dual sets. Consider [v, w] ∈ K; then

[v, w]u = v ⊗ w(u)− w ⊗ v(u) = 〈u, v〉w − 〈u,w〉v = 1 · w − 0 · v = w, i.e.,

w = [v, w]u ∈ Ku. Hence {u}⊥ ⊆ Ku.

• Since K = [X,X], the associative and Lie products of elements of K are determined

by the product of ‘pure’ brackets of the form [x, y].

Lemma 3.4.13 (Bracket products).

Let a, b, c, d ∈ X. Then:

1. [a, b][c, d] = (〈b, c〉d− 〈b, d〉c)⊗ a− (〈a, c〉d− 〈a, d〉c)⊗ b.
2. ad[a,b]([c, d]) = [a, 〈b, c〉d+ 〈b, d〉c] + [b, 〈a, c〉d− 〈a, d〉c].

Proof.

1. A direct calculation using the Product Law (A.1.2(2)) shows that

[a, b][c, d] = (a⊗ b− b⊗ a)(c⊗ d− d⊗ a) =

= (a⊗ b)(c⊗ d)− (a⊗ b)(d⊗ c)− (b⊗ a)(c⊗ d) + (b⊗ a)(d⊗ a) =

= 〈d, a〉c⊗ b− 〈c, a〉d⊗ b− 〈d, b, 〉c⊗ a+ 〈a, b〉d⊗ a =

= (〈b, c〉d− 〈b, d〉c)⊗ a− (〈a, c〉d− 〈a, d〉c)⊗ b.
2. [a, b][c, d]− [c, d][a, b] =

(〈b, c〉d− 〈b, d〉c)⊗ a− (〈a, c〉d− 〈a, d〉c)⊗ b−

− (〈d, a〉b− 〈d, b〉a)⊗ c+ (〈c, a〉b− 〈c, b〉a)⊗ d =

= 〈b, d〉[a, c]− 〈b, c〉[a, d]− 〈a, d〉[b, c] + 〈a, c〉[b, d] =

= [a, 〈b, d〉c− 〈b, c〉d] + [b, 〈a, c〉d− 〈a, d〉c].

The notion of hyperbolic plane is fundamental to define Clifford inner ideals from a

geometric perspective.

Definitions 3.4.14 (Hyperbolic pair and hyperbolic plane).

• A vector u ∈ X is said to be isotropic if 〈u, u〉 = 0. A vector which is not isotropic is

called anisotropic.

• By a hyperbolic pair we mean a pair (x, y) of isotropic vectors ofX such that 〈x, y〉 = 1.
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• A hyperbolic plane is a subspace H := Fx⊕ Fy such that (x, y) is a hyperbolic pair.

The following are essential properties of the definitions above.

• Any nonzero isotropic vector can be extended to a hyperbolic pair, and hence to a

hyperbolic plane, as follows. Pick 0 6= x ∈ X isotropic and consider a dual vector

y′ ∈ X to x. Then y := −1
2
〈y′, y′〉x+ y′ satisfies 〈x, y〉 = −1

2
〈y′, y′〉〈x, x〉+ 〈x, y′〉 = 1

and 〈y, y〉 = 1
4
〈y′, y′〉2〈x, x〉−〈y′, y′〉〈x, y′〉+〈y′, y′〉 = 0 since 〈x, x〉 = 0 and 〈x, y′〉 = 1.

• A minimal idempotent e ∈ FW (X) is ∗-orthogonal if and only if e = x⊗ y, with (x, y)

a hyperbolic pair. This is due to:

– e2 = (x ⊗ y)(x ⊗ y) = x ⊗ (x ⊗ y(y)) = x ⊗ 〈y, x〉y by the Absorption Law 1

(A.1.2(4)), which gives e2 = e if and only if 〈x, y〉 = 1.

– Since (x⊗ y)∗ = y ⊗ x, e∗e = (y ⊗ x)(y ⊗ x) = x⊗ (y ⊗ x(y)) = x⊗ 〈y, y〉x, which

gives e∗e = 0 if and only if 〈y, y〉 = 0. Analogously ee∗ = 0 if and only if 〈x, x〉 = 0.

• IfH is a hyperbolic plane, then by the Direct Summand Theorem (see [LinearGeometry,

Theorem 2]) we have that

X = H ⊕H⊥,

where H⊥ := {u ∈ X | 〈u,H〉 = 0} is the orthogonal complement of H.

Enter Clifford inner ideals

Definition 3.4.15 (Clifford inner ideal).

Let L be a subalgebra of o(X) containing fo(X). A Clifford inner ideal is a subspace

of L of the form [x,H⊥] := {[x, z] | z ∈ H⊥}, where x is a nonzero isotropic vector and

H is an associated hyperbolic plane.

This terminology is motivated by the fact that the subquotient of B is the Clifford

Jordan pair18 (H⊥, H⊥) (see [Benkart&Fernández’09, Proposition 4.4(i)]).

18If X is a vector space over a field and q is a quadratic form on X then (X,X) becomes a Jor-

dan pair with product Qxy := q(x, y)x − q(x)y, with q(x, y) the bilinear form associated to q, see

[Fernández,Garćıa&Gómez’08, 5.7].
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Let us prove that Clifford inner ideals are indeed Lie inner ideals and state some of

their properties.

Proposition 3.4.16 (Properties of Clifford inner ideals).

Let x be a nonzero isotropic vector with associated hyperbolic plane H and set

B := [x,H⊥]. Then:

1. B is a Lie inner ideal of o(X) contained in fo(X).

2. B = ad2
[x,z](fo(X)) for every anisotropic z ∈ H⊥.

3. b3 = 0 for every b ∈ B and b2
0 6= 0 is of rank one for some b0 ∈ B.

In particular B is neither standard nor special.

4. B coincides with its centralizer in o(X) and hence is a maximal Lie inner ideal of

o(X).

Proof.

1. This was first proved in [Fernández,Garćıa&Gómez’06(2), Lemma 3.7(i)].

To show that B is a Lie inner ideal is to show that [B,B] = 0 and that ad2
[x,z](a) ∈ B

for every a ∈ o(X) and z ∈ H⊥. Take into account that 〈x, x〉 = 0 = 〈x, z〉 because

x is isotropic and z ∈ H⊥, and that 〈ax, z〉 = −〈x, az〉 and 〈ax, x〉 = 0 = 〈az, z〉

because a∗ = −a. Pick z, z1, z2 ∈ H⊥ and a ∈ o(X). Then:

• By Lemma 3.4.13(1), [x, z1][x, z2] = −〈z1, z2〉x⊗x (1), which is symmetric in z1, z2.

Hence ad[x,z1]([x, z2]) = 0.

• ad[x,z](a) = (x⊗z−z⊗x)a−a(x⊗z−z⊗x) = (a∗x)⊗z−(a∗z)⊗x−x⊗az+z⊗ax

by the Absorption Laws (A.1.2(4,5)), which in turns gives

z ⊗ ax− (ax)⊗ z + (az)⊗ x− x⊗ az = [z, ax] + [az, x].

• ad2
[x,z](a) = ad[x,z](ad[x,z](a)) = ad[x,z]([z, ax]) + ad[x,z]([az, x]) which, by Lemma

3.4.13(2), gives

[x, 〈z, ax〉z−〈z, z〉ax]+[z, 〈x, z〉ax−〈x, ax〉z]+[x, 〈z, x〉az−〈z, az〉x]+[z, 〈x, az〉x−〈x, x〉az] =

= 〈z, ax〉[x, z]− 〈z, z〉[x, ax] + 〈x, az〉[z, x] = 2〈ax, z〉[x, z]− 〈z, z〉[x, ax], (2)
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since 〈x, az〉[z, x] = −〈x, az〉[x, z] = 〈ax, z〉[x, z].

Let us see that [x, ax] ∈ [x,H⊥]. Let y ∈ H denote the isotropic vector such that

〈x, y〉 = 1. Then V = H⊕H⊥ = Fx⊕Fy⊕H⊥ and ax = αx+βy+w with α, β ∈ F ,

w ∈ H⊥. Since a∗ = −a we get 0 = 〈ax, x〉 = 〈αx + βy + w, x〉 = β〈x, y〉 = β.

Hence ax = αx+ w and [x, ax] = [x, αx+ w] = [x,w] ∈ B.

2. This was first proved in [Fernández,Garćıa&Gómez’06(2), Lemma 3.7(iii)].

Pick w, z ∈ H⊥ with z anisotropic and denote λ := 〈z, z〉−1. Let us see that there

exists a ∈ fo(X) such that ad2
[x,z](a) = [x,w]. Suppose by reverse engineering that

we already have a. By (2) we get [x,w] = 2〈ax, z〉[x, z] − 〈z, z〉[x, ax], so that

[x,w − 2〈ax, z〉z + 〈z, z〉ax] = 0 and ax = λ−1(2〈ax, z〉z − w) since x 6= 0. Then

〈ax, z〉 = λ−1(2〈ax, z〉〈z, z〉 − 〈w, z〉) = 2〈ax, z〉 − λ−1〈w, z〉 and hence 〈ax, z〉 =

λ−1〈w, z〉. Therefore

ax = λ−1(2λ−1〈w, z〉 − w) =: v.

Now, since 〈x, y〉 = 1 we can take a := y⊗ v to guarantee that ax = v. This element

is checked to indeed satisfy ad2
[x,z](a) = [x,w].

3. This was first proved in [Fernández,Garćıa&Gómez’06(2), Lemma 3.7(ii)].

By formula (1) for every z ∈ H⊥ we have [x, z]2 = −〈z, z〉x ⊗ x, which if not zero

is of rank one. Then [x, z]3 = −〈z, z〉x⊗ x(x⊗ z − z ⊗ x) = 0 since the two factors

arising from the Product Law (A.1.2(2)) yield respectively 〈z, x〉 = 0 and 〈x, x〉 = 0.

In addition it is [x, z]2 = 0 if and only if 〈z, z〉 = 0. Since dimF X ≥ 3, H⊥ must

contain some anisotropic vector, so there exists b ∈ B such that b2 6= 0. But the

involution is of the first kind and thus we have that K(Z) = 0, so there are no special

inner ideals in o(X) and all its standard inner ideals are isotropic. Therefore B is

neither standard nor special.

4. Let a ∈ o(X) be such that

a(x⊗ z − z ⊗ x) = (x⊗ z − z ⊗ x)a z ∈ H⊥. (3)

We need to show that a ∈ [x,H⊥]. The proof will be complete if we prove in particular

that ay ∈ H⊥ and a = [x, ay] for the isotropic vector y ∈ H such that 〈x, y〉 = 1.
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Since a∗ = −a, by the Absorption Laws (A.1.2(4,5)) equation (3) can be written as

x⊗ az − z ⊗ ax = (az)⊗ x− (ax)⊗ z for every z ∈ H⊥, (4)

which evaluated in y, since 〈x, y〉 = 1 and 〈y, z〉 = 0 because y ∈ H, yields

az = 〈y, az〉x− 〈y, ax〉z, z ∈ H⊥. (5)

Consider z ∈ H⊥ anisotropic, which is possible because dimF X ≥ 3. Since 〈z, az〉 = 0

because a = −a∗, by (5) we get

0 = 〈z, az〉 = 〈z, 〈y, az〉x〉−〈z, 〈y, ax〉z〉 = 〈z, x〉〈y, az〉−〈z, z〉〈y, ax〉 = −〈z, z〉〈y, ax〉,

which implies 〈y, ax〉 = 0 since 〈z, z〉 6= 0 by the choice of z. Thus by (5)

az = 〈y, az〉x, z ∈ H⊥. (6)

Evaluating (4) in z and applying (6) we get that for any z ∈ H⊥,

−〈z, z〉ax = −〈z, ax〉z = 〈az, x〉z = 〈〈y, az〉x, x〉z = 〈y, az〉〈x, x〉z = 0.

Taking z anisotropic we get

ax = 0. (7)

Then 〈ay, x〉 = −〈y, ax〉 = 0 and, since 〈ay, y〉 = 0, we get that ay ∈ H⊥ since

H = Fx ⊕ Fy. Using the decomposition X = H ⊕H⊥ we prove that a = [x, ay] to

complete the proof.

(a) [x, ay]x = 〈x, x〉ay − 〈x, ay〉x = 0 = ax by (7),

(b) [x, ay]y = 〈y, x〉ay − 〈y, ay〉x = ay and, for z ∈ H⊥,

(c) [x, ay]z = 〈z, x〉ay − 〈z, ay〉x = −〈z, ay〉x = 〈az, y〉x = az, by (6).

The Clifford denomination for this kind of inner ideal is also justified by another

reason apart from the subquotient one. In Chapter 4, Clifford elements, we will show

how to attach a Jordan algebra La to any Jordan element a of a Lie algebra L (4.1.2),

Jordan algebra that behaves much like local rings do in the associative setting. By item
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(3) of the previous proposition, there exist Jordan elements b ∈ B such that b2 6= 0.

Then it happens that K̂b is a Clifford Jordan algebra over the extended centroid of R

for any such b ∈ B.

We show now that there are no other kinds of inner ideal associated to Jordan

elements with minimal square.

Proposition 3.4.17.

(Characterization of Clifford inner ideals: prime with socle case)

Let L be such that fo(X) ≤ L ≤ o(X) and let B be an abelian inner ideal of L.

If B contains an element b such that b3 = 0 and b2 has rank one then B is Clifford.

Proof. Since b2 is symmetric and of rank one we have that b2 = αx ⊗ x, where both

α ∈ F and x ∈ X are not zero. Now b3 = 0 implies that 0 = b2b2 = α2〈x, x〉x⊗ x, so x

is isotropic. Extend x to the hyperbolic pair (x, y) and set H := Fx⊕Fy. We have the

following identities:

• b2y = (αx⊗ x)y = α〈y, x〉x = αx.

• 〈by, by〉 = −〈y, b2y〉 = −α, so by is anisotropic.

• by ∈ H⊥, since 〈by, y〉 = 0 and 〈by, x〉 = 〈by, α−1b2y〉 = 〈b3y, α−1y〉 = 0.

Let z ∈ H⊥ and set a := [y, z]. Then:

• ax = 〈x, y〉z − 〈x, z〉y = z.

• b2a = α(x⊗ x)a = −α(ax)⊗ x = −αz ⊗ x.

• ab2 = αa(x⊗ x) = αx⊗ ax = αx⊗ z.

• bab = b(y ⊗ z − z ⊗ y)b = (bz)⊗ by − (by)⊗ bz = [bz, by].

• ad2
ba = b2a+ ab2 − 2bab = α[x, z]− 2[bz, by].

Taking z := by in the last identity we get, since b2y = αx, that

ad2
b [y, by] = α[x, by]− 2[b2y, by] = α[x, by],

so [x, by] ∈ B. Since by is anisotropic, by Proposition 3.4.16(2) we have [x,H⊥] =

ad2
[x,by]fo(X) ⊆ B, and hence B = [x,H⊥] since [x,H⊥] is maximal by Proposition

3.4.16(4). This proves that B is Clifford.
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Now we describe Clifford inner ideals in ring-theoretic terms.

Proposition 3.4.18 (Ring-theoretic structure of Clifford inner ideals).

Let L be such that fo(X) ≤ L ≤ o(X) and let B be a subset of L.

B is a Clifford inner ideal of L if and only if B = κ((1 − e)fo(X)e), where e ∈ F(X)

is a minimal ∗-orthogonal idempotent, in which case B = κ((1 − e)Se) for any set

fo(X) ⊆ S ⊆ L(X).

Proof. We will actually prove slightly more than what is claimed in the statement. We

will prove that B is Clifford if and only if B = κ((1−e)Se), where e ∈ F(X) is a minimal

∗-orthogonal idempotent and S is any set S ⊆ L(X) satisfying the technical condition

(1− e− e∗)Se = (1− e− e∗)F(X)e, all these sets giving rise to the same Clifford inner

ideal; after that we will show that any S such that fo(X) ⊆ S satisfies the technical

condition, proving the claim.

Let (x, y) be a hyperbolic pair. As commented after 3.4.14, (x, y) is a hyperbolic pair if

and only if e := x⊗y is an ∗-orthogonal idempotent. Let H := Fx⊕Fy be the associated

hyperbolic plane, set f := e + e∗ and suppose S ⊆ L(X) is such that (1 − f)Se =

(1− f)F(X)e. Note that F(X)y = X. By the Absorption Law 1 (A.1.2(4))

F(X)e = F(X)(x⊗ y) = x⊗ F(X)y = x⊗X.

Observe that eX = (x ⊗ y)X = Fy while e∗X = (y ⊗ x)X = Fx. Hence 1 − f is the

orthogonal projection onto H⊥ and we have that

(1− f)Se = (1− f)F(X)e = (1− f)x⊗X = x⊗ (1− f)X = x⊗H⊥. (1)

Since 〈by, y〉 = 0 for every b ∈ o(X),

e∗be = (x⊗ y)∗b(x⊗ y) = (y ⊗ x)b(x⊗ y) = (y ⊗ x)(x⊗ by) = 〈by, y〉x⊗ x = 0.

Hence, since for every a ∈ S we have κ(a) ∈ o(X),

κ((1− f)ae) = κ((1− e)ae− e∗ae) = κ((1− e)ae)− e∗κ(a)e = κ((1− e)ae). (2)
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Then, by (1) and (2), [x,H⊥] = κ(x⊗H⊥) = κ((1− f)Se) = κ((1− e)Se).

Now suppose S is such that fo(X) ⊆ S. By Lemma 3.4.12 we know that fo(X)y =

{y}⊥ = Fx ⊕ H⊥. Hence Sy is either Fx ⊕ H⊥ or X. In any case H⊥ ⊆ Sy and

(1− f)Sy = H⊥, since 1− f is the projection onto H⊥. Therefore

(1−f)Se = (1−f)S(x⊗y) = (1−f)x⊗Sy = x⊗(1−f)Sy = x⊗H⊥ = (1−f)F(X)e.

3.4.4 Classification of Lie inner ideals

In this section R will be a centrally closed prime algebra. Recall that we deem K

exceptional whenever [K,K] = 0 (see Theorem 1.3.9).

Proposition 3.4.19 (Characterization of Clifford inner ideals: prime case).

Let R be a centrally closed prime algebra with char(R) 6= 2, 3, 5 and involution such that

[K,K] 6= 0. If B is a Lie inner ideal of K such that b2 6= 0 for some b ∈ B, then B is

a Clifford inner ideal of K.

Proof. Since B is a Lie inner ideal of K, b is a Jordan element of K such that b2 6= 0.

By Herstein Lemma (3.2.1) R has socle and involution of orthogonal type, and therefore

fo(X) ⊆ K ⊆ o(X) for some selfdual vector space X over C. We claim that dimCX ≥ 3.

Suppose on the contrary that dimCX < 3. Then either K = 0 or there exist two linearly

independent vectors x, y ∈ X and we have K = C[x, y]; in both cases [K,K] = 0, a

contradiction. It follows from Proposition 3.4.17 that B is a Clifford inner ideal.

Theorem 3.4.20.

(Classification of Lie inner ideals of K for R centrally closed prime)

Let R be a centrally closed prime algebra with char(R) 6= 2, 3, 5 and involution ∗ such

that [K,K] 6= 0. If B is a Lie inner ideal of K, then either

1. B = V is an isotropic inner ideal,

86



CHAPTER 3. INNER IDEALS 3.4. GEOMETRIC MODEL

2. B = V ⊕ Skew(C, ∗) is a standard inner ideal,

3. B = inn(V, f) is special, or

4. B = κ((1− e)Re) is Clifford.

Moreover, in cases (2) and (3) R is unital and ∗ is of the second kind, while in case (4)

R has nonzero socle and ∗ is of orthogonal type.

Proof. Suppose first that ∗ is of the second kind and let ξ be a nonzero skew element

of C. Then by Lemma 1.2.1(2) we know that R = K ⊕ ξK. Set C := B ⊕ ξB. It

is straightforward to see that C is a Lie inner ideal of R, selfadjoint and with B =

Skew(C, ∗) = C ∩K. By the classification of the Lie inner ideals of R (Theorem 3.3.2),

either

1. C = V , where V is an isotropic inner ideal, or

2. R is unital and C = V ⊕ C, where V is isotropic, or

3. R is unital and C = {v + g(v) | v ∈ V }, where V is isotropic and g : V → C is a

nonzero additive form such that [V, [V,R]] ⊆ ker g.

If C = V as in (1), then B = Skew(V, ∗) is an isotropic inner ideal of K. Suppose then

that C is as in (2) or (3). In both cases V is selfadjoint:

V ∗ ⊆ C∗ = C ⊆ V ⊕ C and hence [V ∗, V ] = 0 since V 2 = 0. Thus for any u ∈ V ,

u∗ = v + z where v ∈ V and z ∈ C. Since u∗ − v is nilpotent, u∗ − v = 0, so u∗ = v ∈ V

as claimed.

If (2), then B = (V ⊕C)∩K = κ(V ⊕C) = κ(V )⊕κ(C) = Skew(V, ∗)⊕Skew(C, ∗) since

V and C are selfadjoint (see the first paragraphs of Chapter 1), with Skew(V, ∗) being

an isotropic inner ideal of K. If (3), then κ(v+ g(v)) = κ(v) + κ(g(v)) = κ(v) + g(κ(v))

with κ(g(v)) ∈ κ(C) implies that B = {u + f(u) | u ∈ U}, where U = Skew(V, ∗) is an

isotropic inner ideal of K and f : V → Skew(C, ∗) is the restriction of g to V , which

satisfies [U, [U,K]] ⊆ ker f .

Suppose now that the involution is of the first kind. If b2 = 0 for every b ∈ B then B is

an isotropic inner ideal by Lemma 3.4.1(1). Thus we may assume that b2
0 6= 0 for some

b0 ∈ B. By Herstein Lemma for K (3.2.1) we find that b3
0 = 0 since the involution is

of the first kind. Then we have by Proposition 3.4.19 that B is a Clifford inner ideal.
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Since in this case F(X) ⊆ R ⊆ L(X) for some selfdual space X and fo(X) ⊆ K ⊆ R,

by Proposition 3.4.18 there exists a minimal ∗-orthogonal idempotent e ∈ R such that

we can write B = κ((1− e)Re).

Isotropic inner ideals, in addition to being Lie inner ideals, are also Jordan inner

ideals of K by Lemma 3.4.1(2). Therefore the isotropic, standard and special inner

ideals of K arise from Jordan inner ideals and are very near to them. What about

Clifford inner ideals? Actually, Clifford inner ideals are also Jordan! Consider [x,H⊥]

for some isotropic vector x. Pick z ∈ H⊥ and a ∈ K. Then, taking into account that

〈x, x〉 = 0 = 〈x, z〉, by the Absorption Law 1 and the Product Law (A.1.2(2,4)) we get

[x, z]a[x, z] = [x, z](x⊗ az − z ⊗ ax) = (x⊗ z − z ⊗ x)(x⊗ az − z ⊗ ax) =

= 〈az, x〉x⊗z−〈az, z〉x⊗x−〈ax, x〉z⊗z+〈z, ax〉z⊗x = 〈az, x〉x⊗z−〈az, x〉z⊗x = 〈az, x〉[x, z].

Therefore [x, z]K[x, z] ⊆ [x,H⊥]. We can perfectly conclude that, in this context, the

McCrimmon Motto19 which goes

Nine times out of ten, when you open up a Lie algebra

you find a Jordan algebra inside which makes it tick

is wrong –it is too conservative!

To end this chapter we are going to show that the exception [K,K] 6= 0 in the

statement of the previous theorem is not superfluous.

As we know from Theorem 1.3.9, if R is not commutative the condition [K,K] = 0 is

satisfied if and only if R̂ is a quaternion algebra with an involution which is orthogonal

on R. If we take R := M2(F ) with the transpose involution we find that K is in itself

a Lie inner ideal which does not lie in any of the four cases of the theorem above: since

the involution is of the first kind, the standard and special cases are discarded and we

are left with the isotropic and Clifford cases as candidates, in which every element is of

19This comes from [TasteJordanAlgebras, page 14].
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zero cube. But the elements of K are not nilpotent because their squares are nonzero

and lie in the center by Lemma 1.1.4(2c) (so every even power of the elements is not

zero). The same happens if we take R := H(α, β) with the involution x∗ := ix̄i−1 (see

Section 1.4): then K = Fi, Z(R) = F1, the involution is of the first kind and every

even power of an element of K lies in the center and is not zero.
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Chapter 4

Clifford elements

If F is a field with char(F ) 6= 2 and X is an F -vector space with a symmetric bilinear

form 〈· , ·〉, the vector space F ⊕X is endowed with an structure of Jordan algebra when

equipped with the product

(α + x) • (β + y) := αβ+〈x, y〉 + βx+αy

for α, β ∈ F and x, y ∈ X. This Jordan algebra is unital, with 1F + 0 as identity

element, and special. In fact, it is isomorphic to a Jordan subalgebra of the Clifford

(associative) algebra defined by 〈· , ·〉 (refer to [StructureJordan, II.3]). For this reason,

F ⊕X is sometimes called a Clifford Jordan algebra, convention that we follow in this

dissertation.

Let L be a Lie algebra over a field F with char(F ) 6= 2 and let c ∈ L be a Jordan

element. A Jordan algebra Lc can be attached to c whenever char(F ) 6= 3 (see the

technical section 4.1 below for the definition and relevant proofs). In this context, we

say that c is a Clifford element when Lc is a Clifford Jordan algebra. Suppose that

L is nondegenerate, char(F ) > 5, and c is a Clifford element of L. Since Lc is then

unital, c is von Neumann regular ([Fernández,Garćıa&Gómez’06, 2.15(ii)]) and hence, by

the Jacobson-Morozov Lemma (see [Draper,Fernández,Garćıa&Gómez’08, Proposition

1.18]), L has a 5-grading L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 such that the Jordan pair
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V := (L2, L−2) is isomorphic to the Clifford Jordan pair1 defined by the Jordan algebra

Lc, whose Tits-Kantor-Koecher algebra2 TKK(V ) is a finitary orthogonal algebra by

[Fernández,Garćıa&Gómez’08, 5.11], that is, TKK(V ) ∼= Skew(R, ∗), where R is a

simple ring coinciding with its socle and ∗ is an involution of orthogonal type, with R

not being the algebra of 2 × 2 matrices over its center with the transpose involution.

Thus every Clifford element c actually lives in a ring, and in that associative context

verifies c3 = 0 and c2 6= 0 (by Proposition 3.4.16(3)). In this chapter we prove, among

other things, a strong converse of the above result: if R is a centrally closed prime ring

with involution and char(R) > 5, and K has a Jordan element c such that c3 = 0 and

c2 6= 0, then R has socle, the involution is of orthogonal type, R 6∼= M2(C) and c is a

Clifford element of K.

In the first section, with the aid of the Beautiful Partner Lemma (1.2.5) we develop

a set of important identities of (associative) Clifford elements c and their squares, which

allow to compute every aspect of our problem. The key facts are that c2 is reduced

and that c, although not reduced in R, is reduced in K, in the sense that we have

cKc = Cc. We pair c2 (which being reduced is von Neumann regular) with an element

d that behaves exactly like c2. We also link the existence of Clifford elements to that

of ∗-orthogonal reduced idempotents e such that e∗Ke = 0, and prove that Clifford

elements grade K with 3-gradings.

Clifford elements of R are intimately associated with Clifford inner ideals (refer to Sec-

tion 3.4.3). In the second section we see that the extremes of the aforementioned 3-

gradings of K are Clifford inner ideals, we study their algebraic structure and use it to

provide an specific algebraic construction for Kc. To achieve this we pair c (which being

1If X is a vector space over a field and q is a quadratic form on X then (X,X) becomes a Jor-

dan pair with product Qxy := q(x, y)x − q(x)y, with q(x, y) the bilinear form associated to q (see

[Fernández,Garćıa&Gómez’08, 5.7]).
2The TKK algebra of a Jordan pair V can be axiomatically defined as the unique Lie algebra with a

3-grading TKK(V ) = L−1⊕L0⊕L1 such that the associated Jordan pair (L1, L−1) is isomorphic to V ,

[L1, L−1] = L0 and [x0, L1⊕L−1] = 0 implies x0 = 0 for x0 ∈ L0 ([Draper,Fernández,Garćıa&Gómez’08,

1.8]).

92



CHAPTER 4. CLIFFORD ELEMENTS 4.1. LA

reduced in K is von Neumann regular) with a (Lie and associative) partner
√
d which

behaves exactly like c and which squared gives the beautiful partner d of c2. Then we

attach a trace and a bilinear form to K, which are inherited by Kc, and show that it is

in fact a Clifford Jordan algebra in the third section.

4.1 The Jordan algebra at a Jordan element

There exists a good reason for the denomination of Jordan elements: if L is a Lie

algebra such that 3 ∈ TF(L), then associated to any Jordan element a ∈ L there exists

a Jordan algebra La which behaves as a local ring for L in the sense of inheritance of

important properties. For example, if L is nondegenerate then La is nondegenerate,

while if L is nondegenerate and La has socle (as a Jordan algebra) then L has socle (as a

Lie algebra). See [Fernández,Garćıa&Gómez’06] and [Garćıa&Gómez’07, Theorem 2.2]

for these and more related results. Some evidence for the existence of such a Jordan

algebra comes from the existence of the Fundamental Formula for Jordan elements.

Before we present La we need to establish several identities.

Proposition 4.1.1 (Identities for Jordan elements).

Let L be a Lie algebra such that 3 ∈ TF(L) and let a ∈ L be a Jordan element.

Let x, y ∈ L be arbitrary. Then:

1. A2XA = AXA2.

2. A2XA2 = 0.

3. A2X2AXA = A2XAX2A.

4. [A2(x), A(y)] = [A2(y), A(x)].

5. A2XA(y) = A2Y A(x).

Proof. We use that A3 = 0 implies 0 = ad3
A = (lA − rA)3 in End(Inn(L)).

1. 0 = −3l2ArA + 3lAr
2
A. Hence l2ArA = lAr

2
A because 3 ∈ TF(L).

2. Multiplying item (1) by lA we get 0 = l2Ar
2
A.
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3. By item (2), 0 = A2ad3
X(A)A2 = A2(X3A − 3X2AX + 3XAX2 − AX3)A2 =

−3A2X2AXA2 + 3A2XAX2A2.

4. By Leibniz Rule, A3([x, y]) = −3[A2(x), A(y)] + 3[A(x), A2(y)].

5. By Leibniz Rule and using item (4) twice,

A2([x,A(y)]) = [A2(x), A(y)] − 2[A(x), A2(y)] = [A2(y), A(x)] − 2[A(y), A2(x)] =

A2([y, A(x)]).

Theorem 4.1.2 (Jordan algebra at a Jordan element).

Let L be a Lie algebra such that 3 ∈ TF(L) and let a ∈ L be a Jordan element.

Then L with product x • y := [[x, a], y] is a nonassociative algebra, denoted by L(a), such

that:

1. ker(a) := {x ∈ L | A2(x) = 0} is an ideal of L(a).

2. La := L(a)/ ker(a) is a Jordan algebra, with U-operator given by

Ux̄(ȳ) = X2A2(y).

Proof. Observe that [[x, a]y] = [y[a, x]] = Y A(x).

1. Let us show that ker(a) is in fact an ideal. It is clear that ker(a) is a submodule,

since A2 is a linear endomorphism. Pick b ∈ ker(a) and x ∈ L. By Leibniz Rule we

have A2([[b, a]x]) = −A2([A(b), x]) = −[A3(b), x]− 2[A2(b), A(x)]− [A(b), A2(x)] = 0

since A2(b) = 0 by hypothesis and [A(b), A2(x)] = [A(x), A2(b)] = 0 by Proposition

4.1.1(4). For the other product we have, by Proposition 4.1.1(5), that A2([[x, a]b]) =

A2BA(x) = A2XA(b) = A2([[b, a]x]) = 0.

2. By Proposition 4.1.1(4), since A2(XA(y) − Y A(x)) = 0, XA(y) = Y A(x) and the

product • is commutative in La. We need to verify the Jordan axiom. Denote, for

the time being, w := AXA(x).

On one hand we have, by the definition of • and by commutativity,

(x2 • y) • x = XA(x2 • y) = XAY A(x2) = XAY AXA(x) =

= XAY (w) = adY (w)(A(x)) = −adA(x)(Y (w)),
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while on the other it is

x2 • (y • x) = ady•xA(x2) = ady•xAXA(x) =

= ady•x(w) = −W (y • x) = −WYA(x) = −YWA(x)− adA(x)(Y (w))

by Jacobi Identity. Thus it is enough to show that YWA(x) = 0̄. But note that

YWA(x) = adWA(x)(y), so in turn it is enough to show that adWA(x) = 0̄, that is,

that A2adWA(x) = 0 in End(L).

Observe that A2adWA(x) = A2[W [A,X]] = A2WAX − A2WXA + A2XAW . Taking

into account that w = AXA(x), so that W = [A[X[A,X]] = −A2X2 + 2AXAX −

2XAXA+X2A2, we find

A2adWA(x) = −2A2XAXA2X + 2A2XAXAXA−

−A2X2A2XA+ 2A2XA2XAX − 2A2XAXAXA+ A2XAX2A2.

Now we getA2XA2XAX = 0 by Proposition 4.1.1(2) andA2XAXA2X = AXA2XA2X =

0 by items (1) and (2) of the same proposition, while A2X2A2XA = A2X2AXA2 =

A2XAX2A2 by items (1) and (3). Therefore YWA(x) = 0̄ and thus

(x2 • y) • x = x2 • (y • x).

We will prove now that Ux̄(ȳ) = X2A2(y). By definition and by commutativity,

Ux̄(ȳ) = 2x̄ • (x̄ • ȳ) − (x̄ • x̄) • ȳ = 2XAXA(y) − adXA(x)A(y). So it is enough to

show that 2XAX − adXA(x) = X2A. This is indeed true, because in End(La)

adXA(x) = [X[A,X]] = XAX −X2A− AX2 +XAX = 2XAX −X2A,

since AX2 = 0̄ because A2(AX2) = A3X2 = 0.

We call this Jordan algebra La simply the Jordan algebra at the Jordan element a.

When a ∈ L is a Jordan element, A2(L) turns out to be an abelian inner ideal of L

([Benkart’77, Lemma 1.8]).
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Proposition 4.1.3 (Little Kostrikin Lemma for Jordan elements).

Let L be a Lie algebra such that 3 ∈ TF(L) and let a ∈ L be a Jordan element.

Then A2(L) is an abelian inner ideal such that, for every x, y, z ∈ L,

[A2(x)[A2(y), z]] = A2XY A2(z).

Proof. It is clear that A2(L) is a submodule. Pick x, y ∈ L and denote b := A2(x),

c := A2(y). To show that A2(L) is an inner ideal we have to show that BC(L) ⊆ A2(L),

and for this it is enough to show that A2 is a left divisor of BC. Since by Proposition

4.1.1(2) we have A2XA2 = 0, then

BC = adA2(x)adA2(y) = (A2X − 2AXA+XA2)(A2Y − 2AY A+ Y A2) =

= −2A2XAY A+ A2XY A2 + 4AXA2Y A− 2AXAY A2 =

= −2(A2XA)Y A+2(AXA2)Y A+2AX(A2Y A)−2AX(AY A2)+A2XY A2 = A2XY A2

by Proposition 4.1.1(1). This proves that A2(L) is an inner ideal. To see that it is

abelian, simply expand B(c) = BA2(y) = (A2X − 2AXA+XA2)A2(y) = 0.

We say that the Jordan element a is von Neumann regular (in the Lie sense) if a ∈

A2(L). If the condition 1
2
, 1

3
, 1

5
∈ Γ is satisfied, then by [Draper,Fernández,Garćıa&Gómez’08,

Proposition 1.18(i)] there exists another Jordan element b′ ∈ L such that [[a, b′], a] = 2a

and [[a, b′], b′] = −2b′; by choosing b := −1
2
b′ we produce yet another Jordan element

such that A2(b) = a and B2(a) = b. We call b a (Lie) regular partner for a.

Adapted to this convention, [Benkart’77, Lemma 2.2] states that the inner ideal A2(L)

is a Jordan algebra with product −[x[b, y]]. We see that this Jordan algebra is actu-

ally isomorphic to the Jordan algebra at a ([Fernández,Garćıa&Gómez’06, Proposition

2.11]).

Lemma 4.1.4 (Realization of the Jordan algebra of a regular element).

Let L be a Lie algebra such that 3 ∈ TF (L), let a ∈ L be a von Neumann regular Jordan

element and let b be a regular partner of a.

Then the Jordan algebra La is isomorphic to (A2(L),+, •̂), with x•̂y := [x, [b, y]].
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Proof. Consider the map ϕ : A2(L)→ La defined by ϕ(A2(x)) := x̄. Let us confirm that

ϕ is well defined. Suppose x, y ∈ L are such that A2(x) = A2(y). Then A2(x− y) = 0,

i.e., x − y ∈ ker(a) and hence ϕ(A2(x)) = x̄ = ȳ = ϕ(A2(y)). Since A2 is linear, ϕ is

linear too. To see that ϕ is multiplicative, note that, by the Little Kostrikin Lemma

(4.1.3),

A2(x)•̂A2(y) = [A2(x)[b, A2(y)]] = −[A2(x)[A2(y), b]] = −A2XY A2(b) = −A2XY (a).

Therefore ϕ(A2(x)•̂A2(y)) = ϕ(−A2XY (a)) = −XY (a) = XA(y) = x̄ • ȳ = ϕ(A2(x)) •

ϕ(A2(y)). It is clear that ϕ is onto, and it is also injective, since x̄ = φ(A2(x)) = 0̄

implies x ∈ ker(a), i.e., A2(x) = 0.

Thanks to this, if a Jordan element is von Neumann regular, then its associated Jordan

ring possess a nice realization inside its associated inner ideal.

4.2 Clifford elements in prime rings

Throughout the rest of this chapter let R be a prime, centrally closed ring with

involution such that char(R) 6= 2, 3, 5.

By Herstein Lemma for K (3.2.1), if [K,K] 6= 0 and the involution is of the first kind

then any Jordan element a ∈ K satisfies either a2 = 0 or a2 6= 0 and a3 = 0. By the

facts exposed in the introduction, the following definition is natural in the associative

setting:

Definition 4.2.1 (Clifford element).

A Clifford element of R is a Jordan element c of K such that c2 6= 0 and c3 = 0.

The squares of Clifford elements have simple properties associated that are useful

to make computations. In particular they are reduced, which partly determines the

structure of (R, ∗).
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Proposition 4.2.2 (Properties of the squares of Clifford elements).

Let c ∈ K be a Clifford element of R. Then:

1. c2Kc2 = 0.

2. c2Rc2 = Cc2.

3. c2k1k2c
2 = c2k2k1c

2 for every k1, k2 ∈ K.

4. R has socle and involution of orthogonal type.

Proof.

1. Since c is Jordan and c3 = 0, for every k ∈ K we have

0 = ad4
ck = c4k − 4c3kc+ 6c2kc2 − 4ckc3 + kc4 = 6c2kc2 = c2kc2.

2. We prove items (2) and (4) at once. Note that c2 ∈ H and that R, being centrally

closed, equals CR. By item (1) we know that c2Kc2 = 0. Hence by the Reduction

Lemma 1.2.4(2) for prime rings we get that c2Rc2 = Cc2 and that R has socle and

involution of orthogonal type.

3. Since c2Kc2 = 0 by item (1), c2κ(x)c2 = 0 for every x ∈ R, which implies c2xc2 =

c2x∗c2. Hence for k1, k2 ∈ K it is c2k1k2c
2 = c2(k1k2)∗c2 = c2k2k1c

2.

Let c be a Clifford element of R. Observe that c2 is von Neumann regular because it

is reduced (by 4.2.2(2)). In addition c2 is symmetric and of zero square (since c3 = 0).

By the Beautiful Partner Lemma (1.2.5) there exists a beautiful partner d ∈ R of c2

such that

d∗ = d, d2 = 0, c2dc2 = c2 and d = dc2d.

Beautiful partners for c2, and their associated idempotents, satisfy (even) more useful

properties.

Proposition 4.2.3 (Beautiful partner properties).

Let c be a Clifford element and d a beautiful partner of c2.

1. dKd = 0, dRd = Cd.
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2. There exists a ∗-orthogonal idempotent e ∈ R with eRe = Ce, e∗Re = Cc2, eRe∗ = Cd

and such that e∗Ke = 0 = eKe∗.

3. ec = ce∗ = 0, e∗c2e = e∗c2 = c2e = c2 and ede∗ = ed = de∗ = d.

4. [K,K] 6= 0. In particular R is not an algebra of 2× 2 matrices over C.

5. e∗ 6= 1− e in R̂.

Proof.

1. Note that dRd 6= 0 since d ∈ dRd. Then dRd = (dc2d)R(dc2d) = dc2(dRd)c2d =

dCc2d = Cdc2d = Cd; also dKd = dc2(dKd)c2d = 0 since c2Kc2 = 0 and d ∈ H.

2. Denote e := dc2 = dc2dc2 = e2. Then e∗ = c2d, ee∗ = dc4d = 0 and e∗e = c2d2c2 =

0. Moreover, taking into account that Rd 6= 0 because 0 6= d = dc2d, we have

eRe = dc2(Rd)c2 = dCc2 = Cdc2 = Ce, e∗Re = (c2d)R(dc2) = c2(dRd)c2 = c2Cdc2 =

Cc2dc2 = Cc2 and eRe∗ = (dc2)R(c2d) = d(c2Rc2)d = dCc2d = Cdc2d = Cd. Similar

computations using c2Kc2 = 0 = dKd show that e∗Ke = 0 = eKe∗.

3. ec = (dc2)c = dc3 = 0, ce∗ = c(c2d) = c3d = 0, e∗c2e = (c2d)c2(dc2) = (c2dc2)dc2 =

c2dc2 = c2, ede∗ = (dc2)d(c2d) = (dc2d)c2d = dc2d = d. Consequently c2e =

(e∗c2e)e = e∗c2e = c2 (the computations for e∗c2, ed and de are analogous).

4. [c, e − e∗] = ce + e∗c = cdc2 + c2dc 6= 0. Otherwise cdc2 = −c2dc would lead,

multiplying on the left by c, to the contradiction c2 = c2dc2 = −c3dc = 0. Since

[c, e − e∗] ∈ [K,K], [K,K] 6= 0. This means that K is not exceptional, so that by

Theorem 1.3.9 R = CR is not a central simple algebra of dimension 4 over C. In

particular R 6∼= M2(C).

5. Since ec = 0 = ce∗ and eKe∗ = 0 = e∗Ke we have (e+ e∗)c(e+ e∗) = (ec)e+ ece∗ +

e∗ce+ e∗(ce∗) = 0. Therefore e+ e∗ 6= 1.

Now we show that the existence of Clifford elements in R can be linked to the

existence of idempotents of the kind of Proposition 4.2.3(2).

Theorem 4.2.4 (Existence of Clifford elements).

R has a Clifford element if and only if [K,K] 6= 0 and there exists a nonzero ∗-orthogonal

idempotent e ∈ R such that eRe = Ce and e∗Ke = 0.
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Proof. The ‘only if’ part has been proved in Proposition 4.2.3(2,4). Let us show the ‘if’

part:

We will see first that e∗Re = Ch for some h ∈ H. Note that eRe = Ce implies

e∗Re∗ = Ce∗. Since R is prime, e 6= 0 and e∗Ke = 0 there exists x0 ∈ H such that

h := e∗x0e 6= 0. Note that h∗ = (e∗x0e)
∗ = h ∈ H. Pick x ∈ R; if e∗xe = 0 then

e∗xe ∈ Ch; if e∗xe 6= 0 and being R prime there exists y ∈ R such that a := e∗xeyh 6= 0.

On one hand, a = (e∗xeye∗)x0e = λ1e
∗x0e = λ1h with λ1 ∈ C, while on the other hand

a = e∗x(eye∗x0e) = λ2e
∗xe with 0 6= λ2 ∈ C. Thus λ2e

∗xe = a = λ1h implies that

e∗xe = λh with λ ∈ C. Therefore

e∗Re = Ch.

Next we prove that e∗Ke = 0 implies eKe∗ = 0. By a similar argument to that

above we find that eRe∗ = Ch2 with h2 = ey0e
∗ ∈ R, where a priori we do not know

whether h2 is symmetric. But it does hold that either h2 ∈ H or h2 ∈ K: if there

exists k ∈ K such that k′ := eke∗ 6= 0, then k′ = λh2 for some 0 6= λ ∈ C and thus

−λh2 = −eke∗ = ek∗e∗ = (eke)∗ = (k′)∗ = (λh2)∗ = λh∗2, which forces h∗2 = −h2; if

there exists s ∈ H such that s′ := ese∗ 6= 0, then as above we find that it must be

h2 = h∗2. The two results combined also imply that if h2 ∈ K then eHe∗ = 0, while if

h2 ∈ H then eKe∗ = 0.

Now, sinceR is prime and e 6= 0 6= e∗, we get that 0 6= e∗ReRe∗Re = (e∗Re)(eRe∗)(e∗Re) =

Chh2h, so that hh2h 6= 0. Next, note that hh2h = e∗x0ey0e
∗x0e ∈ e∗Re and thus hh2h =

λh for some 0 6= λ ∈ C; therefore, since h ∈ H, hh2h = λh = (λh)∗ = (hh2h)∗ = hh∗2h,

which is incompatible with h2 ∈ K. This gives us h2 ∈ H and

eKe∗ = 0.

Now we will find a Clifford element c of R, that is, a Jordan element of K of zero cube

but nonzero square:

It can be shown, exactly as in the proof of Proposition 4.2.3(4), that e∗ 6= 1− e, because

[K,K] = 0 is forbidden by hypothesis. Denote g := 1− e− e∗, which is then a nonzero
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symmetric idempotent orthogonal to e and e∗ by both sides. Since R is prime and e, e∗, g

are not zero, there exist a1, a2 ∈ R such that e∗a∗1ga2e 6= 0. Consider c1, c2 ∈ κ(gRe) ⊆ K

such that c1 := κ(ga1e), c2 := κ(ga2e). Then c1c2 = (ga1e − e∗a∗1g)(ga2e − e∗a∗2g) =

−e∗a∗1ga2e 6= 0. Moreover, c1c2 ∈ e∗Re implies c1c2 = λh for some λ ∈ C, so that c1

and c2 commute: c2c1 = (c1c2)∗ = (λh)∗ = λh = c1c2. If c2
1 6= 0 (resp. c2

2 6= 0), take

c := c1 (resp. c := c2); if c2
1 = 0 = c2

2, then (c1 + c2)2 = c2
1 + c2

2 + 2c1c2 = 2c1c2 6= 0 and

we can take c := c1 + c2 = κ(g(a1 + a2)e) in order to get c2 6= 0. Note that in any case

c = κ(gze) for some z ∈ R.

Finally we show that c is a Jordan element of K of zero cube. Note first that c2 =

e∗c2e: c2 = (gze − e∗z∗g)(gze − e∗z∗g) = −e∗z∗gze, so that e∗c2e = e∗(−e∗z∗gze)e =

−e∗z∗gze = c2. Pick k ∈ K. Then we have c3 = c2c = (e∗z2e)(gze − e∗z∗g) = 0 and

c2kc = (e∗z2e)k(gze − e∗z∗g) = c2ekgze = αc2e = αc2 for some α ∈ C since eKe∗ = 0

and eRe = Ce, which implies ckc2 = (c2kc)∗ = (αc2)∗ = αc2 = c2kc. Thus

ad3
ck = c3k − 3c2kc+ 3ckc2 − kc3 = 0.

An interesting aside note is that, in the previous proof, eKe∗ = 0 is implied by eRe = Ce

and e∗Ke = 0, being e an ∗-orthogonal idempotent.

As in the general Lie case, the presence of a Clifford element implies a finite grading

of the algebra.

Theorem 4.2.5 (Short gradings).

Let c ∈ K be a Clifford element, d be a beautiful partner of c2 and e := dc2. Set

g := 1− e− e∗. Then

K = K−1 ⊕K0 ⊕K1 with K−1 := κ(gRe), K0 := κ(eRe)⊕ gKg,K1 := κ(eRg)

is a 3-grading of K in which the ith homogenous component ki of any k ∈ K coincides

with
⊕
m−n=i

κ(emken) with e0 := e∗, e1 := g, e2 := e.
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Proof. Recall that e∗ 6= 1 − e, so g = 1 − e − e∗ is a nonzero symmetric idempotent

of R. Since {e0, e1, e2} is a complete system of orthogonal idempotents, by Smirnov’s

method ([Smirnov’97, p.174]) we have that the Peirce decomposition R =
⊕
−2≤i≤2

Ri with

Ri :=
⊕
m−n=i

emRen is an (associative) 5-grading of R:

R = e∗Re⊕ (e∗Rg ⊕ gRe)⊕ (e∗Re∗ ⊕ gRg ⊕ eRe)⊕ (gRe∗ ⊕ eRg)⊕ eRe∗.

Now, since Ri is selfadjoint for every i, if we define Ki := Ri∩K = Skew(Ri, ∗) we know

by Lemma 1.2.3 that K =
⊕
−2≤i≤2

Ki is a Lie (a priori) 5-grading of K which turns out

to be a 3-grading: since each Ri is selfadjoint we have Ki = κ(Ri) (see Chapter 1); thus

K−2 = κ(e∗Re) = e∗κ(R)e = e∗Ke = 0 and similarly K2 = e∗Ke = 0. Therefore

K = κ(gRe)⊕ (κ(eRe)⊕ gKg)⊕ κ(eRg).

Moreover, since the idempotents e0, e1, e2 are orthogonal, the ith homogenous component

ki of any k ∈ K coincides with
⊕
m−n=i

κ(emken). As an example, k−1 = κ(gke) because

if k = κ(gx1e) + κ(ex2e) + κ(gx3g) + κ(ex4g) with xi ∈ R, then gke = gκ(gx1e)e+ 0 =

g(gx1e− e∗x∗1g)e = gx1e, so that k−1 = κ(gx1e) = κ(gke).

Note that, for a given Clifford element c, we may get a different grading for each one

of the beautiful partners of c2. Despite of this the K−1 component is an invariant of

all those gradings. This is true because (as we show below) c happens to lie in K−1 for

every grading and, as we will prove in Proposition 4.3.1, every K−1 is a Clifford inner

ideal. Then by Proposition 3.4.16(2) we get that K−1 = ad2
cK, which is independent of

the chosen d. In Proposition 4.3.4 we will give an algebraic proof of this last fact (the

proof of 3.4.16 is geometric) and will show another equivalent ways of describing K−1

independently of d.

We prove now that c ∈ K−1. This implies that cKc = Cc, one of the most important

facts of this chapter.

Proposition 4.2.6 (Properties of Clifford elements).

Let c be a Clifford element, d be a beautiful partner of c2 and e := dc2. Then:
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1. c2kc = ckc2 for every k ∈ K.

2. c ∈ K−1 in the 3-grading of K generated by e.

3. c = e∗c+ ce = c2dc+ cdc2.

4. cKc = Cc.

Proof.

1. Since c is a Jordan element of K, for every k ∈ K we have 0 = ad3
ck = c3k −

3c2kc+ 3ckc2 − kc3 = −3(c2kc− ckc2) = c2kc− ckc2 and therefore ckc2 = c2kc.

2. Denote g := 1−e−e∗. By Theorem 4.2.5, c = κ(gce)+(κ(ece)+gcg)+κ(ecg) with

c−1 = κ(gce). Since ec = 0, to show that c ∈ K−1 is to show that gcg = 0. Denote

z := gcg, which is a skew element. Recall that ge = eg = e∗g = ge∗ = 0 and that

c2 = c2e. As c2kc = ckc2 for every k ∈ K by item (1), c2kcg = ckc2g = ckc2eg = 0.

Then, since in addition ec = 0 and eKe∗ = 0, we have

c2kz = c2kgcg = c2k(1− e− e∗)cg = c2kcg − c2k(ec)g − c2(eke∗)cg = c2kcg = 0.

Hence c2Kz = 0. Now c2Kc2 = 0 and c2Kz = 0 with c2 ∈ H and z ∈ K imply, by

the Reduction Lemma (1.2.4(3)), that z = 0.

3. Since c = κ(gce), (c2d)c + c(dc2) = e∗c + ce = e∗(gce + e∗cg) + (gce + e∗cg)e =

e∗cg + gce = κ(gce) = c.

4. For any k ∈ K we have ckc = (e∗c + ce)k(e∗c + ce) = e∗cke∗c + cekce, since

eKe∗ = 0 by 4.2.3(2) and ckc ∈ K. Now, again by 4.2.3(2), ekce = λe for some

λ ∈ C, and hence e∗cke∗ = (ekce)∗ = (λe)∗ = λe∗, since the involution ∗ is of

the first kind by 4.2.2(4). Then ckc = λe∗c + λce = λc. Hence cKc ⊆ Cc. Now

cKc = 0 would imply c = 0 by the Reduction Lemma (1.2.4(1)), so cKc = Cc

since cKc is a C-subspace.

We make a brief detour to study whether beautiful partners for the squares of Clifford

elements are unique –and answer negatively. Since every adnilpotent element a of R

carries with itself a nilpotent associative derivation, the exponential map for A is well
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defined and is an associative automorphism whenever the number (2n− 2)! is invertible

in Γ, where n is the index of adnilpotency of a. We recall that

expA :=
n−1∑
i=0

1

i!
Ai,

understanding that A0 = 1, the identity of End(L) (for a more detailed presentation

refer to [Humphreys, Section 2.3]).

Proposition 4.2.7 (Nonuniqueness of beautiful partners).

Let R be a centrally closed prime ring with involution and char(R) > 7. Let c be a Clifford

element and let d be a beautiful partner of c2. Then the elements dλ := expλC(d), where

λ ranges in C, are distinct beautiful partners for c2.

Proof. Since c3 = 0, c is an adnilpotent element of R of index at most 5. Since

char(R) > 7, the numbers 1, . . . , 8 are invertible in C and therefore expλC is an as-

sociative automorphism of R. For every x ∈ R we have expλC(x) =
4∑
i=0

λi

i!
Ci(x) (1).

Then expλC(c) = c, and expλC(H) ⊆ H because c ∈ K and the involution is of the

first kind by 4.2.2, so that λ∗ = λ for every λ ∈ C. Hence dλ = expλC(d) ∈ H because

d ∈ H. Now clearly d2
λ = 0, dλc

2dλ = dλ and c2dλc
2 = c2 because d2 = 0, dc2d = d,

c2dc2 = c2 and expλC is an automorphism which fixes c. Up to here we have proved

that dλ is a beautiful partner of c2 for every λ ∈ C. Now we show that all these ele-

ments are different. Recall that, by the proof of Theorem 4.2.5, R has a 5-grading which

induces a 3-grading in K such that K−1 = R−1 ∩K, and observe that by Proposition

4.2.6 we have c ∈ K−1 ⊆ R−1. Hence, when x ∈ R is homogeneous, every term in the

sum of (1) lies in a different homogeneous component of R. This implies that dλ 6= dµ

if λ 6= µ, since for example dλ = dµ implies λC(d) = µC(d), with C(d) 6= 0 because

c(cd− dc)c2 = c2dc2 − dc3 = c2 6= 0.
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4.3 Clifford inner ideals

The extremes of a Lie grading are always abelian inner ideals. From Proposition

3.4.18 we infer that an abelian inner ideal of K is Clifford if it is of the form κ((1 −

e)Ke) = κ((1 − e)Re), since K and R contain all the skew elements of finite rank (in

the geometric model for prime rings with socle and involution). The extremes of the

3-grading of Theorem 4.2.5 are in fact Clifford inner ideals. We prove this just for K−1;

the case for the K1 component is analogous. Denote B := κ(gRe) (as has been already

noted, B is independent of d and e). We also give an algebraic proof of the fact that B

is a Jordan inner ideal.

Proposition 4.3.1 (Properties of B).

Let c ∈ K be a Clifford element, d be a beautiful partner of c2, e := dc2 and g := 1−e−e∗.

Then:

1. B = κ(gKe) = κ((1− e)Ke) = κ((1− e)Re).

In particular B is a Clifford inner ideal.

2. If b ∈ B then b = be+ e∗b and eb = 0 = be∗.

3. B is a Jordan inner ideal of K (concretely, a point space).

4. B2 = Cc2.

5. B3 = 0.

Proof.

1. By Theorem 4.2.5 we know that all the homogeneous components of degree −1 of

the elements of K lie in κ(gKe). Therefore κ(gKe) = κ(gRe) = B. Now, for k ∈ K

it is gke = (1 − e − e∗)ke = (1 − e)ke − e∗ke = (1 − e)ke since e∗Ke = 0, so that

κ(gKe) = κ((1− e)Ke).
2. Pick b ∈ B. Then b = κ(gbe) and be = (gbe + e∗bg)e = gbe, so that b = κ(gbe) =

κ(be) = be + e∗b. Also eb = eκ(gbe) = e(gbe + e∗bg) = 0 since eg = 0 = ee∗, and

be∗ = −(eb)∗ = 0.

3. Given b ∈ B it can be shown that PbK = bKb = Cb ⊆ B by following exactly the

same steps as in the proof of 4.2.6(4), but writing b instead of c. Therefore B is a
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Jordan point space by definition.

4. Pick b1, b2 ∈ B. Then b1b2 = (b1e + e∗b1)(b2e + e∗b2) = e∗b1gb2e ∈ e∗Re = Cc2, since

eb2 = ee∗ = b1e
∗ = 0, and B2 6= 0 since c ∈ B and c2 6= 0.

5. B = K−1 ⊆ R−1 in the 5-grading of R showed in the proof of Theorem 4.2.5. There-

fore B3 ⊆ R−3 = 0.

In what follows we concentrate in proving that B, which will be seen to be the

underlying set of the Jordan algebra Kc at the element c (see Theorem 4.1.2), has a

direct sum structure with a scalar part. We also show that c endows K with a bilinear

form, important later to define the Jordan product in Kc. To prove these facts some

elementary tools more are needed. For the obvious reason, we introduce the notation

√
d := cd+ dc. (Square root of d)

In addition to being a square root for d,
√
d is a Clifford element which is an associative

regular partner of c, and −
√
d is a Lie regular partner of c.

Proposition 4.3.2 (Properties of the square root of d).

Let c be a Clifford element of R and d a beautiful partner for c2. Then:

1.
√
d ∈ K1 in the 3-grading of Theorem 4.2.5. In particular

√
d is a Jordan element.

2. (
√
d)2 = d.

3. (
√
d)3 = 0.

4.
√
dK
√
d = C

√
d.

5.
√
dc
√
d =
√
d.

6. c
√
dc = c.

7. c2 ◦
√
d = c.

8. d ◦ c =
√
d.

9. ad2
c(−
√
d) = c.

10. ad2
−
√
d
c = −

√
d.

11. [[c,
√
d], b] = b for every b ∈ B.

Proof.

1. Since c ∈ K and d ∈ H,
√
d = cd+ dc ∈ K. We have

κ(e
√
d(1− e)) = e(cd+ dc)(1− e) + (1− e∗)(dc+ cd)e∗ =

= edc(1− e) + (1− e∗)cde∗ = edc− edce+ cde∗ − e∗cde∗ =

= (dc2d)c− e(dcd)c2 + c(dc2d)− c2(dcd)e∗ = dc+ cd =
√
d,
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since ec = 0, e = dc2, dc2d = d and dcd ∈ dKd = 0. We have thus proved (see

Theorem 4.2.5) that
√
d ∈ κ(eK(1− e)) = K1. Now since K1 is an abelian inner

ideal,
√
d is a Jordan element of K.

2. Recall that d2 = 0 and d = dc2d, and note that dcd = 0 since dKd = 0 and c ∈ K.

Then (
√
d)2 = (cd+ dc)(cd+ dc) = c(dcd) + cd2c+ dc2d+ (dcd)c = dc2d = d.

3. (
√
d)3 = (

√
d)2 ·

√
d = d(cd+ dc) = dcd+ d2c = 0.

4. Since
√
d is a Jordan element such that (

√
d)2 = d 6= 0, it is by definition a Clifford

element. Therefore
√
dK
√
d = C

√
d as shown in Proposition 4.2.6(4).

5.
√
dc
√
d = (cd+dc)c(cd+dc) = c(dc2d) + c(dcd)c+dc3d+ (dc2d)c = cd+dc =

√
d,

since c3 = 0.

6. c
√
dc = c(cd+ dc)c = c2dc+ cdc2 = c, by Proposition 4.2.6(3).

7. c2 ◦
√
d = c2(cd+ dc) + (cd+ dc)c2 = c2dc+ cdc2 = c.

8. d ◦ c = dc+ cd =
√
d.

9. ad2
c(−
√
d) = c2 ◦ (−

√
d) + 2c

√
dc = −c+ 2c = c, by items (6) and (7).

10. ad2
−
√
d
c = (−

√
d)2 ◦ c− 2

√
dc
√
d = d ◦ c− 2

√
d =
√
d− 2

√
d = −

√
d,

by items (2), (5) and (8).

11. In first place,

[c,
√
d] = c

√
d−
√
dc = c(cd+ dc)− (cd+ dc)c = c2d+ cdc− cdc− dc2 = e∗ − e.

Therefore [[c,
√
d], b] = [e∗ − e, b] = e∗b − eb − be∗ + be = be + e∗b = b, since

eb = 0 = be∗ and be+ e∗b = b by Proposition 4.3.1.

The (image of)
√
d plays the role of identity element in Kc. The Clifford structure

of Kc is built on the two forms described below.

Definitions 4.3.3 (Forms).

Let c ∈ K be a Clifford element of R.

• By 4.2.6(1) and the fact that C is a field, there exists a well-defined linear map

tr : K → C such that, for every k ∈ K,

tr(k)c = ckc.
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Call tr(k) the trace of k. Note that

1. tr(
√
d) = 1 since c

√
dc = c by Proposition 4.3.2(6).

2. K = C
√
d⊕Ker(tr) by item (1).

• By Proposition 4.2.2(2,3) we have c2Rc2 = Cc2 with c2k1k2c
2 = c2k2k1c

2 for all

k1, k2 ∈ K. Therefore there exists a well-defined symmetric bilinear form

〈· , ·〉 : K ×K → C defined for all k1, k2 ∈ K by

〈k1, k2〉c2 := c2k1k2c
2.

The trace can be realized from the bilinear form and vice versa. Let k, k′ ∈ K.

1. 〈
√
d, k〉c2 = c2

√
dkc2 = c2(cd+ dc)kc2 = c3dkc2 + c2dckc2 = c2dckc2 = c2d(ckc)c =

tr(k)c2dc2 = tr(k)c2, since c3 = 0 and c2dc2 = c2. Hence

tr(k) = 〈k,
√
d〉.

2. tr(κ(ckk′))c2 = (cκ(ckk′)c)c = c2kk′c2 + ck′kc3 = c2kk′c2 = 〈k, k′〉c2. Thus

〈k, k′〉 = tr(κ(ckk′)).

As an aside, observe that for the 3-grading of Theorem 4.2.5 we get tr(K−1⊕K0) = 0:

By Proposition 4.3.1(5) we have cBc ⊆ B3 = 0. In addition, for every k ∈ K it is

cκ(eke)c = c(eke + e∗ke∗)c = 0, since ec = 0 = ce∗, and cgKgc = (ce + e∗c)gKg(ce +

e∗c) = e∗(cgKgc)e = 0, since eg = 0 = ge∗, e∗Ke = 0 and cgKgc ⊆ K.

Hence K = ker(tr)⊕ C
√

(d) with ker(tr) = K−1 ⊕K0 ⊕K0
1 , where

K0
1 := {k ∈ K1 | tr(k) = 0}.

The trace helps to identify the direct sum structure of the Clifford Jordan alge-

bra of Kc. Since c and −
√
d are Lie regular partners (Proposition 4.3.2(9),(10)), by

Proposition 4.1.4 the Jordan algebra Kc is isomorphic to (ad2
cK,+, •), with product

x • y = [x, [
√
d, y]]. We note that ad2

cK may be written as Cc⊕B0, where B0 is defined

from elements of zero trace.
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Proposition 4.3.4 (Structure of B).

Let c ∈ K be a Clifford element. Then:

1. B = c2 ◦K.

2. B = B0 ⊕ Cc, where B0 := {c2 ◦ k | k ∈ ker(tr)}.

3. B = ad2
cK.

Proof.

Let d denote a beautiful partner of c2 and e := dc2.

1. Pick k ∈ K. Recall that c2 = e∗c2 = e∗c2e and that eKe∗ = 0. Then

c2◦k = κ(kc2) = κ(ke∗c2−(eke∗)c2) = κ((1−e)ke∗c2) = κ((1−e)kc2e) ∈ κ((1−e)Ke).

This shows that c2 ◦K ⊆ B by Proposition 4.3.1(1). Conversely, let b ∈ B. Then

b = e∗b+ be = (c2d)b+ b(dc2) = c2(d ◦ b) + (d ◦ b)c2 = c2 ◦ (d ◦ b) ∈ c2 ◦K,

since e∗ = c2d, c2 = c2e and c2b = (c2e)b = c2(eb) = 0.

2. By 4.3.3(2), K = Ker(tr)⊕ C
√
d. Hence

B = c2 ◦K = c2 ◦ ker(tr) + Cc2 ◦
√
d = c2 ◦ ker(tr) + Cc

since c2 ◦
√
d = c by Proposition 4.3.2(7). Let us prove that the sum is direct.

Suppose αc = c2 ◦ k, with tr(k) = 0 and α ∈ C. Then by multiplying on the

left by c we get αc2 = c3k + ckc2 = (ckc)c = tr(k)c2 = 0, so that α = 0 and

αc = 0 = c2 ◦ k.

3. For any k ∈ K we have ad2
ck = c2k − 2ckc+ kc2 = c2 ◦ k − 2tr(k)c ∈ B.

Conversely, let c2 ◦ k0 + αc ∈ B, with k0 ∈ Ker(tr) and α ∈ C. Then

c2 ◦ k0 + αc = ad2
ck0 − αad2

c

√
d = ad2

c(k0 − α
√
d),

since ad2
ck0 = c2 ◦ k0 − 2ck0c = c2 ◦ k0 − 2tr(k0) = c2 ◦ k0 and ad2

c

√
d = −c by

Proposition 4.3.2(9).

By analogy it can be proved that

K1 = d ◦K = C
√
d⊕D0 = ad2√

d
K, with D0 := {d ◦ k | k ∈ K,

√
dk
√
d = 0}.
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4.4 Jordan algebra at a Clifford element

The bilinear form of K is involved in the construction of the Clifford product of Kc.

Lemma 4.4.1. The symmetric bilinear form defined from B to Cc by

〈c2 ◦ k1, c
2 ◦ k2〉0 := −〈k1, k2〉

is well defined.

Proof. Pick k1, k
′
1, k2 ∈ K and suppose that c2 ◦ k1 = c2 ◦ k′1. Since 〈· , ·〉0 is symmetric,

all we have to show is that 〈c2 ◦ k1, c
2 ◦ k2〉0 = 〈c2 ◦ k′1, c2 ◦ k2〉0, that is, that −〈k1, k2〉 =

−〈k′1, k2〉. By the definition of 〈· , ·〉 this amounts to prove that c2k1k2c
2 = c2k′1k2c

2. This

identity is directly found from c2 ◦k1 = c2 ◦k′1, by multiplying on both sides by k2c
2 and

taking into account that c2Kc2 = 0.

Theorem 4.4.2 (Kc is a Clifford Jordan algebra).

The Jordan algebra Kc is isomorphic to the Clifford Jordan algebra

(C⊕B0, 〈· , ·〉0).

Proof. Since c = [[c,
√
d], c] (see 4.3.2(9)), we have by Lemma 4.1.4 that Kc is isomorphic

to the Jordan algebra J(c,
√
d) defined on the C-vector space ad2

cK = Cc⊕B0 (see 4.3.4)

by the product

(α1c+ c2 ◦ k1) • (α2c+ c2 ◦ k2) = [[α1c+ c2 ◦ k1,
√
d], α2c+ c2 ◦ k2],

for all α1, α2 ∈ C and all k1, k2 ∈ K such that ck1c = ck2c = 0. Endow the C-vector

space B0 with the symmetric bilinear form 〈· , ·〉0 defined in 4.4.1 and consider the

Clifford Jordan algebra C⊕B0 defined by 〈· , ·〉0. We claim that the linear isomorphism

(αc+ c2 ◦ k) 7→ (α, c2 ◦ k) of J(c,
√
d) onto C⊕X is actually an isomorphism of Jordan

algebras. Since 1
2
∈ C, it suffices to check the identity

(αc+ c2 ◦ k)2 = [[αc+ c2 ◦ k,
√
d], αc+ c2 ◦ k] = α2c+ 〈c2 ◦ k, c2 ◦ k〉0c+ 2α(c2 ◦ k).
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The use of the bilinearity of the Lie product reduces this check to three products:

(1) scalar by scalar, (2) scalar by vector and (3) vector by vector.

1. [[αc,
√
d], αc] = α2[[c,

√
d], c] = α2c, by 4.3.2(9).

2. [[αc,
√
d], c2 ◦ k] = α[[c, cd+ dc], c2k+ kc2] = α[c2d− dc2, c2k+ kc2] = α(c2 ◦ k), where

we have used c2dc2 = c2, c4 = 0 and c2kc2 = c2(dk + kd)c2 = 0, the latter because

c2Kc2 = 0 and (dk + kd)∗ = −(kd+ dk), since d∗ = d and k∗ = −k.

3. [[c2 ◦ k,
√
d], c2 ◦ k] = 2(c2 ◦ k)

√
d(c2 ◦ k)− (c2 ◦ k)2 ◦

√
d, with

(c2 ◦ k)
√
d(c2 ◦ k) = (c2k+ kc2)(cd+ dc)(c2k+ kc2) = (c2kdc+ kc2dc)(c2k+ kc2) = 0,

since c3 = 0 and ckc = 0 (tr(k) = 0), and

(c2◦k)2◦
√
d = c2k2c2(cd+dc)+(cd+dc)c2k2c2 = c2k2c2dc+cdc2k2c2 = 〈k, k〉(c2dc+cdc2) = 〈k, k〉c

since c = c2dc+ cdc2 by 4.2.6(1).

Therefore, (c2 ◦k)• (c2 ◦k) = −〈k, k〉c = 〈c2 ◦k, c2 ◦k〉0c, which completes the proof.
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Appendix A

Geometric model

of prime rings with socle

As is well known, prime rings with socle possess a nice geometric model in terms of

dual pairs of vector spaces that allows to pose complicated calculations with the aid of

the powerful tools of linear algebra. In this appendix we introduce the needed concepts

and notation to make computations with this model, without including proofs (good

references for this material are [RingsGIs, Chapter 4] and [StructureRings, Chapter

IV]). These tools are necessary in Sections 1.1.1 and 3.4.3.

Given a left and a right vector space V,W over a division ring ∆, we define a bilinear

form to be a bilinear application 〈· , ·〉 : V × W → ∆, where linearity for scalars in

the second argument is understood as 〈v, wα〉 = 〈v, w〉α for every v ∈ V , w ∈ W and

α ∈ ∆. A bilinear form is said to be nondegenerate if 〈v,W 〉 = 0 implies v = 0 and if

similarly 〈V,w〉 = 0 implies w = 0.

Definition A.0.1 (Dual pair of vector spaces).

Let V,W be a left and a right vector space over the same division ring. Then (V,W, 〈· , ·〉)

is a dual pair of vector spaces if 〈· , ·〉 is a nondegenerate bilinear form on V ×W .

Usually we will not mention specifically the division ring nor the bilinear form, and will
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just talk about the dual pair (V,W ).

We will realize the elements of prime rings with socle as particular endomorphisms

of a dual pair. In this context we will call any element of End∆(V ) or End∆(W ) an

operator . We always consider the operators as acting from the left. We need the notion

of adjoint of an operator1.

Definition A.0.2 (Adjoint).

Let (V,W ) be a dual pair of vector spaces and let a ∈ End∆(V ). We say that a is

continuous if there exists a# ∈ End∆(W ), the adjoint of a, such that 〈av, w〉 = 〈v, a#w〉

for every v ∈ V , w ∈ W .

It is a direct consequence of the definition above and of the nondegeneracy of the bilinear

form that the operator adjoint to a, if it exists, is unique.

Definitions A.0.3 (Continuous and finite-rank operators).

Let (V,W ) be a dual pair of vector spaces.

• The subring of End∆(V ) of all continuous operators is denoted by LW (V ).

• The ideal of End∆(V ) of all continuous and finite-rank operators is denoted by FW (V ).

We are prepared to exhibit the geometric model of prime rings with socle

([RingsGIs, Theorems 4.3.7 and 4.3.8]).

Theorem A.0.4 (Geometric model for prime rings with socle).

Let R be a prime ring with socle and let e ∈ R be a minimal idempotent. Then there

exists a dual pair of vector spaces (V,W ) over ∆ := eRe such that:

1. FW (V ) ⊆ R ⊆ LW (V ).

2. Soc(R) = FW (V ), which is the only minimal ideal of R.

3. Qs(R) = LW (V ).

4. Qm(R) = Q(R) = End∆(Re), with eQ(R)e = ∆.2

1This notion should not be confused with the unrelated notion of adjoint operator for the adjoint

representation of a Lie algebra described in the Preliminaries section.
2Qm(R) designates here the maximal right ring of quotients of Utumi (refer to [RingsGIs, Section

2.1]).
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5. C ∼= Z(∆).

The converse result also holds: if FW (V ) ⊆ R ⊆ LW (V ) for some (V,W ) then R is

prime with socle. Therefore we get that the rings of quotients of a prime ring with socle

are again prime with socle. On the other hand, if R is simple with socle, then R is prime

with socle and such that R = Soc(R). Therefore we get the following result.

Corollary A.0.5 (Geometric model for simple rings with socle).

Let R be a simple ring with socle and let e ∈ R be a minimal idempotent. Then there

exists a dual pair of vector spaces (V,W ) over eRe such that R = FW (V ).

It can be also seen thatR simple with socle will be artinian if and only if V is finite dimen-

sional, because that is a necessary and sufficient condition for the identity endomorphism

(which is trivially continuous) to be of finite rank. In that case Z(R) ∼= C ∼= Z(eRe).

Since every element of a prime ring with socle can be seen as an operator of a dual

pair, we will define the rank of an element as its rank as a linear operator. This notion

is independent of the concrete dual pair chosen to represent the ring.

A.1 Linear algebra tools

By means of their geometric model, any useful result about dual pairs can be trans-

lated to the setting of prime rings with socle. We present now some of them.

A very important tool when working with a dual pair are dual linearly independent

sets.

Definition A.1.1 (Dual sets).

Let (V,W ) be a dual pair of vector spaces. If S1 := {vi}ni=1 ⊆ V is an linearly inde-

pendent set, then there exists another linearly independent set S2 := {wi}ni=1 ⊆ W such

that 〈vi, wj〉 = δij for every i, j ∈ {1, . . . , n}, where δij is Kronecker delta ([RingsGIs,

Theorem 4.3.1]). Similarly, if we fix S2 first we can find S1 satisfying the same property.

We will say that S1 and S2 are dual sets, or that Si is a dual set to Sj (i, j ∈ {1, 2}, i 6= j).
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The continuous and finite-rank operators can be described and operated in terms of

(V,W ). We follow the notation of [StructureRings, pages 74 and 75].

Lemma A.1.2 (Model for FW (V )).

Let (V,W ) be a dual pair of vector spaces over ∆.

We denote ⊗ : W × V → FW (V ) for the map such that, for every x ∈ V ,

w ⊗ v(x) := 〈x,w〉v.

For subspaces V1 ≤ V , W1 ≤ W we denote W1 ⊗ V1 := span({w⊗ v | v ∈ V1, w ∈ W1}).

Then we get that

FW (V ) = W ⊗ V.

In addition the operation ⊗ satisfies the following properties:

1. ⊗ is additive and such that wα⊗ v = w ⊗ αv for every α ∈ ∆.

2. (w1 ⊗ v1)(w2 ⊗ v2) = w2 ⊗ (〈v2, w1〉v1) (Product Law).

This is due to w1 ⊗ v1(w2 ⊗ v2)(x) = w1 ⊗ v1(〈x,w2〉v2) =

〈〈x,w2〉v2, w1〉v1 = 〈x,w2〉〈v2, w1〉v1 = w2 ⊗ (〈v2, w1〉v1)(x).

3. We also have a Product Law for subspaces V1, V2 ≤ V and W1,W2 ≤ W :

(W1 ⊗ V1)(W2 ⊗ V2) = 0 if 〈V2,W1〉 = 0 and

(W1 ⊗ V1)(W2 ⊗ V2) = W2 ⊗ V1 otherwise.

This is due to the fact that if 〈V2,W1〉 6= 0 then 〈V2,W1〉 = ∆, because ∆ is a division

ring and 〈· , ·〉 is (bi)linear.

4. For every a ∈ End∆(V ),

a(w ⊗ v) = w ⊗ (av) (Absorption Law 1).

This is due to a(w ⊗ v)(x) = a(〈x,w〉v) = 〈x,w〉a(v) = (w ⊗ a(v))(x).

5. For every a ∈ LW (V ),

(w ⊗ v)a = (a#w)⊗ v (Absorption Law 2).

This is due to (w ⊗ v)a(x) = 〈a(x), w〉v = 〈x, a#(w)〉v = (a#(w)⊗ v)(x).
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Note that item (1) shows that in fact FW (V )
∆∼= W ⊗

∆
V with ⊗ the usual tensor product,

so the nomenclature is well chosen.

This model allows to determine the one-sided ideals of simple rings with socle, which

are relevant in our exposition of the classification results on inner ideals in Section 3.1.

Observe that if W1 ≤ W and a ∈ FW (V ), then by the Absorption Law 1 we get that

a(W1 ⊗ V ) = W1 ⊗ aV ⊆ W1 ⊗ V and thus W1 ⊗ V is a left ideal of FW (V ). The

Absorption Law 2 gives us a similar result for right ideals. In fact all the one-sided

ideals of FW (V ) follow these patterns (this is [StructureRings, Theorem 1, page 91]).

Theorem A.1.3 (One-sided ideals of a simple ring with socle).

Let (V,W ) be a dual pair of vector spaces. Then every left (resp. right) ideal of FW (V )

is of the form W1 ⊗ V (resp. W ⊗ V1), where W1 ≤ W (resp. V1 ≤ V ).

In particular, the minimal left ideals of FW (V ) are of the form W ⊗∆v, with 0 6= v ∈ V .
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Acta Arith. 17 (1970), 37–114 (in French).

[Jordan,Neumann&Wigner’34] P. Jordan, J. Von Neumann and E. Wigner.

On an algebraic generalization of the quantum mechanical formalism.

Ann. of Math. 36 (1934), 29–64.

[LinearGeometry] I. Kaplansky. Linear Algebra and Geometry, a Second Course.

University of Chicago, Chelsea Publishing, 1974 (second edition).

[Kaplansky’48] I. Kaplansky. Rings with a polynomial identity.

Bull. Amer. Math. Soc. 54 (1948), 575–580.

[Kharchenko’78] V.K. Kharchenko. Differential identities of prime rings.

Algebra and Logic 17 (1978), 155–167.

[Kharchenko’79] V.K. Kharchenko. Differential identities of semiprime rings.

Algebra and Logic 18 (1979), 86–119.

[BookInvolutions] M.A. Knus, A. Merkurjev, M. Rost and J.P. Tignol.

The Book of Involutions.

Colloquium Publications 44, American Mathematical Society, 1998.

[Kostrikin’59] A.I. Kostrikin. The Burnside problem.

Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 3–34 (in Russian).

English translation: Izv. Amer. Math. Soc. Transl. 36(2) (1964), 63–99.

129



BIBLIOGRAPHY BIBLIOGRAPHY

[Kostrikin’67] A.I. Kostrikin.

Squares of adjoint endomorphisms in simple Lie p-algebras.

Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 445–487 (in Russian).

English translation: Math. USSR Izv. 1 (1967).

[AroundBurnside] A.I. Kostrikin. Around Burnside.

Results in Mathematics and Related Areas (3), volume 20, Springer-Verlag, Berlin-

Heidelberg, 1990.

[Lam1] T.Y. Lam. Lectures on Modules and Rings.

Graduate Texts in Mathematics 189, Springer-Verlag, New York, 1999.

[Littlewood’33] D.E. Littlewood. On the classificaction of algebras.

Proc. London Math. Soc.35 (1933) 200–240.

[JordanPairs] O. Loos. Jordan Pairs.

Lecture Notes in Mathematics 460; Springer-Verlag, Berlin-Heidelberg-New York,

1975.

[Martindale’69] W.S. Martindale 3rd.

Prime rings satisfying a generalized polynomial identity.

J. Algebra 12 (1969), 576–584.

[Martindale’73] W. S. Martindale 3rd. On semiprime P.I. rings.

Proc. Amer. Math. Soc. 40 (1973) 365–369.

[Martindale&Miers’83] W. S. Martindale 3rd and C.R. Miers.

On the iterates of derivations of prime rings.

Pacific J. Math. 104(1) (1983) 179–190.

[Martindale&Miers’86] W. S. Martindale 3rd and C.R. Miers.

Herstein’s Lie theory revisited.

J. Algebra 98 (1986) 14–37.

130



BIBLIOGRAPHY BIBLIOGRAPHY

[Martindale&Miers’91] W.S. Martindale 3rd and C.R. Miers.

Nilpotent inner derivations of the skew elements of prime rings with involution.

Can. J. Math. 43 (1991), 1045–1954.

[TasteJordanAlgebras] K. McCrimmon. A Taste of Jordan Algebras.

Universitext, Springer-Verlag, New York, 2004.

[McCrimmon’66] K. McCrimmon. A general theory of Jordan rings.

Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1072–1079.

[McCrimmon’69] K. McCrimmon.

The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras.

Trans. Amer. Mat. Soc. 139 (1969), 495–510.

[McCrimmon’71] K. McCrimmon. Inner ideals in quadratic Jordan algebras.

Trans. Amer. Math. Soc. 159 (1971), 445–468.

[Neher’91] E. Neher. Jordan pairs with finite grids.

Comm. Algebra 19 (1991), 455–478.

[Premet’86] A.A. Premet. Lie algebras without strong degeneration.

Mat. Sb. (N.S.) 129(171)(1) (1986), 140–153 (in Russian).

English translation: Math. USSR Sbornik 57(1) (1987), 151–164.

[PIRowen] L.H. Rowen. Polynomial Identities in Ring Theory.

Academic Press, Harcourt-Toronto, 1988.

[Rowen] L.H. Rowen. Ring Theory (volume I).

Academic Press, Harcourt-Toronto, 1988.

[Smirnov’97] O.N. Smirnov.

Simple associative algebras with finite Z-grading.

J. Algebra 196 (1997), 171–184.

131



BIBLIOGRAPHY BIBLIOGRAPHY

[Smith’86] S.P. Smith.

Differential operators on the affine and projective lines in characteristic p > 0 in
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