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Abstract

This work presents the development of a technology that processes human eye move-
ment records fully automatically. It also has a strong focus on records of subjects
suffering Spinocerebellar Ataxia type 2 (SCA2). The Spinocerebellar Ataxia type 2
(SCA2) is a disease which has a very high prevalence in my natal Cuba. Here, the
Centre for the Research and Rehabilitation of Hereditary Ataxias (CIRAH) is the
major institution in charge of the research on this disease and many other similar.

The process carried out nowadays by the Centre for the Research and Rehabili-
tation of Hereditary Ataxias (CIRAH) specialists to extract the relevant information
from eye movement records is semiautomatic. Parts of the saccade identification
process are performed by manually annotating where the saccade begins and where
it ends, with the only criteria of the specialist’s expertise. Moreover, it is used an
old and expensive equipment which occasionally introduces power line noise to the
signals.

Because of the current CIRAH situation regarding the processing of eye movement
records, we set as major goals to design a fully automatic method to extract the
relevant medical data from saccadic eye movement recordings, and to design and test
a low-cost device to record eye movements for clinical purposes.

To accomplish the first goal, we study the current methods and techniques involved
in saccadic eye movement processing. Then, we define a processing pipeline which
comprises the following blocks: filtering, differentiation, segmentation and biomarkers
extraction. For each one of these blocks, we devote at least a chapter (except filtering)
where we analyze them in a deeper way. It is well established in the literature that
for saccadic signals, the best way to keep the signal waveform is to employ a median
filter to remove undesired noise, so it’s unnecessary to devote an entire chapter to this
matter. Regarding the differentiation chapter we evaluate 16 filters for the saccade
identification task and for the biomarker computing task. The results allow to select
the best filter for each of the tasks which improves the results of the next blocks.

Segmentation is the operation where we identify saccades from the rest of the
events present in a saccadic eye movement signal. We approach this operation by
evaluating two supervised machine learning techniques: Multilayer Perceptron (MLP)
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and Random Forest (RF). The following chapter is devoted to picking which of the
saccades are non spontaneous. These non spontaneous saccades are clinically useful
because they follow a visual stimulus that allows to calculate biomarkers which are
not computable from spontaneous saccades such as latency. For this specific task we
also evaluate four supervised machine learning techniques: Support Vector Machines
(SVM), K-Nearest Neighbors (KNN), Classification and Regression Trees (CART)
and Naive Bayes. Also, we select which saccadic features are useful to separate
non spontaneous saccades from spontaneous ones. Using data annotated by human
experts a model is produced which learns from this expertise and replicates their
behaviour without intersubject bias.

The output of the segmentation operation gives us the saccades from which we
are going to extract the biomarkers data. In a separate chapter, we explain how to
compute these biomarkers values accurately and how to present them into a report
for the medical staff. This report will allow the specialists to decide based on specific
criteria or their own statistical analysis.

To fulfill the second goal, we present the development of a low-cost equipment that
uses electrooculography to record eye movements. The hardware part of this equip-
ment is based on the OpenBCI Cyton board, but with our own custom firmware that
we named OpenEOG. To record and visualize the signals obtained by the OpenEOG
we developed a software called Saccade Recorder. The software includes a visual stim-
ulator that allows us to record saccadic eye movements in a controlled way, in order
to use them in clinical environments. The system was tested by analyzing the data
recorded to 10 healthy volunteers and comparing them against data from professional
equipments and results in literature.

Our work shows how a fully automatic method can extract the saccadic informa-
tion required by professional medical doctors to help them study neurological diseases
such as SCA2. Also, we have shown that implementing a low-cost eye movement
recording system is possible.

Keywords
Eye Movements; Saccades; Electrooculography; Spinocerebellar Ataxia type 2; Nu-
merical Differentiation; Saccade Identification; Saccadic Biomarkers Extraction; Ma-
chine Learning; Supervised Learning



Resumen

T́ıtulo: Tecnoloǵıa para el procesamiento de electrooculogramas sacádicos en perso-
nas con Ataxia Espinocerebelosa tipo 2.

Introducción
La Ataxia Espinocerebelosa de tipo 2 (SCA2, por sus siglas en inglés) es un subtipo
muy común de las ataxias hereditarias. Las ataxias hereditarias a su vez son un
grupo de desórdenes neurodegenerativos causadas por las afectaciones que incurren
en el cerebelo y sus conexiones, la médula espinal, por los nervios periféricos y el tallo
cerebral. Esta enfermedad es causada espećıficamente por la repetición patológica del
trinucleótido CAG en la región que codifica el gen ATXN2 [1]. Es válido resaltar
que el término ataxia no se refiere a una enfermedad en espećıfico o un diagnóstico
predeterminado, sino al śımtoma resultante del estado patológico de la coordinación
del movimiento. A menudo utilizamos el término ataxia para describir trastornos en
la marcha caracterizados por la inestabilidad, descordinación e incremento de la base
de soporte [2].

Cuba es el páıs con la mayor tasa de prevalencia de personas con ataxias heredita-
rias. Las SCA2 es la forma molecular más frecuente entre todas aquellas encontradas
en Cuba, donde la mayor cantidad de pacientes que sufren la enfermedad se encuen-
tran en la provincia de Holgúın. En [3] se aprecia una tasa de prevalencia de 7.55
casos por cada 100000 habitantes y la prevalencia de portadores de la mutación a
36.2 casos por cada 100000 habitantes. La tasa de prevalencia en Holgúın es la más
alta reportada a nivel mundial [4, 5] alcanzando los 154.33 casos por cada 100000
habitantes en el municipio de Báguanos [3]. Estos datos de prevalencia justifican el
enorme interés de la comunidad cient́ıfica cubana en el estudio de esta enfermedad.

El estudio de los movimientos oculares son una valiosa fuente de información pa-
ra médicos y cient́ıficos. En el caso de los neurólogos, el estudio del control de los
movimientos oculares presenta una oportunidad única para entender las funciones ce-
rebrales [6]. Los movimientos de persecución (siguen un objeto que se mueven a baja
velocidad en la escena visual) y los movimientos sacádicos (movimiento rápido que
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cambia el foco de la mirada hacia una nueva posición), entre otros, son necesarios para
el seguimiento de objetos en movimiento, lo que los convierte en una gran herramienta
para evaluar el desempeño de esta tarea [7]. Es un hecho cient́ıficamente estableci-
do que las SCAs afectan los movimientos oculares, donde la SCA2 en particular se
caracteriza por enlentecer los movimientos sacádicos [2].

El Centro para la Investigación y Rehabilitación de las Ataxias Hereditarias (CI-
RAH) está localizado en Holgúın, Cuba. Este centro es considerado ĺıder a nivel
mundial en la investigación de la SCA2. Cient́ıficos del departamento de Neurofisio-
loǵıa Cĺınica del CIRAH llevan a cabo variados estudios para evaluar medicamentos
y tratamientos para luchar contra la SCA2 y otras ataxias hereditarias. El análisis
de los movimientos oculares es una tarea recurrente en estos estudios para identifi-
car cambios relevantes en marcadores biológicos (biomarcadores) como la velocidad
máxima sacádica y la latencia sacádica. Para registrar los movimientos oculares, en
el CIRAH se utiliza el electronistagmógrafo Otoscreen, fabricado por la empresa ale-
mana Jaeger-Toennies.

El Otoscreen incorpora una aplicación de software para registrar y procesar mo-
vimientos oculares utilizando una técnica denominada electroculograf́ıa. Las pruebas
cĺınicas de electroculograf́ıa se realizan de la siguiente manera. Antes de empezar el
registro se le ordena al sujeto que siga el est́ımulo visual que aparecerá y desaparecerá
en cada lado del monitor; se sienta al sujeto frente a un monitor con la cabeza fijada
a una distancia predeterminada y luego se conectan electrodos alrededor de los ojos.
Capturar los movimientos oculares de manera controlada permite a los investigadores
identificar cuáles de estos movimientos son respuesta al est́ımulo (no espontáneos) y
cuáles no (espontáneos). Las sácadas no espontáneas son útiles para extraer los bio-
marcadores que son significativos para seguir la evolución de las ataxias hereditarias.

La utilización de este equipamiento por los especialistas del CIRAH ha producido
una base de datos única de movimientos oculares, registrados utilizando protocolos
diseñados con propósitos cĺınicos. Esta base de datos ha contribuido al desarrollo de
diversos tratamientos y a la generación de una cantidad relevante de conocimiento
cient́ıfico de la SCA2. Sin embargo, el protocolo de procesamiento utilizado en la
actualidad tiene problemas que dificultan estudios mejores y más avanzados debido
a las siguientes condiciones:

• La tubeŕıa de procesamiento de señales utilizado por el equipo es desconocida.

• Muchas de las señales registradas son contaminadas con ruido.

• Los algoritmos no identifican todos los eventos de movimientos oculares válidos,
o establecen el inicio o fin de la sácada en la muestra de tiempo errónea.

• No es posible adicionar nuevas caracteŕısticas o elementos de procesamiento.
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• El equipamiento no es portable y necesitan de técnicos altamente especializados
para su operación.

Debido a estos problemas, el personal del CIRAH utiliza el Otoscreen solo para
el registro de los movimientos. Entonces, los especialistas editan las señales y esta-
blecen los puntos de inicio y fin de los eventos relevantes como las sácadas. Luego
de la anotación manual de las señales, se emplean métodos tradicionales de estad́ısti-
ca comparativa utilizando los biomarcadores extráıdos para confirmar o rechazar sus
hipótesis. Esta aproximación presenta algunos problemas. Primero, la anotación ma-
nual introduce subjetividad al proceso en general, dificultando la reproducibilidad de
la investigación. Este problema se incrementa aún mas debido a la falta de estandari-
zación en las reglas para el establecimiento de los puntos de inicio y fin de las sácadas.
Existen diversos art́ıculos que utilizan diferentes métodos y umbrales en la literatura
médica.

Segundo, el ruido presente en algunos registros dificulta el proceso de segmentación
de la señal y el cálculo de algunos biomarcadores. Si adicionamos a esta situación
que los métodos y algoritmos utilizados por el equipamiento son desconocidos, la
incertidumbre introducida para análisis posteriores es significativa.

Tercero, la complejidad y no portabilidad del equipamiento afecta la capacidad
de llegar a pacientes que viven en áreas remotas o de poca capacidad adquisitiva.
Muchas de estas personas apenas poseen movilidad y el desplazamiento al CIRAH en
varias ocasiones es altamente costoso o directamente inaccesible en algunos casos.

Debido a esta situación podemos establecer el siguiente problema: la necesidad
de una tecnoloǵıa portable que sea capaz de procesar automáticamente movimientos
oculares sacádicos en pacientes afectados por la SCA2 para evitar la subjetividad y
extraer los biomarcadores necesarios para estudios cĺınicos de manera confiable.

Para solucionar el problema nos hemos trazado los siguientes objetivos:

1. Desarrollar una metodoloǵıa de procesamiento de electrooculogramas sacádicos
que extraiga los biomarcadores cĺınicos de interés de manera completamente
automática.

2. Diseñar y evaluar un equipamiento de bajo coste y portable que pueda reem-
plazar el Otoscreen en el CIRAH.

El equipo de medición debe ser capaz de registrar los movimientos oculares uti-
lizando la electroculograf́ıa. Entonces, deberá identificar de forma totalmente au-
tomática la ocurrencia de sácadas (ignorando las espontáneas), utilizando técnicas
de aprendizaje automático. De estas sácadas se extraerán biomarcadores relevantes
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(velocidad máxima, latencia, duración y amplitud) y se exportarán a formatos estan-
darizados para su posterior análisis. Todo este proceso debe ser realizado de la manera
más simple posible minimizando la interacción del especialista con la aplicación.

Estructura del documento
Hemos estructurado esta tesis en ocho caṕıtulos con el siguiente orden:

Introducción: exponemos la motivación para el desarrollo de este trabajo, aśı como
define el problema y los objetivos de la investigación.

Estado del Arte: describimos los métodos y técnicas utilizadas en el procesado de
electrooculogramas. Primero se define el proceso de manera global y luego se
detallan cada uno de sus etapas. Finalmente este caṕıtulo presenta los fun-
damentos de las técnicas de inteligencia computacional utilizadas en nuestra
investigación.

Diferenciación de electrooculogramas: evaluamos 16 métodos de diferenciación
numérica para las tareas de identificación de sácadas y extraccióm de biomar-
cadores. Para evaluar los métodos, diseñamos un experimento que compara
todos ellos y analiza estad́ısticamente sus resultados. Finalmente, se selecciona
el mejor método para cada una de las tareas propuestas. Los resultados de este
caṕıtulo fueron publicados en [8].

Identificación de sácadas: proponemos y evalúa un algoritmo de identificación de
sácadas. Se exploran varias técnicas de aprendizaje automático como el Percep-
tron Multicapa y los Bosques Aleatorios (Random Forest en su denominación
internacional) para identificar movimientos oculares sacádicos. Los resultados
de este caṕıtulo fueron publicados en [9].

Identificación de sácadas no espontáneas: desarrollamos un método que es ca-
paz de discriminar entre sácadas útiles para el análisis cĺınico (no espontáneas)
y cuáles no. Además, se seleccionan los biomarcadores más relevantes para cla-
sificar sujetos sanos de sujetos con SCA2 utilizando técnicas de selección de
atributos. Los resultados de este caṕıtulo se publicaron en [10, 11].

Extracción de biomarcadores sacádicos: utilizamos los resultados obtenidos en
los dos caṕıtulos anteriores para extraer los datos requeridos por el personal
médico para tomar decisiones cĺınicas. Mostramos el método utilizado para cal-
cular de forma precisa cada uno de estos biomarcadores para la SCA2. Final-
mente, presentamos el reporte que se le provee a los especialistas del CIRAH.
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Equipamiento de registro OpenEOG: diseñamos y evaluamos un instrumento
de medición de movimientos oculares de bajo coste y portable. Este equipo
incluye los algoritmos desarrollados en este trabajo para automatizar la tubeŕıa
de procesamiento.

Conclusiones: exponemos las principales contribuciones de este trabajo.

A continuación se resumirá el trabajo realizado en cada caṕıtulo.

Estado del arte
Este caṕıtulo se dedica a exponer los principales elementos de la literatura cient́ıfica
actual utilizados durante nuestra investigación. Primero se exponen los fundamen-
tos biológicos de los movimientos oculares aśı como sus métodos de captura. Luego
definimos una tubeŕıa de procesamiento de 6 etapas, detallando cada una de ellas.
Los caṕıtulos posteriores tratan con mayor profundidad los resultdos del desarrollo
de cada una de las etapas y nuestros principales aportes.

Movimientos oculares
Los movimientos oculares son aquellos realizados por seres humanos y animales que
garantizan una visión estable y clara de su ambiente. De acuerdo con [6] existen 7
tipos de movimientos oculares:

Vestibulares: mantienen imágenes en la retina de forma estable durante rotaciones
breves de la cabeza.

Optocinéticcos: mantienen la imagen en la retina de forma estable durante rota-
ciones significativas de la cabeza.

Fijaciones: mantienen la imagen de un objeto estacionario en la fóvea.

Persecución suave: mantienen la imagen de un pequeño objeto en movimiento en
la fóvea; o mantiene la imagen de un objeto pequeño o un objeto cercano durante
un movimiento lineal con respuestas opticinéticas que ayudan a la estabilización
de la mirada durante rotaciones significativas de la cabeza.

Fases rápidas de Nistagmos: reinician los ojos durante una larga rotación y redi-
rigen la mirada hacia una nueva escena visual.

Vergencia: mueven los ojos en una dirección opuesta de forma que las imágenes de
un objeto se localizan en ambas fóveas.
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Sácadas: mueven las imágenes de objetos de interés a la fóvea.

Existen tres tecnoloǵıas fundamentales para el registro de movimientos oculares:
la electroculograf́ıa, la lente de contacto escleral / bobina de búsqueda y la videoocu-
lograf́ıa.

La electroculograf́ıa es de las técnicas más utilizadas con fines cĺınicos, fue intro-
ducida en 1934 por Fenn y Hursh y se basa en la medición del potencial eléctrico que
se genera en el área retina-córnea cuando ocurre una rotación ocular [12]. La principal
ventaja de esta técnica es su baja invasividad (ayuda a la cooperación del paciente) y
la posibilidad de registrar movimientos horizontales de hasta ±40◦ con una resolución
de 1◦ [6]. Es importante señalar que la señal resultante del registro con esta técnica
se le denomina electrooculograma.

La lente de contacto escleral / bobina de búsqueda es una técnica introducida por
Robinson en [13]. Esta técnica consiste en colocar una pequeña bobina de alambre
embebida en una lente de contacto directamente en el ojo del sujeto. Esta es una
técnica altamente invasiva con alta resolución espacial (menos de 1◦) y alta resolución
temporal (menos de 1 ms). Sin embargo en muchos sujetos la aplicación de esta técnica
presenta problemas con la tolerancia de las lentes de contacto que incluso llevan al
desplazamiento de las lentes agregadas introduciendo errores en la señal de posición
[14].

La videooculograf́ıa está basada en el procesamiento de las imágenes de los ojos
capturadas con una cámara infraroja para determinar la posición horizontal y vertical
de los ojos. Estas posiciones pueden ser convertidas a valores angulares utilizando
procedimientos de calibración [15]. Actualmente es la técnica más empleada para
el registro de movimientos oculares debido a su baja invasividad. Sin embargo, el
enorme costo del equipamiento requerido para el registro de sácadas con fines cĺınicos
es demasiado alto, generalmente mayor de 10 000 euros en la actualidad.

Los movimientos oculares y la SCA2
La disminución de la velocidad máxima sacádica es una de las caracteŕısticas cĺınicas
más comunes presentes en sujetos que sufren de SCA2. Esta situación se encuentra
en el 98 % de los casos con SCA2. Esto permite confirmar la presencia de SCA2
utilizando este biomarcador [2]. Además de la SCA2, la velocidad máxima sacádica es
útil para el estudio de otras enfermedades neurológicas como la distrof́ıa miotónica y la
degeneración olivopontocerebelosa. Las principales anomaĺıas de la velocidad sacádica
presentes en sujetos con SCA2 evidencian alteraciones cualitativas relacionadas con
la morfoloǵıa y amplitud del electrooculograma. Desde un punto de vista cualitativo
se caracteriza por [2, 16]:

1. Enlentencimiento de la velocidad sacádica.
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2. Incremento anormal de las latencias.

3. Dismetŕıa sacádica. Desviación hipermétrica de los movimientos sacádicos para
ángulos de est́ımulo de 10◦, 20◦, 30◦ y desviación hipométrica para 60◦.

Las sácadas son consideradas lentas o rápidas cuando sus velocidades máximas
se encuentran dentro o fuera del rango de la relación velocidad-amplitud. Existe un
incremento de la latencia sacádica en 80 % de los sujetos con SCA2 que se expresa
fisiológicamente en una demora de la iniciación de las sacádas. La dismetŕıa sacádica,
especialmente la hipermetŕıa es un śıntoma electrofisiológico tradicional de afectacio-
nes cerebelares [2].

Procesado de electrooculogramas
Considerando que nuestro trabajo se relaciona con el procesamiento de electroocu-
logramas para el diagnóstico de enfermedades neurológicas como la SCA2, se hace
necesario revisar cómo este proceso se realiza en la actualidad en el CIRAH. El re-
sultado de este análisis nos ayudará a identificar qué partes del proceso pueden ser
automatizados o mejorados.

El proceso de registro y análisis de electrooculogramas consiste básicamente en 3
etapas: registro, procesamiento y diagnóstico. La etapa de registro tiene como objetivo
obtener las señales que se utilizarán como entrada en el resto del proceso. La etapa
de procesado se enfoca en la manipulación de los registros obtenidos para extraer
la información requerida por la etapa de diagnóstico. En general el procesamiento se
puede separar a su vez en 4 sub-etapas: filtrado, diferenciación, segmentación y extrac-
ción de caracteŕısticas. El diagnóstico es la última etapa y es el objetivo del proceso
en general. Esta consiste en proporcionar al personal médico información cuantitati-
va interpretable que les permita tomar decisiones relacionadas con la evolución del
paciente o la evaluación de tratamientos.

En la etapa de registro utilizamos los electrooculogramas obtenidos utilizando el
Otoscreen en el CIRAH. Estas señales se registraron utilizando protocolos de medición
de movimiento horizontales sacádicos con una frecuencia de muestreo de 200 Hz y
un filtro de paso-alto de 100 Hz. Se utiliza una prueba de calibración horizontal para
calcular el coeficiente que permita convertir de µV a posición angular en grados (◦).

La etapa de filtrado se centra en reducir o eliminar, si es posible, los ruidos que
puedan afectar el procesado de las señales. En los electrooculogramas nos encontramos
de manera frecuente ruidos biológicos provocados por temblores y parpadeos, aśı como
ruidos introducidos por el instrumento de medición como es el ruido de ancho de banda
o el ruido de cuantificación causados por el proceso de conversión analógico a digital.
Los temblores provocados por la enfermedad son visibles en la forma de onda de la
señal como componentes de alta frecuencia y baja amplitud.
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La presencia de ruido impulsivo debido a parpadeos es otro de los fenómenos
t́ıpicos presentes en los electrooculogramas [17]. A este se le añade una componente
de ruido alrededor de los 60 Hz que coinciden con la frecuencia de la ĺınea eléctrica
en Cuba.

Existen varias técnicas para eliminar los ruidos anteriormente mencionados. Entre
éstos se encuentran los filtros de Respuesta Finita al Impulso (FIR) y Respuesta
Infinita al Impulso (IIR) [18, 17], filtros de medianas [19, 17], filtros basados en la
Transformada Discreta de Fourier (DWT) [20], y muchos otros más.

El estudio realizado por Juhola en [19] determinó que el filtro de medianas es
adecuado para eliminar los ruidos presentes en las señales sacádicas debido a que
disminuye el ruido sin afectar el valor de biomarcadores relevantes como la velocidad
máxima sacádica.

Calcular el perfil de velocidad de un electrooculograma es un paso fundamental en
varios algoritmos de procesamiento. Debido a la naturaleza discreta de estas señales,
esta operación se realiza mediante el empleo de métodos de diferenciación numérica.

Utilizando los polinomios de interpolación de Lagrange se han desarrollado va-
rios métodos de diferenciación conocidos comúnmente como métodos de la diferencia
central. La diferencia central con 3 (Ecuación 1) y 5 (Ecuación 2) puntos han sido
utilizados en electrooculogramas por Bahill y MacDonald en [21] y Niemenlehto en
[22]. Este último método debe ser utilizado en serie con un filtro de paso-bajo para
obtener los mejores resultados [23].

f ′(x0) = f(x1) − f(x−1)
2h

(1)

f ′(x0) = f(x−2) − 8f(x−1) + 8f(x1) − f(x2)
12h

(2)

Inchingolo y Spanio también propusieron algoritmos basados en la diferencia cen-
tral, declarados en su forma general en la Ecuación 3, donde fs es la frecuencia de
muestreo [24]. Además para una frecuencia de muestreo de 200 Hz determinaron que es
apropiado el empleo de la diferencia central de 9 puntos y los coeficientes a1 = 0,8024,
a2 = −0,2022, a3 = 0,03904, a4 = −0,003732 como se muestra en la Ecuación 4.

f ′(x0) = fs

m∑

n=1
an{f(xn) − f(x−n)} (3)

f ′(x0) = 200
4∑

n=1
an{f(xn) − f(x−n)} (4)

Además los métodos basados en la diferencia central, los investigadores han utili-
zado con éxito los diferenciadores Lanczos (también conocidos por Savitzky-Golay).
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Su principal diferencia con respecto a los métodos basados en la diferencia central es
que se emplea el ajuste de curvas en vez de la interpolación para la aproximación de
la señal. En la Ecuación 5 se muestra un diferenciador Lanczos de 7 puntos [25].

f ′(x0) = −3f(x−3) − 2f(x−2) − f(x−1) + f(x1) + 2f(x2) + 3f(x3)
28h

(5)

La segmentación de los electrooculogramas se refiere al establecimiento de los
puntos de inicio y fin de los eventos contenidos en ellos. Esta etapa se puede lograr
de forma manual o de forma automática dependiendo de la aproximación elegida.
La segmentación manual es realizada por expertos utilizando una interfaz gráfica.
El problema principal con este método es la subjetividad, debido a que el criterio
de anotación cambia de experto a experto. Sin embargo, la anotación manual per-
mite corregir los errores producidos por los algoritmos automáticos, por ejemplo la
eliminación de sácadas detectadas erróneamente.

La algoritmos de segmentación automática no sufren de la subjetividad presente
en su contraparte manual debido a que se basan en reglas y umbrales previamente
definidos. Aplicando los mismos parámetros y umbrales garantiza la uniformidad de
criterios en la salida del proceso.

El problema de la segmentación automática de sácadas es tratado desde distintas
aproximaciones. La aproximación más común emplea umbrales de velocidad. Estos
métodos se basan en el principio de establecer los puntos de inicio y fin de sácadas,
los cuáles ocurren cuando la velocidad instantánea excede un umbral predefinido
[22, 24, 26, 27, 28]. Variaciones de estos métodos se han desarrollado utilizando los
perfiles de aceleración y jerk, por ejemplo los algoritmos propuestos en [29].

Una vez que los electrooculogramas han sido segmentados, procedemos a extraer
los biomarcadores a partir las sácadas y fijaciones identificadas. Estos biomarcadores
poseen el significado cĺınico necesario para el diagnóstico y seguimiento de varias
enfermedades neurológicas como la SCA2.

La duración y la velocidad máxima son dos de los biomarcadores más relevan-
tes en el análisis de los movimientos oculares. Existe una relación directa entre ellos
denominado secuencia principal, que han sido empleados por varios autores para ca-
racterizar el comportamiento del sistema oculomotor [26, 30, 31, 32]. La velocidad
máxima sacádica es considerado un biomarcador muy sensible y de alto valor endo-
fenot́ıpico para el diagnóstico de la SCA2 [4].

Diferenciación de electrooculogramas
En la literatura consultada hemos encontrado cuatro familias de métodos de diferen-
ciación numérica basados en distintas aproximaciones matemáticas: Diferencia Cen-
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tral (CD), Lanczos (L), Super Lanczos (SL) y Suave Robusto al Ruido (SNR). Los
métodos basados en la Diferencia Central y Lanczos han sido utilizados para la di-
ferenciación de electrooculogramas. Sin embargo, para el resto de los métodos no
hemos encontrado aplicación directa en señales de movimientos oculares. Por lo que
es muy interesante evaluar el rendimiento de los métodos como los Super Lanczos y
los métodos Suave Robusto al Ruido para esta tarea en espećıfico.

El objetivo de este caṕıtulo es comparar los métodos de diferenciación numérica
mencionados anteriormente para su aplicación en la identificación de sácadas y la
extracción de biomarcadores sacádicos. Esta comparación debe ser basada en valores
cuantitativos de los errores introducidos por cada uno de los algoritmos en las ta-
reas referidas. Para medir el rendimiento de cada método, se utilizará un conjunto
de señales sacádicas sintéticas con diferentes amplitudes de estimulación e imitando
distintos estadios de pacientes (sano, enfermo con SCA2) al que se le ha adiciona-
do una serie de ruidos previamente conocidos. Controlar el proceso de generación de
las señales sintéticas nos permite contar con los datos exactos de la salida si fuese
perfecta, soportando nuestro marco de comparación.

Para cumplir el objetivo trazado comparamos 16 métodos de diferenciación que
pertenecen a las 4 familias introducidas previamente: Diferencia Central (CD3, CD5,
CD7, CD9), Lanczos (L5, L7, L9, L11), Super Lanczos (SL7, SL9, SL11) y Suave
Robusto al Ruido (SNR5, SNR7, SNR9, SNR11). Como se puede observar, a cada
uno de los métodos se le añade un sufijo con la longitud del filtro correspondiente.
Nuestro experimento compara el rendimiento utilizando 4 métricas distintas:

• Error Medio Cuadrático (MSE, Mean Square Error) entre la salida del método
como señal aproximada y el perfil sintético de velocidad como señal exacta.

• Cantidad de sácadas no identificadas.

• Cantidad de sácadas erróneamente identificadas.

• Error absoluto introducido en el cálculo de los valores de los biomarcadores.

Finalmente, nuestro experimento queda estructurado de la siguiente manera:

1. Generar las señales sacádicas sintéticas utilizando parámetros caracteŕısticos de
los electrooculogramas para sujetos sanos y enfermos de SCA2. Obtenemos el
Perfil de Velocidad Exacta (EVP) del cuál los registros sacádicos son generados.

2. Aplicar cada método de diferenciación a los electrooculogramas sintéticos con el
ruido adicionado, resultando en los Perfiles de Velocidad Aproximados (AVP).

3. Para cada AVP:



xxi

a) Calcular el MSE entre el EVP y AVP. Analizar los resultados y eliminar
los métodos con rendimiento significativamente inferior.

b) Identificar las sácadas utilizando el AVP y compararlo con las sácadas
exactas identificadas utilizando el EVP. Comparamos el rendimiento del
proceso de identificación utilizando las métricas de sácadas no identifi-
cadas y sácadas sobre identificadas (falsos positivos). Todas las sácadas
correctamente identificadas utilizando el AVP son definidas como AS y su
contrapartida exacta identificadas con el EVP se define como ES.

c) Para cada AS y su ES asociada se calculan los biomarcadores velocidad
máxima, latencia y duración. Por cada par (ES, AS) y para cada biomar-
cador, se calcula el error utilizando el valor absoluto del biomarcador(ES)
- biomarcador(AS).

4. Analizar estad́ısticamente los resultados de los pasos previos y determinar cuál
método es el más adecuado para cada una de las diferentes tareas en el proce-
samiento de movimientos oculares sacádicos.

Las señales sintéticas fueron generadas utilizando el método descrito por Coughlin
en [33]. Este método sigue el proceso inverso de la generación natural de las señales:
primero se generan los perfiles de velocidad y luego se integran matemáticamente
para obtener el perfil de posición. Los parámetros caracteŕısticos empleados para
generar las señales sintéticas son la velocidad máxima, latencia y duración que fueron
obtenidos a partir del análisis estad́ıstico realizado a registros de sujetos sanos y
enfermos de SCA2.

Como primer resultado obtenido del experimento podemos señalar que los métodos
de la Diferencia Central no son adecuados para nuestra tarea espećıfica. El nivel de
ruido introducido por este conjunto de métodos obstaculiza el procesado posterior
de las señales. Para la tarea de identificación de sácadas el resto de los métodos se
comportan razonablemente bien, con los métodos L9, L11, SL11 y SNR11 obteniendo
puntuación perfecta.

Para cada biomarcador sacádico incluido en nuestro estudio, el experimento resulta
en un conjunto único de métodos para cada uno de ellos. Respecto a la velocidad
máxima sacádica se recomienda utilizar el método SL11. En el caso de la latencia
sacádica se recomiendan cualquiera de los siguientes métodos: SNR11, SL11, SNR9.
En el caso de la duración sacádica puede emplear los métodos L11 y L9.

Es importante señalar que algunos de los métodos con mejor rendimiento como
el SL11, SNR9 y SNR11 no han sido previamente utilizados en electrooculogramas,
siendo una contribución fundamental de este caṕıtulo.
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Identificación de sácadas
Las sácadas son un tipo de movimientos oculares rápidos que cambian la dirección
de la mirada hacia una nueva localización. Los puntos sacádicos son aquellos donde
inicia y termina la sácada, aunque no existe un criterio unificado donde ubicar estos.
Actualmente la identificación de estos puntos es realizada por expertos manualmente
o automáticamente utilizando algoritmos computacionales.

La identificación manual tiene como principal inconveniente la subjetividad in-
troducida por el experto que realiza la selección de puntos. Esta subjetividad genera
variabilidad entre la anotación efectuada por distintos expertos. En el caso de re-
gistros de sujetos enfermos, la dificultad de la anotación se incrementa debido a la
presencia de ruidos y condiciones inherentes a la enfermedad.

Los métodos para la detección automática de puntos sacádicos son muy variados
y de alguna forma formalizados en la taxonomı́a de Salvucci-Goldberg [34]. Entre
los métodos incluidos en la taxonomı́a los más comunes son los basados en umbrales
de velocidad. Estos métodos tienen como principal inconveniente que en registros de
sujetos afectados por enfermedades neurológicas como la SCA2, la identificación de
puntos sacádicos contiene alto niveles de error. Por otro lado, no existe un consenso
en la literatura sobre los valores del umbral de velocidad empleado por estos métodos.

A partir de estas consideraciones, se deben explorar nuevos métodos para solucio-
nar el problema de la identificación de saćadas. El aprendizaje automático, espećıfi-
camente el aprendizaje supervisado, es una rama de la inteligencia artificial utilizada
comúnmente en problemas de clasificación. Además, estas técnicas se emplean para
clasificar patrones de señales de EOG [35, 36, 37]. En este caṕıtulo proponemos dos
métodos de clasificación para el problema de la clasificación de puntos sacádicos y
no sacádicos en sujetos con SCA2 y analizamos su rendimiento. Los métodos anali-
zados son el Perceptron Multicapa (MLP, por Multilayer Perceptron) y los Bosques
Aleatorios (RF, por Random Forest).

Para la comparación de los métodos se diseñó un experimento que se describe a
continuación:

Etapa I: se prepara el dataset con los vectores que se utilizarán en la siguiente etapa.
Esta población de vectores se construye basada en las señales electrooculográfi-
cas segmentadas (sacádico o no sacádico) anotados en esta etapa.

Etapa II: selección de los datos de entrenamiento y validación teniendo en cuenta
el balance de los casos más t́ıpicos.

Etapa III: entrenamiento y validación de ambos clasificadores, utilizando el modelo
de partición por porcentaje para separar los datos de entrenamiento y validación.
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En este experimento se utilizaron electrooculogramas obtenidos utilizando el Otos-
creen y anotados mediante una aplicación de escritorio desarrollada por el autor.

La idea para las variables de entrada de un caso es seleccionar un patrón de
puntos anterios y posteriores al punto que se está analizando en forma de ventana.
Para construir los casos que conforman la población de datos, una ventana deslizante
se mueve a través de cada uno de los puntos etiquetados utilizando la etiqueta del
punto como la clase de salida del ejemplo.

Los resultados obtenidos de la validación de ambos métodos mostraron una exacti-
tud superior al 92 %, por lo que los consideramos adecuados para la tarea en cuestión
sin los inconvenientes que presentan los métodos tradicionales. Además, los resultados
muestran un rendimiento ligeramente superior por parte de los Bosques Aleatorios
sobre el Perceptron Multicapa.

Una de las ventajas fundamentales de los Bosques Aleatorios es que se podŕıan
utilizar en un sistema de identificación de tiempo real debido a su rendimiento rela-
cionado con la velocidad de entrenamiento y evaluación, además de por su exactitud.

Indentificación de sácadas no espontáneas
En el caṕıtulo anterior se propuso un método que identifica movimientos oculares
sacádicos utilizando una aproximación muestra-a-muestra. Este método nos permite
discriminar si una muestra pertenece a un movimiento sacádico o no. En este caṕıtulo
utilizamos esta información pero para identificar cuáles de estos movimientos están
relacionados con el est́ımulo (no espontáneos) y cuáles no, utilizando una aproxi-
mación basada en caracteŕısticas. Además, evaluamos la utilización de algoritmos
de aprendizaje automático teniendo en cuenta las fortalezas de las pruebas cĺınicas
de electrooculograf́ıa para resolver la tarea propuesta. Nuestra aproximación utiliza
señales de movimiento oculares horizontales y señal de est́ımulo, y no requiere de
umbrales u otra entrada de usuario. Para ello, un nuevo conjunto de caracteŕısticas
fue seleccionado para entrenar los modelos teniendo en cuenta las caracteŕısticas de
movimientos sacádicos válidos.

Como modelo de clasificación evaluamos cuatro de ellos: Máquinas de Soporte
Vectorial (SVM, por Support Vector Machines) [38], K-Vecinos más Cercanos (KNN,
por K-Nearest Neighbors) [39], Árboles de Clasificación, Regresión (CART, por Clas-
sification and Regression Trees) [40] y Naive Bayes [41]. La selección de los métodos
se realizó basada en la diferencia en los principios de funcionamiento de estos.

Para evaluar los algoritmos seleccionados diseñamos el siguiente experimento. La
primera etapa consiste en detectar sácadas y anotarlas para construir el conjunto de
datos que emplearemos en las siguientes etapas. Entonces, seleccionamos las mejores
caracteŕısticas a partir de las 10 consideradas inicialmente, para la tarea de clasifi-



xxiv

cación de estad́ıos (enfermo de SCA2, sano) de pacientes. Una vez obtenido el mejor
conjunto de caracteŕısticas, procedemos a ajustar los parámetros de los modelos se-
leccionados para encontrar los más adecuados utilizando validación cruzada con 10
pliegues. Finalmente, comparamos el rendimiento de los modelos usando datos no em-
pleados en el proceso de entrenamiento y validación cruzada empleando las métricas
de exactitud, sensitividad y precisión.

Los modelos evaluados se entrenaron con un total de 8606 impulsos, 1797 sácadas
válidas y 6809 sácadas inválidas. Para la etapa de evaluación externa (se utilizan
impulsos no utilizados en el proceso de entrenamiento) se utilizaron 3797 impulsos,
704 impulsos sacádicos y 3093 no sacádicos.

La evaluación del rendimiento de los diferentes métodos se realizó utilizando Exac-
titud, Sensitividad y Precisión. La validación externa de los cuatro métodos resultó
en exactitudes sobre el 95 %, sensitividad sobre el 92 % y precisión sobre el 83 %. Es-
pećıficamente las Máquinas de Soporte Vectorial obtuvieron valores de rendimiento
de 97 %, 96 % y 90 % de las tres métricas respectivamente. Estos resultados exceden
de forma significativa las reportadas por la literatura en trabajos relacionados.

Extracción de biomarcadores sacádicos
El término biomarcador de acuerdo con [42] es “una caracteŕıstica medida de forma
objetiva y evaluado como un indicador de un proceso biológico normal, un proceso
patogénico o una respuesta farmacéutica a la intervención terapéutica”. Una definición
más amplia fue desarrollada previamente por el Programa Internacional de Seguridad
Qúımica de la Organization Mundial de la Salud (WHO) en coordinación con las
Naciones Unidas (UN) y la Organización Mundial del Trabajo (ILO) y establece
que “cualquier sustancia, estructura, o proceso que pueda ser medido en el cuerpo o
su producto e influencia, o que pueda predecir la incidencia del resultado o de una
enfermedad ” [43]. En resumen, los biomarcadores son caracteŕısticas objetivas y
medibles de los procesos biológicos [42].

Los perfiles de movimientos oculares por si mismos no son suficiente para extraer
el conocimiento requerido por los estudios cĺınicos. Una vez que tenemos identificadas
el conjunto de sácadas no espontáneas, podemos extraer de estas los biomarcadores
de relevancia cĺınica. Existen varios biomarcadores sacádicos como son la amplitud, la
desviación, la latencia, la duración, la velocidad máxima y muchos otros. Por ejemplo,
en [44] se identificaron alteraciones en los tiempos de reacción (latencia sacádica)
que están relacionadas con enfermedades neurodegenerativas como es el Alzheimer, el
Parkinson, la Esclerosis Latetal Amiotrófica (ELA), por solo citar algunas. En sujetos
con SCA2 se observan un decrecimiento tanto en la velocidad máxima sacádica como
en la exactitud sacádica (desviación), y un incremento en la latencia sacádica [45].
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A continuación definimos cada uno de estos biomarcadores:

Latencia: es un biomarcador temporal que representa el tiempo transcurrido entre
el cambio de est́ımulo y el inicio de la sácada. Se representa en segundos.

Duración: es un biomarcador temporal que representa el tiempo transcurrido entre
el inicio y fin de la sácada. Se representa en segundos.

Amplitud: es un biomarcador espacial que representa el desplazamiento angular
realizado por los ojos entre el inicio y fin de la sácada. Se representa en grados.

Desviación: es un biomarcador espacial que representa la proporción entre la am-
plitud y el ángulo de est́ımulo.

Velocidad máxima: es un biomarcador cinético que representa la velocidad máxima
alcanzada entre el inicio y fin de la sácada. Se representa en grados/segundo.

En este caṕıtulo detallamos un procedimiento para calcular los biomarcadores
anteriormente definidos a partir de sácadas previamente identificadas. Se provee una
metodoloǵıa basada en un modelo matemático continuo que evita el ruido presente
en las señales y que son amplificados debido a la diferenciación numérica utilizada.
Utilizando técnicas de optimización, se ajusta el modelo al vector de posición (porción
del electrooculograma) donde se encuentra la sácada. Dado que nuestro modelo es
diferenciable, se puede obtener el perfil de velocidad exacto mediante la evaluación de
los parámetros ajustados en la derivada del modelo. Este perfil de velocidad ajustado
nos permite establecer los puntos de inicio y fin de la sácada de manera más precisa,
operación que es cŕıtica para minimizar los errores en los valores de los biomarcadores.

Finalmente, se muestra un ejemplo de reporte que se le muestra al personal médico
de forma que este pueda tomar decisiones cĺınicas informadas.

OpenEOG: Equipamiento de Medición
El objetivo fundamental de este caṕıtulo es de diseñar un dispositivo capaz de re-
gistrar los movimientos oculares de forma controlada y extraer los biomarcadores de
relevancia de forma que el personal médico pueda tomar decisiones cĺınicas. Además,
este dispositivo debe ser capaz de reemplazar al Otoscreen utilizado actualmente en
el CIRAH y ofrecer una mejora de sus prestaciones.

Proyectamos un costo de menos de 1000 euros por unidad, de esta forma el sistema
de salud cubano puede permitirse varios de estos y dispersarlos en todo el territorio
nacional. Esto debeŕıa aliviar la situación actual originada por solo tener un único
equipo de este tipo en todo el páıs, forzando a los pacientes a moverse cientos de
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kilómetros en condiciones dif́ıciles para recibir atención. Además, consideramos razo-
nable disponer de más de un dispositivo para realizar la misma tarea por razones de
redundancia. En la acualidad, un fallo en el funcionamiento del Otoscreen implica que
la investigación de estas enfermedades y la asistencia clinica a los pacientes quedan
interrumpidas.

En este caṕıtulo se discute el diseño de un dispositivo propio que capture los
movimientos oculares utilizando la electrooculograf́ıa. Hemos denominado a este dis-
positivo como OpenEOG, y está basado en el hardware que provee el OpenBCI a
través de la tarjeta Cyton. Primero definimos los requerimientos funcionales del sis-
tema que guiarán el proceso de desarrollo. A continuación, se describe el hardware
involucrado en nuestra solución y la interacción entre sus componentes. Además se
explica el diseño de nuestra aplicación de control y la justificación de las tecnoloǵıas
seleccionadas para su desarrollo.

El intrumento de medición que se obtiene por el trabajo de este caṕıtulo posee
caracteŕısticas de frecuencia de muestreo, resolución del Convertidor Analógico a Di-
gital (ADC), filtrado, entre otras, que se requieren para el registro de sácadas para
aplicaciones cĺınicas como es el estudio de la SCA2. Desde una perspective económica,
el instrumento logra el objetivo de costar menos de 1000 euros y el factor de forma de
los componentes elegidos garantizan la portabilidad del mismo. La utilización de ba-
teŕıas evita situaciones de peligro para el sujeto, lo que contribuiŕıa a su certificación
como equipo médico.

El software incluido con el hardware ofrece una interfaz de usuario simple para
el diseño de estudios de movimietos oculares y el registro de sus señales. Además, la
arquitectura diseñada provee mecanismos de extensión que permiten añadir de forma
simple nuevas caracteŕısticas a la aplicación. Los archivos de salida de la aplicación
ayudan al post-procesado de las señales debido al uso de formatos de archivo estan-
darizados. El firmware desarrollado para el OpenEOG permite controlar el proceso
de registro haciéndolo más rápido y confiable.

Los datos sacádicos extráıdos de nuestro equipamiento son similares a lo extráıdos
utilizando registros del Otoscreen, utilizando la secuencia principal como modelo de
comparación. Además, para biomarcadores espećıficos como la latencia sacádica se
presentan resultados similares a los reportados en la literatura. Por lo que considera-
mos que el instrumento puede realizar por lo menos las mismas tareas que realizaba
el Otoscreen.

Conclusiones
En esta tesis se ha estudiado a fondo el procesamiento de los movimietos oculares
y su relación con algunas enfermedades neurodegenerativas como la SCA2. Con este
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estudio se establecen las etapas del procesamiento de electrooculogramas que son: el
filtrado, la diferenciación, la segmentación y la extracción de caracteŕısticas. Por lo
que hemos enfocado todos los esfuerzos de este trabajo en el ajuste y optimización de
cada una de estas etapas.

En la etapa de filtrado utilizamos el filtro de medianas, el más utilizado en la litera-
tura para la eliminación de ruidos en señales de movimienos oculares sin comprometer
la forma de onda de las señales.

En la etapa de diferenciación comparamos el rendimiento de 16 algoritmos espećıfi-
camente para las tareas de identificación de sácadas y extracción de biomarcadores,
lo que nos permitió determinar para cada tarea el conjunto óptimo de ellos.

En los caṕıtulos de identificación de sácadas y clasificación de sácadas en es-
pontáneas y no espontáneas se logró entrenar modelos supervisados con una exactitud
superior al 90 % en todos los casos. Además, se realizó un proceso de selección de los
mejores biomarcadores para la clasificación de estadios de pacientes. Estos algorit-
mos eliminan la subjetividad introducida por la segmentación manual realizada en la
actualidad por el personal médico del CIRAH.

En el caṕıtulo de extracción de biomarcadores se logra obtener una metodoloǵıa
para el cálculo de estos que minimiza los errores introducidos por las etapas anteriores
del proceso, aśı como definir formalmente los más utilizados por el personal médico y
su clasificación según categoŕıa f́ısica de la propiedad de la señal con la que funciona.

Por último, se logró diseñar un instrumento de medición de los movimientos ocu-
lares que cumple con los requerimientos funcionales propuestos, aśı como las restric-
ciones de costo y portabilidad. Los datos extráıdos por el instrumento son similares
a los extráıdos por equipamiento profesional como el Otoscreen, por lo que se puede
afirmar que pudiera ser su futuro reemplazo.

Todo lo anterior planteado nos lleva a concluir que los objetivos de esta tesis han
sido cumplidos.

Contribuciones principales
• Se define la tubeŕıa de procesamiento de movimientos oculares sacádicos.

• Se seleccionan los mejores métodos de diferenciación numérica para las tareas de
identificación de movimientos sacádicos y extracción de biomarcadores sacádi-
cos.

• Se obtiene un modelo para la clasificación de puntos de un electrooculograma
en punto sácadico o punto no sacádico.
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• Se obtiene un modelo para la clasificación de sácadas en espontáneas y no
espontáneas.

• Se obtiene el mejor conjunto de biomarcadores que separan a sujetos sanos de
sujetos con SCA2.

• Se define un modelo matemático continuo para el cálculo de biomarcadores
sacádicos robusto frente a los artefactos intintroducidos en las etapas previas
del procesamiento.

• Se desarrolla un instrumento para la medición de los movimientos oculares
sacádicos que integra todos los aportes de la tesis y los hace disponibles de
forma simple al personal médico.
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L., Rodŕıguez-Labrada, R., & Pino-Ávila, C. (2013). Saccadic Points Classifi-
cation Using Multilayer Perceptron and Random Forest Classifiers in EOG Re-
cordings of Patients with Ataxia SCA2. In I. Rojas, G. Joya, & J. Cabestany
(Eds.), Advances in Computational Intelligence (pp. 115–123). Springer Berlin
Heidelberg. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-642-38682-4_14.
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Chapter 1

Introduction

The Spinocerebellar Ataxia type 2 (SCA2) is a common subtype of hereditary atax-
ias. The hereditary ataxias are a heterogeneous group of neurodegenerative disorders
caused by degeneration of cerebellum and its connections, spinal cord, peripheral
nerves, and the brainstem. It is caused by the pathological repeat expansion of the
trinucleotide CAG in the coding region of the ATXN2 gene [1]. The term ataxia does
not refer to a specific disease nor a predetermined diagnosis, but the resulting symp-
tom of a pathological state of the movement coordination. Often, we use the term
to describe gait disorders characterized by instability, incoordination and increase of
the support base [2].

Clinically, SCA2 is associated with gait ataxia, postural instability, dysmetria,
cerebellar dysarthria, and dysdiachokinesia. These disorders can be accompanied by
a slowing of horizontal saccadic eye movements and other less evident symptoms [46].
Unfortunately, there are no effective treatments available today to fight against the
disease, and eventually people pass away because of their inability to perform critical
biological functions such as feeding. However, there are some therapeutic strategies
such as physical therapy and the use of some drugs that can improve the quality of
life of the people suffering the disease [1].

Cuba is the country with the highest prevalence of people suffering from heredi-
tary ataxias. The SCA2 is the most frequent molecular form found in Cuba, where
the highest amount of sick people is in Holguin’s province. In [3] a national rate
of prevalence of 7.55 cases/100000 inhabitants and mutation carries a prevalence of
36.2 cases/100000 inhabitants. The prevalence of the disease in Holguin’s is the high-
est worldwide [4, 5] reaching 154.33 cases/100000 inhabitants in the municipality of
Báguanos [3]. The rate of prevalence of this molecular form is the second worldwide,
only surpassed by the Spinocerebellar Ataxia type 3 (SCA3) [4, 47]. This preva-
lence statistics justifies the enormous interest in studying this disease by the Cuban
scientific community.

5
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Biological beings with visual capabilities perform eye movements as a response to
some environmental stimulus. Its study is a valuable source of information for physi-
cians and scientists. For neurologists, the study about the control of eye movements
presents an unique opportunity to understand brain functions [6]. Also, these move-
ments are important to identify a wide range of neurological disfunctions. Pursuit
and saccadic movements, among others, are necessary to track moving objects, mak-
ing them a great tool to test neurological tasks [7]. It is a scientific fact that several
SCAs affect the human eye movements whereas the SCA2 provokes a slowdown in
saccadic eye movement [2].

The Centre for the Research and Rehabilitation of Hereditary Ataxias (CIRAH)
is located in Holguin, Cuba. The centre is a leading hub in the international research
about SCA2. Besides its scientific duties, it is in charge of:

• A multifactorial neuro-rehabilitation program.

• Neurophysiologic characterization of somatic and autosomal systems.

• Identification of factors that change the starting age of the disease and its
evolution course.

• Organization of a prenatal and presymptomatic diagnostic program for SCA2.

• Development of a cellular and transgenic model of the SCA2.

Scientists at the department of Clinical Neurophysiology in CIRAH carry out sev-
eral studies to test drugs and treatments to fight against SCA2 and other hereditary
ataxias. The analysis of saccadic eye movements is a recurrent task of these studies
to identify changes in relevant biological markers (biomarkers) such as peak saccadic
velocity and saccadic latency. They use the Otoscreen, an old electronystagmograph
made by the German company Jaeger-Toennies to record eye movements.

Otoscreen has incorporated a software that records and processes several eye
movement protocols using a technique called electrooculography. Clinical tests of
electrooculography are setup as follows. Subjects with their head fixed are seated
in front of a monitor at a previously set distance. After this, a set of electrodes
is connected in the area around the eyes. Then, they are commanded to follow
a visual stimulus which appears and disappears from one side to the other on the
monitor. Capturing eye movements in these conditions using electrooculography al-
lows researchers to identify which saccades respond to stimulus and which ones are
spontaneous. Non spontaneous saccades are useful to extract biomarkers which are
significant to follow the evolution of hereditary ataxias.

The usage of this equipment by CIRAH specialists produced an unique database
of eye movements recorded using protocols designed for clinical and research purposes.
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This database helps to develop several treatments and produces a large quantity of
scientific knowledge on the subject. However, the current capture and processing
protocol has some issues which difficults more advanced and reliable studies because
of the following conditions:

• The signal processing pipeline used by the equipment is unknown.

• Many of the recorded signals are contaminated with noise.

• Algorithms do not identify all valid eye movement events, or establish the start
(onset point) or the end (offset point) of the saccade at the wrong time sample.

• Adding extra features or processing elements is not possible.

• The equipment is not portable and needs highly specialized technicians to op-
erate it.

Because of these issues, the staff of CIRAH uses the Otoscreen only for recording.
Then, the specialists edit the signals and establish the onset and offset points of
relevant events such as saccades. After the signal annotation, they use traditional
comparative statistical methods using extracted biomarkers to confirm or reject their
hypothesis. The current approach has several problems. First, manual annotation
introduces subjectivity to the entire process, making reproducibility more unreliable.
This problem increases because of the lack of standard rules for setting the onset and
offset points of saccades. There are several articles using different methodologies and
thresholds in the medical literature.

Second, the noise present in some records difficults the process of signal segmen-
tation and some biomarkers calculation. If we add to this situation that the methods
and algorithms used by the equipment are unknown, the uncertainty introduced to
further analysis is significant.

Third, the complexity and non portability of the equipment affects the capacity
of reaching people in remote areas and low income people. Many of these people can
hardly move by themselves and the travel to CIRAH many times is not an option or
is costly.

Due to this situation we can state the following problem: the need for a new
portable technology able to process automatically saccadic eye movements for subjects
affected by SCA2 to avoid subjectivity and extract the biomarkers needed for clinical
purposes in a reliable way.

To solve this problem we set the following objectives:

1. Develop a fully automatic processing methodology for saccadic electrooculo-
grams to extract the clinical biomarkers of interest.
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2. Design and test a low cost and portable measurement equipment that can re-
place the Otoscreen at CIRAH.

The measurement equipment must be capable of recording the eye movements
using electrooculography. Then, it must automatically identify the occurrence of
saccades and dismiss the spontaneous ones using machine learning techniques and
the resulting saccades to extract relevant biomarkers (such as saccadic peak velocity,
latency, duration and amplitude) and exporting them to a standard format for further
analysis. Also, the equipment must recommend the status of the subject using a
previously trained model. All of this must be performed in the simplest way with
minimal user (specialist) interaction.

1.1 Document structure
We structure this thesis in eight chapters outlined below:

Introduction: here we expose the motivation to develop this work, describe the
problem and set the goals of our research.

State of the art: in this chapter we describe the methods and techniques used to
process electrooculograms. First, the entire process is defined and then each
of its steps is detailed. Finally, the chapter presents the fundamentals of the
computing intelligence techniques used throughout the research.

Electrooculogram differentiation: in this chapter we evaluate 16 numerical dif-
ferentiation methods for the tasks of saccade identification and biomarkers com-
puting. To evaluate the methods, we design an experiment to compare them
all and analyze its results statistically. Finally, we choose the best method for
each of the proposed tasks. The results of this chapter are published in [8].

Saccade identification: in this chapter we propose and evaluate a saccades seg-
mentation algorithm. We explore several machine learning techiques such as
Multilayer Perceptron and Random Forest to identify saccadic eye movements.
The results of this chapter are published in [9].

Non spontaneous saccades identification: in this chapter we develop a method
to discriminate which saccades are useful from a clinical perspective and which
not. Also, we select the most important biomarkers that separate healthy sub-
jects from sick subjects using feature selection techniques. The results of this
chapter are published in [10, 11].
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Saccadic biomarker extraction: In this chapter we use the results from the previ-
ous two chapters to extract the relevant data required by medical staff to make
clinical decisions. We show the method employed to compute accurately each
of the relevant clinical biomarkers for the SCA2. Finally, we present the study
report provided to the CIRAH specialists.

OpenEOG recording equipment: in this chapter we design a low cost and portable
measurement instrument to capture eye movements. This equipment includes
the algorithms developed in this report to automate the whole processing pipeline.

Conclusions: here we expose the main contributions of this work.





Chapter 2

State of the art

2.1 Eye Movements
Eye movements are those performed by humans and animals to guarantee a clear and
stable sight of their environment. According to [6] there are 7 types of eye movements
detailed below:

Vestibular: keeps images from the world in a stable form in the retina during brief
head rotations.

Optokinetic: keeps images from the world in a stable form in the retina during
substantial head rotations.

Visual fixation: keeps the image of a stationary object into the fovea.

Smooth pursuit: keeps the image of a small object in motion into the fovea; or keeps
the image of a small or near object during a linear movement; with optokinetic
answers to help the stabilization of the gaze during substantial head rotations.

Quick phases of Nystagmus: restarts the eyes during a long rotation and direct
the gaze through a new visual scene.

Vergence: moves the eye in opposite directions in a way that images from an object
are located or keeps in both foveas.

Saccades: moves images of object of interest into the fovea.

Eye movements recording technology
There are three main eye tracking methods: Electrooculography (EOG), Scleral Con-
tact Lens/Search Coil (SCL/SC) and Video-oculography (VOG).

11
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Table 2.1 presents a review of eye movement recording methods.

Table 2.1: Eye movement recording technologies

Method Invasive H. Accuracy V. Accuracy Resolution Cost
Electrooculography (EOG) Medium ≈ 0.8◦ [48] ≈ 2◦ [48] Low
SCL/SC High < 1◦ [14] < 1◦ [14] < 1 ms Medium
VOG Low 0.05◦ [49] 0.05◦ [49] High

Electrooculography
The EOG is one of the most used techniques to capture eye movements for clini-
cal purposes. The functioning principle of this technique is based on the electrical
potentials generated by the retina-cornea [12] (Figure 2.1).
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Figure 2.1: Functioning principle of the EOG technique. Based on [12]

Fenn and Hursh introduced the EOG technique in 1934, which measures the po-
tential of the retina-cornea by placing electrodes in the skin around the eyes. This
technique allows to extract the angular position of the eyes from the recorded poten-
tials using calibration procedures [2]. It’s important to notice that the illumination
that receives the retina affects this potential, thus opening the possibility of applying
this technique to measure the response of the eye to the light [50]. Because of this,
we recommend maintaining the illumination conditions constant when we measure
eye movements.

The main advantage of this technique is its low invasiveness (helping the coopera-
tion of the subjects), and the possibility to record wide horizontal movements (±40◦)
with a resolution of 1◦ [6].
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The resulting signal of the electrooculography is named electrooculogram. We
store this records in binary or text files depending on the equipment used for its cap-
ture. Otoscreen is the electronystamograph used at Centre for the Research and Re-
habilitation of Hereditary Ataxias (CIRAH) to record electrooculograms. Otoscreen
produces a simple American Standard Code for Information Interchange (ASCII) text
format with a custom format and Comma-Separated Values (CSV) extension. The
structure of these files is simple and separated by testing protocols (tests) making its
parsing easier.

In the Department of Clinical Neurophysiology at CIRAH the specialists use pre-
determined protocols to capture saccadic, antisaccadic, smooth pursuit and many
other eye movements. Each one of these protocols results in a set of signals (chan-
nels) with specific events contained that make up a test. During these protocols,
the subject is placed at a predetermined distance from a monitor where the visual
stimulus will appear. The specialists constrain the subject’s head so that it faces the
monitor and place the electrodes around the subject’s eyes. Before the recordings
start, they ask the subject to follow the visual stimulus (small white ball) that will
appear on the monitor. The execution of the test consists of recording the subject’s
response to the successive visual stimuli [51].

Scleral Contact Lens / Search Coil

Robinson introduced the scleral search coil technique in [13]. The technique consists
of placing a small coil of wire embedded in a contact lens on the subject’s eye. This
is a very invasive technique with a high spatial resolution (less than 1◦) and high
temporal resolution (less than 1 ms). However, many subjects have issues tolerating
the contact coils. These issues sometimes lead to the slip of the lenses attached to
the eye introducing errors at the position signal [14].

Video-oculography

Video-oculography is based on the processing images of the eye captured from an
infrared video camera to determine the horizontal and vertical positions of the eyes.
These positions can be converted into angular values using calibration procedures [15].

Today, this is the most used technique to record eye movements. Its low invasive-
ness makes it perfect to use it in almost every scenario. However, the current cost
of the equipment needed to record saccades for clinical applications is fairly high,
sometimes in a factor of ten thousand euros. This enormous cost is mainly because
of the use of high resolution cameras that provide required sample rates. However,
the cost of these cameras is dropping every day and in the future they will be the
technology of choice to record eye movements for any purpose.
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Eye movements and the Spinocerebellar Ataxia type 2
(SCA2)
The slowdown of saccades peak velocity is one of the most common clinical character-
istics in subjects suffering from Spinocerebellar Ataxia type 2 (SCA2). We find this
situation in 98% of subjects with SCA2, being mild in 32.12% of the cases, 13.19%
moderate and 14% severe. This allows us to confirm SCA2 using this biomarker [2].

Saccadic peak velocity is a useful clinical tool to study other neurological patholo-
gies such as myotonic dystrophy and olivopontocerebellar degeneration. The slow-
down of this biomarker is caused by the affectation of the neural networks of the brain
stem responsible of generating the saccadic pulse [2].

The main abnormalities in saccadic velocity present in subjects with SCA2 ev-
idence qualitative alterations related to the morphology and amplitude of the elec-
trooculogram. From the quantitative point of view it is characterized by [2, 16]:

1. Slowdown of saccadic velocity.

2. Abnormal increment of latencies.

3. Saccadic dysmetry. Hypermetric deviation of saccadic movements for stimulus
angles of 10◦, 20◦, 30◦ and hypometric deviation for 60◦.

Saccades are defined as slow or quick when their peak velocities are outside the
standard range of the velocity-amplitude relation. There is an increase of saccadic
latency in 80% of subjects suffering from SCA2; this is expressed physiologically in
a delay at saccades initiation. Saccadic dysmetry, specially the hypermetry, is the
traditional electrophysiologic sign of cerebellar affections [2].

2.2 Processing of electrooculograms
Considering that our work is concerned about the processing of electrooculograms to
diagnose neurological diseases such as the SCA2, it is necessary to review how this
process is performed nowadays at CIRAH. Analyzing how this processing is currently
made by CIRAH specialists, allows identifying the parts of it that can be automated
and improved.

The processes of record and analysis of electrooculograms consists of 3 stages:
recording, processing and diagnosis (Figure 2.2). Recording, as the first stage, has
the goal to get the signals that will be the input of the rest of the process. The pro-
cessing stage is aimed at manipulating the obtained records to extract the necessary
information. In general, we can establish the sub-stages of filtering, differentiation,
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Figure 2.2: Diagram of the process of recording and analysis of electrooculograms.

segmentation, and extraction of characteristics, which are described in detail below.
Diagnostics is the third and last stage, and it’s the goal of the entire process. The
diagnosis stage consists in providing the medical staff with interpretable quantita-
tive data that can be used to make decisions regarding the subject’s evolution or
treatments.

In the following subsections we discuss each one of the processing sub-stages.

Recording
In this work we use electrooculograms recorded using the Otoscreen at CIRAH. These
signals were recorded from horizontal saccadic movement protocols using a 200 Hz
sampling frequency with a high-pass filter of 100 Hz. A typical study consists of a
set of protocols listed below:

1. Horizontal calibration test (30◦)

2. Vertical calibration test (20◦)

3. Saccadic test 10◦

4. Saccadic test 10◦ (Replica)

5. Saccadic test 20◦

6. Saccadic test 20◦ (Replica)

7. Saccadic test 30◦

8. Saccadic test 30◦ (Replica)
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9. Saccadic test 60◦

10. Saccadic test 60◦ (Replica)

11. Random saccadic test 60◦

12. Random saccadic test 60◦ (Replica)

13. Horizontal calibration test (30◦)

Horizontal calibration test is used to calculate a value that allows to convert µV
recorded using Otoscreen Analog to Digital Converter (ADC) to angular position in
degrees (◦). The rest of the tests contains events with relevant clinical information.

Sometimes the baseline of the signal suffers a deviation due to the bad placement
of electrodes and other setup defects. This problem occurred mainly in the tests at
10◦ (Figure 2.3).

Figure 2.3: Saccadic signal at 10◦ with a deviated baseline
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Figure 2.4: Unfiltered saccadic signal at 10◦ of a subject with SCA2

The correction of the baseline drift is a problem that has been studied in Elec-
trocardiography (ECG) signals. Discrete Wavelete Transform (DWT) is the most
common technique employed to tackle the problem. Following [52, 53, 54], we de-
compose the signal using the DWT seven times and then use the 7th approximation
as correction signal. Other authors like Sayadi and Shamsollahi select the level of
decomposition following spectral criteria [55]. Finally, the approximation signal is
resampled to match the same amount of samples of the original signal and then
subtracted from the original.

Filtering
Often the electrooculograms present several kinds of noises which prevents their ade-
quate processing. The biological noise provoked by tremors and blinks, the bandwidth
noise related to the measurement equipments and the quantification noise caused by
the process of analog-to-digital conversion process, appear in signals recorded to sub-
jects suffering from SCA2 at CIRAH. The tremors provoked by the disease are visible
in a form of a high frequency and low amplitude noise as shown in Figure 2.4.

The presence of impulsive noise is due to eye blinks, which is a typical phenomenon
present in electrooculograms [17] as observed in second and third saccade in Figure
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Figure 2.5: Filtered saccadic signal at 10◦ of a subject suffering from SCA2 using a
median filter of 200 ms.

2.4. Also, there is some electrical noise provoked by the power grid which has a
component around 60 Hz which matches with the frequency of the Cuban system.

There are several filtering techniques used to remove the aforementioned noises.
Among those filters are the Finite Impulse Response (FIR) and the Infinite Impulse
Response (IIR) [18, 17] filters, median filters [19, 17], filters based on the DWT [20],
and many others.

The study performed by Juhola in [19] determined that the median filter is ad-
equate to denoise saccadic signals because it is able to attenuate the noise without
affecting important biomarkers such as saccadic peak velocity. This filter slides a
window of m = 2k + 1 consecutive samples xi−k, . . . , xi, . . . , xi+k through an input
signal and outputs a denoised version of it:

yi = median{xj|j = i − k, . . . , i + k} (2.1)

Differentiation
Computing the velocity profile is an esential part of several electrooculograms pro-
cessing algorithms. Due to the discrete nature of these signals, this operation is per-
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formed using methods of numerical differentiation. According to [56] the derivative
of a function f in x0 is:

f ′(x0) = lim
h→0

= f(x0 + h) − f(x0)
h

(2.2)
Using Lagrange’s interpolation polynomials, several methods of numerical differen-

tiation were developed and named central difference methods. For instance, equations
2.3 and 2.4 represent central different methods with 3 and 5 points respectively, where
x0 is the target sample and h the time between samples (sampling interval). Central
difference with 3 points was used in electrooculograms by Bahill and McDonald in
[21] and Niemenlehto in [22]. This last method must be used in serial order with a
lowpass filter to obtain better results [23].

f ′(x0) = f(x1) − f(x−1)
2h

(2.3)

f ′(x0) = f(x−2) − 8f(x−1) + 8f(x1) − f(x2)
12h

(2.4)
Inchingolo and Spanio also proposed algorithms based on central difference meth-

ods, declared in its general form in Equation 2.5, where fs is the sampling frequency
[24]. Also, for a sampling frequency of 200 Hz they determined that the appropiated
method is a central difference method with 9 points and coefficients a1 = 0.8024,
a2 = −0.2022, a3 = 0.03904, a4 = −0.003732 as shown in Equation 2.6.

f ′(x0) = fs

m∑

n=1
an{f(xn) − f(x−n)} (2.5)

f ′(x0) = 200
4∑

n=1
an{f(xn) − f(x−n)} (2.6)

Besides central difference methods, researchers have been using the Lanczos dif-
ferentiators a.k.a Savitzky-Golay with success. Their main difference from central
difference methods is that they employed curve fit instead of interpolation for signal
approximation. In Equation 2.7 we show a Lanczos differentiator with 7 points [25].

f ′(x0) = −3f(x−3) − 2f(x−2) − f(x−1) + f(x1) + 2f(x2) + 3f(x3)
28h

(2.7)

Figure 2.6(b) shows a velocity profile of a saccadic signal computed using the
Lanczos with 7 points methods as declared in Equation 2.7. To achieve an adequate
performance at processing, the employment of differentiators must guarantee that the
method does not afect the morphology of the velocity profile in a significative way
and keeps the spectral information that it contains.
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Figure 2.6: Computation of the velocity of a saccadic signal with 10◦ stimuli. (a)
Horizontal channel (b) Horizontal channel velocity.

Segmentation
The segmentation of electrooculograms refers to the establishment of onset and offset
points of events contained in them. This can be achieved manually or automatically
depending on the approach selected.

Manual segmentation is usually performed by experts using visual user interfaces.
The main issue with this approach is its subjetivity, because the annotation criteria
differs from expert to expert. However, manual segmentation allows us to correct
errors produced by automatic algorithms, for instance the removal of saccades wrongly
detected.

Automatic segmentation algorithms do not suffer from the subjectivity present
in the manual approach because they are based on rules and thresholds previously
defined. Applying the same parameters and thresholds guarantee the uniformity of
criteria in the output of the process.

Saccadic tests are the most common performed by CIRAH staff. Saccades and
fixations are the relevant events identified in these kinds of signals. From these events
we can extract important biomarkers required for the research of the SCA2.

To identify fixations the most common algorithms use dispersion criterias. In [57]
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they compared 4 techniques to solve this problem as shown below:

Distance dispersion: based on that the distance between each point of the fixation
with respect to the others cannot exceed a predetermined threshold dmax.

Centroid-Distance: also known as Anliker centroid-distance method, states that
M from the N points of the fixation cannot be further away than a threshold
cmax from the centroid of the points [58].

Variance-position: an alternative of the method Centroid-Distance with restric-
tions. States that the standard deviation of the distances to the centroid of the
points cannot exceed the threshold σmax [58].

Identification by dispersion threshold: proposed by Salvucci, states that the
maximal horizontal distance plus the maximal vertical distance of the points of
a fixation should be less than a predetermined threshold mmax [34].

In [34], it is proposed a taxonomy (known as Salvucci-Goldberg) which organizes
the different methods for the identification of fixations according to the way temporal
and spatial data is employed as shown in Table 2.2.

I-VT: (Identification by Velocity Thresholds) separates saccadic points from fixation
points according to its instant velocity.

I-HMM: (Identification by Hidden Markov Models) uses probabilistic analysis to
determine the most common identifications for a given protocol.

I-DT: (Identification by Dispersion Threshold) uses the idea that the low velocity of
fixation points tend to be grouped closely.

I-MST: (Identification by Minimal Spanning Trees) uses a tree that connects a set
of points in which the total length of the segment is minimized.

I-AOI: (Identification by Areas of Interest) identifies fixations located in predeter-
mined areas. These areas are rectangular regions of interest representing units
of information in the visual stimuli.

The problem with automatic segmentation of saccades has been tackled from
dissimilar approaches. The most common approach employed velocity thresholds.
These methods are based on the principle that onset and offset saccade points occur
when the instant velocity exceeds or falls to a predetermined threshold [22, 24, 26,
27, 28]. Variations of these methods have been developed using the acceleration and
jerk profiles, for example the algorithm proposed in [29].
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Criteria Representative Algorithms
I-VT I-HMM I-DT I-MST I-AOI

Spatial Based on velocity X X
Based on dispersion X X
Based on area X

Temporal Sensible to duration X X
Locally adaptive X X X

Table 2.2: Salvucci-Goldberg taxonomy [34]

Another approach to automatic detection is the use of the statistical properties
of the signal. Keegan et al. proposed the use of a sliding window of 3 parts. In this
window, if the mean of the difference of the absolute deviation between the first and
last part of the window are below a predetermined threshold, and the mean of the
central part has a value close to the mean of the edge parts; then we can establish
that a saccade occurs near the central part [59].

Niemenlehto and Juhola use the technique of Cell Averaging of Constant False
Alarm Rate (CFAR) for saccades identification. The principle behind this technique
is the use of an adaptive detection threshold that fits the different characteristics of
each signal [60].

Also, Juhola et al. use regular grammars [61] and syntactic analysis [62], a rare
approach for saccade identification. These methods are based on the segmentation of
the signal in symbols which are used by pattern recognition algorithms.

Tigges et al. proposed the use of a classifier based on an Artificial Neural Network
(ANN) in signals with low level of noise. Using a retropropagated neural network
with prototypes of patterns as input, a vector list of relevant features for saccade
identification is obtained as a result [63].

It is important to point out that it’s assumed that saccades occurred between fix-
ations and viceversa as result of stimulation protocols. Because of this many authors
use saccade identification methods to detect fixations and fixation detection methods
to detect saccades.

Biomarkers extraction
Once the electrooculogram is segmented, we proceed to extract biomarkers from iden-
tified saccades and fixations. These biomarkers have the clinical meaning needed to
diagnose and follow several neurological diseases such as SCA2.

The duration and peak velocity are two of the most relevant biomarkers in the
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analysis of eye movements. There is a direct relation between them named main
sequence, which has been employed by several authors to characterize the behaviour
of the oculomotor system [26, 30, 31, 32]. Saccadic peak velocity is considered a very
sensible and high value endophenotypic diagnostic biomarker of SCA2 [4].

Among the main alterations found in subjects with SCA2 there is the slowdown of
saccadic peak velocity, the abnormal increase of saccadic latency, saccadic hypermetric
deviation for stimulus of 10◦, 20◦ and 30◦, and saccadic hypometric deviation for
stimulus of 60◦ [4].

The features used by CIRAH scientists for their research are:

Saccadic latency: time between the start of the stimulus and the saccade onset.
Its value is expressed in milliseconds (ms).

Saccadic peak velocity: maximal velocity reached during the saccade. Its value is
expressed in degrees per second (◦/s).

Saccadic duration: time between saccade onset and offset. Its value is expressed
in milliseconds (ms).

Saccadic amplitude: difference between minimal and maximal angle reached dur-
ing the saccade. Its value is expressed in degrees (◦).

Saccadic deviation: rate between the amplitude of the saccade and stimulus am-
plitude. If the value is more than 1.0 the saccade is considered hypermetric, or
hypometric if the value is less than 1.0.

Saccadic direction: enumeration with two possible values: Left or Right. If the
angular position grows over time it is considered a Right saccade, or a Left
saccade if the position decreases over time.

2.3 Conclusions
In this chapter we have started by studying the biological principles of human eye
movements and how they are affected by neurological diseases. We have described
the different eye movements and how saccades are affected by the SCA2. Also, we
have studied 4 methods for recording eye movements and analyzed their strengths
and weaknesses.

We also analyzed several methods and techniques involved in the processing of
saccadic eye movements. Because of this analysis we have identified a processing
pipeline for saccadic eye movements which comprises 4 steps: filtering, differentiation,
segmentation and biomarkers extraction. Each of these steps was described and the
methods currently used to approach them were presented.





Chapter 3

Electrooculogram differentiation

hapterElectrooculogram differentiation

3.1 Introduction
Eye movements are those performed by the eyes as a response to some environmental
stimulus. For neurologists, the study of the control of eye movements presents an
opportunity to understand the human brain [64]. Besides, these movements have a
very useful role because they can identify disfunctions caused by several neurological
diseases such as Spinocerebellar Ataxia type 2 (SCA2). Also, pursuit and saccadic
movements are necessary to track objects in motion and provide a tool to explore
neural functions [65].

Electrooculography (EOG) is a technique used to capture eye movements in clini-
cal research. It’s based on the measurement of potential generated in the retina-cornea
area of the ocular system [12]. This technique was introduced by Fenn and Hursh
in 1934 and uses superficial electrodes around the skin of the eyes. The resulting
potential signal is called an electrooculogram and can be translated later into an
angular movement signal using calibration methods.

Saccades are abrupt eye movements performed to move images of objects of
interest to the fovea. Diseases such as Spinocerebellar Ataxias affect the performing
of the saccadic system. For example, SCA2 provokes slowdowns in the saccadic
movements [66]. Numerically, a saccade is a vector of contiguous eye positions that
belongs to an electrooculogram (measured in angular degrees).

The velocity profile of an electrooculogram is a vector of instantaneous velocity
points associated to the position vector of the electrooculogram. Getting this ve-
locity profile is one step of saccade identification algorithms. For instance, one of
the classic papers in saccade identification recommends to always use velocity as the
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criteria to identify onset and offset saccade points [27]. This profile allows us to com-
pute relevant biomarkers such as peak velocity, latency and duration. We compute
the instantaneous velocity profile of an electrooculogram by the differentiation of its
values.

Given the discrete nature of the electrooculograms, there is a requirement to use
numerical differentiation methods to get the velocity profiles. These methods always
introduce a level of noise to their output (velocity profile), even when the position
profile is noise free.

Thus, Figure 3.1 shows how from an electrooculogram with almost no noise the
output of the differentiation method presents high level of noise. Figure 3.1(a) shows
a very clean position signal of a saccadic electrooculogram. In Figure 3.1 (b) and
(c) we show noisy velocity profiles computed from the position signal using a central
difference of 3 and 5 points, respectively. The noise of the output affects the iden-
tification of the position of the onset and offset points of a saccade. This situation
leads to errors in the calculation process of important biomarkers such as maximum
velocity, latency and duration of saccades.

In the literature reviewed we found four numerical differentiation method fami-
lies based on different mathematical approaches: Central Difference, Lanczos, Super
Lanczos and Smooth Noise Robust. Methods such as Central Difference and Lanc-
zos have been used to differentiate electrooculograms. However, for the rest of the
methods we have found no usage for these signals. It is very interest to evaluate the
performance of methods such as Super Lanczos and Smooth Noise Robust for our
specific tasks.

Researchers use central difference methods with acceptable results when the signal
is noise free [67, 22]. However, Figure 3.1 shows the undesired effects of the noise in
the differentiation output of these methods. Note how a minor noise in the movement
signals produces a very noisy differentiated signal. Also, filtering the signal before
differentiation does not improve the output of the process.

The signals captured using devices like electronystagmographers or eye trackers
produce electrooculograms which may include several noises such as tremors (bio-
logical), power line noise, digitalization noise (Analog to Digital Converter (ADC)),
and others. Using these position signals we can not get the associated exact velocity
profile because of the included noise, hence it is impossible to have a framework to
evaluate the performance of the numerical differentiators.

The goal of this work is to compare numerical differentiation methods available
in literature for their application in saccadic identification and biomarker extraction
tasks. This comparison has to be based on quantitative values of the errors introduced
in the referred tasks. To measure the performance of each method, we will use a set
of synthetic saccadic signals at different amplitudes and subject statuses (healthy or
sick with SCA2) with added noise. These signals allow to know the exact values of
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Figure 3.1: Example of an electrooculogram differentiated using the central difference
of 3 and 5 points.

the errors introduced because the exact values of the biomarkers associated with these
signals are also known.

In summary, we consider that this work presents two major contributions: (a) We
find the best method to differentiate saccadic electrooculograms, (b) we provide the
implementation of these methods for free at a GitHub repository.

The rest of this chapter is organized as follows: In Material and Methods section
we describe the experiment designed to compare the differentiation methods. The
Discussion section shows an analysis of the designed experiment results. Finally, the
Conclusions section summarizes the main ideas and findings of this work.

3.2 Material and Methods
Numerical differentiation
The derivative of a function f in x0 is defined in the Equation 1 [56]:

f ′(x0) = lim
h→0

= f(x0 + h) − f(x0)
h

(3.1)
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Using Lagrange’s interpolation polynomials, we can develop several differentiation
methods based on central difference. Equation 3.2 represents the general form of the
central difference methods.

f ′(x0) ≈ 1
h

(N−1)/2∑

k=1
ak(fk − f−k) (3.2)

In this equation x0 is the point where the instant velocity is calculated, f±k rep-
resents f(x0 ± kh), h is the time interval between samples, and ak are the parameters
to be determined.

The 3-point central difference was proposed by Bahill and McDonald in [67] and
Niemenlehto in [22] to differentiate eye movement signals. This last method has to
be used with a low-pass filter to get reliable results [21].

Inchingolo and Spanio proposed in [24] an algorithm to calculate the velocity
profile of eye movement signals that is a particularization of the nine-points central
difference. This method is described by Equation 3.3 where fs is the sampling fre-
quency. In the particular case of signals sampled at 200Hz, authors found that the
best coefficients are a1 = 0, 8024, a2 = −0, 2022, a3 = 0, 03904 and a4 = −0, 003732.

f ′(x0) = fs

4∑

k=1
ak(fk − f−k) (3.3)

Analog to central difference methods, the Lanczos methods have been developed
as a particular set of Savitzky-Golay [25] differentiation filters. The fundamental
difference regarding their predecessors is that they use curve fitting strategies instead
of interpolation, making them more noise robust. Lanczos differentiators work as
follows: for a fixed h step and sample f(x) at odd N points around a central point
x0, we construct the polynomial shown in Equation 3.4 minimizing the cost function
shown in Equation 3.5 with respect to unknown coefficients aj [68].

PM(x) =
M∑

j=0
ajx

j (3.4)

Z =
(N−1)/2∑

k=−(N−1)/2
(fk − PM(xk))2 (3.5)

After the polynomial is computed, f ′(x0) can be estimated as:

f ′(x0) = P ′
M(x0) (3.6)

We call Lanczos differentiators to the filters built using M = 2 and Super Lanczos
when M = 4.



3.2. MATERIAL AND METHODS 29

One last family to be considered is the Smooth Noise-Robust methods [68]. They
make up a variation of Lanczos family, and they are described in Equations 3.7 and 3.8

f ′(x0) ≈ 1
h

M∑

k=1
ck(fk − f−k) (3.7)

ck = 1
22m+1

[(
2m

m − k + 1

)

−
(

2m

m − k − 1

)]

, m = N − 3
2 , M = N − 1

2 (3.8)

where N is the filter length, as in the previous equations.

Experiment design
With the goal to choose the fittest numerical differentiation method for saccadic
electrooculograms, an experiment was designed. In this experiment we compare 16
methods belonging to four families: Central Difference (CD3, CD5, CD7, CD9),
Lanczos (L5, L7, L9, L11), Super-Lanczos (SL7, SL9, SL11), Smooth Noise-Robust
(SNR5, SNR7, SNR9, SNR11). Each number attached as a suffix to the method name
means the length of the corresponding filter.

Our experiment compares the performance of the differentiation methods using 4
different metrics:

• Mean Square Error (MSE) between the output of the method as approximated
signal and the synthetic real velocity profiles as the exact signal.

• Misidentified saccades

• Over-identified saccades

• Absolute error introduced in the biomarkers values

The Mean Square Error (MSE) is computed from the output of the differentiation
methods with respect to the exact velocity profile of synthesized signals. This metric
gives a quantitative value, which describes similarity or, in contrast, the level of
error/distortion between the signals. Formally, the operation is defined as follows:
given two discrete signals x and y of finite length, x = {xi|i = 1, 2, . . . , n} and
y = {yi|i = 1, 2, . . . , n}, where n is the number of samples of the signals, and xi and
yi are the value of the i-th samples of x and y respectively, the Mean Square Error
between both signals is described in Equation 3.9.

MSE(x, y) = 1
n

n∑

i=1
(xi − yi)2 (3.9)
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To get saccadic biomarkers, first we need to identify the saccades. We can evaluate
the performance of the differentiation methods by obtaining the number of saccades
that are misidentified or over-identified using a simple velocity threshold algorithm
with the output (velocity profile) of each method. For this algorithm we are going to
use the same velocity threshold employed to generate the synthetic signals as onset
and offset threshold.

There are many biomarkers used to study SCA2. Among the most common and
relevant are the Latency, Duration and Peak Velocity. Latency is the time between
the visual stimulus starts and the response of the subject. The duration of the saccade
is the time between its start and its end. The Peak Velocity is, from our experience,
the most important biomarker to diagnose SCA2 and is the maximal velocity reached
during the saccade.

The designed experiment is structured as follows:

1. Generate synthetic saccadic records using characteristics parameters got from
electrooculograms of healthy and SCA2-sick subjects. We get the exact velocity
profile (EVP) from which the saccadic records are generated.

2. Apply each differentiation method to the synthetic electrooculograms with noise
added, resulting in the approximate velocity profiles (AVP).

3. For each AVP:

a) Compute the MSE between the EVP and AVP. Analyze the results and
drop methods with significant poor performance.

b) Identify saccades using the AVP and compare against the exact saccades
identified using the EVP. We compare the performance of the identification
process using misidentified and over-identified saccade metrics. All the
saccades correctly identified using the AVP are defined as AS and their
corresponding exact counterparts identified using the EVP are defined as
ES.

c) For each AS and their associated ES we compute the biomarkers peak
velocity, latency and duration. For each pair (ES, AS) and for each
biomarker, we compute the error using the absolute value of biomarker(ES)
- biomarker(AS).

4. Analyze statistically the results yielded by the previous step and determine
which methods to use for the different tasks in saccadic eye movements process-
ing.
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Class 20◦ 30◦ 60◦ Total
Healthy 20 20 20 60

SCA2-Sick 20 20 20 60
Total 40 40 40 120

Table 3.1: Records distribution per subject status and angle.

Building synthetic saccadic signals dataset

The set of saccade signals employed for the comparison was generated synthetically
using the method described by Coughlin in [33]. This algorithm follows an inverse
process regarding the natural generation of the signals: first the velocity profiles are
generated and then they are integrated to get the position profiles. The characteristic
parameters used to generate the synthetic velocity profiles were maximum velocity,
latency and duration got from a statistical analysis performed to healthy and SCA2-
sick subjects.

To make the signals as real as possible, a set of noises found in real electroocu-
lograms was added. Specifically, sinusoidal interference of 60 Hz simulating noise
introduced by the industrial network, white noise, which has a uniform spectral dis-
tribution and color noise between 3 and 7 Hz. The color noise was found when
performing the spectral analysis of records of people with the disease.

With the goal to get reliable statistic results, a set of 120 signals are generated and
distributed, as shown in Table 3.1. Each of these signals contains a set of 20 saccades,
making 2400 saccades in the full dataset. Here the saccades are generated from
stimulation angles of 20, 30 and 60 degrees as found in real clinical electrooculograms.

The signals were generated with a sampling frequency equal to 1000Hz. However,
to mimic the characteristics of the real signals, we need to re-sample the synthetic
signals to a sampling frequency of 200Hz. To accomplish this we use the function
decimate1 of the SciPy library [69]. This function downsamples the signal after ap-
plying an 8th Order Chebyshev antialiasing filter. It is important to note that all the
calculations of the experiment are performed using the 200Hz re-sampled signals.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html
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Figure 3.2: Errors introduced by differentiation methods measured using the MSE

3.3 Result analysis

MSE

To compare the signal waveform errors introduced by the differentiation algorithm,
we built the box plot shown in Figure 3.2. In this plot we can notice how the central
difference methods introduce errors higher than the rest in several orders of magni-
tude.

Figure 3.3 shows an example of the poor performance of the central difference
method against the worst performed of the rest. In the figure it is also noticeable the
error of the peak velocity introduced by the noise. Also, this noise is present in the
regions near the points of saccade onset and offset, hindering the saccade’s correct
identification.

This low performance can be explained because of the instability inherent to
numerical differentiation methods added to the principle of interpretation used by
the central difference methods [56]. For these reasons these methods will be dropped
for further analysis and focus our efforts in more adequate candidates for the tasks.
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Figure 3.3: Comparison between the best central difference method and the worst of
the rest of the families. The signal is from a healthy synthetic signal with saccades
of 20◦.

Saccade identification task
The previous step to biomarker computing is identifying the saccades from which
these biomarkers are going to be extracted. We are going to use a simple velocity
based saccade identification detailed by Algorithm 1. In this algorithm we use the
output of the differentiation methods as V . For the occurrence threshold Ot we select
the threshold used to generate the synthesized signals, and to set the onset and offset
points of the saccades we use Pt = 20◦/s [70, 71]. The step h is equal to 0.05 seconds
because the signals are sampled using a 200Hz frequency.

We use two metrics to measure the performance of the identification algorithms:
unidentified saccades and over-identified saccades. Unidentified saccades are the
amount of saccades that should have been identified by the algorithm and were not.
Over-identified saccades are the amount of saccades detected as false positives by
the algorithm. Figure 3.4 shows the errors introduced by using the output of the
differentiation method as the output for the identification algorithm.
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Algorithm 1: Velocity threshold saccade identification algorithm
Input: V computed velocities, Ot occurrence velocity threshold, Pt onset

and offset velocity threshold, Dt minimal duration threshold, h
sampling step

begin
V ←− abs(V );
last ←− length(V );
index ←− 0;
while index < last do

if Vindex > Ot then
onset ←− index ;
while onset > 0 and Vonset−1 ≥ Pt do

onset ←− onset − 1;
end
offset ←− index ;
while offset < last and Voffset+1 ≥ Pt do

offset ←− offset + 1;
end
duration ←− (offset − onset) ∗ h;
if duration >= Dt then

yield Saccade (onset, offset)
end

end
end

end

The performance of the analyzed methods is very satisfactory. From 2400 saccades
the worst method (snr5) misidentified only 20 saccades, less than 1%. And more
importantly, four methods show a perfect score. It is also noticeable that all the 11
points methods are in the set of perfect score.

Biomarkers calculations
The goal of the research regarding eye movements is to extract relevant knowledge
which allows to diagnose and follow neurological diseases. This relevant knowledge is
presented very often as biomarkers, hence the importance of their computing method.
In this work we analyse how the differentiation methods impact on the values of
saccadic biomarkers relevant to the research of SCA2 such as Peak Velocity, Latency
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Figure 3.4: Number of misidentified saccades by the different methods

and Duration.
To make a complete interpretation of the results got by the application of the

proposed methods, a comparative analysis using the Friedman statistical test was
performed. This is a non-parametric statistical test equivalent to Analysis of Vari-
ance (ANOVA) with repeated measures, which determines if there are significant
differences between the results of a set of methods over the same datasets [72]. Ap-
plying the Friedman test to the result yielded by each biomarker allows to determine
that for each of the biomarkers there are significant differences among their means.

Now, to determine which of the methods are fit to compute each of the saccadic
biomarkers, we applied a post-hoc Wilcoxon signed-ranked test pairing the method
with lower error with the rest [73]. Each of the tests determines if there is signif-
icant differences between the pairs of biomarker means. In Table 3.2 the methods
highlighted in bold belong to a cluster of methods in which the null hypothesis of
Wilcoxon was accepted, meaning that the errors introduced by these methods have
the same distribution.

In Table 3.2 we show the results obtained by the use of the proposed differentiation
methods.
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Peak Velocity (◦/s) Latency (s) Duration (s)
Rank Method Error ± Std Method Error ± Std Method Error ± Std

1 sl11 2.1375 ± 2.2142 snr11 0.0045 ± 0.0080 l11 0.0079 ± 0.0065
2 sl9 3.8759 ± 4.3384 l11 0.0045 ± 0.0042 snr11 0.0084 ± 0.0135
3 l5 4.1076 ± 3.4649 l9 0.0047 ± 0.0064 l9 0.0085 ± 0.0115
4 sl7 4.4216 ± 5.2121 sl11 0.0049 ± 0.0104 sl11 0.0098 ± 0.0186
5 snr7 4.5968 ± 3.9061 snr9 0.0051 ± 0.0098 snr9 0.0100 ± 0.0175
6 snr9 5.1840 ± 4.4540 l13 0.0065 ± 0.0048 l13 0.0129 ± 0.0094
7 snr5 5.7055 ± 5.3013 l7 0.0067 ± 0.0116 l7 0.0141 ± 0.0235
8 snr11 6.0861 ± 5.4302 l5 0.0069 ± 0.0138 l5 0.0143 ± 0.0266
9 l7 6.4026 ± 5.5485 snr7 0.0076 ± 0.0150 snr7 0.0161 ± 0.0299
10 l9 9.4111 ± 9.0850 sl9 0.0128 ± 0.0259 sl9 0.0274 ± 0.0510
11 l11 13.3196 ± 13.4722 sl7 0.0145 ± 0.0299 sl7 0.0314 ± 0.0581
12 l13 29.6168 ± 26.0764 snr5 0.0147 ± 0.0283 snr5 0.0324 ± 0.0568

Table 3.2: Errors introduced by differentiation methods in saccadic biomarker com-
puting. Methods highlighted in blue for each task are those that show no significant
difference with the first ranked using Wilcoxon post-hoc method.

Table 3.2 shows that for the saccadic peak velocity, the Super Lanczos Method
with 11 points is the most fit for the task. This could mean that sl11 can better
keep the waveform of the differentiated signal around the point of maximal velocity
(middle of the saccade). Further study is required.

Regarding saccadic latency, Table 3.2 shows 3 methods with the best performance:
Smooth Noise Robust with 11 points, Super Lanczos with 11 points and Smooth Noise
Robust with 9 points. These results are related to how well the saccade onsets are
positioned, explaining how these methods affect the samples near to the start of the
saccade.

In the case of saccadic duration, the Lanczos with 11 and 9 points have the best
performance. Like saccadic duration they are affected by the position of the saccadic
onset, but are also affected by the saccadic offset position. The errors of the duration
can be explained by the performance of the algorithms around the samples near the
start and finish of the saccade.

Figure 3.5 shows the analyzed performance described in previous paragraphs in a
more visual form.

It is interesting to notice how the best methods nominally always have 11 points.
This could mean that 11 is the right size for the differentiation filters applied to signals
with 200Hz of sampling rate, or at least with the characteristics of saccadic signals
similar to the ones synthesized in this work. To confirm this theory, more study is
required in this regard.
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Figure 3.5: Biomarker computing errors box plot by method. Methods highlighted in
blue for each task are those that show no significant difference with the first ranked
using Wilcoxon post-hoc method.
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3.4 Conclusions
In this chapter we have evaluated 16 numerical differentiation methods of 4 different
families: Central Difference (cd), Lanczos (l), Super Lanczos (sl) and Smooth Noise
Robust (snr) for saccadic signals differentiation of subjects suffering from SCA2. First,
we presented a review of the methods traditionally used for our specific task and
others used in other areas of knowledge. We designed an experiment to compare the
methods numerically using quality and error metrics.

Our first conclusion from our experiment is that the central difference methods
are not adequate for our specific task. The level of noise introduced by these sets of
methods hinders the further processing of the signals. For the saccade identification
task all the methods perform reasonably well, with the methods l9, l11, sl11 and
snr11 getting perfect score.

For each saccadic biomarker included in our study, the experiment results in a
unique set of methods fit to compute each one of them. With saccadic peak velocity,
we recommend using the sl11 method. For saccadic latency computation we recom-
mend the use of these methods: snr11, sl11, snr9. For saccadic duration you can use
the l11 or the l9 methods.

It is important to remark that some high performing methods like sl11, snr9 and
snr11 were not used previously with electrooculograms, being a key contribution of
this chapter.



Chapter 4

Saccade identification

4.1 Introduction
Saccades are a kind of eye movements; according to [74] these are rapid jerk-like
movements of the eyes that direct the gaze to a new location, and ballistic movements
in the sense of their duration. Saccadic points are those where the saccade begins and
ends, but there is no unified criterium about where exactly a saccade does. Currently
the identification of these points is performed by experts manually in the area or
automatically by computational algorithms.

Identification by manual means has drawbacks such as the subjectivity introduced
by the expert which makes the points selection. This subjectivity generates variability
between the identification performed by various of these experts. In the case of signals
recorded to sick subjects, the difficulties of manual identification rises due the presence
of noises and conditions inherent of the disease.

The way of detecting saccadic points by computational methods is very varied and
somehow formalized by the taxonomy of Salvucci-Goldberg [34]. Among the methods
described by the taxonomy the most common ones are those based on velocity thresh-
olds. These methods have as main drawback that for subjects affected severely by
neurological diseases such as Spinocerebellar Ataxia type 2 (SCA2), the identification
of saccadic points is very inaccurate. Besides there is no consensus in the literature
about what value should take the velocity threshold used by these methods. There
is a serious lack of research about the other methods proposed in the taxonomy, but
presumably there is a notable difference in the results yielded by them and those
yielded by velocity thresholds based methods.

From saccadic points and the corresponding signal channel, is possible to calcu-
late saccadic features such as maximum velocity, latency, duration and the amplitude.
These features have proven to be useful in the research of many neurological diseases

39
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due the contrast of the behaviour of these features between patients and healtly in-
dividuals, as well as between patients of different diseases. For instance, saccadic
velocity is significantly slower in subjects with SCA2 than in control subjects or sub-
jects with other ataxias like SCA1 or SCA3 [75]. Also, the calculation of these features
supports drug clinical trials and other kind of efforts to improve living conditions of
subjects suffering this disease [76].

Latency, duration and amplitude are features very susceptible to the position of the
saccadic points. So, the variability obtained by the methods currently employed have
a negative impact on the utility of final data. On the other hand, the variability caused
by the currently employed methods has a negative consequence on the interpretation
of these features by experts, leading to misdiagnosis.

From this considerations, new methods have to be explored to solve the problem
of identification of saccadic points. Here we propose two methods based on compu-
tational intelligence, capable of learning from a set of examples. Machine Learning,
specifically the supervised learning is a branch of Artificial Intelligence often used to
solve classification problems. Also these techniques are used in the task of classify-
ing Electrooculography (EOG) signal patterns [35, 36, 37]. In this chapter we apply
two different techniques of supervised learning to attack the problem of the saccadic
and non-saccadic point classification in subjects with SCA2, and analize their perfor-
mance. We aim to obtain results with high accuracy without the drawbacks present
in traditional identification mechanisms.

The rest of this chapter is organized as follows: In section 2 we describe the
designed experiments and available data. Section 3 is devoted to analize and comment
the results. Finally, section 4 summarizes the main conclusions and future work lines.

An experiment was designed to apply two machine learning techniques: Multilayer
Perceptron (MLP) and Random Forest (RF), to clasify a velocity saccadic pattern
dataset. The experiment was separated in several stages as shown in Figure 4.1. The
work performed in each stage is described more deeply in the followings sections.

In summary, each stage describes:

Stage I: Provide a set of cases that will conform the population used by the next
stage. This population is builded based of EOG segmented data (saccadic or
non-saccadic) created in this stage.

Stage II: Selection of training and validation data taking into account to balance
the most typical cases.

Stage III: Training and validation of both classifiers, using percentage split scheme
to separate training data and validation data.
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Figure 4.1: Experiment main flow. Each stage is separated in a sequence of ordered
steps.

4.2 Data Collection
The data was recorded using the Otoscreen electronystamograph at a sampling rate
of 204.8 Hz with a bandwith of 0.02 to 70 Hz (analogic filtering). Specifically, 60
degrees saccadic signals were selected due to its difference between healthy and sick
subjects. Researchers from the Centre for the Research and Rehabilitation of Hered-
itary Ataxias (CIRAH) provide us about 30 records of sick subjects, many of them
in very bad shape. After the analysis of these records, only six of them meets good
quality requirements to train classifiers.

For signal segmentation purposes, a desktop application was developed capable to
mark different types of segments as shown in Figure 4.2.

All the programming was done in Python language using NumPy and SciPy open
source libraries for numerical calulations, and PySide Qt bindings for graphical user
interface. The application uses python-eog for reading and writing the data man-
aged by the user interface, developed by the authors too.

Even when the application is capable to tag many ocular events, in selected test
only saccades, fixations and noise are relevant. For practical reasons we only need to
discriminate saccades and non-saccades, thus, our task becomes a binary classification
problem.

Many classical algorithms used to detect saccadic eye movements use a velocity
threshold to set the initial and ending points of a single saccade. Even when they not
agreed in a threshold value, there is a consensus about that the main criterion is the
velocity. Thus, it seems reasonable to think that the pattern of velocities preceding
and after a certain point in the signal determines if they are inside or outside of a
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Figure 4.2: Signal editor main window. Pink segments mean fixations, gray segments
mean noise and red segments mean saccades.

certain event as shown in Figure 4.3.

Figure 4.3: a) Time signal of a sample saccade, b) Time signal of a sample fixation,
c) Velocity profile of a), d) Velocity profile of b).

The idea for input variables of a single case, was get the pattern of velocities before
and after the target point, in a window fashion way. To build the cases population,
an sliding window runs through each tagged point in selected records, using this tag
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as the classification class. If this tag is a saccade we mark the sample as a saccadic
point, if the tag is fixation or noise we mark the sample as non-saccadic point.

Filtering is, very often, the preprocessing part of signal analysis. For velocity
profile calculations the input signal is first filtered using a median filter with a window
size of 53.71 ms. After filtering, the velocity profile is calculated using a central
difference by eight points method, which has proven to be adequate to signal sampled
by 200 Hz [24]. Finally, new filtering is carried out to eliminate differentiation noise.

This aggresive filtering is posible because we are interested only in the relationship
between the samples in velocity profile, not the waveform itself.

4.3 Input Selection
Once gathered instances population, we proceed to select the samples used for training
and validation purposes. Is very important to provide a balanced set of input cases
to the classifier in order to achieve better classification performance.

First, the number of cases used for training and validation process selected was
5000. The first half of them was devoted to saccade points and the another half to
non saccadic points. The set of non-saccadic points was divided in fixation and noise
ponits in equal proportions.

Figure 4.4: Example of windows of points at beginning, middle and ending of an
event. Red range means a window of a point at beginning of the saccade in a) and
fixation in b). Green range means a window of a point at middle of the saccade in
a) and fixation in b). Magenta range means a window of a point at ending of the
saccade in a) and fixation in b).
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In Figure 4.4 is showed how different points belonging to the same saccade have
a significative different window of velocities. That’s mean that a point at beginning
of the saccade usually have different window pattern than a point at the end of the
saccade.

To get even more balanced set of data, was selected the same proportion of begin-
ning, middle and end points of each class. As results of this input selection strategy,
the samples count per class lays out in Table 4.1.

Table 4.1: Distribution of input samples per zone in the event and per event itself

Saccade Non-Saccade Total
Fixation Noise

Start 833 417 417 1667
Middle 834 416 416 1666

End 833 417 417 1667
Total 2500 1250 1250 5000

4.4 Training and Validation
The goal of our training is to predict whether a sample belongs to a saccade. Weka [77]
is the software package used for training the selected data and validate the resulting
models.

Previous experiments carried out by the authors indicate that the optimum input
features count for the Multilayer Perceptron (MLP) and Random Forest (RF) input
is of 121 components.

Multilayer Perceptron:
MLPs are a kind of feedforward Artificial Neural Network (ANN) which consists in
multiples layers of nodes in a directed graph, where each layer is fully connected to the
next. Except for the input nodes, each node is a processing element with a nonlinear
activation function.

The MLP classifier was trained with a topology of 121 nodes in input layer, 61
sigmoid nodes in the hidden layer and 1 linear node in the output layer. The network
use backpropagation as training algorithm with a learning rate of 0.3 and a momentum
of 0.2. 500 epochs were used to train this model.
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Random Forests:
RF is a ensemble of decision trees proposed by Leo Breiman[78]. The idea is based
on building a forest of N decision trees, where in each trees we select M input cases in
a random way using the same statistical distribution. Breiman in his paper proposes
the use of Random Trees in the ensemble. In this type of trees, the split of features
in each node is selected randomly from the K best splits.

Weka uses the algorithm proposed by Breiman. In our case we used the default
values used in the package. This mean that our model will generate an ensemble of
10 Random Tree. For each tree the random split has 8 features.

The classification is made by the vote of each tree in the ensemble and selecting
the most popular class among them.

The speed and accuracy of RFs make them a very good choice for problems related
to computer vision. So we expect very good results from them, because the problem
we are treating is in some extent a computer vision problem.

The training process uses 5000 examples distributed as shown in Table 4.1. The
training were evaluated using cross-validation with 5 folds. Finally we test the trained
model against 5000 new examples not present in training data.

4.5 Results
The validation process performed by weka states the following results:

Table 4.2: Validation results for both classifiers, in training and validation data. TP
are True Positive cases, FP are False Positive cases, TN are True Negative cases and
FN are False Negative cases.

Classifier TP FP TN FN
MLP Training Cross-validation 2325 177 2323 175

MLP Real Validation 2291 182 2318 209
RF Training Cross-validation 2375 166 2334 125

RF Real Validation 2387 182 2318 113

In Table 4.2 Training Cross-validation stands for the results obtained in the train-
ing process, and Real Validation stands for the results obtained in the test process
(patterns not used in the training process).

Is a common practice in comparison of several classifiers to use metrics like sensi-
tivity, specificity and accuracy. These metrics are derived from results shown in Table
4.2 and describe proportions between right and wrong predicted cases.

Sensitivity yields how good the model can predict possitive examples described
by equation 5.5, in this case saccade points.
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Sensitivity = TP

FN + TP
∗ 100 (4.1)

Specificity is the proportion on correct prediction on negative cases described by
equation 4.2, in this case non-saccade points.

Specificity = TN

TN + FP
∗ 100 (4.2)

Accuracy is the proportion of right predicted cases, described by equation 4.3.

Accuracy = TN + TP

TN + FP + FN + TP
∗ 100 (4.3)

Table 4.3 shows that both methods perform very well and very similar for the
proposed task. However, these results also shows that the Random Forest performs
slightly better than the Multilayer Perceptron.

Table 4.3: Performance metrics comparison between MLP and RF classifiers in train-
ing and validation data

Classifier Sensitivity Specificity Accuracy
MLP Training Cross-validation 93.00 % 92.92 % 92.96 %

MLP Real Validation 91.64 % 92.72 % 92.18 %
RF Training Cross-validation 95.00 % 93.36 % 94.18 %

RF Real Validation 95.48 % 92.72 % 94.10 %

4.6 Conclusions
This chapter presented a comparative between two machine learning techniques (MLP
and RF) to solve saccade and non-saccade point classification problem of EOG signals
measured to subjects with SCA2.

The results obtained by the validation of both methods shown an accuracy above
92 percent. So, they are suitable to solve the proposed task without the drawbacks
present in traditional methods. Also, this results stated a slightly better performance
for RF than MLP.

The RF classifier could be used to build a pseudo-realtime identification system
due its performance in relation to training speed, and for its accuracy.



Chapter 5

Non spontaneous saccades
identification

5.1 Introduction
The alteration of eye movements is one of the symptoms of many neurological dis-
eases like Parkinsons syndrome, spinocerebellar ataxias or the Niemann-Pick disease
[79]. Specifically in the Spinocerebellar Ataxia type 2 (SCA2) this alteration is an
important clinical marker present in more than 90% of patients [1].

There are several kind of eye movements such as saccades, fixations and pursuits.
Among them, saccades are critical to follow and evaluate subjects with SCA2. For
instance, SCA2 patients have significantly slower saccades and with larger latencies
than healthy subjects [1]. The analysis of this kind of movement is very often used
in the researches conducted by the medical community, hence its importance.

A technique to measure eye movements called electrooculography consists in cap-
turing the electrical potential of the eyes to calculate its magnitude and direction.
This technique is widely used in electrophysiologic tests [80]. The resulting signals of
this recording process are named electrooculograms [81].

There exists several methods and algorithms for identifying saccades in electroocu-
lograms, the vast majority of them based on kinetic thresholds [24, 28, 29, 34], us-
ing supervised learning [63, 81], unsupervised learning [82] or other novel approachs
[83, 84] like particle filters [85]. These methods were designed to work in a not con-
strained scheme having advantages in a lot of scenarios. They are usually evaluated
against data from healthy subjects where the differences between saccadic and non
saccadic movements are very evident. However, in electrooculography clinical tests
these methods try to detect as many saccades as posible, not distinguishing which of
them are spontaneous and which not.

47
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In a previous work [9], we proposed a method that identifies saccadic movements
using a sample-to-sample approach. This method allows us to discriminate whether
a sample belong to a saccadic movement or not. Now, in this work we have the
task of identifying which of these movements are stimuli related using a feature-based
approach.

Here we set out to evaluate the use of machine learning algorithms taking into
account the strengths of clinical tests of electrooculography to solve the proposed task.
Our approach have to use only horizontal movement signals and stimulus signals, and
do not require the use of thresholds or any other user input. To do so, a new set of
features were selected to train the models taking into account characteristics of valid
saccadic movements.

To identify the ocurrence of saccadic movements we use an impulse detection
method based on velocity thresholds. These thresholds are calculated adaptively with
a modified version of the method proposed in [83]. Our algorithm uses a classification
model to solve the presented task, so we evaluate four of them: Support Vector
Machines (SVM) [38], K-Nearest Neighbors (KNN) [39], Classification and Regression
Trees (CART) [40] and Naive Bayes [41]. The performance of the classification models
were measured, obtaining very good results (> 98% accuracy) in all of them.

5.2 Material and Methods
To test the selected algorithms an experiment was designed. The first step was
detect potential impulses and annotating them to build a labeled dataset. Then, we
select the best features among the 10 considered at first. Once we have the best set
of features, we proceed to tune the parameters of the selected models to find the
fittest ones for the task at hand, using 10-fold cross-validation. Finally, we analyze
and compare the performance of the models against new examples using the metrics
accuracy, sensitivity and precision.

The electrooculograms were recorded using the OtoScreen electronystamography
device at a sampling rate of 200 Hz with a bandwith of 0.02 to 70 Hz. Records of 12
sick subjects with SCA2 were used to build a dataset with features extracted from
signal impulses. Each one of the records have at least tests of 10◦, 20◦ and 30◦ of
visual stimulation. Typically saccadic tests have at least one horizontal channel and
one stimulus signal (Fig. 5.1).

IPython notebooks [86] were used in conjunction with the Python language scien-
tific facilities: NumPy [87], SciPy [88], Pandas [89], Matplotlib [90] and Scikit-Learn
[91] for running the experiments. The intention behind using Python powered tech-
nologies is that the resulting algorithm (including trained models) will be used at
NSEog, a processing platform developed by the authors.
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Figure 5.1: Typical electrooculography signal with 30◦ stimulus angle of a subject
suffering SCA2. Red signals are the scaled stimuli signals. Blue signals are the
horizontal channel (a) and its velocity profile (b) respectively.

Signals preprocessing
Before the identification of potentially saccadic impulses, two common tasks need
to be performed: denoising and differentiation. Noise removal is a very important
matter in order to eliminate non desired spectral components produced by equipment
malfunction, poor analog filtering or biological artifacts. Differentiation allows to
obtain the velocity profile used later by the algorithm.

Median filter (Equation 5.1) has proven to be very robust in eliminating high
frequency signal noise while preserving sharp edges. An study carried out in [19]
demonstrated that this kind of filters is appropiate for eye movements signals. To
eliminate non desired noise present in the signals used in the experiment, we use
a median filter with a window size of 9 samples (approximately 45 milliseconds)
obtaining very good results. This is accomplished using the medfilt function of
SciPy.
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yi = median{xj|j = i − k, . . . , j + k} (5.1)
Due to the discrete nature of these signals, numerical differentiation is employed

to calculate the velocity profiles. According [92], Lanczos differentiators (Equation
5.2) with 11 points (N = 11) have good performance for signals with the same
characteristics as the ones used in this experiment.

f ′(x∗) ≈ 3
h

m∑

k=1
k

fk − f−k

m(m + 1)(2m + 1) , m = N − 1
2 (5.2)

We implemented the rutine of a Lanczos 11 differentiator which have the following
formula:

f ′(x∗) ≈ f1 − f−1 + 2(f2 − f−2) + 3(f3 − f−3) + 4(f4 − f−4) + 5(f5 − f−5)
110h

(5.3)

Detection of impulses
Saccadic movements are represented as impulses in a velocity graph (Fig. 5.1b).
Typically, this movements can be easily detected by its contrast in magnitude and
shape with other movements such as fixations and microsaccades. However, for the
same stimulus angle the range of values of true saccadic impulses vary from subject
to subject. This situation is tied greatly on the degree of affectation present in the
subject [93].

One of the critical parts of the algorithm is the detection of velocities impulses
which can potentially be saccades. For that matter, a threshold is needed to know
when the velocity has reached a certain value that can be considered as a saccade
candidate. Due to the inter-subject variability explained before, this threshold should
not be fixed a priori. Also should be large enough to ignore in most cases other
movements like microsaccades and fixations, and not too large to miss valid saccadic
movements.

To detect impulses we developed the algorithm described in Algorithm 2, which
is a modification to the method introduced by Nyström and Holmqvist in [83]. The
algorithm uses the absolute values of the velocities samples to calculate the approxi-
mation of the initial threshold (last threshold). This initial threshold is calculated by
adding σ times the standard deviation of the velocities to its mean. Then, iteratively
it adjusts the last threshold with the same formula using only selected samples of ve-
locities below the previous threshold. The stop condition happens when the difference
between the current threshold and the last one is less or equal than one degree. The
value of the resulting threshold is represented graphically by the red line in Fig. 5.2.
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Figure 5.2: Threshold estimated in a 30◦ stimulus angle test of a subject with SCA2.

Algorithm 2: Modified version of Nyström and Holmqvist [83] threshold
estimation algorithm

Input : velocity profile (Array of degree/seconds samples)
Input : σ (Safety margin)
Output: Threshold estimation
begin

velocities ←− Abs(velocity profile);
last threshold ←− Mean(velocities) + σ * Std(velocities);
current threshold ←− 0;
while Abs(last threshold- current threshold) > 1 do

selected samples ←− samples from velocities below last threshold;
current threshold ←− last threshold;
last threshold ←− = Mean(selected samples) + σ * Std(selected
samples);

return last threshold;
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The original algorithm requires the initial threshold as input. This adds a little
subjectivity to the main process, because to obtain good detection results this value
must be variable and set by the user. The noise levels present on the signals and the
degree of affectation of the subject have great influence on this issue. The proposed
modification consists in calculate the initial threshold in a adaptive way using all
velocity samples, so eliminating the subjectivity of the original approach. Using the
new approach on signals recorded to subjects with SCA2 in different stages seems to
be adecuate to the task at hand.

The safety margin (σ = 6) employed by [83] ignores too many valid saccadic
movements in lower angle tests for subjects with SCA2. A value of σ = 3 seems
to be adequate for most cases at the expense of the detection of more non valid
impulses. Even when has a penalty in runtime performance, the final accuracy of the
method should not decrease significantly. Due the amplitude of this new impulses
the classification model should avoid them.

Finally, we detect the impulses individually by finding a group of samples grouped
together that exceeds the calculated threshold. The principle behind this algorithm is
looping through the signal to find velocities above the threshold. When we encounter
with one of these points, we move to the left and to the right until the velocity is
zero or cross it. This approach allows further refinement of the saccade start and
ending points because the impulses usually get more samples beyond the real saccade
limits. If the length of a detected impulse is not greater than 10 samples, then it is
discarded to avoid very small invalid movements. A typical output of this method is
represented in Fig. 5.3.

Data mining process
Because we are using Python technologies, Scikit-Learn was selected as machine learn-
ing library, hence we are constrained to a restricted set of models implemented in it.
The main policy of model selection was family representation, meaning that we try
to choose methods with different working principles. So we evaluate four different
models: SVM, KNN, CART and Naive Bayes.

Feature selection

Once we have the saccadic impulses candidates, we need to know if they are saccades
and if they are related to the stimulus. For this reason, the strategy behind our
approach uses features used by human intuition to solve this task. To take advantage
of the characteristics of the clinical tests, a set of 9 features was selected. These
features are from spatial, temporal or kinetic nature.
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Figure 5.3: Identified impulses in the same signal used in Figure 5.2

We have selected four spatial features: angle (10, 20, 30), amplitude (◦), devi-
ation (0..2) and end relative position (0..1). The angle represents the amplitude
of the stimulus and can take only three values. This feature was selected to specify
the small differences between the saccadic movements resulting from using different
angles of stimulation. The amplitude feature is the difference between the maxi-
mum position value and the minimum position value in the impulse in degrees. Used
commonly by the medical community, the deviation is specified by the relation am-
plitude over angle. The end relative position takes values between 0 (left side)
and 1 (right side), representing in which side of the stimulus the impulse ends.

As an important note, we have removed the direction feature employed in pre-
vious works [10]. Is evident that movements against the stimulus direction are not
valid, so we choose to set this kind of impulses as not valid ones. This variation
leads to a simpler and better model, adding only a line of code in the identification
algorithm.

We have the absolute latency (ms) and normalized latency (0..1) as temporal
features. The absolute latency is the time between the start of the stimulus transi-
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tion and the maximal velocity point of the impulse in milliseconds. The normalized
latency is a version of the absolute latency with values between 0 and 1. The value 0
means that the maximal velocity is in the start of the fixation window, and the value
1 means that the maximal velocity is at the end of the fixation window.

Finally, we selected three kinetic features: maximum velocity (◦/s), maximum
acceleration (◦/s2) and maximum jerk (◦/s3). These features were calculated
using the first, second and third derivatives respectively of the horizontal channel
signal. The method employed to calculate the numerical derivatives was the one
specified in the Equation 5.3.

Using the features previously selected, a dataset of signal impulses was created.
To build this dataset, a human specialist aided by the NSEog classified the detected
impulses in valid and non valid saccades (Figure 5.4). As results, 1797 valid saccades
and 6809 not valid impulses were obtained, resulting in 8606 instances.

SVMs are a set of supervised learning methods very effective in high dimensional
spaces [38]. There are also very versatile supporting a set of kernel functions. Scikit-
Learn implements four kernel functions: linear 〈x, x′〉, polynomial (γ〈x, x′〉 + r)d,
rbf e−γ|x−x′|2 and sigmoid tanh(γ〈x, x′〉 + r). Results from preliminary experiments
showed that for the proposed task, the rbf kernel function have the best performance
compared with the others. Further study are necessary to fine tune the parameter γ
of this kernel.

KNN is a type of instance-based learning which can be used for supervised or
unsupervised learning. Instead of creating a generalizing function, it stores all the
data inside the models using different data structures like Ball Trees or KD Trees.
The principle behind the algorithm is to find a number of training samples nearest
to the analized point and predict the label from it [39]. To train our model we tried
several numbers of neighbors starting from 2, giving the best results when this value is
equal to 3. The data structure used is determined automatically by the Scikit-Learn
implementation using optimization techniques.

Decision trees are nonparametric supervised learning techniques. This algorithm
requires little preprocessing and its runtime performance is good enough to handle
real time tasks. This method split the data trying to infere decision rules which can
be used to clasify instances. Scikit-Learn uses an optimized version of the CART tree
that support classification and regression [40]. The implementation used here do not
require any parameter by default.

Naive Bayes is a probabilistic supervised classifier based on the Bayes’ theorem,
where strong statistical inference is assumed. The classifier is highly scalable that
requires a linear number of parameters in the learning problem [41].

As validation scheme we use an stratified 10-fold cross validation to evaluate inter-
nally the models. The metrics employed to measure the performance were accuracy
(Equation 5.4), sensitivity (Equation 5.5) and precision (Equation 5.6) [94]. The ac-
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Figure 5.4: Impulses annotation with the NSEog platform.

curacy gives a general quality measure of the performance of the models, while the
sensitivity and the precision allow to know how well the model predict or miss pre-
dict valid saccadic movements. In the following equations, TP (true positives), TN
(true negatives), FP (false positives) and FN (false negatives) are the items from the
confusion matrix used to compute involved metrics.

Accuracy = TP + TN

TP + FP + TN + FN
(5.4)

Sensitivity = TP

TP + FN
(5.5)

Precision = TP

TP + FP
(5.6)
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The whole dataset was adjusted by removing the mean and scaled to unit variance.
This technique is critical to obtain good results in the training of the RBF kernel
version of SVM. These scales was saved along with the model for further use by the
algorithm.

To compare the real performance of the models, the Friedman’s nonparametric
statistical test was used as recommended in [95]. In this step we use records not
used in the training phase. Each metric were analyzed by separate and the statistical
calculations were performed using the Keel tool [96].

The resulting classification algorithm is very simple and flexible. It consists in
the evaluation of the features calculated from impulses detected in the signal by the
supervised model. This approach allows the parallelization of the algorithm and even
swap the model if needed. Due the use of the proposed impulse detection algorithm,
the need for parameters managed by the user is eliminated.

5.3 Results
The evaluated models were trained with 8606 impulses, 1797 valid saccades and 6809
invalid ones. Using 10-fold cross validation the internal performance of the trained
process was measured with the metrics accuracy, sensitivity and precision. Table 5.1
shows results above .97 of accuracy, .94 of sensitivity and .90 of precision in all cases.

Table 5.1: 10-fold cross validation results

Model Acc. Rec. Pre.
SVM 0.9833 0.9750 0.9467
KNN 0.9796 0.9666 0.9376
CART 0.9769 0.9449 0.9445
Naive Bayes 0.9747 0.9817 0.9056

To perform a more objective evaluation, the algorithm was tested against records
obtained from five new subjects not used in the training phase. A total of 3797
impulses were evaluated this time, 704 real saccadic impulses and 3093 not saccadic.

Results obtained analysing the performance individually by stimulus angle seems
to favor slightly the SVM model (Table 5.2). However, doing the same analysis using
independent subject records shows a more erratic behaviour (Table 5.3). Because of
this situation, the Friedman’s nonparametric statistical test was employed to compare
the performance of the four models. Each record was considered as an individual
dataset and each of the three performance metrics was analyzed independently using
the data in Table 5.3. Results obtained by this method show that there are no
significant differences in the performance of these models for a significance level of
p = 0.10.
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Table 5.2: External validation results by stimulus amplitude

SVM KNN CART Naive Bayes
Angle Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre.
10 .9765 .9703 .9051 .9659 .9449 .8745 .9636 .9237 .8790 .9575 .9661 .8261
20 .9858 .9837 .9377 .9844 .9837 .9305 .9822 .9633 .9365 .9780 .9837 .8993
30 .9720 .9686 .9038 .9646 .9686 .8745 .9674 .9462 .9017 .9543 .9686 .8372
Mean .9780 .9742 .9155 .9716 .9657 .8932 .9711 .9444 .9058 .9633 .9728 .8542
Std .0070 .0082 .0192 .0111 .0195 .0323 .0098 .0198 .0290 .0128 .0095 .0394

Table 5.3: External validation results by subject record

SVM KNN CART Naive Bayes
Subject Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre. Acc. Rec. Pre.
1 .9881 .9877 .9699 .9881 .9877 .9699 .9796 .9693 .9576 .9881 .9755 .9815
2 .9862 .9935 .9107 .9724 .9610 .8506 .9845 .9870 .9048 .9535 .9935 .7427
3 .9871 .9754 .9444 .9794 .9590 .9141 .9704 .8852 .9231 .9717 .9836 .8571
4 .9799 .9420 .9559 .9784 .9348 .9556 .9741 .9130 .9545 .9756 .9420 .9353
5 .9410 .9685 .8039 .9392 .9843 .7911 .9358 .9528 .7961 .9375 .9685 .7935
Mean .9765 .9734 .9170 .9715 .9654 .8962 .9689 .9415 .9072 .9653 .9726 .8620
Std .0201 .0201 .0669 .0189 .0215 .0748 .0193 .0417 .0659 .0199 .0195 .0982

Literature about the task proposed in this work is scarce and no methods to
specifically solve it were found. However, similar works reported a sensitivity of
.89 for 10◦ recordings on healthy subjects [84] and .80 of sensitivity on subjects with
Obstructive Sleep Apnea Syndrome (OSAS) [97]. Other related research conducted by
Tigges et al. shows an accuracy of .92 [63]. Taking into account that we are dealing
with signals recorded to subjects which suffers a very severe neurological disorder,
results shown in Table 5.2 and Table 5.3 are better than the others presented in the
literature.

5.4 Conclusions
In this work we have described a procedure to indentify spontaneous saccades from
a set of detected impulses in electrooculography signals. To detect the impulses we
made a modification to the algorithm proposed in [83], which consists in adaptively
calculate the initial thresholds. This new algorithm avoids the need of thresholds or
any other user input and works very well for noisy signals like the ones recorded to
subjects with SCA2, which is a difficult task.

To clasify we used and compared four machine learning paradigms: SVM, KNN,
CART and Naive Bayes. The procedure has been applied to a database of eye move-
ments recorded to subjects suffering spinocerebellar ataxias. The evaluation of the
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performance of the different paradigms were carried out using metrics such as Accu-
racy, Sensitivity and Precision. The four used paradigms achieved an accuracy above
95%, a sensitivity above 92% and a precision above 83% by external validation (using
patterns not used for training). Specifically for SVM the performance obtained was
always above 97%, 96% and 90% for the three metrics respectively. These results
exceed widely the reported by the literature in related works.



Chapter 6

Saccadic biomarker extraction

The term biomarker according [42] is “a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes or
pharmacologic responses to a therapeutic intervention”. A more broad definition was
developed previously by the International Programme on Chemical Safety led by the
World Health Organization (WHO) in coordination with the United Nations and the
International Labor Organization and states that a biomarker is “any substance,
structure, or process that can be measured in the body or its products and influence
or predict the indicence of outcome or disease” [43]. Summarizing, biomarkers are
objective and quantifiable characteristics of biological processes [42].

Raw eye movement profiles by themselves aren’t enough to extract useful knowl-
edge for clinical studies. Once we have identified a set of non spontaneous saccades,
we can extract relevant biomarkers from them. There are several saccadic biomark-
ers such as amplitude, deviation, latency, duration, peak velocity and many others.
For instance, [44] identified alterations in reaction times (saccadic latency) linked
to many neurodegenerative diseases such as Alzheimer’s disease, mild cognitive im-
pairment, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia
and vascular cognitive impairment. With subjects suffering Spinocerebellar Ataxia
type 2 (SCA2), they showed a decrease in saccade peak velocity and saccade accuracy
(deviation) and an increase in saccadic latency [45].

In this chapter we describe the biomarkers relevant to the study of the SCA2 and
the method used to extract them. Also, we explain several implementation details
used to optimize the accuracy and performance for the calculations of the biomarkers.
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6.1 Description
We can classify saccadic biomarkers according to the properties of the electroocu-
logram signals that it bases them from. There are temporal biomarkers, spatial
biomarkers, and kinetic biomarkers. Temporal biomarkers such as latency and dura-
tion are measured in time units like seconds. Spatial biomarkers such as amplitude
and deviation are measured in angular units as degrees. Kinetic biomarkers such as
the peak velocity are measured in degrees/second units.

Temporal biomarkers
Temporal biomarkers are those measured in time units such as seconds or milliseconds.
These biomarkers are related to the index of time where the saccade starts (onset)
and ends (offset). Here we have temporal biomarkers: the latency and the duration.
The latency is the time between the change of stimulus and the onset of the saccade.
Duration is the time between the saccade onset and saccade offset.

Figure 6.1: Temporal biomarkers visual representation.

Figure 6.1 shows how the latency and duration are directly related to the onset
and offset of the saccade, respectively. Hence, the right positioning of these points is
critical to calculate accurately these biomarkers.
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Spatial biomarkers
Spatial biomarkers are those measured in position and longitudinal units such as an-
gular degrees. In our research we have two spatial features: amplitude and deviation.
The amplitude is the angular displacement performed by the human eyes between
the saccade onset and offset. Deviation is the ratio between the amplitude and the
stimulus angle.

Figure 6.2: Spatial biomarkers visual representation.

In Figure 6.2, we can appreciate visually how to compute the amplitude with
respect on saccade onset and offset points. The deviation of this saccade is equal to
1.09, so the saccade is hypermetric. If deviation is less than 1, we consider that the
saccade is hypometric.

Kinetic biomarkers
We can consider several kinetic biomarkers such as average velocity, peak velocity,
peak acceleration and many others. However, in the study of SCA2, the researchers
consider that the most important saccadic biomarker is the peak velocity. Peak
velocity is measured in angular degrees per second (◦/s).
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Figure 6.3: Kinetic biomarkers visual representation.

Peak velocity is the highest velocity achieved between the onset and offset of the
saccade as shown in Figure 6.3. In contrast with the other biomarkers, peak velocity
is more robust to errors in the saccade onset and offset points. The robustness of this
biomarker is because of that its value is almost never near the starting and ending of
the saccade.

6.2 Computing methodology
As mentioned in previous sections, the most relevant saccadic biomarkers for the
study of the SCA2 are latency, duration, amplitude, deviation, and peak velocity.
Almost all these biomarkers, except for the peak velocity, are strongly related to
the positioning of the onset and offset saccade points. Because of this relation, the
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well establishing of saccade onset and offset points is critical to minimize the errors
in biomarkers computing. The major obstacle to define the right saccade points is
the noise present in their neighborhood. So, in this section we are going to define a
method to calculate all the biomarkers as accurate as possible.

Historically, the eye movement researchers have proposed several continuous math-
ematical models to describe the behaviour of a saccade. Curve fitting, differential
equations, probabilistic models, and several other approaches are used to model hu-
man saccadic eye movements. In our work we are going to use a curve composed by
the sum of a sigmoid and two gauss terms as described in Equation 6.1. Using an
approximated continuous mathematical model solves the problem of the noise near
the saccade edge points, hence the rationale of our approach.

In the step of biomarker calculation, we assume that an approximation of the
saccade onset and offset point have been identified using the algorithms discussed in
previous chapters. To get the vector of data that we are going to fit to the Equation 6.1
we use twice of the samples that the saccade contains centered in the middle of the
saccade. This way we assure to get enough points in the neighborhood of the saccade
edge points which are critical for the next steps.

y(x) = a

e
b−x

c + 1
+ a1e

−(b1−x)2

c2
1 + a2e

−(b2−x)2

c2
2 + d (6.1)

Velázquez in [98] demonstrated the validity of the Equation 6.1 to model saccade
position profiles. The first element of the equation is a sigmoid which models the
main (step like) waveform of the saccade. The following two gauss terms model the
possible undershot and overshot artifacts near the onset and offset of the saccade,
respectively.

The velocity profile of the saccade is a requirement to set its onset and offset
points. For that reason we have differentiated the Equation 6.1 getting the formula
described in Equation 6.2. This derived formula allows us to get approximated noise
free velocity profiles where we can use simple threshold based criteria to establish
onset and offset saccade points more accurately.
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1
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1
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c2
2

c2
2

(6.2)

To fit the Equation 6.1 to the saccade data we use the scipy.optimize.minimize 1

method of the SciPy library, specifically using the Powell method. Figure 6.4a shows
how well the saccade profile is fitted to the curve resulting in an Root Mean Square
Error (RMSE) of ≈ 0.0005◦. With the goal of obtaining high quality fits, we set a

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Figure 6.4: Equation 6.1 and Equation 6.2 fitted curve respectively.

maximum RMSE error of 1◦. Testing the procedure on 20 healthy subjects using 4
different stimulation angles (10, 20, 30, 60) we get 1420 saccades with an average
RMSE of 0.16 ± 0.23◦.

Once the position profile is fitted, we get the velocity profile by evaluating the
parameters returned by the optimization process against Equation 6.2. Then we use
this velocity profile to set the saccade onset and offset points. To set the saccade
points, we use a velocity based algorithm with a threshold of 30◦/s as recommended
by [83, 84, 99]. This means that we set the saccade onset point when the velocity is
equal or greater than 30◦/s, and set the offset point when the velocity is lesser than
30◦/s. Figure 6.4b shows the saccade limits detected by this algorithm in the red
vertical lines.

Having the saccade onset and offset point set, we can use the following terms to
calculate the values of the biomarkers using the formulas described in Table 6.1:
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Table 6.1: Biomarkers calculation formulas

Biomarker Formula
Latency (Saccadeonset − Stimulustransition) ∗ SamplingInterval

Duration (Saccadeoffset − Saccadeonset) ∗ SamplingInterval
Amplitude abs(Y [Saccadeoffset] − Y [Saccadeonset])
Deviation Amplitude/Stimulusangle

Peak Velocity max(Y [Saccadeonset : Saccadeoffset])

SamplingInterval Time between samples in seconds.

Stimulustransition Last sample index where the stimulus has changed prior the saccade
onset.

Stimulusangle Swept angle by the visual stimulus.

Saccadeonset Sample index where the saccade starts.

Saccadeoffset Sample index where the saccade ends.

Y Vector of angular positions in degrees (◦).

We apply this methodology to each saccade found in previous steps of the eye
movement processing pipeline. Our methodology allow to get accurate biomarkers
values avoiding the handicap of noisy signals.

6.3 Saccadic study report
One goal of this work is to provide relevant data to the Centre for the Research
and Rehabilitation of Hereditary Ataxias (CIRAH) researchers for making clinical
decisions. This data should be in a simple to read and process format, allowing the
specialist to perform their own transformations and statistics to it. For this reason
we have designed a report that contains all the raw biomarkers values in a Microsoft
Excel document, as well as a basic statistic overview of all data aggregated by stimulus
angle.

Having the raw biomarkers values allows to perform comparative statistics, very
useful in clinical trials and for evaluating subject evolution. Also, getting an overview
of the aggregated data provides a fast way to assess the condition of the subject being
studied.

Our typical study contains 4 saccadic tests with angles of 10, 20, 30 and 60◦. Here,
our report will contain 5 Microsoft Excel sheets (in a single file): Overview, 10, 20,
30, 60. The first one is a table with basic descriptive statistics in the format detailed
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Table 6.2: Example of saccadic study report overview

Angle Count Latency Mean Latency Std . . . Peak Velocity Mean Peak Velocity Std
10 18 0.0683 0.0378 . . . 291.0136 29.9925
20 19 0.1098 0.0373 . . . 447.2520 44.8831
30 19 0.1312 0.0453 . . . 527.7312 38.8707
60 19 0.1078 0.0398 . . . 515.2895 35.1437

Table 6.3: Example of saccadic study report for a 10◦ angle

Index Latency Duration Amplitude Deviation Peak Velocity
1 0.139 0.079 22.0232 1.1012 471.3344
2 0.097 0.084 22.3945 1.1197 487.7787
. . . . . . . . . . . . . . . . . .
19 0.069 0.078 20.3711 1.0186 460.3557

in Table 6.2. Also, in Table 6.3 we show an example of the format used to provide
the biomarkers data computed for a specific angle.

6.4 Conclusions
In this chapter we have detailed a procedure to compute saccadic biomarkers from
previously identified saccades. We provided a methodology based on a mathematical
continuous model to avoid the noise present in the signals which is amplified by
the numerical differentiation. Using optimization routines, we fit the model to the
position vector of the saccades. Due that our model is differentiable, we can get an
exact velocity profile by evaluating the fitted parameters against the derivative of the
model. The fitted velocity profile allows to set the saccade onset and offset points,
operation critical to get accurate biomarkers values.

Also, we have detailed how we set the saccade onset and offset points and the
formulas used to compute the biomarkers values. Finally, we have designed a report
that aggregates all the biomarkers data extracted from the saccades in a format which
can be used by the CIRAH staff to make decisions.



Chapter 7

OpenEOG recording equipment

7.1 Introduction
The Centre for the Research and Rehabilitation of Hereditary Ataxias (CIRAH) is
a leading institution in the international research about the Spinocerebellar Ataxia
type 2 (SCA2). In this center, its researchers study eye movements to diagnose and
follow subjects suffering this horrible disease.

The fundamental goal of this chapter is to design a device capable of recording
eye movements in a controlled environment and extract relevant biomarkers that
allow doctors to make clinical decisions. Also, the device could replace the Otoscreen
electronystagmographer used at CIRAH and improve its capabilities.

We project a cost of less than €1000 per unit, so the Cuban health care system
could be able to gain several devices and spread them across the national territory.
This should relieve the current situation originated from having only one device in
the entire country, forcing patients to move hundreds of kms in hard conditions to
receive treatment. It is always a good idea to have over one device able to perform
the same task because of redundancy reasons. This means that if this device stop to
work, the research of these diseases suffers a notable hit.

Also, the CIRAH researchers processed the signals captured with the Otoscreen
using third-party applications to fulfill their specific needs. For this reason, another
goal of our project is to include these specific needs in the software of our equipment
as an added value.

In this chapter we discuss the design of our own device to capture eye movements
using electrooculography. This device that we named OpenEOG, is based on the
hardware that is provided by the OpenBCI Cyton board. First, we start by stating
the functional requirements of the system that will guide the design process. Then,
we describe the hardware involved in our solution and the interaction between its
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components. Later, we explain our method in the design of our control software
and the rationale behind the technologies selected for its development. This chapter
completes by declaring the key contributions and conclusions achieved in our work.

7.2 Functional requirements
As stated at the introduction, there is a need for an instrument able of measuring
eye movements that replace Otoscreen at CIRAH. However, to use it in a clinical
environment, the device must have a set of additional features which are detailed
below.

The International Society for Clinical Electrophysiology of Vision (ISCEV)1 estab-
lishes several standards on how to use the different techniques employed to capture eye
movements. Among them, there is one for electrooculography which was published
the last time by Constable et al.[100] in 2017. This standard, for saccade recording,
recommends using sampling rates greater or equal than 1 kHz for each channel to
avoid the loss of information. They also recommend that the amplifier should use a
0.1 Hz high-pass filter to remove baseline drifts and 30 Hz low-pass filter to reduce
noise.

Regarding to the angular accuracy required, we base our requirement in the results
got by researchers using the same technique in similar recording conditions. For
example, in [101] they achieve angular accuracies of ≈ 0.75◦ and ≈ 1.38◦ for the
horizontal and vertical channel respectively and in [33] a horizontal accuracy of ≈ 1◦

is reported.
From an economic perspective, the equipment should have an unit cost low enough

that countries in development like Cuba can afford several of them. Having several
units will allow to perform studies across the country, improving the research process
of several neurological diseases such as the SCA2. Also, we are targeting to reuse
components such as PC and displays available in public health institutions, diminish-
ing even further the cost per unit and have availability of replacement components.
In our case adding up the price of the acquisition board at 500 USD, the range from
300 EUR to 400 EUR of a suitable computer, and the range from 100 EUR to 200
EUR of a suitable monitor we think we can achieve a total unit cost less than 1000
EUR.

Portability is another key design goal of our work. Making the equipment as
portable as possible allows its use in primary public health attention, hence reaching
more patients. The reusability mentioned before helps in this goal by allowing the
use of equipment already present in public health institutions. For that reason we
want the device can be carried using a small luggage such as a backpack.

1https://iscev.wildapricot.org/
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The major goal of our work is to support the research related to the SCA2 carried
out by CIRAH researchers. To fulfill this goal, we need to implement the processing
protocol proposed by them. So, our equipment must be able to process the signals
and to output the biomarkers relevant for the study of SCA2 as requested by the
CIRAH staff.

Taking into consideration the needs exposed above, we state the following func-
tional requirements:

1. Record saccadic eye movements.

2. Sampling frequency ≥ 1 kHz, with a high-pass filter of 0.1 Hz and a low-pass
filter of 30 Hz.

3. Angular accuracy ≈ 1◦.

4. Affordable for countries in development like Cuba. Less than €1000 per unit.

5. Portable. Work with different computers and monitors and transportable in a
backpack.

6. Implement the processing protocol proposed in this work to retrieve the signif-
icant clinical biomarkers for medical purposes.

7.3 Device components
OpenEOG is composed of 3 major components as shown in Figure 7.1: the acquisition
board (OpenBCI Cyton), the Stimuli Display and the Control PC. The acquisition
board converts electrical signals to their digital form and send it to the Control PC
using a custom firmware. The role of the Stimuli Display is to show the visual stimulus
generated from the Control PC. Both components are coordinated by the Control PC
running the SaccRec (our recording application) software.

The capture of eye movement in a controlled way requires a physical setup. First,
we seat the subject in front of the stimulus monitor and we fix its skull to prevent
head rotational movements. Then, we connect the electrodes to the subject face, as
shown in Figure 7.2. The red electrodes measure the horizontal angular movement,
the blue electrodes measure the vertical angular movement, and the green electrode
is used as a reference for the adquisition process.

Before the recording process starts, the operator explains to the subject what
she/he has to do. The task comprises following a small circle on the screen with its
gaze.
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Figure 7.1: Main equipment schema.

Finally, we perform the main loop of the recording process as follows. First, the
Control PC generates the stimulus to show it on the Stimuli Display. The following of
the stimulus on the screen provokes that the subject move their eyes (see Figure 7.3)
generating the electrical potentials around them. These potentials are then captured
by the Cyton Board and sent to the Control PC for further processing.

In a horizontal saccade test, the stimulus comprises a small circle appearing on
the left side of the Stimuli Display; it stays in the same position during the fixation
duration and then changes its position abruptly to the right side (see Figure 7.3).
Running this procedure back and forth allows to measure saccades in a controlled
way.

The Control PC is the coordinator of the entire process. This component is
responsible of generate the visual stimulus and send it to the Stimuli Display. Also
have to record the signals sent by the Acquisition Board, show it to the specialist in
real time and store it in persistent memory.

In Figures 7.4 and 7.5 respectively, we show the prototype built and how it is
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Figure 7.2: Electrodes disposition

connected to the subject.

Hardware components
Acquisition Board

OpenBCI is a US based company which develops and sells open hardware for Brain-
Computer Interface (BCI). Their primary focus is on electroencephalography equip-
ment. It was funded by the Defense Advanced Research Projects Agency (DARPA)
because an award granted in 2013 with an amount of $99,724.00 under the umbrella
of the Small Business Innovation Research (SBIR) program 2.

Among their major products are a set of affordable bio-sensing boards with in-
cluded open source software and SDK. These boards are listed below:

Ganglion Board: with a cost of $249.993 and 4 channels use the MCP3912 chip 4.
The chip includes 4 synchronous sampling 24-bit Delta-Sigma A/D converters
[102].

Cyton Biosensing Board: with a cost of $499.99 and 8 channels uses the chip
ADS1299 from Texas Instruments [103].

2https://www.sbir.gov/sbirsearch/detail/408117
3The prices of OpenBCI products were consulted on August 2020
4https://www.microchip.com/wwwproducts/en/MCP3912
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Figure 7.3: Stimuli generation



7.3. DEVICE COMPONENTS 73

Figure 7.4: OpenEOG physical prototype

Cyton + Daisy Biosensing Boards: with a cost of $949.99 and 16 channels uses
also the chip ADS1299 [103].

According [104] the Cyton board is comparable to the 25 times more expensive
G.Tec bio-amplifier. This board has 8 channels, surpassing our current need of 5
channels to capture eye movements. Also, can sample rates above 1 kHz, much more
than our initial requirements. For these reasons, the Cyton board fits our needs of
data acquisition with the minimum price tag.

Stimuli Display

To show the visual stimulus to the subject, a computer display or a TV is required.
Our instrument does not require any specific type or brand as long as is large enough
to achieve the desired angular movement and can be used with the Control PC.

The angles of stimulation used by CIRAH staff range from 10◦ to 60◦, being 30◦

the most common. In saccadic tests, the desired angular movement is generated by
the control of the distance between the points on the Stimulus Screen and the distance
between the subject to the Stimulus Screen (Figure 7.3).
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Figure 7.5: OpenEOG subject setup example
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The flexibility of using any brand or type of display minimizes the cost of the
overall system. This is because we can reuse the equipment already present in clinics
and hospitals in Cuba.

Control PC

As mentioned before, the Control PC is the center of the complete process. It is
the coordinator that send the stimulus and captures the signals synchronously. Any
desktop or laptop computer of the last decade capable of running the GNU/Linux
operating system should be capable to fulfill the job. This allows also to reuse the
equipment present in the different health institutions of Cuba. However, due the
complexity of the setup is recommended to provide along with the Acquisition Board
a computer already tested and configured for the task in question.

A very low end mobile system was tested as a Control PC successfully. This
system is an EVO Ultrathin Laptop with the following hardware included:

• Intel Celeron N4000 (2 Cores, No hyperthreading, 1.6 GHz to 2.48 GHz (Turbo
Boost), 4 Mb Cache, 6W)

• 3 Gb DDR3L-1600 SDRAM

• 32 Gb eMMC Flash

• Intel HD Graphics

Software
The hardware that conform our equipment is useless without a software able to use it
and control it. To complete the equipment, we develop a software application capable
of control the entire process of recording the eye movements and their later processing.
This software fulfilled the last functional requirement stated in this chapter regarding
the processing protocol proposed by the CIRAH staff.

Also, we like to support more hardware and processing methods in the future to
support not only the SCA2 research. For this reason, we are proposing a modular
architecture based on clean abstractions of each of the core functionality provided by
our software. These core functionalities are listed below:

• Recording from external Analog to Digital Converter (ADC).

• Generate stimulus from templates.

• Process the recorded signals.
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• Store the signals into persistent storage.

The software application that we develop which implements these functionalities
is named SaccRec. SaccRec is a short name for Saccade Recorder, which refers to
a central task in our project. So, from now on is how we will refer to our software
product.

Technology and Environment
To build our application, we need to select a set of technologies which fit to the
design goals proposed. We evaluate these technologies according to their affordability,
performance, correctness and usability. Regarding the affordability, we employ Open
Source technologies as much as we can, hence the cost of the development process
and the final product was decreased significantly.

A GNU/Linux operating system (OS) was used to develop and deploy our so-
lution, specifically the Ubuntu distribution. Linux based OSs are very customizable
due that the kernel is Open Source. Even allowing to customize core functionali-
ties such as process schedulers, which allow the development of preemptive kernels
helping heavy IO applications in real-time contexts. In our setup that means lower
latencies between the stimulus and the recording process, and prioritizing recording
which diminish the chances of loosing samples by the Control PC. For applications
like the ones we develop, is more interactive (lower latencies) that it’s competition
(Microsoft Windows 10) [105].

Another important advantage of using GNU/Linux distro is that we can pick
our desktop environment or not use them and open directly to our application. These
feature allows prevent the use of our Control PC for other tasks rather than be the
instrument that runs our software. Also, using this feature disallows user access to
the file system, protecting the recorded data from human error and malpractice.

To build SaccRec we choose the Python programming language. This a multi-
paradigm language very popular for develop scientific applications and artificial in-
telligence research. In Python occurs a very positive phenomenon regarding scientific
and numerical computing. Contrasting other programming languages communities,
Python community has focused on the development of two libraries for scientific
computing: NumPy [106] and SciPy [69]. This situation makes these libraries very
accurate and robust. Both libraries are released under Berkeley Software Distribution
(BSD)5 license of 3 clauses [107].

From conception they have been growing in functionality contesting today their
commercial counterparts such as Matlab in many scenarios. NumPy provides routines
to manipulate large arrays and matrixes of numerical data. SciPy extends NumPy

5The BSD license is an Open Source license
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Table 7.1: Technologies employed

Technology Version Role
Ubuntu GNU/Linux 20.04 Operating system
Python 3.8 Programming language
NumPy 1.19.2 Numerical computing and vector algebra
SciPy 1.5.2 Scientific computing and optimization
Numba 0.51.2 Numerical computing acceleration
Scikit-Learn 0.23.2 Machine learning
Qt 5.15 GUI Toolkit
PyQt5 5.15.1 Qt toolkit bindings

functionality with an extensive collection of optimization algorithms, mathematical
transforms, signal processing routines, statistics and many more [108].

On top of these two, a set of complementary libraries were developed conforming
to the Python scientific computing ecosystem. Among the libraries in the Python
scientific ecosystem we make use of the scikit-learn [109, 110] for machine learning
and Numba [111] for numerical computing acceleration. These libraries are very
important for processing the acquired signals.

As our software application requires interaction with a human specialist, the de-
velopment of a desktop application is recommended. The basic building block of
a desktop application is the Graphical User Interface (GUI) library or toolkit. In
GNU/Linux there are several GUI toolkits, among the most popular are GTK and
Qt. According to our research Qt is fit for the task at hand.

Qt provides a cross platform framework to create desktop, mobile and embedded
applications [112]. It has a shared interface, platform independent from in memory
character representation to multithreaded graphical applications [113]. Even when
Qt has parts released under closed source licenses, for non-commercial applications
is released under the GNU Lesser General Public License (LGPL) version 3 which is
our case [114]. Qt, specifically its fifth version, can be used from the Python language
using the PyQt5 bindings. These bindings are developed commercially by Riverbank
Computing but released under the General Public License version 3 (GPLv3).

Summarizing, to build the desktop application we use the technologies listed in
Table 7.1.

User interface
Facilitating the interaction with our system is one of our design goals. So we create
a simple process which involves the following steps:

1. Record setup.

2. Signals recording.
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Figure 7.6: Protocol recording setup wizard

Figure 7.7: Test about to start prompt

3. Saccadic record generation.

The first step is the one involving the most user interaction. It designed to be
used by a specialist and comprises three simple steps. These steps are implemented
by using a wizard window of 3 pages as shown in Figure 7.6. In these interfaces the
specialist set the subject relevant information, the stimulus settings for each test and
the output file.

Once finished the wizard the second step will start prompting a message for the
patient in the Stimulus Screen notifying the test is about to start. An example of
this message is shown in Figure 7.7. When the specialist press the Space key the
recording of signals starts and shows them on the SaccRec main window like the one
shown in Figure 7.8. This prompt will show before each test, giving the specialist
time to check if the setup stills correct and give some rest to the subject.

Monitoring the recording of signals in real-time will allow to assess if the process
needs to be stopped because of equipment malfunction or bad test setup. In case
of something wrong is happening, the specialist may choose to stop the process,
preventing the subject from additional discomfort.

Finally, when the recording process is over, a dialog window will show to the
specialist asking if he or she want to generate a saccadic report. This report is a
Microsoft Excel (xls) file containing relevant saccadic statistics for diagnostics. The
process is fully automatic and does not require additional user input.

A settings window is provided to establish important parameters such as OpenBCI
port and channels, stimulus customization and screen size. The case of screen size
is very important because it allows to use a wide variety of monitors and televisions
with our software. The rest of the user interfaces are presented in Appendix A.
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Figure 7.8: Monitoring signal recording in realtime

Record format

Once the signals are in the Control PC, they need to be stored for further research.
For that reason, an efficient and simple file format is required. To fulfill this goal,
we design a format which uses the Zip archive as the format file system. We use the
extension .rec to identify our recording files from the .zip regular files.

To store the signal arrays in a compact and efficient manner, we rely on the
NumPy compressed vector format6. This format is widely used by the Python scien-
tific community and has an easy interface for reading and writing these files.

Each record had the file structure described in Figure 7.9:
As described in Figure 7.9 each record file includes a manifest in a JavaScript

Object Notation (JSON)7 format. This file contains all the relevant information
about the accompanying record such as record date, subject information, hardware
configuration and tests setup. An example of this file is listed in Appendix B.

Using JSON format allows for adding additional features to the format in the
future without compromising compatibility in an easy and safe manner. Also facil-
itates the implementation of libraries that manipulate the file format in third party
programming languages because of the format standardization.

6This archive is mostly known for the .npz extension
7JavaScript Object Notation is a human readable and commonly used information exchange text

format.
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Figure 7.9: Record format file system structure

The record is separated in tests, having each test its own stimulus configuration.
Signal channels recorded for each of these tests are stored in a separate folder which
name is the index of the test declared in the manifest with two digits zero padding.
Inside these folders there are typically four files containing each one a test signal in the
NumPy array format as shown in Figure 7.9. This is a convenient way to manipulate
these files because can be loaded into memory on demand, saving memory when
processing them.

Firmware
The OpenBCI Cyton board includes a recording software that uses a firmware which
latest version 3.1.2 was released the 14 of September 2018. This firmware is an open
source and developed mainly by OpenBCI developers at GitHub 8. This firmware is
very well documented at CytonSDK 9.

The default Cyton board firmware can get generic Electroencephalography (EEG),
Electrocardiography (ECG), Electromyography (EMG) and many other bio-signal
recordings. However, EOG requires synchronism between the recording and visual
stimulus with the smallest latency possible. To accomplish this, we can improve the

8https://github.com/OpenBCI/OpenBCI Cyton Library
9https://docs.openbci.com/docs/02Cyton/CytonSDK
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Figure 7.10: Communication sample and package description

recording process by optimizing the storage and communication process for the two
only channels used in EOG and removing the support for unused features such as
the attachable Daisy Board, Wi-Fi, Bluetooth Low Energy (BLE) and the included
Accelerometer.

To take advantage to the most of the features offered by the Cyton board for
the process of eye movement recording, we developed a custom firmware for the Ope-
nEOG. For the developing of this firmware we take an iterative approach starting from
the default Cyton board firmware. First, we remove all the unnecessary functionality
mentioned before. Then, we add and test features specific for EOG recording needed
by SaccRec optimizing the recording and communication process.

Once cleaned the code of unnecessary features, we separate the functionality in
individual C++ classes, grouping them by functional responsibility. This separation
improves the code readability and maintainability.

We first focus on optimizing the communication between the OpenEOG hardware
and the Control PC. The default Cyton board uses 33 bytes per sample due to the
usage of the 24 bit 8 channels. This sample size allows a Bluetooth communication
with a sampling rate of maximum 250 Hz because of hardware limitations. These
samples are sent one by one using the Bluetooth serial communication.

Figure 7.10 shows how we organized our samples. Each sample has 1 byte header,
2 bytes sample number, 3 bytes horizontal channel value, 3 bytes vertical channel
value and 1 byte stimulus position. The total size of a sample is 10 bytes, 23 byte
less than the default firmware sample. Also, in contrast with default Cyton firmware,
we sent batches of 60 samples instead of sample by sample. Using batches optimizes
the usage of the Bluetooth serial port. Also, reducing over 3 times the sample size
theoretically allows us to send data at rates up to 750 samples per second. The use of
higher sampling frequency allows us to have better previews of the signals currently
recording.

One requirement of our design is that the signals were sampled at 1 kHz. As
explained before, sending all this data by Bluetooth communication is not workable.
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Figure 7.11: Sample description per byte for the SD file storage

The Cyton board includes a SDCard port that allows to store data internally at much
higher rates than Bluetooth can handle. The default Cyton firmware uses an ASCII
file format in which the samples are encoded to hexadecimal numbers and separated
by commas. This feature makes the files stored in the SD a little larger than necessary
and makes storing heavier because of the conversion and serialization processes.

In our OpenEOG firmware we used a binary format where each sample is 16 bytes
only, as shown in Figure 7.11. Our sample size is at least 4 times smaller than the
default Cyton firmware which, length can be up to 73 bytes per sample. Also, in our
case there is no serialization conversion required, so the process is lighter and faster.
These make the sample lost less probable than in the default firmware.

To allow a fluid and comprehensive interaction with the SaccRec we define a set
of commands specifically for the EOG recording process defined below:

v Soft reset. Restarts the recording machinery and return hardware info.

O Set stimulus position. Includes a 1 byte parameter with the position of the
stimulus.

N Set channel numbers. Includes two 1 byte parameters with the channel numbers
(from 1 to 8) for horizontal and vertical channels respectively.

( Start recording a new test.

) Finish recording a stop the current test.

x Config channel. Includes a 9 bytes parameter with internal channel config. The
same as in Cyton default firmware.

S Creates and open a file in the SDCard returning its filename.

j Closes SDCard opened file.

Reset SDCard current filename number to 0.
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The symbiosis between the SaccRec and the OpenEOG firmware, due all the
custom features developed for them, makes the process of eye movement recording
more efficient and customizable. The OpenEOG firmware is released under the MIT
License and available at GitHub.

7.4 Validation
The last step in the design of our equipment is to know if the data measured by our
equipment is reliable. In order to do so we are going to compare saccadic biomarkers
extracted from data recorded using the OpenEOG against data recorded using the
Otoscreen and also compare our results against recent literature. We compare the
saccadic information extracted from 10 control subjects previously recorded using the
Otoscreen and 10 control subjects recorded with the OpenEOG.

To fullfill with the ethics in biomedical research, we have designed an informed
consent that complies with current Spanish legislation. We deliver for each one vol-
unteer the research data sheet and also they all sign the informed consent.

The first tool that we are going to use is the main sequence. The main sequence is
an old concept which describes the relationship between the amplitude, peak velocity
and duration of primate saccades [115]. This concept was first introduced by Bahill
et al. in [26] and was inspired by the homonym astronomical term.

A good deal of different math curves have been used to model the data behind
the main sequence. From the early days the relationship between the amplitude and
duration was modeled using a linear model and the relationship between amplitude
and peak velocity as a kind of non-linear model [26]. In Figure 7.12(a) we can appre-
ciate how the linear model (Equation 7.1) still the best fit for the case amplitude vs
duration.

Vpeak(A, B) = A ∗ x + B (7.1)

To describe the main sequence between amplitude and peak velocity several curves
have been used such as square root, fixed square root, power low, exponential, log-log,
sigmoid, and many others [116]. For our data the model better fitted was the log-log
which is described in the Equation 7.2.

Vpeak(A, B) = eA∗log(x)+B (7.2)

In both models (linear and log-log) the parameters A and B describe the behaviour
of the models. As we can see in Figure 7.12 the numerical values of the parameters
A and B, and the curves that they describe are fairly similar. The difference that we
see can be explained due to subject variability, ADC (16 bit for Otoscreen and 24 bit
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Figure 7.12: Main sequence of amplitude vs peak velocity and amplitude vs duration
for Otoscreen and OpenEOG

for OpenEOG), filters and sampling rate difference (200 Hz for Otoscreen and 1000
Hz for OpenEOG).

Regarding the saccadic latency the Figure 7.13(a) shows means between 100 and
150 milliseconds. These results are near or in the range with recent results found in
the literature such as [117] (≤ 140ms), [118] (220.40±43.16ms) and [119] (≈ 169ms).
The rest of the Figure 7.13 subfigures shows the range of the values of the remaining
biomarkers (duration, amplitude and peak velocity) which behaviour was modeled by
the main sequence presented in Figure 7.12.

7.5 Conclusions
In this chapter we have designed, implemented and validated an instrument to mea-
sure saccadic eye movements. We have to start by identifying minimal requirements
that are required for clinical applications, specifically to diagnose and follow people
suffering the SCA2. Then, we select the hardware necessary to build the instrument
and define the interactions between their components. Finally, we design and im-
plement the software that makes use of the hardware to accomplish the proposed
goal.

Our instrument possesses the features of sampling frequency, ADC resolution,
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Figure 7.13: Distribution of values by each one of the relevant biomarkers

filtering, among others, required to record saccades for clinical applications such as
the study of the SCA2. From an economic perspective, the instrument achieves the
goal to cost under €1000 being affordable for Cuban public health system. The form
factor of the components involved guarantees the portability hence the mobility of
the equipment. Using batteries avoids possible hazardous situations for the subject
and eases the certification process as medical equipment.

The software included with the hardware offers an easy and intuitive user interface
to design eye movement studies and record eye movement signals. Also, the designed
architecture provides interfaces to extend the capabilities of the software platform.
Our output files ease the post processing of the signals by using standardized infor-
mation exchange formats. The OpenEOG firmware allows to control the recording
process and making it faster, reliable and customizable.

The saccadic data extracted from our equipment yielded results similar to the
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data extracted from the Otoscreen using main sequence models. Also, with specific
biomarkers such as latency presents values similar to the ones reported in the scientific
literature.

For all the reasons previously stated, the instrument can perform the same tasks
of Otoscreen regarding the eye movement studies for the SCA2 and even improving
some of its features.



Chapter 8

Conclusions

In this thesis we have studied the recording and processing of saccadic eye movements.
From the study of the processing techniques we have identified and established a
processing pipeline which comprises 4 steps: filtering, differentiation, segmentation
and biomarkers extraction. We have focused the signal processing part of our work
on implementing and fine tuning each of these steps.

For the filtering step we have used the median filter as recommended in literature.
We have empirically observed through our entire research how this filter can remove
the main noise of the signals without compromising their waveform or relevant features
for saccadic processing.

Differentiation is a very important step in the processing pipeline because it allows
to get the velocity profile needed by the following steps. The performance of this step
will affect a critical task as saccade identification. For this reason we have designed
an experiment where we compare 16 differentiation filters against synthetic saccadic
records. Results of this experiment shows how the Lanczos filters for 9 (l9 ) and
11 (l11 ) points, Super Lanczos filter for 11 points (sl11 ) and Smooth Noise Robust
filter for 11 (snr11 ) points are adequate for the saccade identification task. Also, to
compute each biomarker values there is a set of unique differentiation methods fit for
the task: for peak velocity we recommend the sl11, for latency we recommend the
Smooth Noise Robust of 9 (snr9 ) and 11 (snr11 ) points or the sl11, and for duration
we recommend l9 or l11. It is noticeable how the methods with 11 points are present
in all methods set, so 11 must be the right filter size to perform this operation. Our
principal contribution regarding the differentiation of these signals is that we have
introduced high performance methods such as snr9, snr11 and sl11, not used before
in this domain.

Regarding saccade identification we used a supervised machine learning approach
where we evaluate point by point if the sample belongs to a saccade or not. We
have trained and evaluated two different models, the Multilayer Perceptron (MLP)
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and the Random Forest (RF), using human annotated saccades. Both methods show
very good accuracies above 92% so they are adequate to identify saccades. However,
we recommend the use of RF model due to its superior performance in training and
runtime evaluation, making it even suitable for real-time identification.

From the set of saccades got by the identification step, not all of them have
clinical value. For medical research, the useful saccades are those which respond to
a visual stimulus (non spontaneous). So we have trained and evaluated 4 machine
learning models that use different paradigms to separate non spontaneous saccades
from the rest. The evaluated models are Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), Classification and Regression Trees (CART) and Naive Bayes.
All the models achieved accuracies above 95%, sensitivities above 92% and precision
above 83% using external validation. Specifically, for the SVM the performance got
was above 97%, 96% and 90% respectively for the previously mentioned metrics.

Using these supervised machine learning techniques against data annotated by
human experts allows us to model all their collective knowledge. Using these models
against new data avoids the bias and subjectivity inherently present in human experts,
hence favoring the objective identification of clinical relevant saccades.

The last step of the processing pipeline is the biomarkers extraction. This step
provides the medical staff with the required information to make decisions which may
regard clinical trials or subject evolution. The most relevant saccadic biomarkers to
study the Spinocerebellar Ataxia type 2 (SCA2) and other neurological diseases are
latency, duration, amplitude, deviation and peak velocity. In our work we show our
methodology to compute these biomarkers accurately. This methodology involves
optimization techniques to fit the saccade discrete data to a continuous mathematical
model. We use a novel differentiable formula which uses a sigmoid to model the
saccade general waveform and two gauss sums terms to model the artifacts present
near the saccade onset and offset points. The evaluation of the fitted parameters into
the differentiated formula allows to get and exact and noise free velocity profile. This
allows us to establish the saccade onset and offset points very accurately, which is
critical to compute the saccadic biomarkers with the lowest possible error. Finally,
we designed a report aimed at medical staff to ease it decision making.

The second major goal of this thesis is to design and test a portable low-cost
system for recording saccadic eye movements. The emphasis in the low-cost part is
because we want to use this system in developing countries such as Cuba. First,
we identified the requirements to capture saccadic movements for clinical researches.
Then we selected the hardware and software components that comprise our system.

We select the OpenBCI Cyton board as our acquisition hardware. In this board
we can use the Electrooculography (EOG) technique to measure eye movements. This
board also possesses features such as sampling frequency, Analog to Digital Converter
(ADC) resolution, filtering, among others, to record saccades for clinical applications
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regarding diseases such as SCA2. From an economic perspective, this board fills our
low-cost requirements because its cost is under €750, which we can consider affordable
for our proposed audience. The form factor of this board guarantees the portability
of the equipment, hence its mobility. Using batteries instead of the power line, the
board could avoid possible hazardous situations for the subject.

To optimize the performance of the OpenBCI Cyton board, specifically for the
recording of saccadic eye movements, we implement a custom firmware that we named
OpenEOG and released with an open source license in GitHub. This firmware is
based on the default Cyton board firmware but with features focused on saccadic
signal acquisition. To visualize and control the recording process performed by the
OpenEOG we have designed and implemented a software application named Saccade
Recorder using the Python programming language. This application provides an
easy and intuitive interface to design eye movements studies and to record the signals
generated by its application. The symbiotic relationship between the OpenEOG
firmware and the Saccade Recorder allows full control of the recording process making
it faster, reliable and customizable.

For testing the validity of the system, we recorded a study of 10 healthy volunteers
which involves stimulation angles of 10, 20, 30 and 60◦. Then we compared the sac-
cadic biomarker results against 10 records from healthy subjects recorded using the
Otoscreen (professional electronystagmographer). The results using main sequence
models yielded very similar results for both equipments. Also, with specific biomark-
ers such as latency, our results are like those found in the literature. For all these
reasons, we can state that our system performs at least at the same level as the
Otoscreen.

The work performed in this thesis produced a method for processing the saccadic
eye movement signals with no human interaction. This method produces in one click
all the information required by a medical research to make clinical decisions. Using
the method could favor future interlaboratory exchange of information because of its
objectiveness.

Also, our proposed recording system can be used in developing countries to carry
out researches regarding different neurological diseases such as SCA2. Due to the
openness of our work, third parties can improve it or use it for other purposes.

8.1 Future work
Having established the method of saccade identification and biomarker extraction, it
open the door to automate more complicated tasks such as subject status classifica-
tion. Nowadays, is trivial to classify subjects suffering SCA2 from healthy subjects
using the biomarkers extracted in our work. However, when we add the presymp-
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tomatic status to the mix, it is very hard to discern them from healthy subjects. This
is an open problem that may be tackled using the data resulted from our method.
However, further study is required.

Regarding our recording system, we can add the support for more eye movement
tests such as the Smooth Pursuit test or the Antisaccade test. These tests may even
provide useful information to the problem of subject status classification. Our current
design is extensible enough to implement these tests.
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Software Interfaces

Figure A.1: SaccRec main window. This is the screen shown when the program starts.
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Figure A.2: Subject info page. Used to input the required data of the subject to
which the record belongs. This is the first page of the recording wizard.
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Figure A.3: Stimuli settings page. In this wizard page we setup the visual stimuli
protocol that are going to be presented to the subject.
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Figure A.4: Output settings page. This is a last page of the wizard that shows a
summary of the recording process about to start and lets us to select where to put
our record file.
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Figure A.5: User interface settings panel. This panel allows to set the user interface
language.
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Figure A.6: OpenBCI settings panel. This panel allows to define the communication
parameters with the OpenBCI card.
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Figure A.7: OpenBCI channels settings panel. This panel allows us to select which
channels to use for the recording process.
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Figure A.8: Screen settings panel. This panel allows to set the size of the screen used
for visual stimuli.
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Figure A.9: Stimuli settings panel. This panel allows to set some visual stimuli
parameters.





Appendix B

Manifest file example

The file format developed to store our recordings is a Zip file package (with .rec exten-
sion) that includes several serialized NumPy arrays and a manifest which describes
the contained data. The manifest file is included on the root of the Zip file.

The following text is an example of a manifest file. This manifest uses the JSON
(JavaScript Object Notation) syntax, which allows that included data are readable by
humans and easily parsable by computers. Among the metadata included are those
related to the subject from which the signals are recorded, the hardware used, the
visual stimuli protocol employed and the signals themself.

{
"version": 1,
"record": {

"datetime": "14/09/2020 11:13"
},
"subject": {

"full_name": "John Doe",
"gender": 1,
"borndate": "10/01/2080",
"status": 1

},
"hardware": {

"sample_rate": 250,
"channels": [

{
"index": 0,
"active": true,
"gain": 24

101
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},
{

"index": 1,
"active": true,
"gain": 24

},
{

"index": 2,
"active": true,
"gain": 24

},
{

"index": 3,
"active": true,
"gain": 24

},
{

"index": 4,
"active": true,
"gain": 24

},
{

"index": 5,
"active": true,
"gain": 24

},
{

"index": 6,
"active": true,
"gain": 24

},
{

"index": 7,
"active": true,
"gain": 24

}
]

},
"tests": [

{
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"properties": {
"angle": 30,
"fixation_duration": 3.0,
"fixation_variability": 50.0,
"saccades_count": 10,
"test_name": "Initial Horizontal Calibration Test"

},
"stimulus": "00/stimulus.npz",
"time": "00/time.npz",
"horizontal": "00/horizontal.npz",
"vertical": "00/vertical.npz"

},
{

"properties": {
"angle": 30,
"fixation_duration": 3.0,
"fixation_variability": 50.0,
"saccades_count": 10,
"test_name": "Saccadic test of 30 \u00b0"

},
"stimulus": "01/stimulus.npz",
"time": "01/time.npz",
"horizontal": "01/horizontal.npz",
"vertical": "01/vertical.npz"

},
{

"properties": {
"angle": 30,
"fixation_duration": 3.0,
"fixation_variability": 50.0,
"saccades_count": 10,
"test_name": "Final Horizontal Calibration Test"

},
"stimulus": "02/stimulus.npz",
"time": "02/time.npz",
"horizontal": "02/horizontal.npz",
"vertical": "02/vertical.npz"

}
]

}
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