UNIVERSIDAD
DE MALAGA

PhD Thesis

Development and implementation of active safety systems
in vehicles using spiking neural networks

systems in vehicles using spiking neural networks

Development and implementation of active safety

Ingenieria Mecénica y Eficiencia Energética
Universidad de Malaga
Escuela de Ingenierias Industriales

2021

Author: Javier Pérez Ferndndez
Advisors: Juan A. Cabrera Carrillo
Juan J. Castillo Aguilar

Road Condition Simulation or Experimentation
-.‘R - ‘. & n e

i l Vehicle / Model

i Actuator / Model

| Selector

i User Input J a, a0

! VQ —D-{ > w2yl

Wheel Torque o) o
3 A F—————— 3| E\ \;f‘ .‘g"\,ﬁ»\‘.. X -1
B "ff{_,_}\.‘._ : Tors T
g |
; 8 |
S : '
s ~ Wheel Slip Control (WSC)
o .2
*é g Spiking Neural Network (SNN)
A ﬁ X -
1 Torque Setpoint . 4
g a rdse Sepon Controller Kopt ] ] . K Estimation |«
> Classification
B = N —
= A WL




UNIVERSIDAD
DE MALAGA

AUTOR: Javier Pérez Fernandez

https://orcid.org/0000-0002-8292-8069

EDITA: Publicaciones y Divulgacion Cientifica. Universidad de Malaga

OB

Esta obra estd bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:

http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Cualquier parte de esta obra se puede reproducir sin autorizacion

pero con el reconocimiento y atribucion de los autores.

No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas.

Esta Tesis Doctoral estda depositada en el Repositorio Institucional de la Universidad de Malaga
(RIUMA): riuma.uma.es


http://orcid.org/0000-0002-8292-8069
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

University of Malaga
Department of Mechanical Engineering and Fluid Mechanics

PhD Thesis

Development and implementation of active safety

systems in vehicles using spiking neural networks

JAVIER PEREZ FERNANDEZ

MALAGA, 2021



’:N*‘s UNIVERSIDAD ! : Escuela de Doctorado
- I \ A A - -
?‘};:;gf DE MALAGA ANDAaLUCIA TECH

_ Campus de Excelencia Internacional

DECLARACION DE AUTORIA Y ORIGINALIDAD DE LA TESIS PRESENTADA
PARA OBTENER EL TITULO DE DOCTOR

D./Dfia JAVIER PEREZ FERNANDEZ

Estudiante del programa de doctorado INGENIERIA MECANICA Y EFICIENCIA ENERGETICA de la
Universidad de Malaga, autor/a de la tesis, presentada para la obtencién del titulo de doctor
por la Universidad de Malaga, titulada: DEVELOPMENT AND IMPLEMENTATION OF ACTIVE
SAFETY SYSTEMS IN VEHICLES USING SPIKING NEURAL NETWORKS

Realizada bajo la tutorizacion de JUAN ANTONIO CABRERA CARRILLO y
direccién de JUAN ANTONIO CABRERA CARRILLO Y JUAN JESUS CASTILLO AGUILAR

DECLARO QUE:

La tesis presentada es una obra original que no infringe los derechos de propiedad intelectual
ni los derechos de propiedad industrial u otros, conforme al ordenamiento juridico vigente
(Real Decreto Legislativo 1/1996, de 12 de abril, por el que se aprueba el texto refundido de la
Ley de Propiedad Intelectual, regularizando, aclarando y armonizando las disposiciones legales
vigentes sobre la materia), modificado por la Ley 2/2019, de 1 de marzo.

Igualmente asumo, ante a la Universidad de Malaga y ante cualquier otra instancia,
la responsabilidad que pudiera derivarse en caso de plagio de contenidos en la tesis
presentada, conforme al ordenamiento juridico vigente.

En Malaga, a 30 de AGOSTO de 2021

fie &1 B LQ Edificio Pabellon de Gobierno. Campus El Ejido.
EFQM @ AENOR @l 29071
" bC-’C}UOl Tel.: 952131028 /952 13 14 61/952 13 71 10

E-mail: doctorado@uma.es



AUTORIZACION LECTURA

JUAN ANTONIO CABRERA CARRILLO, Catedratico de la Universidad de Malaga y JUAN JESUS
CASTILLO AGUILAR Profesor Titular de la Universidad de Méalaga en calidad de directores,

CERTIFICAN:
Que las publicaciones que avalan la tesis de JAVIER PEREZ FERNANDEZ titulada
“DEVELOPMENT AND IMPLEMENTATION OF ACTIVE SAFETY SYSTEMS IN VEHICLES

USING SPIKING NEURAL NETWORKS” no han sido utilizadas en tesis anteriores. Y que ha
alcanzado los objetivos de investigacién propuestos, estando debidamente cualificada para su defensa.

Atentamente,

En Malaga, a 31 de AGOSTO de 2021



University of Malaga
Department of Mechanical Engineering and Fluid Mechanics

PhD Thesis

Development and implementation of active safety

systems in vehicles using spiking neural networks

Author: Javier Pérez Fernandez

Supervisors: Dr. Juan Antonio Cabrera Carrillo

Full Professor, Mechanical Engineering

Dr. Juan Jesis Castillo Aguilar

Professor, Mechanical Engineering

Malaga, 2021



YOY Iy 30
avaisdaAiNn




"Al carro de la cultura espanola le falta la rueda de la ciencia"
Santiago Ramoén y Cajal, 1852-1934



YOY Iy 30
avaisdaAiNn




Abstract

In this thesis, a new control algorithm based on biological neural networks to
maximize longitudinal forces in the tire-road contact in emergency situations
while driving with ground vehicles is proposed. This thesis has been funded by
the Ministry of Universities through the university teacher training grant
(FPU17/03161) awarded to the author in 2018. The thesis has had a total
duration of 3 years. In the initial report delivered to the Ministry, the thesis
was planned to last 4 years, assigning the last year to the drafting of
conclusions of the thesis. However, it has been possible to carry out the whole
work in three years.
The thesis is presented in the form of a compilation of publications. This way,
four papers published in high-impact journals supporting the research are
presented, describing the required methodology for the implementation of a
bio-inspired controller in a vehicular system. In addition, the International
PhD Mention will be obtained since a three-month stay in a research group of
a foreign university has been carried out by the doctoral candidate.
Furthermore, the author of this thesis has participated as a collaborator in the
following research projects, related to the subject of the thesis:
“Real-time determination of the characteristics of the tire-road
contact using bio-inspired algorithms for the improvement of active
safety in vehicles” (TRA2015-67920-R). During the two years before
enrolling in the doctoral program the foundations of the thesis was
established. The relevance of the control algorithm in an emergency
was highlighted during this period.

- “Regenerative braking system based on bio-inspired algorithms”
(UMA18-FEDERJA-109). Started during the execution of the FPU
grant and continues at present.

- “Road type identification methods based on neural networks for
electric vehicles” (PID2019-105572RB-100). Started during the
execution of the FPU grant and continues at present.

This thesis was linked to the goals of these research projects since they focused
on improving vehicle efficiency and safety by resorting to advanced control and
estimation algorithms. In this sense, bio-inspired algorithms and neural
networks were developed to tackle the challenges of these projects. Vehicle
control is also a key factor in projects where the behavior between the tire and
asphalt is under study. This thesis focuses on the longitudinal control of a
vehicle, where, by managing a torque applied to a wheel, either by braking or
traction, the force obtained during contact is maximized.



Once the starting point and the context of the thesis have been outlined, the
main problems to develop an optimal control methodology are described next.
First of all, the great importance of estimating the forces in tire-road contact
with a high degree of accuracy, since the stability of the vehicle depends on
them, has to be highlighted. These contact forces show clear non-linear
behavior. Furthermore, there are also variations due to the environment in
which the vehicle is being driven. On the other hand, the main variable related
to the level of adherence experienced by a tire when rolling on a surface is the
slip, which can be defined as the speed difference between the wheel and the
vehicle. Thus, vehicle speed has to be known to obtain the slip. However,
vehicle speed is a parameter that is still difficult to measure in today's vehicles.
In addition, tire models are also affected by other parameters that influence
their response, such as temperature, wear, tire pressure, etc.

Therefore, developing a controller capable of managing all data and variables
in the tire-road contact is a complex task that requires algorithms that can
deal with all possible driving scenarios at a reasonable computational cost. As
a solution to this problem, a control algorithm capable of adapting to
unexpected conditions dynamically is proposed in this work. To achieve this
objective, as in other engineering problems, the answer lies in nature. Thus,
the developed control algorithm is based on the nervous system of living beings
in the form of a bio-inspired control structure capable of learning during its
normal operation.

The description of the global scheme used is required to understand the
requirements for the development of a longitudinal vehicle control algorithm.
The controller has to adapt to the current tire-road adhesion and has to provide
the control actions required to maximize the longitudinal forces, thereby
avoiding wheel locking. The main components of such a control scheme are:

Vehicle
Model | Tire-road contact

Actuators

Parameter estimation

Algorithms | Identification of adhesion conditions

Controller

Measurements | Parameter measurement
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Therefore, the following requirements should be incorporated in each of these
components to accomplish the required task:

-Vehicle: Load transfer and degrees of freedom.

-Tire-road contact: Non-linear friction.

-Actuators: Time response.

-Parameter measurement: Resolution and delays
-Parameter estimation: Dynamics of the vehicle and delays.
-Identification of adhesion conditions: Data required.
-Controller: Fast response and adaptation capabilities

The vehicle model should take into account the load transfer that takes place
when accelerating and braking as well as having a sufficient number of degrees
of freedom to reproduce the main vehicle’s movements adequately.

Regarding the tire model, it has to be a non-linear function of the slip to
properly reproduce tire-road friction. In addition, its transient response should
also be included since the delay in the appearance of friction forces should be
considered. To this end, the relaxation length is utilized to model the transient
response. The model used should also take into account the influence of
environmental conditions, such as temperature, pressure, humidity, road type...
Regarding parameter measurement and estimation, it is crucial to consider the
delays introduced by the sensors, as well as their resolution. For example, the
encoders used to measure the angular velocity of the wheels have a reduced
number of pulses per revolution, which at low speeds can lead to problems in
detecting wheel locking. Besides, the slip value is required to estimate the
adhesion conditions. In order to obtain the slip value, the speed of the wheels
and the speed of the vehicle's body have to be determined. The latter cannot
be measured directly using in-vehicle sensors at a reasonable cost. In addition,
other technologies for speed measurement, such as those based on the Global
Positioning System (GPS), cannot be used in this case due to the delay in their
measurement. Therefore, vehicle speed is obtained by combining data fusion
and estimation algorithms. This is usually solved by using Kalman filter-based
algorithms and by measuring system variables such as the accelerations
captured by the Inertial Measurement Unit (IMU). This task is performed by
taking into account the dynamics of the vehicle in such a way that the state
variables can be defined.

Once the longitudinal speed of the vehicle and the slip have been obtained, the
identification of the type of road, where the vehicle circulates, is of vital
importance. Road type detection is a subject of continuous study. For now, a
standardized solution has not been proposed yet. There are two main ways to
cope with this challenge. The first approach to accomplish this task is based
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on the knowledge of tire dynamics. In this case, the main problem to tackle is
that the tire model used must be capable of characterizing all possible driving
conditions, including the influence of all the parameters that affect the tire.
This makes the implementation of this strategy challenging due to the amount
of data required to build the model and the associated model complexity, which
hamper its implementation in real-time applications.The second method resorts
to neural networks to perform the road type -classification task. These
structures can replicate the tire model and establish the relationship between
the type of road and other variables measured in the vehicle, such as vibrations
or a video camera capturing the road. The methodology proposed in this thesis
falls in this second approach. Thus, the same structure of neural network used
to perform control tasks is used to identify the road type.

Next, the actuators are responsible for converting the control action into forces
that modulate the wheel slip. In this sense, the challenge is to achieve a fast
and reliable performance, since the locking of a wheel is a process that can take
place in less than 200 milliseconds. The overall behavior of the system
performance can be reduced if the modeling of the actuators is not properly
addressed. In the case of different actuation modes, for example in electric
vehicles with friction and regenerative braking, an optimal strategy will have
to be defined.

The last component is the control algorithm, which is responsible for providing
the required action on the vehicle. The control algorithm must be capable of
regulating the wheel torque to keep the wheel slip close to its optimum value
according to the tire-road contact conditions. To this end, it must be able to
recognize and adapt to the varying driving conditions, making use of the
estimated slip level and the desired optimal slip value. The actuation might
involve regulating the torques applied to the wheels, employing an actuator.
The most commonly used controllers are based on Sliding Mode Control
(SMC), fuzzy logic, and Model Predictive Control (MPC). This thesis resorts
to a biologically-based neural network that, unlike the previous controllers, can
adapt to changes in the dynamics of the contact during the execution of the
algorithm. This way, if the vehicle is facing an adhesion condition that has
never been experienced before, the control algorithm will adapt itself thanks to
a learning strategy to maximize the longitudinal forces and hence, avoid wheel
locking.

Out of all the components involved in the wheel slip scheme, the control
algorithm has the greatest impact on the final performance. Therefore, research
efforts have been focused on the development of an optimal algorithm. In this
respect, humans have proven to have a superior ability to control the dynamics
of tire-road contact: pushing a vehicle to its grip limits in a controlled and safe
manner is the main objective of any motor racing competition. In this case, the
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alm is to maximize grip, usually to reduce the time needed to cover a fixed
distance, maintaining the stability of the vehicle. Professional drivers' ability
to adapt to a new vehicle, as well as the detection of the limit of adherence in
changing conditions (new tire compound, circuit, weather conditions, etc.) is
remarkable.

As it has been shown, the optimal control of complex systems in changing
operating conditions is a challenging task that requires an adequate
performance of the different components of the control algorithm. However,
living beings cope with these problems continuously and solve it properly in
most cases.

The strategy developed in this thesis is based on the study of motor control in
biological systems. In the first place, we attempt to understand how the neural
connections of a human being or animal determine the response to external
stimuli and allow correcting the error made. In the case of tire contact, human
beings are capable of adapting the percentage of gas or braking according to
sight, accelerations experienced by the semicircular canals, sounds, and so on.
Nonetheless, human beings do not know the level of slippage in every moment.
This is the advantage of electronic control, since it can be provided with this
key information to achieve similar results to those of a trained human being
using a simpler control structure. To this end, the definition of the control
structure requires modelling biological systems adequately.

The study of biological control allows understanding how neural connections
are established. There are two theories regarding the possible control schemes
in biological systems. The first one resorts to an internal model of the system
to be controlled. This implies a high level of knowledge of the system’s
dynamics, limiting the learning capacity due to the fact that the internal model
has to be modified to adapt to variations. The second theory is based on
threshold control whereby, without the need for an internal model, an
equilibrium point is established. When this point is exceeded, a control action
takes place. Thus, by modifying the equilibrium point, a biological system can
be controlled. Neural connections are changed to maintain the equilibrium in
the working point. While the internal model theory implies a complex control
structure, which is difficult to decode, the threshold control theory presents a
simple structure that only requires a neural path to maintain equilibrium.
The latter theory, called the Equilibrium Point Hypothesis (EPH), is the one
applied in this thesis. Therefore, through the study of biological structures in
humans and animals, it is intended to find those that show similar behavior as
predicted by the EPH. Kandel’s works were the basis to obtain the control
structure as well as the learning mechanisms involved in living beings. For this
purpose, he used Aplysia, an animal that has a very large neuron size, which
facilitates its decoding. Subsequently, many other animal structures have been
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decoded. In humans, it has been possible to determine certain control
structures, for example, some associated with reflexes, called reflex arcs. Even
so, the vast majority of the human brain and nervous system is still unknown
and represents a great technical challenge due to the high number of neurons
and connections that compose such an intricate structure.

From the study of the reflex arcs, it is possible to establish the overall behavior
of the neural network in charge of control. For example, in the vestibulo-ocular
reflex, continuous control of the gaze is maintained using the accelerations
measured by the semicircular canals. The structure that handles eye movement
sets the neural pathways from the sensory neurons to the motor neurons. These
connections are antagonistic, establishing the ocular position as a point of
equilibrium. Despite a rotation of the head, the gaze remains stable.

In this thesis, we propose applying a neural control structure based on an
antagonistic method. For vehicular control, the equilibrium point in the tire-
road contact dynamics is set at the optimal slip. The response is therefore
modulated in such a way that if the slip threshold is exceeded, the torque level
is reduced and vice versa. This antagonistic behavior allows learning to be
performed during normal operation without the risk of the system becoming
unstable.

To replicate this type of neural structure, as well as the learning algorithms
found in biological systems, it is necessary to define the neuron model used.
This model must replicate biological behavior with a low computational cost
to facilitate its integration in embedded systems in vehicles.

The most widely used neural network model is called Artificial Neural Network
(ANN). However, this approach does not encode the signal in the same way
as the procedure that takes place in biological systems. Biological mechanisms
of learning are based on the synchronization of firing between contiguous
neurons. In the case of ANNSs, there is no firing in the neuron, but an activation
function that does not take time into account. Consequently, ANNs do not
reproduce biological learning faithfully.

In order to take advantage of these learning strategies, the next generation of
neural networks encodes the information with a time evolution using electrical
impulses. This characteristic gives rise to the so-called Spiking Neural Network
(SNN).

The well-known SNN model proposed by Izhikevich stands out for its good
biological representation and low computational cost. In this model, two
differential equations reproduce the membrane potential and recovery based
on rat neurons.

Since SNN uses impulses to encode information, it is necessary to translate the
input and output signals to interact with the environment. A biological system

uses sensory and motor neurons for this transformation. Sensory neurons are
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responsible for incorporating information from the environment into the
nervous system. These neurons are responsible for translating external stimuli
such as light in the optical receptors or accelerations in the semicircular
channels.

Similarly, the information used in vehicular control, such as the slip or its
optimal value, will be provided to the proposed controller and identification
networks based on SNN. Biological systems not only encode information
temporally but also spatially. Every variable encoded in spikes is distributed
among a certain number of sensory neurons. Hence, by means of a series of
Gaussian bells, the firing level of each neuron is determined. On the other
hand, motor neurons are responsible for decoding the impulses in order to
perform the desired action. As the information is encoded temporally and
spatially, each motor neuron is associated with an increasing level of activity.
Heinemann's size principle reproduces this behavior. For example, in muscles,
each motor unit is associated with a type of muscle fiber that exerts a different
force with a different fatigue resistance.

In addition to modeling the neuronal cell body, it is also necessary to model
the connections between neurons, known as synapses. They provide the
capacity to establish complex relationships between inputs and outputs. In a
biological synapse, the arrival of an impulse leads to the release of
neurotransmitters that are responsible for opening the channels that allow the
circulation of current in the postsynaptic neuron, giving rise to a new impulse.
If this connection is direct, causing a firing in the postsynaptic neuron, the
connection is considered electrical. On the other hand, if a high concentration
of neurotransmitters is necessary to open several receptor channels, the
connection is considered chemical. In this thesis, a synapse model based on the
opening and closing of channels to model both kinds of behavior is proposed.
This way, channels are opened as new electrical impulses are received and the
opening time is determined as a function of the conductance.

Both the neuronal and synapse models allow the reproduction of the biological
learning mechanisms by using the temporal difference between presynaptic and
postsynaptic neuron impulses. This learning reproduces the neuronal plasticity
through which the synaptic strength is modified. The learning mechanism used
in this thesis is the so-called Spike Time-Dependent Plasticity (STDP). By
means of an STDP rule, the plasticity of the synapse is modified in such a way
that neurons that fire synchronously are the most affected by the learning
process. As Donald Hebb summarizes, ‘neurons that fire together, wire
together’. To establish how much each of them should be modified, it is
necessary to model the release of dopamine, which is responsible, together with
STDP, for the training of the neural network. To perform supervised learning,
in which the error made is known continuously, dopamine is modeled directly

VII



according to this error. In motor learning, the error is defined as the difference
between the target and current value.

This work proposes a control algorithm based on a structure inspired by reflex
arcs. The number of neuronal connections as well as whether they are
inhibitory or excitatory are optimized to increase the robustness of the
algorithm. However, the synaptic strengths will be adapted to each operating
condition. This way, the proposed STDP algorithm adjusts each synapse to
minimize the error made at every moment.

It should also be noted that in the design process of a control system, it is
necessary to carry out simulations and testing to evaluate the performance of
the proposed algorithm. In this work, the algorithm will be simulated and
tested on different adherence conditions to verify its robustness and
performance prior to its integration in a real vehicle.

The main limitation to accomplish this goal is the computational capacity of
the real-time embedded systems used for vehicle control. In consequence, the
size of the network as well as its update frequency are the main constraints
when performing simulations.

The models and control algorithms have been programmed using MATLAB
and SIMULINK. These software programs allow the direct compilation of the
code as well as its execution in real-time, which is mostly used in the
automotive industry hardware (DSPACE).

The combination of the aforementioned software and hardware make fast data
collection and algorithm modifications possible during the experimentation
phase. The implementation of the neural network in an FPGA or neuromorphic
hardware accelerates the execution of the neural model, allowing the use of
larger and more complex nets. This increasing speed is due to the hardware
implementation of the neural model using an application-specific integrated
circuit (ASIC) rather than the execution of the model on a universal processor.
However, the experimental stage in vehicular systems represents a key phase
in the development of the algorithm, hence the implementation of the
algorithm in a real vehicle will be more relevant than the size of the network.
It should also be noted that, to simulate scenarios where the level of
longitudinal adherence in the tire-road contact is controlled, braking is
prioritized over stability or traction. This is due to the difficulty of replicating
the simulations in an experimental environment since stability and traction
tests might compromise safety with the research vehicles available.
Simulations have been carried out for both two and four-wheeled vehicles. For
this purpose, BIKESIM and CARSIM were used in the initial development and
simulation stages, where the behavior of the vehicle, suspension system and
tires were obtained.These programs are intended to study vehicle behavior on
tracks and they provide a good representation of a vehicle’s movements thanks
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to the use of complex vehicle models. However, using them for the sole purpose
of performing longitudinal emergency braking is not justified, since its
computational cost is high. For this reason, a planar three Degree-of-Freedom
(DOF) models have been developed in this thesis with a low computational
cost that allows the parallel training of a large number of simulations,
accelerating the development of the controller.

The degrees of freedom chosen for two-wheeled vehicles are longitudinal,
vertical and pitch. This model is called the bicycle model since it does not take
into account the lateral dynamics as it has no effect on the longitudinal control
strategy developed. In four-wheeled vehicles, the vertical influence is reduced
due to the height of the center of gravity and the vehicle's dimensions.
However, a yaw movement can occur in the vehicle as the longitudinal forces
of each tire may have lateral offset. Therefore, in this case, the three degrees
of freedom used are longitudinal, lateral, and yaw.

The proposed algorithm has been compared to other control strategies. Thus,
during the development of the thesis, classical algorithms based on sliding and
wheel angular acceleration thresholds as well as optimized fuzzy logic-based
algorithms have been simulated. A benchmark has thus been established for a
subsequent evaluation of the proposed neural algorithm. Key Performance
Indicators (KPIs) have been used to make this comparison, evaluating
quantitatively the response of the controller to different contact conditions.
To perform this comparison, a series of braking tests according to regulation
13 (E/ECE/- TRANS/505/Rev.1/Add.12/Rev.8. 3. Regulation No. 13) have
been reproduced. In this regulation, tests have been performed on different
surfaces at various speeds. Furthermore, the performance of the brake system
has also been tested in varying adhesion conditions. These tests have made it
possible to analyze controller stability, which is difficult to demonstrate in
algorithms based on neural networks.

Finally, as pointed out on several occasions, experimentation is a key phase to
validate the correct functioning of the algorithm. To this end, a exchange
period at the Swedish University of Kungliga Tekniska Hogskolan (KTH) in
Stockholm was carried out. The stay with a duration of 3 months, from April
1 to June 30 2021, was funded by the Ministry of Universities (EST19/00075).
During the stay, it was possible to perform real tests with the electric Research
Concept Vehicle (RCVe) of the receiving group. This vehicle is equipped with
a brake-by-wire system that allows continuous regulation of the braking
pressure. The vehicle is controlled by DSPACE hardware, which facilitates
direct code compilation from SIMULINK. The main problem encountered was
the low computational capacity which limited the test to only two wheels. To
evaluate the performance of the algorithm under different adhesion conditions,
tests were conducted at the Arlanda test track. The tests were carried out
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starting from 6 m/s, a speed limited by the vehicle design, with emergency
braking to a stop. The tested conditions were high and low adhesion along with
all possible transitions, i.e., low adhesion surface to high adhesion surface and
vice versa as well as asymmetric braking, where the left wheel remained on the
low grip surface while the right wheel was in high grip.

As mentioned before, at the beginning of this summary, this doctoral thesis is
a compilation of four papers. Each paper has been devoted to describing a
proposed solution to the problems encountered in the development of this work.
All in all, this process has contributed to achieving the final objective of
developing a control scheme based on biological networks successfully. Next,
the papers that compose this thesis are described.

The first paper, entitled ‘Bio-inspired spiking neural network for nonlinear
systems control’ was published in the journal Neural Networks in 2018. It
establishes the basis of the neural control algorithm developed during the
thesis. The neuronal structures proposed in this work are reflex arcs that react
instantaneously to the appearance of a stimulus. These neuronal connections
present low complexity with few connections. This results in a controller where
the action is direct, which causes high-frequency oscillations in the tracking of
the target signal. In addition, a reduced number of neurons have been used,
which also implies high noise due to decoding. Despite these limitations, found
during the realization of this work, the algorithm demonstrated its ability to
control nonlinear systems. Two examples of applications were implemented: a
DC motor and a muscle model control. The method used in this first paper to
obtain the synaptic strengths was a genetic algorithm, using random
initialization to obtain the optimal result. This learning method has to be
performed off-line and implies that, during the simulation, unstable control
conditions may occur.

Since this previous work lacked continuous learning, as well as that it was not
applied to a real vehicle system, the methodology was further developed in
order to achieve the objectives of the thesis. For this reason, further advances
were described in a second paper that aimed to learn concerning the problems
that arise when implementing control algorithms in a real vehicle. To this end,
the limitations of embedded hardware were studied and a Traction Control
System (TCS) was developed. This article was published in the Sensors journal
in 2019 with the title: Low-Cost FPGA-Based Electronic Control Unit for
Vehicle Control Systems. This work described the control scheme used as well
as identifying the limitations of each component more profoundly.

Required times for the measurement and pre-processing of the velocity signals
obtained by means of a magnetic encoder were verified. This limitation has
been taken into account in the simulations subsequently carried out. The
importance of a correct model of the actuator has been emphasized to ensure
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that the mathematical model used reproduces the measured behavior properly.
Tests carried out on a test bench made it possible to define the motor response
to a torque setpoint. This allowed adjusting the algorithm based on fuzzy logic
to keep the slip level stable. One of the main disadvantages of this embedded
hardware is the difficulty of implementing the code developed in MATLAB.
Therefore, for the following implementations, a real-time operating system was
employed using the code generated by the MATLAB compiler.

Once the control scheme was defined, a third paper focused on the development
of a control algorithm able to cope with variable adhesion conditions. The use
of fuzzy logic was proposed, based on previous work carried out by the research
group. To grant the fuzzy logic controller the ability to adapt to different road
types, it was necessary to train the algorithm for all possible levels of adhesion.
The possible transitions between adhesion levels were taken into account. Since
this task involved a huge number of iterations, it was decided to use an
optimization mechanism based on coevolution. The optimization efforts focused
on those surfaces where the worst results were obtained. This third paper was
published in 2021 in IEEE Transactions on Vehicular Technology with the
title: Co-evolutionary Optimization of a Fuzzy Logic Controller for Antilock
Braking Systems under Changing Road Conditions. This work was also
supported by real experimentation with a two-wheeled vehicle. The complexity
of the correlation between experimentation and simulation was highlighted.
The use of estimators based on the Extended Kalman Filter (EKF) has
demonstrated its ability to determine the forces in the tire-road contact.
Initially, this estimation strategy was selected to be implemented in the
algorithm developed in this thesis. Nevertheless, it has been found that the use
of the EKF to identify the types of road has two main drawbacks. One is the
need for a tire model capable of representing the variations in grip. This may
require the tire to be modelled using a test bench, which is costly and does not
allow the user of the vehicle to replace the tire with another brand or model.
Another associated problem is the delay experienced during transients. In these
cases, estimated values provided by the EKF algorithm will not be sufficiently
accurate, making it more suitable to resort to more complex algorithms, such
as the Unscented Kalman Filter (UKF) or other types of classifiers. In
consequence, it was proposed to integrate the identification of the road type
with the biological control network by means of an offline trained classification
structure.

Therefore, further development of the biologically-based neural networks to
perform control tasks as well as the required neural connections and the
learning mechanism used had to be faced. In order to facilitate learning to
optimize its behavior under previously inexperienced conditions, a control
algorithm capable of learning in a real vehicle during its normal operation was
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developed. To this end, the biological behavior to perform control tasks and
the necessary neural connections as well as the learning mechanism used was
investigated. This led to a neural learning algorithm published in the journal
Neurocomputing in 2021 with the title: A biological-like controller using
improved spiking neural networks. In this paper, a mathematical muscle model
was used to reproduce the motion of a single joint. By means of a structure
inspired by reflex arcs, response times similar to those experienced by the
neural control of a human being were obtained. In addition to the proposed
neural network, a learning mechanism based on neuroplasticity was
implemented. This allows identifying situations in which learning is required
through supervised learning. To correct the fault, dopamine is released, which
is responsible for modulating STDP learning according to the error made. With
this approach, it is possible to learn from a suboptimal response or after a
change in the dynamics.

Besides, a new synapse model based on the opening of multiple channels was
proposed in this paper. These are used to model neurotransmitter release by
the presynaptic neuron, as well as the input current of the postsynaptic neuron.
Thus, less distortion is introduced into the information processed by the
network, and a faster response is obtained. In addition, this neuron model can
be used for decoding processes by translating impulses into a control action.
The latter has a major impact when the network is intended for control. This
same structure has been used for the vehicular control proposed in this thesis,
as previously mentioned. The only modification required is to define the new
input and output variables. This means changing from having the current and
target position in the previous applications as input to using the current slip
and its optimum value in vehicular control. As output, a torque is applied to
the wheel instead of muscular stimulation.

Finally, a fifth paper is currently being written. In this last paper, which is also
described in the thesis body, the neural structure developed for the braking
control scheme proposed has been implemented. It integrates the identification
of parameters, the neural network for the detection of adhesion conditions and
the control neural network. The whole system was improved during the
previously mentioned stay in Sweden and it was implemented in the electric
Research Concept Vehicle (RCVe). After verifying the correct operation of the
algorithm in a real vehicle and its ability to adapt to different adhesion
conditions, the work that was initially considered, has been concluded in this
thesis.

The developed controller has been compared with the state of the art in an
objective way, demonstrating its superiority over algorithms that do not have
the ability to adapt to changing conditions. In addition, the bio-inspired
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controller has a very simple structure that can be applied to other engineering
problems, opening up very attractive new lines of research.

Keywords

Spiking Neural Network (SNN), Vehicle Control, Wheel Slip Control (WSC),
Supervised Learning, Spike Time-Dependent Plasticity (STDP).
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Resumen

En esta tesis se propone un nuevo algoritmo de control basado en redes
neuronales biolégicas para maximizar las fuerzas longitudinales en el contacto
neumatico-carretera en situaciones de emergencia de conduccién con vehiculos
terrestres. Esta tesis ha sido financiada por el Ministerio de Universidades a
través de la beca de Formacién de Profesorado Universitario (FPU17/03161)
concedida al autor en 2018. La tesis ha tenido una duracién total de 3 afos.
En la memoria inicial entregada al Ministerio se preveia una duracién de 4
anos, destinando el ultimo afio a la redaccion y conclusiones de la tesis. Sin
embargo, se ha podido realizar todo el trabajo en tres anos.
La tesis se presenta en forma de compendio de publicaciones. Se presentan
cuatro trabajos publicados en revistas de alto impacto que apoyan la
investigacion, describiendo la metodologia necesaria para la implementacion de
un controlador bioinspirado en un sistema vehicular. Ademaés, se obtendra la
Mencién Internacional de Doctorado ya que se ha realizado una estancia de
tres meses en un grupo de investigacion de una universidad extranjera por
parte del doctorando.
Ademas, el autor de esta tesis ha participado como colaborador en los siguientes
proyectos de investigacién, relacionados con el tema de la tesis:
- "Determinacién en tiempo real de las caracteristicas del contacto
neumatico-carretera mediante algoritmos bioinspirados para la mejora
de la seguridad activa en vehiculos " (TRA2015-67920-R). Durante los
dos anos previos a la inscripciéon en el programa de doctorado se
establecieron las bases de la tesis. En este periodo se puso de manifiesto
la relevancia del algoritmo de control en una emergencia.
- "Sistema de frenado regenerativo basado en algoritmos bioinspirados"
(UMA18-FEDERJA-109). Iniciado durante la ejecucion de la beca FPU
y que continia en la actualidad.
- "Métodos de identificaciéon del tipo de carretera basados en redes
neuronales para vehiculos eléctricos" (PID2019-105572RB-100). Iniciado
durante la ejecucion de la subvenciéon FPU y contintia en la actualidad.

Esta tesis estaba vinculada a los objetivos de estos proyectos de investigacién
ya que se centraban en la mejora de la eficiencia y la seguridad de los vehiculos
recurriendo a algoritmos avanzados de control y estimaciéon. En este sentido,
se desarrollaron algoritmos bioinspirados y redes neuronales para abordar los
retos de estos proyectos. El control del vehiculo es también un factor clave en
estos proyectos donde se estudia el comportamiento entre el neumatico y el
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asfalto. Esta tesis se centra en el control longitudinal del vehiculo, donde
gestionando el par aplicado a la rueda, ya sea por frenado o traccion, se
maximiza la fuerza obtenida en el contacto.

Una vez establecido el punto de partida y el contexto de la tesis, se describen
a continuacién los principales problemas para desarrollar una metodologia de
control 6ptimo. En primer lugar, hay que destacar la gran importancia de
estimar las fuerzas en el contacto neumatico-carretera con un alto grado de
precision, ya que de ellas depende la estabilidad del vehiculo. Estas fuerzas de
contacto muestran un claro comportamiento no lineal. Ademés, también
existen variaciones debidas al entorno en el que se conduce el vehiculo. Por
otro lado, la principal variable relacionada con el nivel de adherencia que
experimenta un neumatico al rodar sobre una superficie es el deslizamiento,
que puede definirse como la diferencia de velocidad entre la rueda y el vehiculo.
Por lo tanto, es necesario conocer la velocidad del vehiculo para obtener el
deslizamiento. Sin embargo, la velocidad del vehiculo es un parametro que sigue
siendo dificil de medir en los vehiculos actuales. Ademaés, los modelos de
neumaticos también se ven afectados por otros pardametros que influyen en su
respuesta, como la temperatura, el desgaste, la presion de los neumaticos, etc.
Por tanto, desarrollar un controlador capaz de gestionar todos los datos y
variables del contacto neumaéatico-carretera es una tarea compleja que requiere
de algoritmos que puedan hacer frente a todos los posibles escenarios de
conduccién con un coste computacional razonable. Como solucién a este
problema, en este trabajo se propone un algoritmo de control capaz de
adaptarse a condiciones inesperadas de forma dinamica. Para lograr este
objetivo, como en otros problemas de ingenieria, la respuesta estd en la
naturaleza. Asi, el algoritmo de control desarrollado se basa en el sistema
nervioso de los seres vivos en forma de una estructura de control bioinspirada
capaz de aprender durante su funcionamiento normal.

La descripcién del esquema global utilizado es necesaria para entender los
requisitos para el desarrollo de un algoritmo de control longitudinal del
vehiculo. El controlador tiene que adaptarse a la adherencia actual entre el
neumatico y la carretera y tiene que proporcionar las acciones de control
necesarias para maximizar las fuerzas longitudinales evitando asi el bloqueo de
las ruedas. Los principales componentes de dicho esquema de control son:
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Vehiculo
Modelo | Contacto neumatico-calzada
Actuadores.

Estimacion de parametros

. Identificacién de las condiciones de
Algoritmo .
adherencia.

Controlador

Mediciones | Medicién de parametros

Por lo tanto, los siguientes requisitos deberian incorporarse a cada uno de estos
componentes para cumplir la tarea requerida:

-Vehiculo: Transferencia de carga y grados de libertad.

-Contacto neumatico-carretera: Fricciéon no lineal.

-Actuadores: Respuesta temporal.

-Medicion de parametros: Resolucion y retrasos.

-Estimacion de parametros: Dindmica del vehiculo y retrasos.
-Identificacién de las condiciones de adherencia: Datos necesarios.

-Controlador: Respuesta rapida y capacidad de adaptacion.

El modelo del vehiculo debe tener en cuenta la transferencia de carga que se
produce al acelerar y frenar, asi como tener un ntmero suficiente de grados de
libertad para reproducir adecuadamente los principales movimientos del
vehiculo. En cuanto al modelo de neumético, debe ser una funcion no lineal del
deslizamiento para reproducir adecuadamente la friccién neumatico-carretera.
Ademés, también debe incluirse su respuesta transitoria, ya que debe
considerarse el retraso en la aparicién de las fuerzas de friccién. Para ello, se
utiliza la longitud de relajaciéon para modelar la respuesta transitoria. El
modelo utilizado también debe tener en cuenta la influencia de las condiciones
ambientales, como la temperatura, la presion, la humedad, la carretera....

En cuanto a la mediciéon y la estimacion de parametros, es crucial considerar
los retrasos introducidos por los sensores, asi como su resoluciéon. Por ejemplo,
los encoders utilizados para medir la velocidad angular de las ruedas tienen un
ntumero reducido de pulsos por revolucién, lo que a bajas velocidades puede
provocar problemas para detectar el bloqueo de las ruedas.

Asimismo, el valor de deslizamiento es necesario para estimar las condiciones
de adherencia. Para obtener el valor de deslizamiento, hay que determinar la
velocidad de las ruedas y la velocidad de la carroceria del vehiculo. Esta tltima
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no puede medirse directamente con los sensores del vehiculo a un coste
razonable. Ademas, otras tecnologias para la mediciéon de la velocidad, como
las basadas en el Sistema de Posicionamiento Global (GPS), no pueden
utilizarse en este caso debido al retraso en su medicién. Por ello, la velocidad
del vehiculo se obtiene combinando algoritmos de fusién y estimacion de datos.
Esto se suele resolver utilizando algoritmos basados en el filtro de Kalman y
midiendo variables del sistema como las aceleraciones captadas por la Unidad
de Medicién Inercial (IMU). Esta tarea se realiza teniendo en cuenta la
dindmica del vehiculo de forma que se puedan definir las variables de estado.
Una vez obtenida la velocidad longitudinal del vehiculo y el deslizamiento, es
de vital importancia la identificacién del tipo de carretera por la que circula el
vehiculo. La deteccion del tipo de carretera es un tema de continuo estudio.
Por el momento, atin no se ha propuesto una solucion estandarizada. Hay dos
formas principales de afrontar este reto. El primer enfoque para realizar esta
tarea se basa en el conocimiento de la dindmica de los neuméticos. En este
caso, el principal problema que hay que abordar es que el modelo de neumatico
utilizado debe ser capaz de caracterizar todas las condiciones de conduccién
posibles, incluida la influencia de todos los parametros que afectan al
neumatico. Esto hace que la implementacion de esta estrategia sea un reto
debido a la cantidad de datos necesarios para construir el modelo y la
complejidad del mismo asociada, lo que dificulta su implementacién en
aplicaciones en tiempo real.

El segundo método recurre a las redes neuronales para realizar la tarea de
clasificacion del tipo de carretera. Estas estructuras pueden replicar el modelo
de neumatico y establecer la relacién entre el tipo de carretera y otras variables
medidas en el vehiculo, como las vibraciones o una camara de video que capture
la carretera. La metodologia propuesta en esta tesis se enmarca en este segundo
enfoque. Asi, la misma estructura de red neuronal utilizada para realizar tareas
de control se utiliza para identificar el tipo de carretera.

A continuacién, los actuadores se encargan de convertir la accién de control en
fuerzas que modulan el deslizamiento de la rueda. En este sentido, el reto es
conseguir un funcionamiento rapido y fiable, ya que el bloqueo de una rueda
es un proceso que puede tener lugar en menos de 200 ms. El comportamiento
global del sistema puede verse reducido si no se aborda adecuadamente el
modelado de los actuadores. En el caso de diferentes modos de actuacion, por
ejemplo en vehiculos eléctricos con friccion y frenado regenerativo, habra que
definir una estrategia 6ptima.

El dltimo componente es el algoritmo de control, que se encarga de
proporcionar la accién requerida en el vehiculo. El algoritmo de control debe
ser capaz de regular el par de la rueda para mantener el deslizamiento de la
rueda cerca de su valor 6ptimo segin las condiciones de contacto entre el
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neumatico y la carretera. Para ello, debe ser capaz de reconocer y adaptarse a
las diferentes condiciones de conduccion haciendo uso del nivel de deslizamiento
estimado y del valor de deslizamiento 6ptimo deseado. La actuaciéon puede
implicar la regulacion de los pares aplicados a las ruedas mediante un actuador.
Los controladores mas utilizados se basan en el Control de Modo Deslizante
(SMC), la légica difusa y el Control Predictivo de Modelos (MPC). Esta tesis
recurre a una red neuronal de base bioldgica que, a diferencia de los anteriores
controladores, puede adaptarse a los cambios en la dinamica del contacto
durante la ejecucion del algoritmo. De este modo, si el vehiculo se enfrenta a
una condicién de adherencia nunca antes experimentada, el algoritmo de
control se adaptarda mediante una estrategia de aprendizaje para maximizar las
fuerzas longitudinales y, por tanto, evitar el bloqueo de las ruedas.

De todos los componentes que intervienen en el esquema de deslizamiento de
las ruedas, el algoritmo de control es el que mas influye en el comportamiento
final. Por lo tanto, la mayor parte del esfuerzo de investigacion debe centrarse
en el desarrollo de un algoritmo 6ptimo. En este sentido, el ser humano ha
demostrado tener una capacidad superior para controlar la dinadmica del
contacto neumatico-carretera. Asi, llevar un vehiculo hasta los limites de
adherencia de forma controlada y segura es el principal objetivo de cualquier
competicion automovilistica. En este caso, el objetivo es maximizar el agarre,
normalmente para reducir el tiempo necesario para cubrir una distancia fija,
manteniendo la estabilidad del vehiculo. La capacidad de los pilotos
profesionales para adaptarse a un nuevo vehiculo, asi como la deteccién del
limite de adherencia en condiciones cambiantes (nuevo compuesto de
neumatico, circuito, condiciones meteorolégicas, etc.) es sorprendente.

Como se ha demostrado, el control 6ptimo de un sistema complejo en
condiciones de funcionamiento cambiantes es una tarea dificil que requiere un
funcionamiento adecuado de los diferentes componentes del algoritmo de
control. Sin embargo, los seres vivos se enfrentan continuamente a estos
problemas y los resuelven adecuadamente en la mayoria de los casos.

La estrategia desarrollada en esta tesis se basa en el estudio del control motor
en sistemas biolégicos. En primer lugar, se intenta comprender cémo las
conexiones neuronales de un ser humano o animal determinan la respuesta a
los estimulos externos y permiten corregir el error cometido. En el caso del
contacto con los neumaticos, el ser humano es capaz de adaptar el porcentaje
de aceleracion o frenado en funcién de la vista, las aceleraciones experimentadas
por los canales semicirculares, los sonidos, etc.

Sin embargo, el ser humano no conoce el nivel de deslizamiento en cada
momento. Esta es la ventaja del control electréonico, ya que al disponer de esta
informacién clave se pueden conseguir resultados similares a los de un ser

humano entrenado utilizando una estructura de control mas sencilla. Para ello,

XIX



la definicién de la estructura de control requiere modelar adecuadamente los
sistemas biologicos.

El estudio del control biolégico permite comprender como se establecen las
conexiones neuronales. Existen dos teorias sobre los posibles esquemas de
control en los sistemas biolégicos. La primera recurre a un modelo interno del
sistema a controlar. Esto implica un alto nivel de conocimiento de la dinamica
del sistema, lo que limita la capacidad de aprendizaje debido a que el modelo
interno debe ser modificado para adaptarse a las variaciones. La segunda teoria
se basa en el control por umbral, mediante el cual, sin necesidad de un modelo
interno, se establece un punto de equilibrio. Cuando se supera este umbral, se
produce una accién de control. Asi, modificando el punto de equilibrio, se puede
controlar un sistema biolégico. Las conexiones neuronales se modifican para
mantener el equilibrio en el punto de trabajo. Mientras que la teoria del modelo
interno implica una estructura de control compleja y dificil de descodificar, la
teoria del control del umbral presenta una estructura sencilla que sélo requiere
un circuito neuronal para mantener el equilibrio.

Esta ultima teorfa, denominada Hipétesis del Punto de Equilibrio (EPH), es la
que se aplica en esta tesis. Por lo tanto, a través del estudio de las estructuras
biol6gicas en humanos y animales, se pretende encontrar aquellas que muestran
un comportamiento similar al descrito por la EPH. A partir de los trabajos
realizados por Kandel se obtuvo la estructura de control asi como los
mecanismos de aprendizaje implicados en los seres vivos. Para ello, utilizo
Aplysia, un animal que tiene un tamano de neuronas muy grande, lo que facilita
su decodificaciéon. Posteriormente, se han descodificado muchas otras
estructuras animales. En los seres humanos, se han podido determinar algunas
estructuras de control, por ejemplo, algunas asociadas a los reflejos, llamadas
arcos reflejos. Aun asi, la gran mayoria del cerebro y el sistema nervioso
humanos siguen siendo desconocidos y representan un gran reto técnico debido
al elevado niimero de neuronas y conexiones que componen una estructura tan
intrincada.

A partir del estudio de los arcos reflejos, es posible establecer el
comportamiento global de la red neuronal encargada del control. Por ejemplo,
en el reflejo vestibulo-ocular, el control continuo de la mirada se mantiene
gracias a las aceleraciones medidas por los canales semicirculares. La estructura
que se encarga del movimiento ocular establece las vias neuronales que van
desde las neuronas sensoriales a las motoras. Estas conexiones son antagonicas,
estableciendo la posicion ocular como un punto de equilibrio. A pesar de la
rotacion de la cabeza, la mirada permanece estable.

En esta tesis, se propone aplicar una estructura de control neuronal basada en
un método antagonista. Para el control vehicular, el punto de equilibrio en la

dindmica de contacto neumatico-carretera se fija en el deslizamiento 6ptimo.
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Por lo tanto, la respuesta se modula de forma que si se supera el umbral de
deslizamiento se reduce el nivel de par y viceversa. Este comportamiento
antagonico permite el aprendizaje durante el funcionamiento normal sin el
riesgo de que el sistema se vuelva inestable.

Para replicar este tipo de estructura neuronal, asi como los algoritmos de
aprendizaje encontrados en los sistemas biologicos, es necesario definir el
modelo de neurona utilizado. Este modelo debe replicar el comportamiento
biolégico con un bajo coste computacional para facilitar su integraciéon en los
sistemas embebidos de los vehiculos.

El modelo de red neuronal mas utilizado es el denominado Red Neural Artificial
(ANN), sin embargo, este enfoque no codifica la senal de la misma manera que
tiene lugar en los sistemas biolégicos. Los mecanismos biolégicos de aprendizaje
se basan en la sincronizacion de los disparos entre neuronas contiguas. En el
caso de las ANN, no hay disparos en la neurona, sino una funciéon de activacién
que no tiene en cuenta el tiempo. Por todo ello, las ANN no reproducen
fielmente el aprendizaje bioldgico.

Para aprovechar estas estrategias de aprendizaje, la siguiente generacion de
redes neuronales codifica la informacién temporalmente mediante impulsos
eléctricos. Esta caracteristica da lugar a las denominadas Redes Neuronales de
Impulsos (SNN).

El conocido modelo SNN propuesto por Izhikevich destaca por su buena
representacion biolégica y su bajo coste computacional. En este modelo, dos
ecuaciones diferenciales reproducen el potencial de membrana y la recuperacién
basada en neuronas de rata.

Dado que la SNN utiliza impulsos para codificar la informacién, es necesario
traducir las senales de entrada y salida para interactuar con el entorno. Un
sistema biolégico utiliza neuronas sensoriales y motoras para esta
transformacién. Las neuronas sensoriales se encargan de incorporar la
informacion del entorno al sistema nervioso. Estas neuronas se encargan de
traducir los estimulos externos, como la luz en los receptores opticos o las
aceleraciones en los canales semicirculares.

De igual modo, la informacién utilizada en el control vehicular, como el
deslizamiento o su valor 6ptimo, se transmitira al controlador e identificacién
propuestos basados en SNN. Los sistemas biolégicos no sélo codifican la
informacion temporalmente, sino también espacialmente. Cada variable
codificada en impulsos se distribuye entre un cierto ntimero de neuronas
sensoriales. Asi, mediante una serie de campanas gaussianas, se determina el
nivel de disparo de cada neurona. Por otro lado, las neuronas motoras se
encargan de descodificar los impulsos para realizar la acciéon deseada. Como la
informacion se codifica temporal y espacialmente, cada neurona motora se

asocia a un nivel de actividad creciente. El principio de tamano de Heinemann
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reproduce este comportamiento. Por ejemplo, en los misculos, cada unidad
motora estd asociada a un tipo de fibra muscular que ejerce una fuerza diferente
con una resistencia a la fatiga diferente.

Ademas de modelar el cuerpo celular neuronal, también es necesario modelar
las conexiones entre neuronas, conocidas como sinapsis. Estas proporcionan la
capacidad de establecer relaciones complejas entre las entradas y las salidas.
En una sinapsis bioldgica, la llegada de un impulso provoca la liberacion de
neurotransmisores que se encargan de abrir los canales que permiten la
circulacion de la corriente en la neurona postsinaptica, dando lugar a un nuevo
impulso. Si esta conexién es directa, provocando un disparo en la neurona
postsinaptica, la conexién se considera eléctrica. En cambio, si es necesaria una
alta concentracion de neurotransmisores para abrir varios canales receptores,
la conexion se considera quimica. En esta tesis se propone un modelo de sinapsis
basado en la apertura y cierre de canales para modelar ambos
comportamientos. Asi, los canales se abren a medida que se reciben nuevos
impulsos eléctricos y el tiempo de apertura se determina en funcion de la
conductancia.

Tanto los modelos neuronales como los de sinapsis permiten reproducir los
mecanismos de aprendizaje biolégico utilizando la diferencia temporal entre los
impulsos neuronales presinapticos y postsinapticos. Este aprendizaje reproduce
la plasticidad neuronal mediante la cual se modifica la fuerza sinaptica. El
mecanismo de aprendizaje utilizado en esta tesis es la llamada Plasticidad
Dependiente del Tiempo del Impulso (STDP). Mediante una regla STDP, la
plasticidad de la sinapsis se modifica de modo que las neuronas que disparan
sincronicamente son las mas afectadas por el proceso de aprendizaje. Como
resume Donald Hebb, "las neuronas que se disparan juntas se conectan". Para
establecer cuanto debe modificarse cada una de ellas, es necesario modelar la
liberacion de dopamina, responsable, junto con el STDP, del entrenamiento de
la red neuronal. Para realizar un aprendizaje supervisado, en el que se conoce
continuamente el error cometido, la dopamina se modela directamente en
funcién de este error. En el aprendizaje motor, el error se define como la
diferencia entre el valor objetivo y el actual.

Este trabajo propone un algoritmo de control basado en una estructura
inspirada en los arcos reflejos. El nimero de conexiones neuronales, asi como
si son inhibitorias o excitatorias, se optimizan para aumentar la robustez del
algoritmo. Sin embargo, las fuerzas sinapticas se adaptaran a cada condicién
de funcionamiento. De esta forma, el algoritmo STDP propuesto ajusta cada
sinapsis para minimizar el error cometido en cada momento.

También hay que tener en cuenta que en el proceso de diseno de un sistema de
control es necesario realizar simulaciones y pruebas para evaluar el

comportamiento del algoritmo propuesto. En este trabajo, el algoritmo sera
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simulado y probado en diferentes condiciones de adherencia para verificar su
robustez y rendimiento antes de su integracion en un vehiculo real.

La principal limitacién para lograr este objetivo es la capacidad de calculo de
los sistemas embebidos en tiempo real utilizados para el control del vehiculo.
En consecuencia, el tamafio de la red, asi como su frecuencia de actualizacién
son las principales limitaciones a la hora de realizar las simulaciones.

Los modelos y algoritmos de control se han programado utilizando MATLAB
y SIMULINK. Estos programas permiten la compilacién directa del cédigo asi
como su ejecuciéon en tiempo real en el hardware mas utilizado por la industria
del automévil (DSPACE).

La combinacién de dicho software y hardware hace posible una rapida recogida
de datos y la modificaciéon del algoritmo durante la fase de experimentacién.
La implementacion de la red neuronal en una FPGA o hardware neuromorfico
acelera la ejecucion del modelo neuronal, permitiendo el uso de redes mas
grandes y complejas. Este aumento de la velocidad se debe a la implementacion
por hardware del modelo neuronal mediante un circuito integrado de aplicacion
especifica (ASIC) en lugar de la ejecucion del modelo en un procesador
universal.Sin embargo, la fase de experimentacién en los sistemas vehiculares
representa una fase clave en el desarrollo del algoritmo, por lo que la
implementacion del algoritmo en un vehiculo real serd més relevante que el
tamano de la red.

También hay que tener en cuenta que, para simular escenarios en los que se
controla el nivel de adherencia longitudinal en el contacto neumaético-carretera,
se prioriza el frenado sobre la estabilidad o la traccion. Esto se debe a la
dificultad de replicar las simulaciones en un entorno experimental, ya que las
pruebas de estabilidad y tracciéon podrian comprometer la seguridad con los
vehiculos de investigacion disponibles.

Las simulaciones se han realizado tanto para vehiculos de dos como de cuatro
ruedas. Para ello se han utilizado BIKESIM y CARSIM en las fases iniciales
de desarrollo y simulacién, donde se ha obtenido el comportamiento del
vehiculo, del sistema de suspension y de los neumaticos.

Estos programas estan destinados a estudiar el comportamiento de los
vehiculos en los circuitos y proporcionan una buena representaciéon de los
movimientos del vehiculo gracias a la utilizacion de modelos complejos del
mismo. Sin embargo, utilizarlos con el tnico fin de realizar una frenada de
emergencia longitudinal no esta justificado, ya que su coste computacional es
elevado. Por ello, en esta tesis se ha desarrollado un modelo plano de tres
Grados de Libertad (GDL) con un bajo coste computacional que permite el
entrenamiento en paralelo de un gran nimero de simulaciones, acelerando el
desarrollo del controlador. Los grados de libertad elegidos para los vehiculos de
dos ruedas son el longitudinal, el vertical y el de cabeceo. Este modelo se
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denomina modelo de bicicleta ya que no tiene en cuenta la dindmica lateral al
no tener efecto en la estrategia de control longitudinal desarrollada. En
vehiculos de cuatro ruedas, la influencia vertical se reduce debido a la altura
del centro de gravedad y a las dimensiones del vehiculo. Sin embargo, puede
producirse un movimiento de guinada en el vehiculo, ya que las fuerzas
longitudinales de cada neumatico pueden tener un desplazamiento lateral. Por
lo tanto, en este caso, los tres grados de libertad utilizados son longitudinal,
lateral y de guinada.

El algoritmo propuesto se ha comparado con otras estrategias de control. Asi,
durante el desarrollo de la tesis se han simulado algoritmos clasicos basados en
umbrales de deslizamiento y de aceleraciéon angular de la rueda, asi como
algoritmos optimizados basados en légica difusa. Se establece asi un punto de
referencia para la posterior evaluacion del algoritmo neuronal propuesto. Para
realizar esta comparaciéon se utilizan Indicadores de Rendimiento (KPIs) que
evalian cuantitativamente la respuesta del controlador a diferentes condiciones
de contacto.

Para realizar esta comparaciéon, se han reproducido una serie de ensayos de
frenado segun el reglamento 13 (E/ECE/- TRANS/505/Rev.1/Add.12/Rev.8.
3. Reglamento n° 13). En este reglamento, los ensayos se realizan en diferentes
superficies a distintas velocidades. Adema&s, también se comprueba el
rendimiento del sistema de frenado en distintas condiciones de adherencia.
Estas pruebas permiten analizar la estabilidad del controlador, que es dificil de
demostrar en los algoritmos basados en redes neuronales

Por ultimo, como se ha senialado en varias ocasiones, la experimentacion es una
fase clave para validar el correcto funcionamiento del algoritmo. Para ello, se
ha realizado una estancia en la Universidad sueca de Kungliga Tekniska
Hogskolan (KTH) en Estocolmo. La estancia con una duraciéon de 3 meses, del
1 de abril al 30 de junio de 2021, fue financiada por el Ministerio de
Universidades (EST19/00075).

Durante la estancia se han podido realizar pruebas reales con el Research
Concept Vehicle (RCVe) del grupo receptor. Este vehiculo estd equipado con
un sistema de frenado "by-wire" que permite la regulacién continua de la
presion de frenado. El vehiculo esta controlado por el hardware DSPACE, que
facilita la compilacién directa del cédigo desde SIMULINK. El principal
problema que se ha encontrado es la baja capacidad de célculo, que ha limitado
la prueba a s6lo dos ruedas. Para evaluar el rendimiento del algoritmo en
diferentes condiciones de adherencia, se realizaron pruebas en la pista de
pruebas de Arlanda. Las pruebas se realizaron a partir de 6 m/s, una velocidad
limitada por el disefio del vehiculo, con una frenada de emergencia hasta la
parada. Las condiciones probadas son de alta y baja adherencia junto con todas
las transiciones posibles, es decir, de superficie de baja adherencia a alta

XXIV



adherencia y viceversa, y frenado asimétrico, en el que la rueda izquierda
permanece en la superficie de baja adherencia mientras que la derecha esta en
alta adherencia.

Como se ha mencionado al principio de este resumen, esta tesis doctoral es un
compendio de cuatro articulos. Cada uno de ellos se ha dedicado a describir
una soluciéon propuesta a los problemas encontrados en el desarrollo de este
trabajo. En definitiva, este proceso ha contribuido a conseguir el objetivo final
de desarrollar un esquema de control basado en redes bioldgicas. A
continuacion se describen los trabajos que componen esta tesis.

El primer trabajo, titulado 'Bio-inspired spiking neural network for nonlinear
systems control' fue publicado en la revista Neural Networks en 2018. En él se
establecen las bases del algoritmo de control neuronal desarrollado durante la
tesis. Las estructuras neuronales propuestas en este trabajo son arcos reflejos
que reaccionan de forma instantanea ante la aparicion de un estimulo. Estas
conexiones neuronales presentan una baja complejidad con pocas conexiones.
Esto da lugar a un controlador en el que la accién es directa, lo que provoca
oscilaciones de alta frecuencia en el seguimiento de la sefial objetivo. Ademas,
se utiliza un ntmero reducido de neuronas, lo que también implica un alto
ruido debido a la decodificaciéon. A pesar de estas limitaciones, encontradas
durante la realizacion de este trabajo, el algoritmo demostré su capacidad para
controlar sistemas no lineales. Se implementaron dos ejemplos de aplicaciones:
un motor de corriente continua y el control de un modelo muscular. E1 método
utilizado en este primer trabajo para obtener las fuerzas sinapticas fue un
algoritmo genético, utilizando una inicializaciéon aleatoria para obtener el
resultado 6ptimo. Este método de aprendizaje tiene que realizarse fuera de linea
e implica, que durante la simulacién, pueden darse condiciones de control
inestables.

Dado que este trabajo previo carecia de aprendizaje continuo, asi como que no
se aplicaba a un sistema vehicular real, se desarroll6 mas la metodologia para
lograr los objetivos de la tesis. Por ello, se describieron nuevos avances en un
segundo trabajo que pretendia conocer los problemas que surgen al
implementar algoritmos de control en un vehiculo real. Para ello, se estudiaron
las limitaciones del hardware embebido y se desarrollé6 un Sistema de Control
de Traccién (TCS). Este articulo fue publicado en la revista Sensors en 2019
con el titulo: 'Low-Cost FPGA-Based Electronic Control Unit for Vehicle
Control Systems'. En este trabajo se describié con mayor profundidad el
esquema, de control utilizado asi como se identificaron las limitaciones de cada
componente.

Se verificaron los tiempos necesarios para la medicién y el preprocesamiento de
las senales de velocidad obtenidas mediante un encoder magnético. Esta

limitacion se ha tenido en cuenta en las simulaciones realizadas posteriormente.
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Se destaca la importancia de un correcto modelo del actuador para que el
modelo matematico utilizado reproduzca adecuadamente el comportamiento
medido. Los ensayos realizados en un banco de pruebas permitieron definir la
respuesta del motor a una consigna de par. Esto permitié ajustar el algoritmo
basado en la logica difusa para mantener estable el nivel de deslizamiento. Uno
de los principales inconvenientes de este hardware embebido es la dificultad de
implementar el cdédigo desarrollado en MATLAB.

Por ello, para las siguientes implementaciones se empleara un sistema operativo
de tiempo real utilizando el cédigo generado por el compilador de MATLAB.
Una vez definido el esquema de control, el tercer trabajo se centrd en el
desarrollo de un algoritmo de control capaz de hacer frente a condiciones
variables de adherencia. Se propuso el uso de la légica difusa basandose en
trabajos anteriores realizados por el grupo de investigaciéon. Para otorgar al
controlador de légica difusa la capacidad de adaptarse a los diferentes tipos de
carretera, fue necesario entrenar el algoritmo para todos los posibles niveles de
adherencia. Se tuvieron en cuenta las posibles transiciones entre niveles de
adherencia. Como esta tarea implicaba un gran ntmero de iteraciones, se
decidié utilizar un mecanismo de optimizacién basado en la coevolucién. Los
esfuerzos de optimizacion se centraron en aquellas superficies en las que se
obtienen los peores resultados. Este tercer trabajo fue publicado en 2021 en
IEEE Transactions on Vehicular Technology con el titulo: 'Coevolutionary
Optimization of a Fuzzy Logic Controller for Antilock Braking Systems under
Changing Road Conditions'. Este trabajo también se apoyé en la
experimentacién real con un vehiculo de dos ruedas. Se destacé la complejidad
de la correlacion entre la experimentacion y la simulacién.

El uso de estimadores basados en el Filtro de Kalman Extendido (EKF) ha
demostrado su capacidad para determinar las fuerzas en el contacto neumatico-
carretera. En consecuencia, inicialmente se selecciond esta estrategia de
estimacién para implementarla en el algoritmo desarrollado en esta tesis. Sin
embargo, se ha comprobado que el uso del EKF para identificar el tipo de
carretera tiene dos inconvenientes principales. Uno es la necesidad de un
modelo de neumatico capaz de representar las variaciones de adherencia. Para
ello es necesario modelar el neuméatico en un banco de pruebas, lo que resulta
costoso y no permite al usuario del vehiculo sustituir el neumético por otra
marca o modelo. Otro problema asociado es el retraso experimentado durante
los transitorios. En estos casos, los valores estimados proporcionados por el
algoritmo EKF no seran lo suficientemente precisos, siendo més adecuado
recurrir a algoritmos més complejos, como el Filtro de Kalman Unscented
(UKF) u otros tipos de clasificadores. Se propuso, por tanto, integrar la
identificacion del tipo de carretera con la red de control biol6gico mediante una
estructura de clasificaciéon entrenada fuera de linea.
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Para ello, es necesario desarrollar las redes neuronales basadas en la biologia
para realizar las tareas de control, asi como las conexiones neuronales
necesarias y el mecanismo de aprendizaje utilizado. Con el fin de facilitar el
aprendizaje para optimizar su comportamiento en condiciones previamente no
experimentadas, se desarroll6 un algoritmo de control capaz de aprender en el
vehiculo real durante su funcionamiento normal. Para ello, se investigd el
comportamiento biolégico para realizar tareas de control y las conexiones
neuronales necesarias, asi como el mecanismo de aprendizaje utilizado. Esto
condujo a un algoritmo de aprendizaje neuronal publicado en la revista
Neurocomputing en 2021 con el titulo: 'A biological-like controller using
improved spiking neural networks'. En este trabajo se utiliz6 un modelo
matematico de musculo para reproducir el movimiento de una sola articulacion.
Mediante una estructura inspirada en los arcos reflejos, se obtuvieron tiempos
de respuesta similares a los experimentados por el control neuronal de un ser
humano. Ademaés de la red neuronal propuesta, se implementé un mecanismo
de aprendizaje basado en la neuroplasticidad. Esto permite identificar
situaciones en las que es necesario aprender mediante un aprendizaje
supervisado. Para corregir un defecto, se libera dopamina, que se encarga de
modular el aprendizaje STDP en funcién del error cometido.Con este enfoque,
es posible aprender a partir de una respuesta subéptima o tras un cambio en
la dindamica.

Ademas, en este trabajo se propone un nuevo modelo de sinapsis basado en la
apertura de multiples canales. Estos se utilizan para modelar la liberacion de
neurotransmisores por parte de la neurona presinaptica, asi como la corriente
de entrada de la neurona postsinaptica. Asi, se introduce menos distorsién en
la informacion procesada por la red y se obtiene una respuesta mas rapida.
Ademas, este modelo de neurona puede utilizarse para los procesos de
decodificaciéon, traduciendo los impulsos en una accién de control. Esto tltimo
tiene un gran impacto cuando la red se destina al control. Esta misma
estructura se utiliza para el control vehicular propuesto en esta tesis, como ya
se ha mencionado. La tunica modificacién necesaria es definir las nuevas
variables de entrada y salida. Esto significa pasar de tener como entrada la
posicién actual y la posicién objetivo en las aplicaciones anteriores a utilizar el
deslizamiento actual y su valor 6ptimo en el control vehicular. Como salida, se
aplica un par a la rueda en lugar de una estimulacién muscular.

Por 1ltimo, se estd redactando un quinto trabajo. En este trabajo, que también
se describe en el cuerpo de la tesis, se implementa la estructura neuronal
desarrollada para el esquema de control de frenado propuesto. Integra la
identificacién de parametros, la red neuronal para la deteccion de condiciones
de adherencia y la red neuronal de control. Todo el sistema fue mejorado

durante la estancia mencionada anteriormente y se implement6 en el electric
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Research Concept Vehicle (RCVe). Tras comprobar el correcto funcionamiento
del algoritmo en el vehiculo real y su capacidad de adaptacion a diferentes
condiciones de adherencia, se da por finalizado el trabajo que inicialmente se
planteaba realizar en esta tesis.

El controlador desarrollado se ha comparado con el estado del arte de forma
objetiva demostrando su superioridad sobre los algoritmos que no tienen la
capacidad de adaptarse a las condiciones cambiantes. Ademas, el controlador
bioinspirado tiene una estructura muy sencilla que puede aplicarse a otros
problemas de ingenieria, abriendo nuevas lineas de investigacion muy

atractivas.

Palabras Claves
Spiking Neural Network (SNN), Control Vehicular, Wheel Slip Control
(WSC), Aprendizaje Supervisado, Spike Time-Dependent Plasticity (STDP).
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1. Introduction

1.Introduction

1.1.Background

Active safety systems in vehicles make it possible to avoid accidents or to
reduce the severity of the consequences in the event of a crash through the
intervention by means of different types of actuators on the vehicle. These
systems ensure efficient and safe driving without loss of vehicle maneuverability
, i.e. capable of being steered or directed. This thesis intends to develop active
safety systems that can take advantage of the maximization of the tire
longitudinal forces during braking and traction processes.

The most well-known commercial systems in this field are the Anti-lock Brake
System (ABS) for braking and Traction Control System (TCS) for traction.
The introduction of these systems significantly reduced the number of accidents
and their severity since their implementation more than 40 years ago. Since
then, the number of vehicles that include active safety systems in their
standard configuration has increased progressively. In addition, regulations
have also made some of these systems compulsory for new vehicles. This
represents a constantly growing research line that is even more emphasized by
the appearance of the first autonomous vehicles.

The first of these systems developed was the ABS. This system contributes to
reducing the braking distance and to maintain the vehicle's maneuverability in
emergency braking. It prevents a possible accident by minimizing the braking
distance, thus avoiding accidents and collisions with other vehicles and road
users. Achieving a good ABS performance was not possible until the dynamics
of the contact between the road and tire was thoroughly studied and modelled.
These studies demonstrated that by preventing the tire from locking, a greater
grip and a reduced braking distance could be obtained, this way improving the
maneuverability of the vehicle. The appearance of electronic control units and
electro-hydraulic actuators made it possible to implement these systems in new
vehicles. This way, the first commercial ABS was launched by Robert Bosch
GmbH in 1978. At that moment, the cost and size of ABS modules were high.
In the present day, however, the production cost and size of ABS modules is

low. In addition, they incorporate new functionalities, such as ESP, TCS, ..

Nowadays, statistics of vehicles that are equipped with ABS have
demonstrated the effectiveness of these systems. As a result, the European
Union decided to make it mandatory for all new four-wheeled vehicles in 2003.
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Furthermore, in Europe, this requirement has recently been extended to two-
wheeled vehicles in 2017. Motorcycles are a sector where the number of
accidents is huge and the severity of injuries is extremely high. Making this
system mandatory will contribute to minimizing the number of accidents and

their consequences.

The efficiency and functionalities of these systems are in continuous evolution.
The performance of a safety system is very much related to the optimization
of the control of the forces in the tire-road contact area. This way, a full
understanding of the dynamics of tire-road contact is a constant source of
research and development. A clear example of this is considering the problems
and scrutiny taking place in choosing a tire model in motor sport competitions.

Today, controlling the dynamics of tire-road contact becomes even more
important with the emergence of autonomous vehicles. In this case, the goal is
to minimize the number of human interventions during movement of the
vehicle. Thus, the research and optimization of control technologies in active
safety systems is still a challenge for the automotive industry and academic
institutions. Thus, it is possible to define the priority research topics within
these types of systems by analyzing the control architecture of a passenger
vehicle (Figure 1).

Intervention -
Module
1
Parameter

identification
and estimation

Figure 1. Vehicular control architecture (Modular description)

During an emergency, active safety systems can partially or completely take
control of the vehicle to avoid an accident. Therefore, the identification and
parameter estimation module, as well as the intervention module, are key
during emergencies since they deal with vehicle inputs and outputs
respectively.

On one hand, the identification and parameter estimation module obtains the
necessary information to know the current vehicle states, including those
related to contact between the tire and the road. On the other hand, the
intervention module responds according to the programmed control logic to
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optimize the grip and maneuverability of the vehicle in each situation. This
thesis proposes a novel approach for the implementation of both modules.

1.2.Problem statement

Both the parameter identification and estimation and the intervention modules
still present different unsolved challenges. In the identification module, two
problems stand out: an accurate determination of vehicle speed and a reliable
detection of the type of road, i.e. the tire-road adherence. Similarly, the control
algorithm of the intervention module has to deal with nonlinearities due to
variable dynamics of the tires. A low integration cost, adequate real-time
response, optimal performance, and robustness have to be ensured for the
implementation of these modules in vehicle systems.

Parameter identification and | Vehicle speed
estimation | Road detection

Variable road-tire dynamics
Intervention | Embedded (Low-cost, Real-time)
Robust control (Stability)

Firstly, regarding vehicle speed measurement, each available technology has
limitations. For example, the Global Positioning System (GPS) technology
provides a feasible solution for autonomous vehicle driving. Its latency makes
it inappropriate for emergencies, though. On the contrary, the CORREVIT
optical device is a low latency system but its cost is excessively high for massive
implementation in standard vehicles. Currently, the most widely used low-cost
method resorts to standard sensors already installed in vehicles and estimation
algorithms to obtain an approximation of real vehicle speed.

Secondly, a robust road detection that can cope with changes in adhesion
conditions is of vital importance to safety control systems. However, road type
detection also has challenges to tackle. The tire-road contact has high
variability due to weather conditions (rain, snow, ice, humidity, pressure ...),
thermal factors (temperature of the tires and their sidewalls), and, macro-
texture and micro-texture factors, among others. Either Cause-based or Effect-
based algorithms can be used to detect the road condition.

All of the above show the variability and uncertainty that are transmitted to
the intervention module from the parameter identification and estimation
modules. The control algorithm running on the vehicle has to deal with this
variability and adapt accordingly to the changes experienced when facing new
working conditions. In addition, there are at least three additional requirements
that vehicle control algorithms have to fulfill. First, a low computational cost,
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since the final algorithm has to run in real-time on a limited capacity embedded
system for mass production.

Second, it has to be capable of controlling nonlinearities present in the tire-
road contact. Last, the controller has to be robust, i.e. it has to guarantee the
stability of the system during its operation and in the presence of any possible
perturbations. These requirements complicate the adaptability of control
algorithms. Furthermore, vehicle stability has to be ensured even during the
learning phase. Usually, the way to overcome this problem is to train the
algorithm offline and, when the performance obtained in simulations is
satisfactory, implement it in the vehicle afterwards. The algorithm is
consequently not tuned during its execution in real operating conditions, which
limits its ability to adapt to new circumstances that have not been previously
studied.

1.3.Purpose of the study

This thesis aims to solve each of the problems mentioned in the previous section
but focusing mainly on improving the adaptability of the control algorithm to
conditions not previously experienced.

Regarding the parameter identification module, the most feasible solution is
adopted within the existing ones. This way, an algorithm based on an Extended
Kalman Filter (EKF) to estimate vehicle speed has been developed. This
algorithm resorts to the wheel angular velocity and vehicle angular acceleration
to obtain a robust speed estimation. Wheel angular velocity is obtained from
the encoders installed in all vehicles equipped with an ABS, in the form of a
toothed or magnetic wheel with a sensor whose frequency output is
proportional to the angular velocity. Acceleration measurement requires the
use of an Inertial Measurement Unit (IMU). Inertial units are increasingly
being installed in vehicles thanks to the reduction in the cost of Micro-
ElectroMechanical Systems (MEMS). This way, this approach makes use of
the sensors commonly installed in vehicles.

The proposed road detection methodology also makes use of the previously
mentioned sensors. In addition, it also resorts to the measurement provided by
the brake pressure sensors. This sensor is currently found in most vehicles, at
least in the master cylinder. With all this information and knowing the
dynamics of the tire-asphalt contact, the forces experienced by the tire can be
estimated. To do so, an EKF-based algorithm and a classifier have been
developed to obtain the optimum grip level. The main disadvantage of this
method is poor accuracy when the longitudinal acceleration is low since the
forces experienced are small. In any case, for emergency braking or traction
procedures, the controller tries to maximize the deceleration or acceleration
respectively, longitudinal forces being high in both cases.
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Finally, a new approach for the intervention module based on a bio-inspired
neural network is proposed. Thus, the system is endowed with learning
capabilities thanks to the reproduction of neural plasticity found in biological
systems.

Artificial neural networks (ANNs) were among the first structures that
mimicked the behavior of biological neural networks. These artificial networks
have been widely used in classification and clustering applications. Their
application in control, although less widespread, is also effective. Artificial
neural networks (ANNs) provide the opportunity to replicate neural structures
to understand and reproduce their behavior and performance. ANNs are based
on the use of activation functions to model firing. However, these ANNs are
simplified models that do not accurately reproduce the behavior of biological
neural systems since they do not take into account time as occurs in nature.
On the contrary, SNNs resort to time-sensitive activation functions that lead
to firing in the neuron, being much closer to the real ones. This makes it
possible to replicate biological electrical impulses as well as time
synchronization mechanisms that open the door to learning mechanisms that
cannot be applied in ANNs.

To this end, Spiking Neural Networks (SNN) capable of modeling the electrical
signals employed by biological neurons with a low computational cost have
been developed. The proposed neural networks are able to modify their
behavior by adjusting the neural connections, called synapses, without losing
control of the vehicle. Furthermore, a supervised learning algorithm has been
developed. In this algorithm, the synchronization between neurons through
Spike Time-Dependent Plasticity (STDP) modifies synapse strength. To
ensure the robustness of the controller, a neural structure based on reflex arcs
of biological control mechanisms is used. Synapse changes can be made during
the execution of the algorithm, which allows online learning in the vehicle

during normal operation.

1.4.Literature review

Research based on vehicle dynamics and control is constantly evolving.
Universities and research centers dedicate a lot of time and effort to publishing
articles and books in vehicle-related fields. Unfortunately, the main source of
research and development is found within the private vehicle manufacturing
industry, as its investment capacity is much higher compared to public research
groups. Consequently, little information is publicly available on active safety
systems of vehicles on the road. Nevertheless, literature on vehicle safety
systems is extensive. A literature review is summarized below according to the
module in which the papers are classified.
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1.4.1. Parameter identification and classification module

1.4.1.1. Longitudinal speed determination

Regarding the calculation of vehicle speed, studies can be classified according
to the way they perform the estimation, i.e. direct or indirect measurement of
speed. GPS is often used for direct measurement, but studies such as Supej et
al. (2014) have shown that latency limits its functionality. For indirect
measurement, vehicle dynamics measurements such as accelerations and

angular velocities of the wheels are used. Thus, Alcazar et al. (2021) described

a more accurate measurement system based on sensors available in the majority
of electric vehicles. Certainly, for indirect speed calculation, EKF is the most
widely used estimator (JoSevski et al. (2017)); works such as Guo et al. (2013)
implemented this algorithm in an FPGA, thus validating its application in
embedded systems. The use of observers (Chen et al. (2018), Wang et al.
(2009)) and data fusion (Ding et al. (2020)) are also commonly used.

1.4.1.2. Road identification

The tire-road contact dynamics is determined by the tire model, so it requires
information about the type of road the tire is in contact with.The road type
detection in real-time is still a challenge to be solved due to the great number
of internal and external agents present in the road-tire contact point (i.e. wear,
weather conditions, maintenance, presence of contaminants, ...). Therefore,
there are several methodologies to tackle this problem. The most effective
method falls into the ‘effect-based’ category. As presented by Rajamani et al.
(2010), detection occurs when the forces experienced by the tire are high.
Taylor et al. (2010) proposed a double Kalman structure. Castillo et al. (2015)
described a hybrid EKF and ANN structure to estimate road adherence. Other
proposals are based on an Unscented Kalman Filter (UKF) or moving horizon
estimation, as in Zhang et al. (2019). Accelerometers (Singh et al. (2013) |
Andrades et al. (2020)) or wheel speed sensors (Umeno et al. (2002)) are
commonly used for this identification method.

Despite being effective algorithms, their performance degrades when low forces
are acting on the wheels, so they are not appropriate to warn safety systems
prior to an emergency. On the contrary, the ‘cause-based’ category makes use
of cameras (Casselgren et al. (2007)) or radars (Viikari et al. (2009)), which
allows anticipating an emergency. These methods are perfectly compatible and

can be combined with ‘effect-based’ methods.

1.4.1.3. Tire model

The modeling of tire contact with the road, as previously mentioned, is the
main factor that defines the dynamics of a vehicle. For this reason, research
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focused on this factor is very extensive and complex. Some approaches use
physical models to modulate their behavior, such as the LuGre (Canudas-de-
Wit et al. (2003)) or Brush model (Clover et al. (1998), Van Zanten et al.
(1989)). However, empirical models, such as Burckhardt (1993)’s, are generally
preferred. Pacejka (2012)’s empirical model established the basis of what is

currently one of the most widely used tire models in the industry, the MF-tire.
This acronym stands for Magic Formula, as he called the equation that fits the
experimental data.

Modifications to this formula have been made to include the influence of other
parameters, such as speed in Cabrera et al. (2010). In deed, the evolution of

the MF-Tire into a dynamic model called MF-Swift is commonly used by
vehicle manufacturers. However, unlike its predecessor, there is very little
information about it since it is currently owned by the private company
Siemens. This model uses real data, as in Cabrera et al. (2018), to determine

the parameters of the MF. Subsequently, it fits the tire dynamic behavior by
means of real testing, such as Acosta et al. (2020). Hence, the MF-Swift model

provides the grip level, taking into account the road profile. For this reason, it
is one of the most advanced models although its closed nature requires the
payment of a license fee for its use.

Although most studies are focused on four-wheeled vehicles, there are also
research papers on two-wheeled vehicles, providing experimental data such as
those by Sharp et al. (2004) or simulations performed by Alcazar et al. (2020).

1.4.2. Intervention module

1.4.2.1. Wheel slip control (WSC)

Active safety systems that maximize longitudinal forces during braking and
acceleration are generally based on slip control. This is due to the fact that tire
dynamics are mainly determined by the difference between vehicle speed and
the theoretically calculated forward speed based on wheel angular speed, as
discussed above. Thus, this type of controller utilizes a target slip level based
on the type of road. Next, the control algorithm is in charge of managing the
wheel torque to maintain the wheel slip as close as possible to the target, either
by wusing friction brakes, a combustion engine, an electric motor, or a
combination of them.

Pretagostini et al. (2020) summarized the main WSC algorithms from those
based on a threshold, (Day et al. (2018)) and (Kogut et al. (2017)) such as the
first one developed by Bosch (Reif (2014)), to Model Predictive Control
(MPC). Pretagostini et al. (2020) also showed that each control strategy has
its advantages and disadvantages, without a clear superiority of one over the

other. Thus, algorithms based on well-known industrial controllers, such as
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PID, are still proposed by several authors such as Sharkawy et al. (2010) and

Li et al. (2016). Fuzzy logic-based controllers are part of the most developed
controllers in literature, either alone (Mauer (1995)) or in a hybrid structure
or with other controllers (Li et al. (2012)), or with self-organization (Lin et al.
(2013)) . Similarly, proposals based on sliding surface control (SMC) (Shim et
al. (2008)) and neural networks (Poursamad (2009)) are also frequently used

in vehicular systems.

The appearance of electric vehicles has led numerous authors to adapt their
algorithms to this new technology, as it has been summarized by Ivanov et al.
(2015) and De Castro et al. (2013). This way, Khatun et al. (2003) used fuzzy
logic to perform ABS and TCS control in an electric vehicle. Castillo et al.

(2017) expanded these controller capabilities to allow them to regenerate
energy. Independent electric motors also offer other control techniques, not
available with previous technologies, such as torque vectoring (Goggia et al.
(2015)),which maximizes the longitudinal forces for each wheel in traction and
braking.

Although in fewer cases, the adaptation of WSC to two-wheeled vehicles is also
studied, applying the same control logic, as in Cabrera et al. (2015) where a

fuzzy-based torque regulation was used for traction control.

1.4.2.2. Bio-inspired control

Bio-inspired control is the main contribution of this thesis. This way, control
schemes and structures found in real biological systems, which is the foundation
of this work, are presented below.

Two control schemes are proposed: the first one is based on an internal model
suggested by Kawato (1999) while the second one is based on a threshold

control, which was presented by Feldman (2007). The main difference between
both approaches is that the former requires the use of an internal model of the
system, this model being unnecessary for the second one. This latter approach
describes the basis of the Equilibrium Point Hypothesis (EPH) (Latash (2010))
and (Kistemaker et al. (2007)) which establishes how synergy between motor

units (Latash (2011)) allows carrying out complex movements. Although

supporters of the internal model theory, such as Wolpert et al. (1998) and

Gomi et al., have tried to demonstrate deficiencies in EPH, it has been shown
that this approach provides results (Kistemaker et al. (2020)) comparable to

those obtained in real biological systems. Therefore, this control theory, which
was further extended by Feldman (2015), for the referent control of action and

perception is used in this thesis.
Regarding biological structures, Kandel (2015) was one of the precursors of the

study of the control mechanisms of the Aplysia. This research has been
extended to other animals such as the movement of the lamprey, which was
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studied by Lansner et al. (1994). Undoubtedly, control structures involved in

reflexes are of greater interest because they are capable of performing
continuous control. One of the most studied reflex arcs is the Vestibulo-Ocular
Reflex (VOR) (Haggerty et al. (2018)). This reflex controls eye movement as
a response to the position and velocity of the head to stabilize sight. The
structure of the VOR in humans (Ito (1998)) and (Branoner et al. (2016))
controls the eye using the semicircular canals to stabilize eye movement while

maintaining equilibrium, as predicted in EPH.

1.4.2.3. Spiking neural network (SNN)

The modeling of the components of the nervous system is required to develop
bio-inspired controllers. In particular, the main component of the nervous
system is a cell called neuron. This cell is responsible for processing and
transferring information within the nervous system. The first bio-inspired
neural networks developed were called Artificial Neural Networks (ANN).
However, these networks do not encode the information with impulses, the way
this occurs in biological systems. In addition, they cannot emulate the learning
mechanisms. On the contrary, Spiking Neural Networks (SNN) is a newer
approach that emulates electrical impulses on the nervous system. Within this
approach, there are models with different levels of computational complexity
and biological representation, yet the model proposed by Izhikevich (2003) is

one of the most widely used since it provides very good representation with
low computational cost. This proposal has been boosted thanks to the
appearance of the Hodgkin-Huxley (1952) model, which has allowed them to

be used for the development of deep neural networks. Pfeiffer et al. (2018)

describe the opportunities that this evolution represents. Other authors such
as (Demin et al. (2018)) focus on the use of Recurrent Neural Networks

(RNNs). However, studies are mainly applied to pattern recognition problems
(Awadalla et al. (2012)), not existing many examples of its use in control
applications (Bing et al. (2020)), (Wang et al. (2014)).

In addition to the neuronal model, information transmitted within the system

is encoded by means of a sequence of impulses. Thus, it is necessary to develop
a methodology to encode and decode this information. For encoding, an
artificial spike train can be used directly or even a neuron itself, as a pulse
generator. The latter is similar to sensory neurons that fire more or less
depending on the external excitation. Normally, this type of coding is
associated with modulation by Gaussian bells (Bohte et al. (2002)), (Oniz et
al. (2015)) to distribute the information among several neurons.

On the other hand, decoding transforms spikes into a continuous variable, just

as the motor units of muscles convert neuronal excitation into a force.
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Kaiser et al. (2016) proposed the use of a muscle model to filter the impulses

by using two of them in an antagonistic structure. If several neurons need to
be decoded, they are distributed among different motor units using Henneman
(1957)’s size principle.

Different simulation tools can be used to implement SNN algorithms with
programming environments such as MATLAB and Python. Some project
examples can be found in Brain (Goodman et al. (2008)) and Nengo (DeWolf
et al. (2020)), where the network is enabled to run on polymorphic hardware
such as Intel's Loihi. Furthermore, Izhikevich et al. (2007) modeled the
complete brain with SNN and simulated it with C programming language,

using a cluster.

1.4.2.4. Learning process

One of the main unknowns in biological neural systems is the mechanism of
learning. Kandel (2015)'s study of Aplysia described the fundamental

mechanisms of biological learning, thanks to which he was awarded the Nobel
Prize. Doya et al. (2001) described the types of learning and classified them

into supervised, unsupervised, and reinforced learning.

Examples of learning applied to SNN are described in SNN (Taherkhani et al.
(2020))(Lobo et al. (2020))( Wang et al. (2020)). In addition, there are
adaptations of reinforced learning (Izhikevich (2007)) and supervised learning

(Taherkhani et al. (2018)). Both are mainly based on neural plasticity as a
function of activity (Wei et al. (2019)), utilizing the STDP method, supervised
learning applied using STDP being the most widely used. Dopamine

modulation is also introduced to combine STDP learning with the reward in
reinforced learning. This way, dopamine activates and deactivates STDP
depending on the evolution of the learning process. Another factor to take into
account is the initialization of the network, since an early determined structure
(Arena et al. (2009)) may influence learning capacity and allows predicting the

behavior of the network. The latter allows online learning without the risk of
unpredictable responses as occurs with randomly initialized structures.
Finally, all the flexibility that SNN and learning algorithms allow to obtain
new solutions, like modeling a biological system such as an arm by Spiiler et
al. (2015), robot control (Wang et al. (2019)), (Tang et al. (2018)), ( Bing et
al. (2019)) or pattern recognition (Hao et al. (2020)).

1.5.0utline of the thesis

This thesis is organized into two parts: the first part introduces the work
carried out during the first three years of the thesis. The second part includes
papers published during this period as a first author.

10
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The first part is structured as follows: the vehicle model including the road tire
interaction as well as the actuators involved are described in Section 2.1. Next,
the Wheel Slip Control (WSC) scheme used is defined (Section 2.2). The
estimation needed is performed by using an Extended Kalman Filter (EKF),
which is presented in Section 2.3. SNNs-based algorithms have been used to
develop the rest of the components required for the WSC (identification and
intervention), which are described in Section 2.4. Simulations and results are
included in Section 3. Finally, the main conclusions of this research and future

work are presented in Sections 4 and 5 respectively.

. Introductio:

2. Methodology

vomeus AND PARAMETER IDENTIFICATION syves
ESTIMATION INTERVENTION

2.1. Vehicle Model

211, Multihady Model “ 2.4.1 Neuron Model

122, Wheel Slip Control

2.3. Estimation

2osnlts and Discugsion
4. Conclusions

5. Future worl

Figure 2. Thesis overall structure

The second part presents the articles that combines two research lines: vehicle
dynamics and spiking neural networks. Thus, the published papers focus on
solving challenges in both lines of research. Subsequently, a final paper has
been written that merges the achievements so far to propose a complete vehicle
safety system controlled with bio-inspired algorithms. Furthermore, results
obtained in experimental tests have also been included in this final paper.

The first publication [1], prior to the beginning of the thesis, established the
basis and gave insights into the viability of the proposal. This paper describes
a neural control inspired by neural connections found in biological systems.
The controller is capable of managing a nonlinear system with a complexity
similar to the dynamics of a tire. However, no self-learning method was used.

11
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With the second paper [2] published, the goal was to define a control scheme
for tire contact dynamics, describing a model of the system and actuators. This
paper allowed understanding the requirements that such a controller should
have in terms of temporal response and low computational cost but also
regarding the need to adapt to the environment. It has to be noted that several
factors influence the dynamics of a tire. Taking all these aspects into account
increases the complexity of designing the controller and limits it to a very
specific use in a particular tire and vehicle. A simple controller capable of
learning can be a more appropriate solution than a very complex and inflexible
algorithm with many parameters to be tuned.

The third article [3] sought to explore the concept of adaptability using fuzzy
logic. Fuzzy logic-based controllers are considered one of the most efficient
control algorithms due to their low computational cost. By means of
evolutionary learning, based on coevolution, the proposed controller was
trained to obtain good behavior on different types of roads, as well as with
sudden changes in the surface. The possible combinations between road types
and changes are high so, by means of coevolution, the learning was focused
only on those areas where the controller made the greatest error. This reduced
the number of possible simulations and ultimately resulted in a controller
capable of maximizing adhesion for all surfaces. The main problem that arose
was what happened if the controller encountered a new surface, degradation,
pressure, temperature, and other conditions. If so, it would be necessary to
repeat the learning procedure from the beginning, which represented a great
disadvantage for real-time applications. This way, in order to train the
controller, it was necessary to simulate a large number of combinations, which
required a large computational cost and prevented the algorithm from being
updated in the final hardware.

Finally, in the fourth paper [4], the controller proposed in the first paper has
been greatly improved by developing a neural model with a more advanced
structure, the main contribution being the proposal of an STDP learning
algorithm capable of learning during its normal operation. To this end, it has
been applied to control a nonlinear model of an arm, being able to adapt to
variations and perturbations in the system with responses similar to those
experienced in the human body. Thus, an algorithm with a low computational
cost, capable of learning in real-time, is proposed, which allows its application
in embedded systems such as those used in vehicle control. All in all, this
represents one of the main contributions of this thesis, not only being able to
control a nonlinear system but also endowing the controller with the ability to
adapt to possible changes in system dynamics.

In addition, all the knowledge acquired has been implemented in an
experimental vehicle through a collaboration with the Swedish University of

12
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KTH. During a three-month stay, the control algorithm based on neural
networks was tested on a four-wheeled electric experimental vehicle (Research
Concept Vehicle RCVe) equipped with industry-recognized DSPACE
controller hardware. These tests served to validate the proposed approach on
a real vehicle. Figure 3 shows the overview of the thesis in a flow chart over
time.

13
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2.Methodology

This chapter is devoted to outlining the methodology followed to model a
vehicle and the structure required to control it. Therefore, this chapter is
divided into four sections focused on describing the vehicle model, the control
scheme, the estimation, and the neural algorithms respectively. First, the
vehicle model is described.

2.1.Vehicle Model

A vehicle model is required to replicate the behavior of the vehicle equipped
with the Wheel Slip Control (WSC) proposed in this work.dui The use of an
adequate vehicle model is crucial since it determines the dynamics of the system
to be controlled. Therefore, it is important to set the minimum requirements
of the model to achieve a good balance between computational cost and
accuracy. For the study of longitudinal dynamics, the tire model is prioritized
over the vehicle body model since the tire-road contact model is highly non-
linear. The body model is mainly in charge of determining the vertical forces
and velocities of each wheel, so the minimum requirement is that it has to be
capable of providing a good representation of the load transfers associated with
longitudinal acceleration.

2.1.1. Multibody Model

The use of a multibody model allows the calculation of speeds and forces
considering all the degrees of freedom available in a vehicle. However, since
this thesis mainly focuses on the control of longitudinal tire forces, the use of
a multibody type model is not necessary. Nevertheless, two and four-wheel
models developed by BikeSim and CarSim have been used. This allows
validating the performance of the simpler models proposed below, as well as
validating the developed control algorithm.

The main drawback of multibody models is the associated high computational
cost, which limits the number of iterations to train the control algorithm. When
developing new learning methodologies, it is necessary to test different
configurations and types of control structures, thus fast simulation processes
are desired, provided they represent the system correctly. Hence, the models
used for the development of the proposed algorithms are presented below.
These models satisfy the low computational cost target by reducing the number
of degrees of freedom and focusing on the longitudinal dynamics of the vehicle.
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2.1.2. Two-wheeled vehicle

In this case, the planar model commonly known as a bicycle model, where only
longitudinal and vertical forces appear, is used (Figure 4). This model can
include the behavior of the damping system to correctly simulate the vertical
load transfer during transients. Due to the risk involved in performing tests on
two-wheeled vehicles at high speed, the tests were performed at low speed to
avoid the possibility of rollover. This results in minimal impact on the

suspension system during a test.

Figure 4. Planar motorcycle model

The governing equations used are those associated with 3 Degrees Of Freedom
(3DOF) horizontal (1), vertical (2), and pitch (3).

M(3%4-67)=F+F +F4 0
Iyy é:'Ferf—i—FuLl -Fyz-F, 7z )

Where x, y and z are with respect to Earth-fixed axes. In addition, the
equations linked to the rotation of the front (4) and rear (5) wheels are also

taken into account.

Lo =T¢F Ry (4)
IV\."I'QI':T]'_F.‘(]'R‘[' (5)
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The parameters used in the model are summarized in the following Table 1:

Table 1. Motorcycle model parameters

Symbol Description Symbol Description
X Longitudinal displacement (COG) Ct Stiffness of front suspension
z Vertical displacement (COG) Cr Stiffness of rear suspension
M Mass K Front damping
o Pitch angle K, Rear damping
Qf Front wheel speed Fq Force drag
[$8 Rear wheel speed Ty External torque front tire
Ry Front tire radius T External torque rear tire
R, Rear tire radius Fy Front longitudinal force
Ly Front half length Fer Rear longitudinal force
L, Rear half length Fy Front vertical force
Ty Inertia on the Y axis Fr Rear vertical force
Tt Front wheel spin inertia

Lor

Rear wheel spin inertia

2.1.3. Four-wheeled vehicle

A three Degree-Of-Freedom (DOF) model is used to reproduce the dynamics

of a four-wheeled vehicle. This model takes into account longitudinal and

lateral translation, as well as the yaw of the vehicle (Figure 5). However, this

model does not consider vertical movement. Thus, it will be necessary to

calculate the load transfer on each of the wheels by means of additional

equations.

Figure 5. Four-wheel vehicle model

These model equations are similar to those of the two-wheeled vehicle model.

However, in this case, lateral movement is more important than the vertical

one. In this case, the equation for longitudinal forces (6), lateral forces (7), and

yaw (8) are taken into account.
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M(X'y G)ZF":[1+F‘(1|+F\<|]+FY||+F<l~ (6)
M(V+X e):F\[1+F\1|+F\|]+F\H+Ftl\ (7)
IZZé:Lf(F}'[1+F}'1'|')_Lr(F}'1']+F§'l'l')+0'5W(Fx[]_Fx1'|'+FX|']_Fxl'l')+I\'"Itlz (8)

Since pitch is not taken into account in this model, it is assumed that the
vehicle always keeps the wheels in contact with the road. This assumption can
be made based on the geometry, mass, and position of the Center Of Gravity
(COG) in four-wheeled vehicles, which ensure the contact of the wheels with
the road in almost all driving conditions. Therefore, the vertical load equations
are presented for the front (9) and rear (10) axles with these assumptions.
Similarly, the following equations are used to obtain the load on each wheel:
front left (11) and right (12) as well as rear left (13) and right (14).

F,¢(Li+L,)=L,Mg-(%-y6)Mh+hF 4,-My, 9)
F (L Ly )=LeMg- Ge-§6)Mh-+hF g+ Mg, (10)
F,n=F+(Mh(7-+% 8)+hFq,-Mgy) = (11)
F.u=FFxn (12)
F i =F+(Mh(+5 6)+hEFqy-M,) = (13)
Fur=Fu-Fxi (14)

Additionally, each wheel has an associated rotational equation as in (4)(5)
which has been omitted as they do not add further information.
The parameters used in the model are summarized in the following Table 2:

Table 2. Four-wheel vehicle model parameters

Symbol Description Symbol Description

Longitudinal displacement (COG)  Fy= Fiy + Fur  Front longitudinal force

y Lateral displacement (COG) Fu= Fui + Fur  Rear longitudinal force
M Mass Fy= Fy + Fy  Front lateral force

6 Yaw angle Fy= Fyu + Fyr Rear lateral force

Lt Front half length Fy= F. + Fy  Front vertical force

L. Rear half length Fo= F.1 + F.r  Rear vertical force

w Vehicle width Fa Force drag

h Height (COG) M Moment drag

| P Inertia on the Z axis
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2.1.4. Tire Model

As previously emphasized, the tire model mainly determines the dynamics of
the system to be controlled. Hence, it is of vital importance that the tire model
should represent tire nonlinearity and transient response faithfully. In this case,
the main problem encountered is the difficulty to obtain real tire data and to
gain access to the more recent and advanced tire models due to industry
secrecy. In this work, Pacejka’s Magic Formula has been used. This model has
been chosen because it can reproduce tire-road adhesion with a reduced number
of parameters. In addition, it can be used to model possible variations in
adhesion and transient response by adding a transient term.

In Pacejka’s model, the longitudinal force equation (F;) is a function of the
vertical force (F,) and a set of experimentally obtained parameters according
to equation (15). These parameters {D,, C,, By, E, } define the behavior of the
uxi) and

the vertical dimensionless load by using equation (17) in combination with the

tire (16) on different surfaces as a function (P) of the type of road (A
nominal load (F,y) of the tire.
Fyi=D,sin[C, arctan{B,x;-E,(Byx;-arctan(B,x;))}] (15)

Dx:FZiP‘DF ((I-fzi ))\p.‘(i)
C.'(:P(.'X (dfzi)

16
B,=Pp_(df,; A (16)
| E.=Pp(df,)
_I“'{.i—FZO
dfi=—— (17)

To model the transient response, the relaxation length (o) is used, which
provides the time response of the slip (x;) as a function of the longitudinal
velocity (18).

dx;

m +|%|x;=Ra0;-x (18)

Since the study focuses on longitudinal forces, the used lateral model is

Ox

considered purely linear since the experienced slip angle (o) will be reduced.
Lateral forces are defined as a function of the cornering stiffness (C,), the
vertical load (F,), the road type (A
(19).To model the latter, equation (20) is used, which uses the lateral
relaxation length (oy). Thus, it reproduce the transients as long as the slip

), and the slip angle (o) according to

angle variation is reduced, as in the case of longitudinal braking and traction

tests.
Fyi:—c},ai}\uxini (19)
doy . .
Oy % +1%|og=-y (20)
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2.1.5. Actuator Model

Just as the road-tire contact determines the dynamics of the system to be
controlled, it is also necessary to take into account how the system will interact
with it. A suitable model of the actuator used to impose forces on the tire is
crucial to develop a control algorithm. A faster actuator allows less complex
logic to be used since it is not necessary to anticipate the forces generated in
the tire, while a slower actuator requires an algorithm capable of predicting its
response. A common mistake made when developing control algorithms is not
taking into account the time response of the actuators. This results in systems
and controllers capable of maintaining the slip without any oscillation in
simulations. However, this behavior is not realistic since system delays and
temporal responses have a big influence on the overall performance of the
controller. This fact can typically be observed when testing controllers only
with simulations and not testing them in real systems. To avoid this issue, the
controllers proposed in this thesis will be evaluated by means of experimental
results obtained from research vehicles.

2.2.Wheel Slip Control (WSC)

The main contribution of this thesis is the development of a vehicle safety
system based on the use of Spiking Neural Networks (SNN). To this end, a
wheel slip control algorithm composed of three main modules, namely
estimation, identification and intervention, has been proposed. This way, an
EKF-based algorithm has been used to estimate the parameters required by
the identification and intervention modules. Next, SNNs have been utilized to
create the last two modules of the controller. All these modules are described
in the following sub-sections. To control tire dynamics, it is necessary to
achieve a particular slip level. This is due to the fact that tire dynamics are
mainly determined by the slip level (k). Furthermore, maximum longitudinal
forces are obtained when an optimum slip level (k) for which the grip level
is maximum is reached. In addition, the optimum slip level sets an inflection
point where the dynamics change from being stable to becoming unstable.
Hence, the controller should consider this optimum level to provide improved
performance (Figure 6).
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Figure 6. Stable and unstable tire region (Slip vs longitudinal grip)

Unfortunately, the slip and its optimum value cannot be measured directly.
Consequently, it is necessary to estimate them based on variables measured by
sensors installed in the vehicle. For the optimal slip, it is also necessary to use
a classifier since it depends on the type of road. Thus, it will be necessary to
develop a detection mechanism.

The controller that controls the slip and its optimum value must be able to
regulate the torque applied to the wheels. To this end, slip error is commonly
used, which is defined as the optimal slip subtracted from the actual slip.
However, it is also possible to use the integral or derivative of the error as well
as to establish more complex relationships between both variables.

In this thesis, using an estimator based on an Extended Kalman Filter (EKF)
for indirect determination of the slip is proposed. Besides, Spiking Neural
Networks (SNN) that integrate classifier and control functions are developed.
Figure 7 shows how the components (Estimator, Classifier, and Controller) of
the WSC are connected to obtain the proposed control scheme.
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Figure 7. Wheel slip control (WSC) scheme

2.3.Estimation

The first block of the WSC is the estimation module. The estimation of the
slip level of each wheel as well as the longitudinal grip (Ux;:in/in) are

required to determine the type of road and to be able to control the vehicle.
For this purpose, sensors installed in most modern vehicles, such as an Inertial
Measurement Unit (IMU) and a speed sensor on each wheel, are used. In
addition, the torque required at each wheel is also used. This torque can be
determined in traction through the engine map and by measuring the hydraulic
pressure of the master cylinder in braking processes. Knowing these variables
and the dynamics of the system to be controlled, presented in previous sections,
next, using an Extended Kalman Filter (EKF) to perform the estimation task
is proposed.

The estimator linearizes the equations to obtain the internal variables of the
system. Consequently, the vector of state variables (21), the vector of measured
variables (22) as well as the control vector (23) is defined. The following

equations can be derived for a four-wheeled vehicle.

T
Xk:[ux[1apx i Mo Mo Kb s Kol aKﬂnKrr] (21)
jk‘:[i}éaQﬂaQﬁ;Qr]>Qt'r]T (22)
uk:[Tﬂ)Tl'l'aTr]aTt'r]T (23)

The EKF assumes that the state variables (x;) evolve in time as a function
(24) which relates the previous state (k-1) to the current state (k), affected by

a noise (wy) with a zero mean and covariance Q. Similarly, it assumes that the
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measured variables (j, ) evolve as a function (25) that relates the state variables
to the measured ones, also affected by white noise (vy) with a zero mean and

covariance R.

Xk=¢k_1(Xk_1 » Uy )+ Wy (24)
Je=hi (o) +vy (25)

The function (¢, ; ) predicts a new state as a function of a previous state.
Similarly, the function (hy) predicts the measured variables as a function of
the estimated state. To determine the value of both functions, it is necessary
to use the equations of the vehicle model. Thus, the measured and state
variables are taken out of the model equations. If the evolution of any of the
variables is unknown, its previous value will be assigned, leaving its time
evolution solved by using the Kalman filter itself. This strategy is called
random walk. The Kalman filter estimates the state variables through a
prediction and update based on a temporal model (24-25). Initially, it performs
the a priori prediction of the subsequent state (26) and then a projection of
the error covariance (27).

filtszk_] (K1, 1) (26)
P =®, 1P Oy +Q (27)

Next, the filter gain (28) is obtained. This gain is used to update the states
(29), taking into account the measured variables (j, ) and the error covariance
(30).

k * -1
Ky =P, Hy (H,PH +R) (28)
R =R+Ky G -hy (R0)) (29)
P =(-K H,) Py (30)

The Jacobians of the state variables (31) and measurement (32) are used to
linearize the nonlinear equations of the system in the current state.

9011 A

O 1——'at] ‘(Xk-]) (31)
h ~F

Hi=S% (%) (32)

The Jacobians can be precomputed or performed during the execution of the
filter, increasing the computational cost in the latter case.

Another way to implement the Kalman filter is with a double structure that
allows decoupling the kinematic and dynamic equations, providing greater
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stability in the prediction although with a higher associated computational
cost. This structure would estimate vehicle speed and calculate the slip level
in the first stage. Next, in a second stage, it would estimate the vertical and
longitudinal forces that allow obtaining the adhesion.

Finally, covariance matrices Q and R have to be properly determined to
improve the Kalman filter performance. This way, to optimize the results
obtained by the estimator, a genetic algorithm has been used to minimize the
error. Real test data have been used for this purpose.

2.4.Spiking Neural Networks (SNN)

The determination of the type of road is carried out by the identification
module of the WSC. This information will be an input to the last module of
the controller, i.e., the intervention module. In this work, the identification and
intervention modules are based on the use of Spiking Neural Networks. SNNs
are considered the third generation of neural networks. In the new paradigm,
the information is encoded by means of impulses. The main advantage offered
by SNNs is the accurate reproduction of the behavior of biological neurons.
This allows the implementation of biological learning methods that can only
be applied to spike coding.

To interact with the environment, information must be encoded and decoded
so that it can be processed by the neural network. Three types of neurons are
defined according to their relationship with the environment: sensory neurons,
interneurons, and motor neurons.

Sensory neurons are responsible for measuring environmental variables and
transforming them into impulses to be subsequently processed by the network.
Interneurons have no relationship with the environment. However, they play a
fundamental role since they are the ones that establish complex relationships,
modifying the response of the network to a sensory stimulus. This response is
transformed into action by the motor neurons that connect directly with the
biological actuators. For example, in a muscle, there is a large number of motor
neurons acting on the muscle fibers to contract and extend the muscle
according to its activity. Biological neurons are composed of the dendrite, the
neuronal nucleus, and the axon. Similarly, these components are also
reproduced to develop the aforementioned three types of spiking neurons. In
the case of sensory and motor neurons, dendrites and axons are replaced by
coding and decoding processes respectively, as shown in Figure 8.
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Figure 8. Neuron components and neuron configurations

In these networks, a stimulus is converted into a response through a neuronal
pathway, performed by the link between an axon terminal and a dendrite,
known as a synapse. It is responsible for establishing the strength of the link
between neurons.

The use of spiking neural networks as well as the development of an innovative
online learning strategy are the main contributions of this thesis. Therefore,
the type of neuron and synapse used as well as their interconnection and
learning algorithm are detailed first. Then, its application for classification and
control applied to vehicular systems is descried.

2.4.1. Neuron Model

The neuron model used is the one proposed by Izhikevich since it offers a low
computational cost without losing biological representation. This allows the
use of biological learning algorithms suitable for integration into embedded
hardware used for the control of passenger vehicles. The proposed model is
composed of two differential equations (33) that model the neuronal membrane
potential (v) as well as its recovery (u). For this purpose, it resorts to four
parameters {a,b,c,d} that define the neuronal firing response.

dv

I:

0.94 v*+5 v+140-u+I(t)

an (33)
:]T:a (b v -u)
If v230 mV then { 7% (34)

When a firing occurs, that is, when the membrane potential exceeds a certain
threshold, the neuron resets its values according to the function (34). The
neuronal model converts a level of direct current (I(t)) coming from the
synapses into electrical impulses that travel along the axon to the next neurons.
Figure 9 shows different responses obtained by varying the parameters
{a,b,c,d}. Both the firing frequency and the bundling of the firings vary. To
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ensure a fast response as well as low distortion in the processed signal, a fast-
spiking response is required.

Regular Spiking (RS) Chattring (CH)
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Figure 9. Neuron ramp response for different parameters [a b c d]

2.4.2. Synapse Model

The synapse models the connection between two neurons. This process converts
the electrical impulses coming from the presynaptic neuron into the input
current to the postsynaptic neuron. Biological mechanisms use
neurotransmitters for this procedure. These neurotransmitters are released
with the arrival of an impulse. Eventually, a high concentration of them opens
channels in the dendrites, allowing the flow of current into the postsynaptic
neuron. Both the number of channels and the concentration of
neurotransmitters regulate the strength of the synaptic connection as well as
its temporal response. This response can be almost instantaneous in the so-
called electrical synapses which, unlike chemical synapses, have a minimal
temporal response.

Neurotransmitter release is modeled using the response function (g) as a
relation to the time elapsed between impulses, where (t;) is the time instant in
which the last impulse occurred. The response function combined with the
strength associated with each of the neuronal connections (wj;) determines the
input current according to (35), where i is the presynaptic neuron and j is the

postsynaptic neuron.

I(t)=X wy e(t-t; )= X wy e(At) (35)
The response function model can be solved by reproducing the conductance of

the synaptic junction through its temporal response (36) or by using a first-
order system (37).
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At lAr

(A= T—HL s, if At>0 (36)
0, if At<0
:IS(AI}:_ g(m)—l-é(At) (37)

dt Tq

However, none of these methods resemble the biological description based on
channels that open and close in time with the arrival of impulses. For this
purpose, a series of finite channels that model the response function as the sum
of the conductivity in each of the activated channels are proposed (38). Since
the number of channels is finite, they are reused once the conductivity is low
or a new impulse arrives, for which the time of the impulse associated with
each channel is defined according to (39).

. t =t
th= 1 {keN| 2<k<n}
ti- tiz t

tilztil
Atk=t-t5  {keN| I<k<n}

Figure 10 shows a comparison of the three methods for a constant spike train.
It shows how the response offered by the proposed model combines fast
response with minimum oscillation. This behavior minimizes disturbances and

speeds up the response of the controller.
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Figure 10. Comparison between synapse models according to equations 36, 37, and 38

Figure 11 shows the conductivity of a synapse modeled by a total of 8 channels
for a continuous train of impulses. The channels become gradually occupied
with the arrival of new pulses and are closed when they become obsolete. In
addition, the state of each channel is plotted, relative to the conductivity curve
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(36). In order to make the output value independent of the number of channels
used, the sum of all channels is divided by the integral of the conductivity
(etg), resulting in equation (38).
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Figure 11. . Synapse model with 8 channels activated at the same time periodically

2.4.3. Coding and Decoding

Both the encoding and decoding processes are of crucial importance in order
not to lose information during the transformation. Hence, they are studied
independently below.

Sensory neurons are in charge of translating information from different sensors
into electrical impulses. Different methodologies exist depending on how to
encode the information in the impulses. The time between pulses and the firing
rate can be used to create a train of artificial pulses that encode the
information. However, there is another option where the neuronal nucleus is
used as a pulse generator, modulating the input current depending on the
information to be encoded. This thesis proposes using the latter method since
it also allows utilizing the concept of ‘summation’, where the information is
not only encoded temporally but also spatially.

Thus, the input variable (u) is encoded in a current value (I(u,i)) for a given
number of sensory neurons (i). A set of Gaussian bells (40) distributed in the
input space along the entire range of (u) in a linear way (41) is in charge of
generating the current for each neuron. According to the distribution factor
(B) (42), one or more neurons are activated at the same time for a given input
value (Figure 12a).

()’

I(uai):Imax € 2 02 (40)
p(i)21111111+(i'1) % (41)
Op:B Inmx‘lmin (42)

m-2
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On the other hand, motor neurons are responsible for converting the neuronal
output current into processed information. This information is decoded in the
form of stimuli, in biological actuation systems such as muscles composed of
fibers. This stimulation is responsible for contracting the muscle to perform an
action. To this end, this thesis proposes using the synapse to obtain the
stimulation current associated with each neuron. Then, the current of all motor
neurons is added up, taking into account the distribution used for coding ().
Each neuron is associated with a gain in the same way, as proposed by
Henneman's size principle. Each motor unit has an associated action capacity
so they complement each other.

The decoding, in the same way as in the encoding, is performed linearly (Figure
12b) according to equations (43) and (44). Finally, the resulting value is
obtained as the sum of the intensity coming from the synapse of each motor
neuron multiplied by the gain of each motor unit (45).

p(i)21111111+(i'1) % (43)
Linax-Timin

Ca=B— 7 (44)

y= 2% IDn(i) (45)
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Figure 12. a) Coding and b) decoding procedures

It can be observed (Figure 13) how the signal maintains the information after
passing through the network if encoding and decoding are applied by assigning
a neuron to a neuron without cross-connections. In this example with only 4
neurons, high-frequency noise can be observed in the reconstructed signal due
to the decoding process and the frequency at which the firing occurs. A larger
number of neurons is required to avoid this distortion and thus reduce the
signal to noise ratio.
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Figure 13. Coding and decoding implemented in a (4x4) neuronal network

2.4.4. Neural Path

Neural pathways are responsible for establishing the relationships that allow
neural networks to perform highly complex tasks. These tasks are achieved by
means of interconnected structures with a large number of neurons.
Consequently, figuring out the connections as well as their behavior are highly
complex tasks that require many years of work behind the mapping of neural
areas. Thus, the work performed is based on biological mechanisms that are
simpler and easier to recognize. This is the case of the Aplysia and structures
in humans that do not require a large number of neurons, such as those related
to reflexes.

The simplest neuronal pathway consists of a single synaptic link between a
sensory and a motor neuron. In this so-called monosynaptic connection (Figure
14a) the information travels from the sensory receptors, represented by the
encoding, to the motor units, typically muscular, represented by the decoding.
This type of binding leads to a direct reaction to an action. Such a link can be
found in the mechanism of reflex actions that require an immediate response
to a stimulus in order to avoid danger. One of the cases always used as an
example is the patellar reflex, which, after receiving a blow on the knee, makes
the leg rise quickly due to a monosynaptic binding. However, this reflex is not
only associated with a monosynaptic connection but is also constructed using
polysynaptic connections (Figure 14b). This reflex, by means of an interneuron,
inhibits the muscle opposite to the one stimulated by the monosynaptic
junction. Therefore, the pathways of reflex arcs allow us to understand how a
network behaves in response to certain stimuli. More complex reflex structures

have to be studied to analyze networks in charge of continuous control.
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Figure 14. Neuron connections: a) monosynaptic and b) polysynaptic
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The Vestibulo-Ocular Reflex (VOR) is an example of continuous control found
in animals besides humans. This reflex is responsible for maintaining a stable
gaze during a horizontal head movement. This requires continuous control of
eye position. This control is done according to the angle of the head obtained
by means of the acceleration sensed by the semicircular canals.

The network that allows this control is composed of a large number of neurons.
However, it can be simplified according to functional units as shown in Figure
15. The control mechanism is similar to the one used in the patellar reflex,
where two antagonistic muscles are stimulated by an inhibitory and excitatory
junction. This network is in charge of changing the point of equilibrium of the
muscles acting on the eye. The proposed control structure that maintains the
closed-loop equilibrium is described in the following sections. This structure is
developed on the principle of antagonistic action obtained from the analysis of

reflexes.

)]
Vi)
&/

Figure 15. Simplified VOR reflex arc excitatory (left) and inhibitory (right)

2.4.5. STDP Learning

Despite using a connection similar to those found in nature, a learning process
is required to adjust the strengths of the synaptic connections. This process
allows adjusting the behavior to a particular system. There are several learning
methods, most of them coming from adaptations of algorithms for ANNs.
However, these algorithms are not based on biological mechanisms. They use
mathematical optimization algorithms to minimize the error committed by the
network. Sometimes optimization algorithms based on natural behavior are
used, such as those based on evolution or genetic co-evolution. However, these
learning mechanisms are not based on neuronal plasticity and do not reproduce
learning between biological neurons faithfully.

This thesis aims to use a learning mechanism based on neuronal plasticity using
Spike-Time-Dependent Plasticity (STDP). This methodology resorts to the
synchronization of pre- and post-synaptic neurons to determine the type of
strengthening that the synaptic linkage receives (46). The synapse is modeled
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as a function of the time between firing (1) by offering Long-Term Potentiation
(LTP) or Long-Term Depression (LTD) so that the synaptic strength is
increased or decreased, respectively. This response is defined by the so-called
STDP rule.

T :t'post'tprl- (46)

In biological systems, different STDP rules are found depending on the activity
performed by each neural network. Thus, Hebbian type learning using L'TP for
1>0 and LTD for 1<0 coexists with anti-Hebbian learning, involving inverted
behavior and rules where there is always L'TD or LTP for t<0. Out of all
combinations, a Hebbian rule (47) is used for classification while AIl-LTP is
employed within the control network (48).

Il
STDP(t)=sign(t)e sTOP (47)
4

STDP(t)=e 'st0P (48)

Both of them (Figure 16) are associated with the same type of application in
similar structures found in the brain. To extract information or patterns, a
Hebbian rule is more appropriate, whereas STDP rules of the All-LTP type

are more suitable for the realization of control with high firing frequencies.
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Figure 16. Hebbian and All-LTP STDP rules

To integrate STDP with a supervised learning-based control scheme, it is
necessary to modulate its effect to define the evolution of synaptic strength.
The error between the output and the desired target is used to modulate the
learning, just as dopamine is released in a biological system. Thereby, the time
evolution of both the STDP rule (49) and the error (50) is defined. Each of
them is assigned to a time constant (t¢ and tp respectively) that regulates its
delay in its application. The modulation is produced using equation (51).

o _ (—( FSTDP (1) (b-tyropost) (49)
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@—-B—Hﬂ"ror(t) (50)

dt - D
ds

In addition, it is also necessary to define the eligibility (g) to reproduce the
time evolution of the synaptic forces. This is a biological phenomenon in which
the connections with higher efficiencies have to undergo greater changes. This
is regulated according to (52) and constants (g,) and (g,). Finally, the weights
are modified in each iteration according to (53), where the eligibility and
modulation define the growth for each synaptic strength. Furthermore, a
learning constant (j,) is included in order to cause a higher or lower impact on
the synaptic strengths while maintaining a trade-off between convergence and
learning speed. Additionally, it can be multiplied by the presynaptic current
(I;) to increase the potentiation in the connections with higher currents.

g(WU): 1_g] Wij,max (52)
wij (t)=wy (t-At)+p, dS g(wij (t—At))Ii w

This rule must be constantly updated when a new firing occurs. Consequently,
the presynaptic or postsynaptic neurons allow the modification of the synaptic
connection as shown in Figure 17. When the network consists of more than one
neuron per layer, the neuronal connections are represented in a matrix form
and the STDP rule is associated with another one of equal dimensions. This
allows matrix operations to solve the learning of a large-size network without
increasing the complexity of the learning algorithm.

!' Learr;ing Rule‘

L
Error
R i

..,ipm

tpost

STDP

Figure 17. STDP learning scheme using error and STDP rule

2.4.6. Classification

A neural network based on SNN is proposed for road type classification tasks.
In order to detect the type of road, the information provided by the EKF
estimator is used. Specifically, it uses the level of slip and grip experienced by
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each wheel. The information required by the controller is the optimal slip, so
this is the variable to be identified. Therefore, the determination of all
parameters defining longitudinal contact dynamics (15) is not necessary.
Figure 18 shows the input data set (x,u) for 4 different conditions modeled
with various parameters {D,, C,, By, E,}.

The contact condition can easily be determined by distinguishing the difference
between the four curves. Only for the case of low slip, two of the curves overlap,
which makes it very difficult to distinguish them. This is not a problem for a
WSC type controller since the classifier always works with medium or high slip
levels.

-0.5

—— Dry tarmac

Figure 18. Tire data for different road-tire dynamics

Although the classification to be performed is not very complex, it is necessary
to set up a neural structure where interneurons are present. Consequently,
there is at least one hidden layer that endows the neural network with a high
capacity for pattern differentiation. In this particular case, it will associate an
optimal sliding level to each road condition. The classification does not start
from a prefixed structure since it is difficult to find one with similar
characteristics in nature. Therefore, a fast-spiking neural network (Figure 19)
with a single hidden layer consisting of 20 sensory neurons (10 per input), 15
interneurons, and 10 motor neurons is used. Initially, the synaptic links are
fully connected with random values. This type of structure is widely used in
ANN classification networks.

However, the learning method is different from the traditional one found in
artificial networks since STDP-based learning is applied.
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Figure 19. Classification neural network

Learning is performed offline with a training and validation data set consisting
of the input pair (x,u) and the optimal sliding (x) as the learning target.

The STDP rule used is the Hebbian type as it is the one found in cerebral
regions where tasks associated with detection and classification are reproduced.

2.4.7. Controller

As far as the controller in biological systems is concerned, networks with similar
functionality can be found. The connections and synaptic strengths of these
structures inspired by reflex arcs are tuned and modified to ensure stability
during operation depending on the task assigned. The selected control scheme
is the Equilibrium Point Hypothesis (EPH), as previously discussed, which is
one of the two control theories for biological control. Concretely, EPH can be
observed in reflex arcs such as the Vestibulo-Ocular Reflex (VOR). Other
biological systems, such as the control of an arm, can be explained with this
approach. The Central Nervous System (CNS) sets a target for the position of
the arm and the proposed neural circuit (Figure 20) controls the two antagonist
muscles. This structure is inspired by the continuous control of the VOR as
well as the threshold-based scheme of the EPH.

A similar control structure can be applied to Wheel Slip Control (WSC). Based
on the optimal slip obtained by the classification neural network and the
current slip estimated by the EKF, the proposed control neural network
provides the torque setpoint. The controller is responsible for increasing or
decreasing the torque on the wheel depending on whether the threshold
imposed by the optimum slip is exceeded or not reached.
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Figure 20. Arm Controller based on Equilibrium Point Hypothesis (EPH)

Figure 21 presents the neural connections using the minimum number of
neurons possible to perform the control. Each neuron is assigned to a variable
and a certain sign. This way, control can be performed with only 6 neurons. It
is noteworthy that, as observed in the encoding and decoding process, a greater
number of neurons minimizes the noise in the control signal. Thus, for proper
operation, it is necessary to increase the number of neurons while maintaining
the same neuronal connections, thus distributing the strength of the synapse
among the number of connections made.

The excitatory and inhibitory neuronal connections as well as the strength of
each connection enable the implementation of the dual antagonistic neuron
approach. These neurons are responsible for increasing or reducing the torque
exerted on the wheel. This allows the torque to be continuously modulated,
detecting whether we are above or below the threshold. This ensures the
stability of the controller, allowing its adaptability during operation without

the risk of becoming unstable.
W

(+)

Figure 21. Control structure used based on reflex arcs
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During training, the controller can face an abrupt or slight response which
results in a non-optimized slip control. The learning algorithm is in charge of
adjusting the synaptic forces to find an optimal solution. To do so, it employs
STDP learning, modulated by the difference between the optimal slip and the
actual slip. The rule used in this case is all-L'TP since it is the one found in
brain regions focused on motor control as well as with a high firing frequency.
The type of neuron used is fast-spiking, updated to 100Hz frequency, which is
a commonly used frequency for controllers in vehicles with WSC.

The WSC structure using EKF and SNN is presented in Figure 22. This
structure is based on a four-wheeled vehicle model. It can be seen how all the
elements described in the methodology are combined to maximize the
longitudinal forces. In addition, it can be observed how the structure of the
classification network is integrated in the control network since the output of
one is the input of the other, so there is no need for intermediate decoding and
coding. The learning algorithm is only applied to the control network. This is
because the classification network is trained offline while the control network
is able to adapt during its normal operation thanks to its fixed bio-inspired
structure.
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Figure 22. WSC structure using EKF and SNN
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3.Results and Discussion

The proposed control structure developed in this thesis has been tested by
means of simulations and real tests conducted on experimental vehicles. Results
suggest that controllers based on the use of spiking neural networks can be a
viable and robust alternative. The stability and performance of the developed
controllers have been confirmed in the tests. In addition, the estimation
algorithms and learning strategy have also shown adequate behavior. All in all,
the proposed algorithm can be used to perform the control of active safety
systems. This chapter includes the results of the simulations and real tests as

well as a comparison with main competitors.

3.1. Parameter identification and estimation module

The simulations performed for the validation of parameter identification and
classification are presented below. These results involved both two-wheel and
four-wheel vehicles. Simulations with a change of adhesion during braking,
using both fuzzy logic and an SNN-based control algorithm, has been carried
out. Thus, it is possible to evaluate how the estimations adapt during a sudden
change of contact conditions.

3.1.1. Two-wheeled vehicle

Three emergency braking processes have been performed, using the ABS
control algorithm based on fuzzy logic proposed [3]. The first two simulations
reproduced changes in road type during braking by increasing the adhesion of
the road (Figure 23) and decreasing it (Figure 24). The latter was repeated
without considering the dynamics of the actuation system (Figure 25). For the
calculation of longitudinal forces and speeds, a Kalman filter was used with the
approach presented in previous sections. However, in this case, another EKF
was used for the identification of the road type. The EKF used the previous
estimates as input. It provided the maximum adhesion level of the road, using
a simplified tire model, as output.

Simulations performed on the two-wheeled vehicle have demonstrated the
effectiveness of the EKF in estimating both vertical and longitudinal forces. As
it is observed, during braking on a high grip road with a two-wheeled vehicle
with a high tendency to pitch, low values of vertical load can be observed on
the rear wheel. Equations used in the estimator do not take into account this
effect as well as the wheel lift-off, which leads to larger errors in these
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conditions. Nevertheless, the application of the EKF as an estimator is properly
validated.

Regarding road estimation, the use of a tire model, despite being its simplified
version, introduces an increase in the computational cost of the estimator.
Furthermore, since the model is highly nonlinear and the EKF linearizes for
each state, there is a slow response of the estimator to a change in dynamics.
This is observed both at the beginning of the test and during a transition where
the response of the estimation is slow. This is the main reason for proposing
another method for the identification of the road type. For this purpose, the
use of SNN is proposed as a classifier. This new strategy makes use of the data
obtained by the EKF to provide a direct and faster response.
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Figure 23. Low-high road change simulation results (Speeds, road type and forces)
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Figure 24. High-low road change simulation results (Speeds, road type and forces)

To emphasize the importance of correct modeling of the transient response of
the actuators, the dynamics of the braking system have been omitted. This
includes the pump that generates the pressure as well as the fluid dynamics in
the brake line. Figure 25 presents the results of this non-realistic braking test.
It can be observed that the controller is able to succeed in reaching slip levels
close to the optimum without the presence of any oscillations. However, this
simulation is not reliable. This type of incorrect response can be found in
literature, highlighting the importance of performing experimental tests to
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validate the simulations in terms of vehicle control. Next, the proposed control
algorithm will be tested in the following section.
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Figure 25. High-Low road change simulation results (No brake Dynamic) (Speeds, road
type and forces)

3.1.2. Four-Wheel vehicle

As with the two-wheeled vehicle, simulations were carried out for emergency
braking with a change in the level of adhesion. In these simulations, the right
and left wheels experience the same grip level. In this case, a change from a
low to a medium grip level (Figure 26) and another with the reverse situation
(Figure 27) were performed. For the estimation of the forces of each wheel, the
EKF was used in the same way as in the previous section, only changing the
model from two to four wheels. In this case, a classification neural network
based on SNN was used for the identification of the road type. This network
provided the optimum slip level associated with the road on which the vehicle
was being driven as output.

The estimated forces on each wheel as well as the longitudinal speed of the
vehicle were estimated with reduced fluctuations.

Regarding the classification performed by the SNN, a fast response is observed
since it does not require the updating of states. The estimation is also stable
despite possible fluctuations in the forces caused by the control algorithm or
by tracking errors of the EKF. During transitions, changes in the classifier
output can be observed, which is due to the change in tire dynamics. This
estimation error only takes place in short periods of time. Therefore, the
identification and estimation module is validated for all trained road types.
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Figure 26. Low-medium road change simulation results (Speeds, optimum slip level,
longitudinal and vertical forces)
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Figure 27. High-medium road change simulation results (Speeds, optimum slip level
longitudinal and vertical forces)

3.2.Intervention module

To test the effectiveness of the control algorithm, two sets of simulations were
performed. First, a nonlinear biological model was used to test the ability to
learn during control, using supervised learning. Specifically, Hill's model of an
arm joint was used. Secondly, after validating its behavior for a biological
model, the module was tested on a vehicular system. This way, a four-wheeled
vehicle was used to simulate an emergency braking with a change of adhesion.

3.2.1. Biological Control

In order to perform supervised learning in an arm joint, two types of sinusoidal
position simulations were performed. The first one reproduced a process in
which the neural network did not initially reach the setpoint signal.
Subsequently, the learning algorithm sought to reduce the error. Next, a change
in the dynamics of the joint is introduced after 20 seconds in a second
simulation. This change modified the properties of the muscle and required the
activation of learning to compensate for this event.

Figure 28 shows the time evolution of the first simulation performed. The
angular position is achieved (Figure 28a) after 60 seconds of learning, which

requires an increase in muscle stimulation applied to both the extensor and
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flexor muscles (Figure 28b). The learning mechanism, upon experiencing an
error between the target and the measured position, increases the STDP
modulation by dopamine signal D. As the error is decreased by learning, the
modulation is reduced (Figure 28c) according to the temporal response. The
firing pattern can be seen in Figure 28d. It can be observed that the same

sequence is repeated when learning ends.
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Figure 28. Learning process with a sinusoidal setpoint (a)Output response, b)Muscle
stimulation, c)Dopamine level and d)Neural activity)

Next, results obtained in the second simulation where a change in the dynamics
is introduced, are presented. Results with disabled (Figure 29a) and enabled
(Figure 29b) learning are shown for comparison purposes. This test highlights
the importance of a continuous learning algorithm when the dynamics of the
system are variable. In such a case, this learning process compensates for the
steady-state error produced by the asymmetry of flexor and extensor muscles.
If learning is disabled, the dopamine level (Figure 29¢) does not converge to
zero because its modulation is not effective. However, when modulation is
enabled, its effect on synaptic strengths corrects the defect by converging to
zero (Figure 29d).
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Figure 29. Behavior in the face of a change in system dynamics without (a,c) and with
activated learning (b,d) ((a,b) Output response, (c,d) Dopamine level)

3.2.2. Vehicle control

The learning algorithm, once validated in a biological-like control system, was
integrated into the control scheme of a vehicle to evaluate its correct operation.
Simulations consisted of reproducing emergency brakings on roads with
constant and changing adhesion coefficients to demonstrate the effectiveness
and robustness of the proposed algorithm. The algorithm was then responsible
for increasing or decreasing the braking forces to minimize the committed slip
error. The goal was to reduce the braking distance while ensuring
maneuverability. Initially, the structure of the network was defined with
inhibitory and excitatory connections in a bio-inspired way and with a reduced
value of synaptic strength. It took a total of 20 iterations for the algorithm to
converge to a state with a minimum dopamine level, achieving a reduced
braking distance in this process, as shown in Figure 30.
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Figure 30. Distance (left) and dopamine (right) level during the supervised learning

process

Both Figure 31 and Figure 32 show the velocities and pressures, respectively,
in iterations 1, 10 and 20 of the learning process. It can be seen that in iteration
1 the response of the network is not sufficient to generate the longitudinal
braking force required to achieve the desired slip level, which leads to a high
braking time. Interestingly, it is observed that the algorithm shows a fast
adaptation of its response after the surface. This fact can be observed
throughout the whole learning process, showing the robustness and adaptation
capability of the algorithm. Iteration 10 shows a response with higher slip levels
than at the beginning of the learning process. However, different behavior
between the front and rear wheels is observed. This way, the algorithm is
improving its performance but has not managed to adapt its response
completely to the load transfer yet. Although the braking time is becoming
shorter, the error is still high, so the learning process continues.

Finally, in iteration 20, the associated value of dopamine (D) (Figure 33) is
low and the error has been minimized. In these conditions, the braking time is
the shortest one. Furthermore, it is observed that the front and rear wheel
speeds experience a similar slip level, which demonstrates the satisfactory
performance of the algorithm and results in the finalization of the learning

process.
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Previous results confirm the viability of the proposal. However, a single test is

not enough to verify the proper behavior of the learning algorithm and the

performance and stability of the controller. Thus, it is required to carry out a

higher number of simulations in different braking conditions. In addition, it is

desirable to have an objective way to quantify the performance on the different

surfaces proposed. With this objective in mind, performing a higher number of
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simulations is proposed, using the so-called Key Performance Indicators (KPIs)

presented below, as references.

3.2.3. Key Performance Indicators (KPIs)

KPIs are used to evaluate the performance of WSC based controllers. There is
a large number of indicators available depending on the variable to be
evaluated and its impact on safety, maneuverability, comfort, durability and
so on. In this case, only the KPIs focused on emergency brakings have been
selected. Other KPIs, such as those related to the comfort and durability of
the actuators, have been omitted considering that, in an emergency situation,
the priority is to maximize grip without losing control of the vehicle.

KPIs are divided into steady-state and transient-state ones, both of which will
be used to analyze the response of the proposed controller. In addition, a
comparison with the conventional ones based on slip threshold control proposed

by vehicle components manufacturer Bosch has been included.

.ABS Index of Performance (ABSIP)

This KPI is used to compare the braking distance obtained by the controller
when the ABS is deactivated and a full skid is produced (54). Thus, the overall
effectiveness of the controller is obtained.

ABSIP= 2aBs (54)

dskip

Peak To Peak PTP (PTP)
It measures the agility of the controller response. To this end, the variation of

the maximum angular velocity during the first cycle (max) concerning the
reference speed (opt) is measured. The value is obtained from the sum of the
deviation according to (55) for each wheel.

PTP: Szln.'l!\'_SIU'l)l (55)

S']Ilg"lk'

Integral Pitch Variation (IPV)
Yaw variation (56) does not affect braking distance and maneuverability

directly. However, it limits the driver's ability to estimate distances due to the
fact that the human brain suffers from a degraded performance in estimation
in the presence of excessive yaw, which leads to potential risk situations.

IPV= ["|o]dt (56)
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Table 3 shows the results for the two algorithms studied: threshold control
(THR) and the new proposed control (SNN). It includes the obtained KPIs in
emergency braking on constant surfaces and surface transitions. This list of
conditions has been extracted from Regulation 13 (E/ECE/-
TRANS/505/Rev.1/Add.12/Rev.8.3. Regulation No. 13). Consequently, it can
be concluded that the controller will behave satisfactorily under any type of
road condition or change in the characteristics of the surface.

Table 3. Steady-state KPIs for different road conditions

ROAD ABSIP ABSIP PTP PTP PV PV
THR  SNN THR  SNN THR  SNN
1 89.5%  82,5% 0,20 0,03 0,15 0,12
0.7 87.5%  87,4% 0,33 0,11 0,02 0,06
0.3 87,4%  98,1% 0,50 0,03 0,01 0,02
1.1-0.58 92,6%  90,4% 0,21 0,18 0,03 0,08
0.8—0.3 91,3%  90,5% 0,59 0,43 0,01 0,04
0.3—0.8 85,3%  86,4% 0,27 0,05 0,02 0,04
0.7 (Rough) 97,7%  94,0% 0,48 0,28 0,03 0,02
0.3 (Rough) 95,3%  103,9% 0,70 0,22 0,01 0,01

The performance indicator (ABSIP) provides better results for the proposed
SNN-based algorithm. The exception is for the really low grip surfaces where
the threshold control (THR) based algorithm performs slightly better.
However, PTP KPIs obtained by the SNN algorithm show superior
performance of this proposal over its competitor in all cases. The deviation
achieved with the SNN algorithm is the lowest in all cases, which ensures a
high level of maneuverability of the vehicle, whatever the braking condition.
This is of great importance in situations with low adherence since a high
deviation increases the possibility of losing control of the vehicle. Therefore, it
can be concluded that the SNN algorithm exceeds is competitor and ensures
the best response in terms of braking distance and maneuverability. The last
KPI that gives information about yaw (IPV) results favorable in both cases
with unnoticeable levels of rotation.

The three transitions performed are assessed using also the KPIs associated
with the transient response during the jump.

Mean Deceleration (MDj)

This KPI measures the average deceleration obtained during the transition.

The deceleration is measured between the start of the transition and one second

after it occurs, according to equation (57).

MDyyp= " ay dt (57)

t ij
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Peak To Peak (PTPj)
The same calculation (55) explained in the previous case is done in this case

for the first cycle after the jump.
Maximum Yaw Rate (MYRj)
It quantifies the lateral stability of the change during the transition, as the

maximum yaw between the init (i) and the end (e) of the jump (58). This KPI
evaluates the influence of a sudden change in adhesion on the yaw angle
although this situation does not usually occur as both wheels on each side of
the vehicle experience the change in grip at the same time.

MYRquIlp: IIlaX[é](;,jump (58)

i,jump

Table 4. Transient KPIs for different road jumps

MDj MDj PTPj PTPj MYRj MYR;j
THR SNN THR SNN THR SNN
1.1-0.58 056 0,59 021 0,18 0007 0,028
0.8—0.3 024 0,25 059 0,43 0,001 0,001
0.3—0.8 0,63 0,68 027 0,05 0,000 0,000

ROAD

The results obtained for the transitions show better performance for the
proposed SNN-based controller (Table 4). This is due to the ability to adapt
to change offered by this controller while the one based on threshold control
cannot adapt to change in the same fast manner. Hence, during the transition,
it obtains worse deceleration and deviation values. As in steady-state, the
obtained value associated with the yaw is reduced, so in both cases the vehicle

is maintained stable without large yaw changes.
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3.3.Vehicle Experimentation

Once the performance of the proposed control algorithm was evaluated
satisfactorily by the conducted simulations, a series of tests in real conditions
were carried out using an instrumented vehicle. The proposed algorithm was
validated using a test vehicle during a stay at the Swedish University of KTH.
The vehicle used was named Research Concept Vehicle (RCVe) in its electric
version. The use of this test platform made it possible to implement the
developed algorithm using SIMULINK by means of the DSPACE hardware.
This device enables the control of the entire vehicle with the ease offered by
SIMULINK and its visual programming environment. In addition, during the
aforementioned stay, tests were carried out on a track where high and low
friction surfaces were available as well as the possibility of performing real
surface transitions during braking (Figure 34).

Figure 34. The RCVe (left) and the Arlanda test track with road adhesion transition
(right)

Due to the short duration of the stay with only 4 days of track testing, the
validation was focused on the control algorithm, which is the main contribution
of this thesis. After the adaptation of the code as well as the tuning of the
braking system, using only the front axle for the actuation was proposed while
the rear axle was used for speed measurement. There were two main reasons
for this. The first one was the higher braking capacity of the front axle and the
second one was the computational limitation required by the developed
algorithm. This meant that the DSPACE hardware required the use of a
smaller network and limited its use to only two wheels. It would not be able
to run four braking algorithms with the available hardware.

The last consideration to take into account was the speed at which the tests
would be carried out. Since it was a vehicle with passengers aimed at
performing remote driving tests, its speed was limited to 25 km/h.

Despite the limitations, the stay allowed the correct validation of the

implementation of the algorithm in a real system and under varying conditions.
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In addition, the algorithm proved its ability to learn and adapt to new
situations during its normal operation. Hence, the work developed in this thesis
demonstrates its viability for a future application in passenger vehicles.

Three groups of tests were performed on high and low grip surfaces and their
transitions between both. Each test group consisted of a series of emergency
braking processes. The algorithm initially provided a reduced output since the
synaptic forces were quite low. Nevertheless, as the consecutive tests were
performed, the network modified its weights and succeeded in increasing and
controlling the applied pressure. This behavior was also observed in the
simulations carried out in the previous section.

The first group of tests was carried out on a high-adhesion surface. It can be
observed how the deceleration increases considerably as the experimentation
proceeds (a— b— ¢). As in the simulations (Figure 35), the pressure during
experimentation (Figure 36) rose for each iteration, thus reducing the braking
distance as the slip increased throughout the test. The neural network did not
stop controlling the braking, even in experimentation (Figure 37). ). This
highlights the importance of the prefixed neural structure that provides the

necessary robustness for online learning.
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Results after training on the remaining surfaces are shown in Figure 38 where
the following tests were conducted: low adhesion surface, high-to-low adhesion
transition at 4.5m/s, low-to-high adhesion jump at 4.5m/s and, to conclude,

braking with a different adherence in each tire (left tire low adhesion, right tire
high adhesion).
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Figure 38. Vehicle speeds after training for different situations (Experimentation)

As it can be observed, the algorithm deals with the surface transition without
large oscillations and provides a reduced braking distance as previously
presented in the simulations.

Table 5 below shows a summary of the results. A comparison has been made
between the proposed algorithm based on SNN and the threshold control-based
one. The obtained results indicate that the proposed algorithm obtains a better
deceleration in all situations. The difference is even greater than in simulations
since the threshold control algorithm is not able to adjust to real behavior.
This is due to the low speed (6m/s) of the tests, making control even harder

as adhesion increases.

Table 5. Steady-state KPIs comparison between simulation and experimentation (6 m/s)

Simulation Experimentation
ROAD ABSIP ABSIP PTP PTP | ABSIP ABSIP PTP PTP
THR SNN THR SNN | THR SNN THR SNN
0.9 (High) 96.5% 91.3% 0,17 0,15 |99.12% 97.5% 0,63 0,10
0.6 (Low) 95.67% 89.08%  0.81 0.27 | 98.56 94.91% 0,74 0,12

These tests conclude the work carried out in this thesis. It started with the
development of the equations and algorithm based on SNN. Next, this type of
neural networks was used for control applications. Subsequently, a learning
strategy was required to improve the performance of the algorithm in all
conditions. Once the response of the algorithm was considered satisfactory, its
application to vehicle control systems was tackled. Simulations and real tests
have demonstrated the superior performance, robustness and stability of the
proposed approach. This work covers the basic methodology and validation by

simulation and experimentation.
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4.Conclusions

This work has been devoted to designing controllers based on spiking neural
networks to improve the performance of vehicle safety systems. In addition, a
learning strategy capable of updating controller parameters, depending on
driving conditions, has also been developed. The proposed algorithm has been
tested in simulations and real testing, which has confirmed the viability and
robustness of this approach and its superior performance over selected
competitors.

Thus, this thesis has made it possible to establish a new strategy to develop
biologically-based controllers for vehicular systems that will contribute to
increasing the safety of road users. Vehicular and neural control were initially
studied separately to finally integrate them and validate their performance
through simulation and real tests.

Next, the main contributions of this work are highlighted:

e A control scheme used has been simulated and validated using two and
four-wheeled experimental vehicles. The estimation and identification of
parameters, using an extended Kalman filter and a classification neural
network respectively, have demonstrated their ability to detect the
adherence conditions as well as the level of tire slippage.

e Based on a bio-inspired reflex arc structure, a controller capable of coping
with systems with highly nonlinear behavior has been developed. Its
simplified structure makes its execution in real-time possible, which allows
its integration into embedded control systems.

e A slip control algorithm, based on spiking neural networks, has been
proposed. This control adapts to the varying conditions of tire-road contact
dynamics. In addition, by programming a neural plasticity strategy, the
synaptic strength is modified with a supervised learning method, which

contributes to minimizing the control error.

e The modulation of dopamine as well as the use of different STDP rules
allows the tuning of the synaptic strengths of the neural network. The
learning algorithm reduces the error made by the network in a reduced
number of iterations in control and classification applications.
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e The combination of classification and control in a single neural network

demonstrates the capability of performing full neural control using the

proposed neuron model as a single resource. Learning in this manner makes

use of the inputs and outputs of both networks efficiently, just as in

biological systems.

e Results obtained in simulations and experimentations have proved the

effectiveness of the proposed algorithm versus other controllers proposed

in literature. The ability to learn and adapt to unknown conditions during

real tests is remarkable.

e The adaptation capability of the controller, which allows updating the

parameters of the networks through the designed learning strategy,

provides a further advantage of this proposal over its competitors in case

of deterioration or replacement of a tire. Commercial algorithms lack this

learning or updating capacity since they do not know the dynamics of the

tire used. Thus, conventional approaches cannot offer an optimal response

in emergency braking in all conditions.
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5. Recommendations for future work

The development of the proposed controller provides an innovative line of
research with a wide range of possible applications in engineering problems. In
the automotive field, its potential can rapidly be scaled up for the control of a
great number of safety systems.

The extension of the algorithm to include lateral dynamics will allow
performing stability control for four-wheel vehicles without requiring major
changes of the control structure. Moreover, the updating of the structure to
adapt inputs and outputs to the variables used by other vehicle controllers will
make its extension to other applications possible.

Control algorithms such as torque vectoring, brake blending, stability control
or steering-by-wire resort to similar structures and would, consequently, benefit
from the work done in this thesis. Other high-level control algorithms, such as
advanced driver-assistance systems (ADAS) and those needed for a self-driving
car, are clear targets for an extension of the algorithm proposed in this thesis.
Furthermore, the possibilities of improvement and extension of the approach
are numerous. The study of more complex structures with more variable inputs
presents a challenge in the establishment of neural connections. Likewise, the
study of different neural models and their temporal response enables the ability
to establish more complex relationships such as temporal dependence, for
example, without the need for recurrent structures.

A larger structure would also allow identification using the proposed neuronal
system, without requiring the use of an extended Kalman filter or any other
estimation algorithm. This opens the possibility of a more complex learning
and control algorithm since it would have direct access to the required
information for control coded with spikes. It also raises the feasibility of adding
learning to classification and identification, for which it would be necessary to
set a fixed structure to ensure stability in the obtained response.

The use of neuromorphic hardware also broadens the possibility of using more
complex structures with the challenge of integrating them into real-time
systems. Therefore, it is hoped that this is only the beginning of a research line
that is yet to be explored.

The simulation of the behavior of biological systems is another possible line of
research in the future. Comparing the behavioral response of an arm by
contrasting the results with real ones opens up the possibility of simulating the
behavior of biological systems. This allows validating control schemes such as
the one based on the equilibrium hypothesis as well as predicting future
behavior.
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