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Abstract

The goal of this doctoral dissertation is to apply and develop inference techniques for varying
coefficient models. On the one hand, empirical likelihood based inference for categorical
and continuous varying coefficient models, under a panel data with fixed effects framework,
is investigated. First, we show that the naive empirical likelihood ratio is asymptotically
standard chi-squared. The ratio is self-scale invariant and the plug-in estimate of the limiting
variance is not needed. As a by product, we propose empirical maximum likehood estimators
for varying coefficients. We also obtain the asymptotic distribution of these estimators and
we propose some procedures to calculate the bandwidths empirically. Furthermore, a non
parametric version of the Wilk’s theorem is derived. To show the feasibility of the technique
and to analyse its small sample properties we implement a Monte Carlo simulation exercise
and we also illustrated the proposed technique in an empirical analysis.

On the other hand, we propose tests for constancy of coefficients in varying coefficients
models under different settings. For exogenous regressors, the testing procedure resembles
in spirit the union-intersection parameter stability tests in time series. The test can be applied
to model specification checks of interactive effects in linear regression models. Because
test statistics are not asymptotically pivotal, critical values and p-values are estimated using
a bootstrap technique. For the endogenous case, the testing procedure is defined as a
generalized likelihood ratio that focus on the comparison of the restricted and unrestricted
sum of squared residuals. As a by product, and resembling the instrumental variable literature,
we propose to use a three stages estimation procedure to estimate the varying coefficients;
we also establish the asymptotic properties of the estimators. The finite sample properties of
the test are investigated by means of Monte Carlo experiments.
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Introduction

Varying coefficients models, also called functional coefficient models, have gained
importance since they where introduced by Cleveland et al. (1991). These type of models
are an important tool to explore dynamic patterns and they appear as a natural extension of
the classical parametric models; these models are characterized by allowing the parameters
of interest to change smoothly according to the value of some variable proposed by the
economic theory. The main advantage of these models is that not prior assumptions of the
model’s specification is needed. In this sense, these models increase the flexibility of the
classical linear regression models as they are able to exploit the information from the data
set.

In the past three decades varying coefficient models have experienced a great growth,
from both a methodological and a theoretical point of view; the main reason is that they offer
a quite general setting to handle many of the specification problems of nonparametric and
semiparametric models. To gain a better understanding of the many advantages of varying
coefficient models for empirical analysis, we will present some examples of empirical
applications.

The first example is provided by the microeconomic and production function literature.
Li et al. (2002) conducted a study to analyse the production function of the nonmetal mineral
manufacturing industry in China. They conclude that the classical Cobb-Douglas model
does not provide an adequate description of the relationship between output and explanatory
variables. Also, they show that the marginal returns to labour and capital vary according
to the level of the firms’ research and development expenses. In this situation a varying
coefficient model of the following form may be adequate,

yi = α(z)+βk(z)ki +βℓ(z)ℓi +ui, for i = 1, . . . ,N,

where yi = ln(Yi) is the added value in thousand renminbi (RMB), ki = ln(Ki) is the value
of capital assets in thousand RMB, ℓi = ln(Li) is the average number of employees and
zi = ln(Zi) is the intermediate production and management expenses in thousand RMB. As it
can be seen, this model allows the marginal returns to labour and capital vary according to
the level of the firms’ research and development expenses.

Under the same cross sectional setting, we find another example in the literature on returns
to education. The study of Schultz (2003) shows that the marginal returns to education vary
with the level of work experience; therefore, as it is shown in Card (2001), the omission of
the nonlinearity of education as well as the interaction impact between education and work
experience led us to underestimated outcomes of the education performance. In this situation,
a semiparametric varying coefficient model is more convenient as it allows the impact of
education to vary with the level of work experience.

xx



Furthermore, under a panel data setting, the international economic literature provides
another relevant example. Examining the role of foreign direct investment (FDI) in the
economic growth of the countries, Kottaridi and Stengos (2010) show that the positive effect
of the FDI on the economic growth only happens in those countries with higher levels of
initial income; this translates in a varying coefficient of the FDI that varies with the level
initial income of each country. Therefore, the following panel data varying coefficient model
is appealing since it allow us to gather this effect,

Yit = α0 +α1D j +α2ln
(

Id
it

Y

)
+α3ln(nit)+α4(lnXit)

(
I f
it
Y

)
+α5hit + εit ,

for i = 1, . . . ,N ; t = 1, . . . ,T, where Yit is the growth rate of income per capita in country
i and period t, Id

it/Y , the domestic investment rate to GDP, nit the population growth rate, hit

the human capital, I f
it/Y is the ratio of FDI to GDP and Xit is the income per capita at the

beginning of each period.
Finally, we find another relevant example in the capital asset pricing literature; here

empirical evidence suggest time variation in betas and returns. Authors such as Cho and
Engle (1999), Wang (2002), Akdeniz et al. (2003), Wang (2003) and Fraser et al. (2004)
among others, find evidence for significance of nonlinearity in the betas and conclude that
changes that occur through time in the risk factor are associated with changes in the economic
environment. Thus, following Cai et al. (2015), the next semiparametric varying coefficient
model is advisable

E
[(

1−m(Zt)rp,t+1
)

ri,t+1
∣∣Ωt
]
= 0, t = 1, . . . ,T,

where Zt is a vector of conditioning variables from Ωt and rp,t+1 is the factor.
As it has been shown, varying coefficient models allow the coefficients of the regression

model to be unknown functions of some other variables. Therefore, testing on varying
coefficients is of great importance as it implies testing on structural information and the
underlying economic theory; thus, developing inference devices for varying coefficient
models is crucial.

In this context, the goal of this Ph.D. thesis is twofold. On the one hand, to develop
confidence bands for varying coefficient models using the empirical likelihood technique.
On the other hand, testing that the varying coefficients are constant in the direction of
nonparametric alternatives. With these objectives, the Ph.D. thesis is divided into four
chapters structured as follows.
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Introduction

In Chapter 1 empirical likelihood based inference for fixed effects varying coefficient
panel data models is investigated. Empirical Likelihood is a nonparametric technique of
inference based on a data driven likelihood function. The method was introduced in Owen
(1990, 1991, 1988, 2001) as a generalization of Thomas and Grunkemeier (1975)’s survival
probabilities. In the last three decades, the method have gained importance due to its
properties and advantages over other methods such as asymptotic normal based confidence
bands, bootstrap or jackknife.

Likelihood methods are often used to find efficient estimators, and to construct tests with
good power properties; it is also a flexible method as it offsets or even corrects problems
related to incomplete observed data or distorted data. Also, knowledge from outside the
data can be incorporated via constrains that restrict the domain of the likelihood function. In
parametric likelihood methods, we assume that the data comes from a known joint distribu-
tion; however, in practice, we might not know the parametric family and misspecification
problems might arise, which could cause inefficient estimates and the test to fail. To avoid this
problem, nonparametric methods of inferences appears as a solution; here, besides empirical
likelihood, these methods include the jackknife and several versions of the bootstrap. These
methods do not use strong distributional assumptions.

Empirical likelihood can be seen as a bootstrap that does not resample and as a likelihood
without parametric assumptions. Thus, the main advantage of the empirical likelihood
approach is that it combines the reliability of nonparametric methods with the effectiveness
of the likelihood approach, (Owen, 2001); other advantages include that there is no need of
scale, skewness or limiting variance estimation, (Hall and La Scala, 1990), it is range and
transformation respecting, (Hall and La Scala, 1990), and it is Bartlett correctable, (DiCiccio
et al., 1991). However, the most appealing property of this method is the asymptotic
distribution of the empirical likelihood ratio test statistic follows a chi-squared distribution,
which is the same as the one under parametric settings, (Owen, 1990, 1988).

Let x1,x2, . . .xN be independently and identically distributed observations from an un-
known population distribution, F0, with the mean µ and variance σ2. Let pi = Pr(X = xi)

under some cumulative distribution function F(x) = Pr(X ≤ x). The empirical likelihood
function of F is defined as

L(F) =
N

∏
i=1

pi s.t. pi ≥ 0,
N

∑
i=1

pi = 1.

Note that L(F) is maximized at pi = 1/N. Also note that when a population parameter β

defined by E[g(β ,Xi)] = 0 is of interest, the empirical likelihood, subject to the additional

xxii



constraint
N

∑
i=1

pig(β0,Xi) = 0,

reaches its maximum when β is its true value β0. Therefore the empirical likelihood ratio
statistic to test β = β0 is given by

R(β0) =

{
N

∑
i=1

logN pi

∣∣∣∣∣ pi > 0,
N

∑
i=1

pi = 1,
N

∑
i=1

pig(β0,Xi) = 0

}
.

Let, for example, β be the sample mean and β0 be the population mean, Owen (1988) show
that −2R(β0)→ χ2

(1) in distribution as N → ∞.
In this context, in chapter 1, we first show that the naive empirical likelihood ratio for the

varying coefficient is asymptotically standard chi-squared when undersmoothing is employed.
The ratio is self-scale invariant and the plug-in estimate of the limiting variance is not
needed. To correct for the bias, mean-corrected and residual-adjusted empirical likelihood
ratios are proposed and without undersmoothing, both also have standard chi-squared limit
distributions. As a by product, we propose the empirical maximum likehood estimators of
the varying coefficient and their derivatives; here, the derivative result can be seen as a way to
test constancy of the varying coefficient. We also obtain the asymptotic distribution of these
estimators and we propose some procedures to calculate the bandwidths empirically. To show
the feasibility of the technique and to analyse its small sample properties we implement a
Monte Carlo simulation exercise and we also illustrate the proposed technique in an empirical
analysis about the production efficiency of the European Union’s companies.

In Chapter 2, and complementing chapter 1, we investigate empirical likelihood based
inference for nonparametric categorical varying coefficient panel data models with fixed
effects under cross-sectional dependence. The main difference with chapter 1 is that in this
case the varying coefficient varies according to a discrete variable and therefore smoothing
functions for discrete variables are needed. In this discrete context, we show that the naive
empirical likelihood ratio is asymptotically standard chi-squared using a nonparametric
version of the Wilks’ theorem, (Wilks, 1938). The ratio is still self-scale invariant and,
more importantly, no plug-in estimator of the limiting variance is needed; this last feature is
important because in this case due to the cross sectional dependence the estimation variance
becomes cumbersome. As a by product, we propose also a empirical maximum likelihood
estimator of the categorical varying coefficient and we obtain the asymptotic distribution
of this estimator. We also illustrated the proposed technique in an application that reports
estimates of strike activities from 17 countries of the Organisation for Economic Co-operation
and Development (OECD) for the period 1951−1985.

xxiii



Introduction

In Chapter 3, and developing the idea of testing constancy from chapter 1, we propose
tests for constancy of coefficients in semi-varying coefficients models. The testing procedure
resembles in spirit the union-intersection (U-I) parameter stability tests in time series, where
observations are sorted according to the explanatory variable responsible for the coefficients
varying. Parameter stability tests appear in the time series literature to deal with change-point
problems (see, e.g., Bhattacharyya and Johnson (1968), Brown et al. (1975), Csörgő and
Horváth (1988, 1997), Hawkins (1989), James et al. (1987), Andrews (1993), and Nyblom
(1989) among others). In recent years, increasing interest has been shown in problems
concerning stability of a regression model because changes in economic factors may cause
instability of their initial models over a long period of time. For example, technical progress,
changes in policies and regulations, or a different economic environment can induce a
change among economic variables, even though no change in the parameters of the structural
relationship is present. In this context, our test can be applied to model specification checks
of interactive effects in linear regression models. Because test statistics are not asymptotically
pivotal, critical values and p-values are estimated using a bootstrap technique. The finite
sample properties of the test are investigated by means of Monte Carlo experiments, where
the new proposal is compared to existing tests based on smooth estimates of the unrestricted
model. We also report an application to returns of education modelling.

In Chapter 4, and complementing chapter 3, we propose a methodology for testing
coefficients constancy in varying coefficient with endogenous regressors. The proposed test
is applied to conditional capital asset pricing models (CAPM). Conditional asset pricing
literature provides a framework in which these models do not provide much information
the functional form of the conditional moments. There exist a wide literature that employs
parametric techniques to evaluate conditional asset pricing models; for instance, Jagannathan
and Wang (1996) find that a conditional CAPM can explain the cross section of stock of
returns, while the static CAPM model cannot, also Lettau and Ludvigson (2001) show that
the value premium can be explained by a conditional CAPM with time varying price of risk.
Nevertheless, other authors such as Lewellen and Nagel (2006) and Nagel and Singleton
(2011) suggest that this superior performance of the conditional CAPM is an illusion caused
by the low statistical power of standard CAPM. Following these ideas, there exist significant
contributions to avoid specifying the conditional distribution of returns and factors by using
nonparametric techniques. Here, Nagel and Singleton (2011) estimate nonparametrically
first and second conditional moments and then work with parametric CAPM. In contrast,
Wang (2003), Orbe et al. (2008), Roussanov (2014) and Peñaranda et al. (2018) consider
varying coefficient CAPM.

xxiv



The testing procedure is defined as a generalized likelihood ratio that focus on the
comparison of the restricted and unrestricted sum of squared residuals. As a by product, we
have developed a nonparametric method that takes into account the endogenous nature of
the regressors to estimate the prices of risk. Resembling the instrumental variable literature,
the procedure uses a three stages estimation procedure to estimate the varying coefficient;
besides we establish the asymptotic properties of the estimators. Finally, we investigate the
finite sample properties of our test by means of Monte Carlo experiments study and using
critical values and p-values estimated by the bootstrap technique.

Finally, we conclude by highlighting the main results extracted from these four chapters
and possible future research. The proofs of the main results are relegated to the appendix.
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Introducción

Modelos de coeficientes variables, también llamados modelos de coeficientes funcionales,
han ido ganado importancia desde su introducción en Cleveland et al. (1991). Este tipo de
modelos surgen como una extensión de los modelos paramétricos clásicos y una herramienta
importante para explorar patrones dinámicos; estos modelos se caracterizan por permitir a
los parámetros de interés variar de acuerdo a una variable propuesta por la teoría económica.
La principal ventaja de utilizar este tipo de modelos es que no son necesarios supuestos sobre
la especificación de la forma funcional de los coeficientes. De esta manera, estos modelos
pueden explotar la información del conjunto de datos, con lo que son más flexibles que los
modelos de regresión lineales clásicos.

En las tres últimas décadas, la literatura de modelos de coeficientes variables ha exper-
imentado un gran crecimiento, tanto desde un punto de vista metodológico como teórico;
la razón principal es que ofrecen un marco bastante general para manejar muchos de los
problemas de especificación que aparecen en modelos no paramétricos y semiparamétricos.
Para obtener una mejor comprensión de las muchas ventajas que estos modelos ofrecen
para el análisis empírico, a continuación, presentaremos algunos ejemplos de aplicaciones
empíricas.

El primer ejemplo lo proporciona la literatura microeconómica sobre funciones pro-
ducción. En el artículo de Li et al. (2002), se realiza un estudio para analizar la función
de producción de la industria de fabricación de minerales no metálicos en China. En este
estudio se concluye que el modelo Cobb-Douglas claásico no proporciona una descripción
adecuada de la relación entre la producción y las variables explicativas. Ellos demuestran
que los rendimientos marginales del trabajo y el capital varían según el nivel de los gastos de
investigación y desarrollo (I+D) de la empresa. En esta situación, un modelo de coeficiente
variables con la siguiente especificación puede ser adecuado,

yi = α(z)+βk(z)ki +βℓ(z)ℓi +ui, for i = 1, . . . ,N,

donde yi = ln(Yi) es el valor de la produccioón aproximado por el valor añadido en miles
de renminbi (RMB), ki = ln(Ki) es el valor de los activos de capital en miles de RMB,
ℓi = ln(Li) es el número promedio de empleados y zi = ln(Zi) son los gastos intermedios de
producción y administración en miles de RMB, que aproximan los gastos de I+D. Como se
puede observar, este modelo permite que los rendimientos marginales del trabajo y el capital
varíen de acuerdo con el nivel de los gastos de investigación y desarrollo de la empresa.

Bajo el mismo contexto transversal, encontramos otro ejemplo en la literatura sobre
rendimientos educativos. El estudio de Schultz (2003) se demuestra que el rendimiento
marginal de la educación varía con el nivel de experiencia laboral; por lo tanto, como se
demuestra en Card (2001), la omisión de la falta de linealidad en la educación, así como en el
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impacto de la interacción entre la educación y la experiencia laboral nos lleva a subestimar los
resultados del desempeño educativo. En esta situación, un modelo de coeficientes variables
semiparamétrico es más conveniente ya que permite que el impacto de la educación varíe
con el nivel de experiencia laboral.

Bajo un contexto de datos de panel, la literatura sobre economía internacional proporciona
otro ejemplo relevante. Al examinar el papel de la inversión extranjera directa (IED) en el
crecimiento económico de los países, Kottaridi and Stengos (2010) demuestran que el efecto
positivo de la IED en el crecimiento económico solo ocurre en aquellos países con niveles
iniciales de rentas más altos; esto se traduce en un coeficiente asociado a la IED que varía
con el nivel de renta inicial de cada país. Por lo tanto, el siguiente modelo de datos de panel
con coeficientes variables es aconsejable ya que nos permite recopilar este efecto,

Yit = α0 +α1D j +α2ln
(

Id
it

Y

)
+α3ln(nit)+α4(lnXit)

(
I f
it
Y

)
+α5hit + εit ,

para i = 1, . . . ,N ; t = 1, . . . ,T, donde Yit es la tasa de crecimiento de la renta per cápita
para el país i en el periodo t , Id

it/Y , es la tasa de inversión interna con respecto al PIB, nit es
la tasa de crecimiento de la población, hit representa el capital humano, I f

it/Y es la ratio entre
IED y PIB, y Xit es la renta per cápita al comienzo de cada periodo.

Para terminar, encontramos otro ejemplo relevante en la literatura de valoración de activos
financieros; aquí la evidencia empírica sugiere variación de los betas y los rendimientos
en el tiempo. Autores como Cho and Engle (1999), Wang (2002), Akdeniz et al. (2003),
Wang (2003) y Fraser et al. (2004) entre otros, encuentran evidencia significativa de no
linealidad en los betas y concluyen que los cambios que se producen a través del tiempo
están asociados a cambios en el entorno económico. Por lo tanto, y siguiendo a Cai et al.
(2015), es recomendable un modelo semiparamétrico de coeficientes variables

E
[(

1−m(Zt)rp,t+1
)

ri,t+1
∣∣Ωt
]
= 0, t = 1, . . . ,T,

donde Zt es un vector de variables de condicionamiento de Ωt y rp,t+1 es el factor.
Como se ha demostrado con los ejemplos anteriores, los modelos de coeficientes variables

permiten que los coeficientes del modelo de regresión sean funciones desconocidas de alguna
otra variable. Por lo tanto, los contrastes sobre coeficientes variables son de gran importancia
ya que implican contrastar la información estructural del modelo y la teoría económica
subyacente; por lo tanto, el desarrollo de métodos que nos permitan hacer inferencia sobre
modelos de coeficientes variables es crucial.
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En este contexto, el objetivo de esta tesis docotoral es doble. Por un lado, desarrollar
bandas de confianza para modelos de coeficientes variables utilizando la técnica de verosimil-
itud empírica. Por otro lado, desarrollar tests que nos permitan discernir si los coeficientes
variables son constantes en la dirección de alternativas no paramétricas. Con este fin, la tesis
se divide en cuatro capítulos estructurados de la siguiente manera.

En el Capítulo 1 se investiga tecnicas de inferencia estadística basadas en la verosimilitud
empírica para modelos de datos de panel con efectos fijos y coeficientes variables. La
vrosimilitud empírica es una técnica no paramétrica de inferencia que se basa en una función
de verosimilitud dada por los datos. Este método fue introducido por Owen (1990, 1991,
1988, 2001) como una generalización de las probabilidades de supervivencia de Thomas and
Grunkemeier (1975). En las tres últimas décadas, esta técnica ha ganado importancia debido
a sus propiedades y ventajas sobre otros métodos como las bandas de confianza basadas en
la distribución asintótica de los estimadores, el bootstrap o el jackknife.

Los métodos de estimación basados en la verosimilitud se utilizan a menudo para encon-
trar estimadores eficientes y para desarrollar contrastes con buenas propiedades de potencia;
también se trata de un método flexible, ya que compensa o incluso corrige problemas rela-
cionados con datos incompletos o distorsionados. Además, conocimiento de información
externa a los datos puede incorporarse mediante restricciones que restringen el dominio de
la función de verosimilitud. En los métodos de verosimilitud paramétricos, asumimos que
los datos provienen de una distribución conjunta conocida; sin embargo, en la práctica, es
posible que no sepamos la familia paramétrica de la que provienen los datos y, debido a ello,
puedan surgir problemas de especificación, lo que podría provocar estimaciones ineficientes
y que el contraste falle. Para evitar este problema, los métodos no paramétricos de inferencia
aparecen como una solución factible; en esta categoría, además de la verosimilitud empírica,
tenemos el jackknife y varias versiones del bootstrap. Estos métodos no utilizan fuertes
supuestos sobre la distribución conjunta de la que provienen los datos.

La verosimilitud empírica se puede entender como un bootstrap que no necesita re-
muestrear los datos y como una verosimilitud que no hace supuestos sobre la distribución de
la que provienen los datos. Por lo tanto, la principal ventaja del enfoque de verosimilitud
empírica es que combina la confiabilidad de los métodos no paramétricos con la efectividad
de la verosimilitud, (Owen, 2001); otras ventajas incluyen que no necesita estimadores de
escala, simetría o varianza, (Hall and La Scala, 1990), respeta el rango y las transformaciones,
(Hall and La Scala, 1990), y es corregible por el método Bartlett, (DiCiccio et al., 1991).
Pero, la propiedad más atractiva de este método es la distribución asintótica del estadístico
de contraste, el ratio de verosimilitud empírica, que sigue a una distribución chi-cuadrada,
que es la misma que la que se obtiene para los modelos paramétricos, (Owen, 1990, 1988).
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Sea x1,x2, . . .xN observaciones independiente e identicamente distribuidas de una dis-
tribución desconocida, F0, con media µ y varianza σ2. Además, sea pi = Pr(X = xi) bajo
alguna función de distribución acumulada F(x) = Pr(X ≤ x). La función de verosimilitud
empírica de F se define como

L(F) =
N

∏
i=1

pi s.t. pi ≥ 0,
N

∑
i=1

pi = 1.

Es fácil ver que L(F) se maximiza cuando pi = 1/N. También, cuando un parámetro
poblacional β definido por E[g(β ,Xi)] = 0 es de interés, la verosimilitud empírica, sujeta a
la siguiente restricción adicional

N

∑
i=1

pig(β0,Xi) = 0,

alcanza su máximo cuando β toma su verdadero valor, β0. Por lo tanto, el estadístico de
contraste basado en el ratio de verosimilitud empírica, para contrastar β = β0, viene dado por

R(β0) =

{
N

∑
i=1

logN pi

∣∣∣∣∣ pi > 0,
N

∑
i=1

pi = 1,
N

∑
i=1

pig(β0,Xi) = 0

}
.

Sea β la media muestral y β0 la media poblacional, Owen (1988) demuestra que −2R(β0)→
χ2
(1) en distribución cuando N → ∞.

En este contexto, en este primer capítulo, primero demostramos que el ratio de verosimil-
itud empírica para el coeficiente variable es asintóticamente chi-cuadrado cuando se emplea
undersmoothing. El ratio es invariable a cambios de escala y no es necesaria la estimación de
la varianza. Para corregir por el sesgo se porponen dos modificaciones del ratio de verosimil-
itud, uno coregido por la media y otro ajustado por los residuos, que sin undersmoothing son
también sintóticamente chi-cuadrado. Como subproducto, proponemos los estimadores de
máxima verosimilitud empírica de los coeficientes variables y sus derivadas; en este contexto,
la derivada puede verse como una forma de contrastar la constancia de los coeficientes
variables. También obtenemos la distribución asintótica de estos estimadores y proponemos
algunos procedimientos para calcular los bandwidths empíricamente. Para demostrar la
viabilidad de la técnica y analizar sus propiedades en muestras finitas, implementamos un
ejercicio de simulación de Monte Carlo, y también proponemos un análisis empírico sobre la
eficiencia de la producción de las empresas de la Unión Europea.

En el capítulo 2, y complementando lo que se ha desarrollado en el capítulo 1, se investiga
tecnicas de inferencia estadística basadas en la verosimilitud empírica para modelos de datos
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de panel con efectos fijos y coeficientes variables categóricos o discretos. La principal
diferencia con el capítulo 1 es que, en este caso, el coeficiente variable varía según una
variable de naturaleza categórica o discreta, y por lo tanto se necesitan funciones de suavizado
para variables discretas. En este contexto de variables discretas, demostramos que el ratio de
verosimilitud empírica es asintóticamente chi-cuadrado, utilizando para ello una versión no
paramétrica del teorema de Wilks, (Wilks, 1938). El ratio sigue siedo invariable a cambios
en escala y, lo que es más importante, no se necesita un estimador de la varianza; esta
última característica es importante porque en este caso, debido a la dependencia de sección
cruzad, la estimación de la varianza se complica. Como subproducto, proponemos también
un estimador de máxima verosimilitud empírica de los coeficientes variables categóricos
y obtenemos su distribución asintótica. También ilustramos la técnica propuesta en una
aplicación empírica que reporta estimaciones de las actividades de huelga de 17 países
perntenecientes a la Organización para la Cooperación y el Desarrollo Económico (OCDE)
para el periodo 1951−1985.

En el capítulo 3, y desarrollando la idea que se propuso en el capítulo 1 sobre el contraste
de constancia, se propone un test para detectar constancia en los parametros en modelos de
coeficientes variables. El procedimiento para relaizar el contraste se asemeja a los contrastes
de unión-intersección (U-I) de estabilidad de parámetros en series temporales, donde las
observaciones se ordenan de acuerdo con la variable explicativa responsable de la variación
de los coeficientes. En el contexto del contraste U-I esta ordenación resulta de manera
natural porque los coeficientes varían con el tiempo, por el contrario en nuestro caso usamos
concomitantes para ordenar los datos de acuerdo con la variable explicativa responsable de la
variación de los coeficientes.

Los contrastes de estabilidad de parámetros aparecen en el nanálisis de series temporales
para tratar con problemas de puntos de cambio (chnage-point) (ver, por ejemplo, Bhat-
tacharyya and Johnson (1968), Brown et al. (1975), Csörgő and Horváth (1988, 1997),
Hawkins (1989), James et al. (1987), Andrews (1993), y Nyblom (1989) entre otros). En
los últimos años, ha crecido el interés en los problemas relacionados con la estabilidad de
los parámetros en modelos de regresión debido a que cambios en los factores económicos
pueden causar inestabilidad en los modelos inicialmente propuestos durante un largo periodo
de tiempo. Por ejemplo, el progreso tecnológico, los cambios en políticas y regulaciones, o
un entorno económico diferente pueden inducir un cambio entre las variables económicas,
aunque no haya cambios en los parámetros de la relación estructural.

En este contexto, nuestro test puede aplicarse para verificar la especificación de mod-
elización de efectos interactivos en modelos de regresión lineal. Debido a que el estadístico
de contraste no es asintóticamente pivotal, los valores críticos y los p-valores se estiman
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utilizando la técnica del bootstrap. Las propiedades para muestra finitas del test se investigan
por medio de un experimento de Monte Carlo, donde nuestra propuesta se compara con
contrastes ya existentes basadas en estimaciones con suavizado del modelo no restringido.
Además, tmabién ponemos a prueba nuestro test con una aplicación sobre la modelización
de los rendimientos educativos.

En el capítulo 4, y complementando lo que se hizo en el capítulo 3, se propone un test
para detectar constancia en moelos con coeficientes variables y regresores endógenos. El
test, en concreto, se aplica en modelos de valoración de activos financieros (CAPM).

La literatura de valoración de activos financieros condicionales proporciona un marco en
el que estos modelos no proporcionan información sobre la forma funcional de los momentos
condicionales. Existe una amplia literatura que emplea técnicas paramétricas para evaluar
modelos de valoración de activos financieros condicionales; por ejemplo, Jagannathan and
Wang (1996) encuentran que un CAPM condicional puede explicar la sección cruzada del
stock de rendimientos, mientras que el modelo CAPM estático no puede, también Lettau
and Ludvigson (2001) demuestra que el valor premium puede ser explicada por un CAPM
condicional con primas de riesgo que varían con el tiempo. Sin embargo, otros autores como
Lewellen and Nagel (2006) y Nagel and Singleton (2011) sugieren que este rendimiento
superior del CAPM condicional es una ilusión causada por el bajo poder estadístico del
CAPM estándar. Siguiendo estas ideas, existen contribuciones significativas para evitar
especificar la distribución condicional de los rendimientos y los factores mediante el uso
de técnicas no paramétricas. Aquí, Nagel and Singleton (2011) estima el primer y segundo
momento condicional no paramétricamente y luego trabaja con un CAPM paramétrico. Por
el contrario, Wang (2003), Orbe et al. (2008), Roussanov (2014) y Peñaranda et al. (2018)
consideran CAPM con coeficientes variables.

En este contexto, el test se define como un ratio de verosimilitud generalizado que se
enfoca en la comparación de la suma de cuadrada de los residuos del modelo restringido
y no restringido. Como subproducto, hemos desarrollado un método no paramétrico de
estimación que tiene en cuenta la naturaleza endógena de los regresores, con el que hemos
podido estimar los betas del modelo CAPM. Mimetizando la literatura de variables instru-
mentales, proponemos utilizar un procedimiento de estimación en tres etapas para estimar
los coeficiente variables; además establecemos las propiedades asintóticas de los estimadores.
Pra terminar, investigamos las propiedades en muestras finitas de nuestro test por medio de
experimento de Monte Carlo, para lo cual los valores críticos y los p-valores se estiman
utilizando la técnica del bootstrap.
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Finalmente, concluimos destacando los principales resultados extraídos de estos cuatro
capítulos y las posibles investigaciones futuras. Las pruebas de los principales resultados
quedan relegadas al apéndice.
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Chapter 1

Empirical likelihood based inference for
fixed effects varying coefficient panel
data models

This chapter also appeared as Arteaga-Molina and Rodriguez-Poo (2018).
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Empirical likelihood based inference for fixed effects varying coefficient panel data
models

1.1 Introduction

Recently nonparametric and semiparametric estimation of panel data models has attracted the
attention of many researchers in econometrics. The interest to combine panel data techniques,
that somehow alleviate the heterogeneity issue, with nonparametric techniques, that weaken
considerably the type of assumptions that are necessary to impose in econometric models, has
ended up in a vast literature that is surveyed in Su and Ullah (2011). Although the results are
rather promising, it is true that the main drawbacks related to nonparametric techniques also
appear when we apply them to panel data econometric models. Among others, the curse of
dimensionality (e. g., Härdle (1990)) appears as one of the most important problems. In order
to overcome this disadvantage varying coefficient models appear as a reasonable specification
that encompasses many alternative models. As for the pure nonparametric case, estimation
of varying coefficient models with random effects has been already studied in several papers
(e.g., Ruckstuhl et al. (2000); Lin and Carroll (2000); Henderson and Ullah (2005); Su and
Ullah (2007)). However, under the setting of fixed effects unfortunately much less results
are available. In Henderson et al. (2008) direct estimation of the nonparametric components
is undertaken through the use of an iterative version of a profile least squares technique.
Already in a varying coefficients context a profile least squares approach is proposed in Sun
et al. (2009). For differencing estimators in Rodriguez-Poo and Soberón (2014, 2015) two
step backfitting estimators are proposed. Furthermore, a comparison against estimators based
in profile least squares techniques is provided. In Cai and Li (2008) a so called nonparametric
generalized method of moments is proposed to estimate the varying coefficients. Finally, in
Su and Lu (2013) and Li and Liang (2015) profile least squares results are extended towards
dynamic models and smooth backfitting methods are applied to estimate the unknown varying
coefficients respectively. Eventually, once we have taken care of the estimation process,
the next step would be to concentrate in developing inference tools for this type of models.
For statistical inference such as confidence region construction or hypothesis testing the
most popular techniques are normal approximations and bootstrap methods. In fact, in all
above mentioned papers, asymptotic normal approximations are obtained for the different
nonparametric estimators. Unfortunately it is well known that, without undersmoothing,
the asymptotic distribution will exhibit a bias and a rather cumbersome expression for the
variance term. Hence, if the confidence region that is derived from an asymptotic normal
distribution is predetermined to be symmetric a bias correction and a plug-in estimate are
needed to make the statistic scale invariant. Furthermore, if one wants to use these confidence
bands as a testing device it will be necessary to obtain uniform confidence bands such as in
Li et al. (2013a).
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1.1 Introduction

In this chapter, we propose to use empirical likelihood techniques to construct confidence
intervals/regions. These techniques have acquired importance since they were introduced in
Owen (1990, 1991, 1988, 2001) because of the advantages of this method over other methods
such as normal approximation and bootstrap; for instance, empirical likelihood methods
adjust to the true shape of the underlying distribution and do not require the estimation
of scale, skewness (Hall and La Scala, 1990) or limiting variance as the studentization is
carried out internally via optimization. Therefore, the confidence regions are reliable, range
preserving and transformation respecting (Hall and La Scala, 1990). Another advantages is
the method’s flexibility, as it can be used when the data is incomplete, distorted or tied. Also,
DiCiccio et al. (1991) have proved that empirical likelihood regions are Bartlett correctable;
thus, it has advantages over the bootstrap and the jackknife methods. Finally, it combines
the reliability of non-parametric methods with the effectiveness of the likelihood approach
and it has good asymptotic properties and power (Owen, 1990). In fact, empirical likelihood
techniques have been already applied to obtain confidence bands for longitudinal data varying
coefficient models with random effects (e.g. Xue and Zhu (2007)) but unfortunately these
type of results are not available for the fixed effects case. For the fixed effect case, in Zhang
et al. (2011) confidence bands based in empirical likelihood techniques are derived under
a partially linear model specification. They obtain, under rather restrictive assumptions,
maximum empirical likelihood estimators of both parametric and nonparametric components.
Furthermore, they obtain an empirical likelihood ratio that is biased if the optimal bandwidth
is used.

In this chapter, and starting from a fixed effects varying coefficient model, we obtain
maximum empirical likelihood estimators of both the varying parameters and their derivatives.
This last result is very interesting for testing constancy of parameter variation. Furthermore,
we develop empirical likelihood ratios and we derive a non-parametric version of the Wilks’
theorem. In order to obtain an unbiased ratio, we propose two modifications of the empirical
likelihood ratio: the mean corrected and the residual adjusted empirical likelihood ratios.
Based on these results, we can build up confidence regions for the parameter of interest
through a standard chi squared approximation. The rest of this chapter is organized as follows.
In Section 1.2 we propose to construct the confidence bands for the unknown functions and
their derivatives by using what we call a naive empirical likelihood technique. This technique
shows as main drawback sub-optimal rates of convergence. In Section 1.3, as a byproduct,
we provide two alternative maximum empirical likelihood estimators of the fixed effect
nonparametric varying parameters model and their derivatives. In Section 1.4, and using the
estimators that were previously derived, we propose two alternative techniques that enables
us to obtain optimal nonparametric rates: Mean corrected and residual-adjusted empirical
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likelihood ratios. In Section 1.6 we provide a Monte Carlo experiment and in Section 1.7
we undertake an empirical study about the production efficiency of the European Union’s
companies. Finally Section 1.8 concludes. The proofs of the main results are collected in the
Appendix.

1.2 Naive empirical likelihood

Consider the following varying coefficient panel data regression model

Yit = X⊤
it m(Zit)+µi + vit , i = 1, ...,N; t = 1, ...,T, (1.1)

where Yit is the response, Zit and Xit are vectors of covariates of dimension q and d respec-
tively, and m(z) = (m1(z), ...,md(z))⊤ is a d×1 vector of unknown functions; here µi stands
for heterogeneity of unknown form, that is, individual characteristic that are not observed, and
vit are random errors that do variate along time and across individuals. On this econometric
model we impose the following standard assumptions,

Assumption 1.2.1. Let (Yit ,Xit ,Zit)i=1,...,N; t=1,..,T be a set of independent and identically
distributed (i.i.d.) Rd+q+1 random variables in the subscript i for each fixed t and strictly
stationary over t for a fixed i.

Assumption 1.2.2. The random errors vit are independent and identically distributed, with 0
mean and homoscedastic variance σ2

v < ∞. They are also independent of Xit and Zit for all i
and t. Furthermore, E|vit |2+δ < ∞ for some δ > 0.

Assumption 1.2.3. Let µi can be arbitrarily correlated with both Xit and Zit with unknown
correlation structure.

Assumptions 1.2.1, 1.2.2 and 1.2.3 are rather standard assumptions in the panel data
literature. Assumption 1.2.1 is standard in panel data models; we could consider other
settings as in Cai and Li (2008), however, since in this chapter we study the asymptotic
properties as N tends to infinity and T is fixed, it is enough to assume stationarity. These
type of models where T is fixed and N tends to infinity have been proved useful in the
analysis of efficiency, where usually there is a large number of individuals during a small
period of time. Assumption 1.2.2 is also standard for the conventional within and first
difference transformation (Wooldridge (2010) or Hsiao (2014) for the fully parametric case).
Independence between the idiosyncratic error and the covariates Xit and / or Zit can be
assumed without loss of generality, however it can be relaxed assuming some dependence in
higher moments. If we allow some dependence, we could transform this estimator to take
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1.2 Naive empirical likelihood

into consideration more complex structures of the random error contained in the variance-
covariance matrix (Martins-Filho and Yao, 2009). Assumptions 1.2.1 and 1.2.2 in some
situations, as in Cai and Li (2008), are relaxed by considering that (Xit ,Zit ,vit) are for fixed, i,
strictly stationary processes; unfortunately, this set of assumptions is not sufficient to bound
the asymptotic variance of the estimator and some further mixing conditions are required
to achieve convergence. In this case, T must also tend to infinity. Other cases such as cross
sectional dependence also requires both N and T tending to infinity. Finally, assumption
1.2.3 imposes the so called fixed effects; note that we are not willing to assume any constraint
in the relationship between the individual heterogeneity µ and the vector of covariates (X ,Z).

Rather than focusing in the consistent estimation of m(z) and its vector of derivatives, we
will obtain confidence bands for those objects based on the empirical likelihood principle.
As already stated in the introductory section above, this approach presents clear advantages
against the standard asymptotically aproximated confidence bands. To make the argument
for constructing the confidence regions for m(z) and its derivatives we can start by noting
that, for a given z, from model (1.1) we have that

E
[

Xit

(
Yit −X⊤

it m(Zit)
)∣∣∣Zit = z

]
̸= 0, (1.2)

because of the fixed effects. Therefore, the least-squares estimator of m(z) would be asymp-
totically biased. In order to cope with this problem, several transformations have been
proposed in the standard literature of panel data models. Among them, we can take the so
called within transformation. Then we have indeed that,

E

[
Ẍit

(
Ÿit −X⊤

it m(Zit)−
1
T

T

∑
s=1

X⊤
is m(Zis)

)∣∣∣∣∣Zi1 = z, . . . ,ZiT = z

]
= 0, (1.3)

where Ẍit = Xit − X̄i., X̄i. = T−1
∑

T
s=1 Xis and Ÿit =Yit −Ȳi., Ȳi. = T−1

∑
T
s=1Yis. Other transfor-

mations are available, for example the so called first differences transformation ends up in
the following moment condition,

E
[

∆Xit

(
∆Yit −

(
X⊤

it m(Zit)−X⊤
i(t−1)m(Zi(t−1))

))∣∣∣Zit = z,Zi(t−1) = z
]
= 0. (1.4)

In both cases the least squares estimator of m(z) is the solution to either (1.3) or (1.4).
If we approximate the unknown function X⊤

it m(Zit) around a value z that is in a close
neighborhood of Zit by a linear function X⊤

it m(z)+X⊤
it ⊗ (Zit − z)⊤vec(Dm(z)), then the
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ortogonality conditions (1.3) and (1.4) are approximated respectively by

E
[

Z̃∗
it

(
Ÿit − Z̃∗⊤

it β (z)
)∣∣∣Zi1 = z, . . . ,ZiT = z

]
= 0, (1.5)

and
E
[

Z̃it

(
∆Yit − Z̃⊤

it β (z)
)∣∣∣Zit = z,Zi(t−1) = z

]
= 0, (1.6)

where Z̃⊤
it =

(
∆X⊤

it ,X
⊤
it ⊗ (Zit − z)⊤−X⊤

i(t−1)⊗ (Zi(t−1)− z)⊤
)

is 1×d(q+1) vector, β (z)=

(m(z),vec(Dm(z)))⊤ is a d(q+1)×1 vector, and

Z̃∗⊤
it =

(
Ẍ⊤

it ,X
⊤
it ⊗ (Zit − z)⊤− 1

T

T

∑
s=1

X⊤
is ⊗ (Zis − z)

)

is also a d(q+1)×1 vector. Also let, Dm(z) be a d ×q matrix of partial derivatives of the
d × 1 function m(z) with respect to the elements of the q× 1 vector z, i.e. Dm(z) =

∂m(z)
∂ z .

Note that equations (1.5) and (1.6) are the first order conditions of the minimization problem
E
[(

Ÿit − Z̃∗⊤
it β (z)

)2
∣∣∣z] and E

[(
∆Yit − Z̃⊤

it β (z)
)2
∣∣∣z] for a given z. Because nonparametric

conditional expectations given either (Zi1, . . . ,ZiT ) in (1.5) or
(
Zit ,Zi(t−1)

)
in (1.6) are in-

volved, a local smoothing method is needed to obtain the sample version of those equations.
In order to define the empirical likelihood estimator we employ equation (1.5) or (1.6) as
auxiliary random vectors; therefore, the auxiliary random vector for the within transformation
is as follows

Twi (β (z)) =
T

∑
t=1

Z̃∗
it [Ÿit − Z̃∗⊤

it β (z)]KH(Zi1 − z) · · ·KH(ZiT − z), (1.7)

and for the first differences transformation

Tf i (β (z)) =
T

∑
t=2

Z̃it [∆Yit − Z̃⊤
it β (z)]KH(Zit − z)KH(Zi(t−1)− z). (1.8)

In equations (1.7) and (1.8) H is a bandwidth matrix of dimension q× q, K (·) denotes a
kernel function in Rq and

KH (u) = K
(

H−1/2u
)
.

Note that the Tw1 (β (z)) , . . . ,TwN (β (z)) are independent and, due to assumption 1.2.2,
E (Twi) = 0; the same implications remain valid for Tf i. Therefore, a naive empirical likeli-
hood ratio function for m(z) and Dm(z) can be defined as the solution to the maximization

6
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problem of a multinomial log-likelihood function, i.e.

Rw(β (z)) =−2max

{
N

∑
i=1

log(pi)

∣∣∣∣∣pi ≥ 0,
N

∑
i=1

pi = 1,
N

∑
i=1

piTwi(β (z)) = 0

}
, (1.9)

where the probabilities pi = pi(z), for i = 1, ...,N. There exists a unique value of Rw(β (z)),
for a given β (z), provided that 0 is inside the convex hull of (Tw1(β (z)), ...,TwN(β (z)))
(Owen, 1990, 1988). Using the Lagrange multiplier method the probabilities pi are

pi =
1
N

1(
1+λ⊤Twi(β (z))

) .
Note that it is necessary that 0 ≤ pi ≤ 1 which implies that λ and β (z) must satisfy that
1+λ⊤Twi(β (z))≥ N−1 for each i (see, Owen (2001), Chapter 3). This constraint satisfies
the non-negativity condition and it avoids a convex dual problem.

Using pi’s expression and after some calculations equation (1.9) leads to

Rw(β (z)) = 2
N

∑
i=1

log(1+λ
⊤Twi(β (z))), (1.10)

where λ is a d(q+ 1)× 1 vector associated to the constraint ∑
N
i=1 piTwi(β (z)) = 0. It is

indeed given as the solution to

N

∑
i=1

Twi(β (z))
1+λ⊤Twi(β (z))

= 0. (1.11)

Let us now denote D̃w(β (z)) = (NT |H|T/2)−1
∑

N
i=1 Twi(β (z))T⊤

wi (β (z)). Using equations
(1.10), (1.11) and a Taylor expansion, it can be shown that

Rw(β (z)) =

[
1√

NT |H|T/2

N

∑
i=1

Twi(β (z))

]⊤ [
D̃w(β (z))

]−1

[
1√

NT |H|T/2

N

∑
i=1

Twi(β (z))

]
+op(1).

(1.12)

Hence, as expected, Rw(β (z)) is asymptotically a standard Chi-squared distribution. To state
formally these results, we first introduce some notations and assumptions.

Assumption 1.2.4. The Kernel functions K(.) are compactly supported and bounded kernels
such that

∫
K(u)du = 1,

∫
uu⊤K(u)du = µ2(Ku)I, and

∫
K(u)2du = R(Ku) where µ2(Ku) ̸=

0, and R(Ku) ̸= 0 are scalars and I is a q×q identity matrix. Besides, we will assume that

7
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there exist eight-order marginal moment for K(.), i.e.,∫
u8

1K(u1, ..,uT )du1, ...,duT < ∞.

Also, the odd-order moments of K, when they exist, are zero, i.e.,

∫
ui1

1 ui2
2 , ...,u

iT
T K(u1, ..,uT )du1, ...,duT = 0 if

T

∑
j=1

i j is odd.

Assumption 1.2.5. Let fZit (.), fZit ,Zi(t−1)(., .) and fZi1,Zi2,Zi3(., ., .), for t = 1, ..,T be respec-
tively the probability density functions of Zit , (Zit ,Zi(t−1)) and (Zi1,Zi2,Zi3). All density
functions are continuously differentiable in all their arguments and they are bounded from
above and bellow in any point of their support.

Assumption 1.2.6. Let z be an interior point of fZit . Besides, the third order derivatives of
m1(.), ...,md(.) are bounded and uniformly continuous.

Assumption 1.2.7. The bandwidth matrix H is symmetric and strictly definite positive.
Moreover, each entry of the matrix tends to zero as N → ∞ in such a way that N|H| → ∞.

Assumption 1.2.8. The function E[Ẍit Ẍ⊤
it |Zi1 = z1, ...,ZiT = zT ] is positive definite for any

interior point of (z1,z2, ..zT ) in the support of fZi1,...,ZiT (z1,z2, ...,zT ).

Assumption 1.2.9. Let ||A||=
√

tr
(
A⊤A

)
, then E[

∣∣∣∣XitX⊤
it

∣∣∣∣2 |Zi1 = z, ..,ZiT = z] is bounded
and uniformly continuous in its support. Furthermore, let the following matrix functions
E[ẌitX⊤

it |Zi1 = z, ..,ZiT = z], E[XitX⊤
it |Zit = z, Zi(t−1) = z] and E[XisX⊤

is |Zi1 = z, ...,ZiT = z]
be bounded and uniformly continuous in their support. Also, E[ẌitX⊤

is |Zi1 = z, ...,ZiT = z]
and E[XitX⊤

is |Zi1 = z, ...,ZiT = z], for t ̸= s and t = s, are bounded and uniformly continuous
in their support.

Assumption 1.2.10. Let the following functions be bounded and uniformly continuous in
any point of its support, E[|Xitvit |2+δ |Zit = z, Zi(t−1)=z], E[|Xisvit |2+δ |Zit = z, Zi(t−1)=z] and,
E[|Ẍitvit |2+δ |Zit = z, Zi(t−1)=z], for some δ > 0.

These assumptions are rather common in the literature of non-parametric regression
analysis of panel data models. Similar conditions were used in Xue and Zhu (2007), Su
et al. (2013), Rodriguez-Poo and Soberón (2014, 2015). They are basically smoothness and
boundedness conditions for the within estimator. There are also assumptions about the kernel
functions and about the behavior of the bandwidth matrix.

Under these assumptions, we are able to establish the following results.
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1.2 Naive empirical likelihood

Theorem 1.2.1. Assuming that conditions 1.2.1 - 1.2.10 hold and H → 0 in such a way
that NT |H|T/2 → ∞ and

√
NT |H|T/2tr(H)→ 0, then Rw(β (z))→d χ2

d(q+1) as N → ∞ and
T is fixed, where →d means the convergence in distribution and χ2

d(q+1) is the standard
chi-squared distribution with d(q+1) degrees of freedom.

Now, following exactly the same steps as for the within transformation and denoting

D̃ f (β (z)) = (NT |H|)−1
N

∑
i=1

Tf i(β (z))T⊤
f i (β (z)),

we obtain

R f (β (z)) =

[
1√

NT |H|

N

∑
i=1

Tf i(β (z))

]⊤ [
D̃ f (β (z))

]−1

[
1√

NT |H|

N

∑
i=1

Tf i(β (z))

]
+op(1), (1.13)

and, as in the within case, using a non-parametric version of the Wilks’ theorem we can
provide that R f (β (z)) has, asymptotically, a Chi squared distribution. In fact, in order to
show this result we need the following smoothness conditions on moment functional forms,

Assumption 1.2.11. Let ||A||=
√

tr
(
A⊤A

)
, then the function E[∆Xit∆X⊤

it |Zit = z, Zi(t−1) =

z] is a positive definite for any interior point of (z,z) in the support of fZit ,Zi(t−1)(z,z).

Assumption 1.2.12. Also the following matrix functions E[∆XitX⊤
it |Zit = z, Zi(t−1) = z],

E[XitX⊤
it |Zit = z, Zi(t−1) = z], E[Xi(t−1)X⊤

i(t−1)|Zit = z, Zi(t−1) = z] and E[∆XitX⊤
i(t−1)|Zit =

z, Zi(t−1) = z] are bounded and uniformly continuous in their support.

Assumption 1.2.13. The functions E[|∆Xit∆vit |2+δ |Zit = z, Zi(t−1)=z], E[|Xit∆vit |2+δ |Zit =

z, Zi(t−1)=z] and E[|Xi(t−1)∆vit |2+δ |Zit = z, Zi(t−1)=z] for some δ > 0, are bounded and
uniformly continuous in any point of its support.

These group of conditions substitute assumptions 1.2.8 - 1.2.10 when working with the
first differences technique. Then, we are able to show the following result.

Theorem 1.2.2. Assuming that conditions 1.2.1 - 1.2.7 and 1.2.11 - 1.2.13 hold and H → 0 in
such a way that NT |H| → ∞ and

√
NT |H|tr(H)→ 0, then R f (β (z))→d χ2

d(q+1) as N → ∞

and T is fixed, where χ2
d(q+1) is the standard chi-squared distribution with d(q+1) degrees

of freedom.

Using theorems 1.2.1 and 1.2.2 we can approximate α-level confidence regions for β (z)
as the set of values β (z) such that R f (β (z))≤ cα and Rw(β (z))≤ cα , where cα is defined

such that Pr
(

χ2
d(q+1) ≤ cα

)
= α .

In the following section we obtain the maximum empirical likelihood estimators using
the empirical likelihood ratios defined in this section. Also, as the usual tool to construct
confidence bands, we will provide the asymptotic distribution of the estimators.
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1.3 Maximum empirical likelihood estimators

We can define the maximum empirical likelihood (MELE) estimator of β (z), β̂w(z) as
the minimizer of Rw(β (z)). From equations (1.10) and (1.12) and following the same
lines as Qin and Lawless (1994), β̂w(z) is obtained from the solution of the estimating

equation
(

NT |H|T/2
)−1

∑
N
i=1 Twi(β (z)) = 0 and, as it will be shown in the proof of Theorem

1.3.1, the remainder term is of smaller order tending to zero as NT |H|T/2 tends to infinity.
Consequently, the MELE is asymptotically equivalent to the fixed effect estimator using the
within transformation. Therefore, if we assume that 1

NT |H|T/2 ∑it ∏
T
l=1 KH(Zil − z)Z̃∗

it Z̃
∗⊤
it is

invertible, then the MELE is as follows

β̂w(z) =

(
1

NT |H|T/2 ∑
it

T

∏
l=1

KH(Zil − z)Z̃∗
it Z̃

∗⊤
it

)−1
1

NT |H|T/2 ∑
it

T

∏
l=1

KH(Zil − z)Z̃∗
itŸit

+ op

(
1√

NT |H|T/2

)
. (1.14)

As it has been already pointed out in other works, the leading terms in both bias and
variance do not depend on the sample, and therefore we can consider such terms as playing
the role of the unconditional bias and variance. For comparison purposes, and in order
to build up confidence bands, we state the asymptotic distribution of the estimator in the
following theorem.

Theorem 1.3.1. Assuming that conditions 1.2.1 - 1.2.10 hold and H → 0 in such a way that
NT |H|T/2 → ∞, then√

NT |H|T/2
{

β̂w(z)−β (z)−Bw(z)
}
→d N (0,Σw(z)) ,

where

Bw(z) = diag

{
Id,

[(
1− 1

T

)
BXtXt (z, ...,z)⊗µ2(Kuτ

)H
]−1
}

×

(
1
2 µ2(Kuτ

)diagd {tr{Hmr(z)H}} id
1
2 µ2(Kuτ

)2Bw1(z)+ 1
3!Bw2(z)

)
,

and
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1.3 Maximum empirical likelihood estimators

Σw(z) = σ
2
v diag

{
Id,

[(
1− 1

T

)
BXtXt (z, ...,z)⊗µ2(Kuτ

)H
]−1
}(

Σw1(z) 0
0 Σw2(z)

)

×diag

{
Id,

[(
1− 1

T

)
BXtXt (z, ...,z)⊗µ2(Kuτ

)H
]−1
}
,

where τ is any index between 1 and T . Also, let

Bw1(z) =

(
1− 1

T

)
DB⊤

Xt Xt
(z, ...,z)diagd

{
tr
{
Hmr(z)H

2}} id

− [DBẌ Ẍ(z, ...,z)(Id ⊗H)]⊤ diagd {tr{Hmr(z)H}} id ,

Bw2(z) =

(
1− 1

T

)
BXt Xt (z, ...,z)⊗

∫ (
H1/2uτ

)
D3

m(z,H
1/2uτ)

T

∏
l=1

K(ul)dul,

Σw1(z) = B−1
Ẍ Ẍ(z, ...,z)R(K)T ,

Σw2(z) = [DBẌ Ẍ(z, ...,z)(Id ⊗H)]⊤B−1
Ẍ Ẍ(z, ...,z)R(K)T [DBẌ Ẍ(z, ...,z)(Id ⊗H)] ,

BẌ Ẍ(z, ...,z) = E
[

Ẍit Ẍ⊤
it

∣∣∣Zi1 = z, ...,ZiT = z
]

fZi1,...,ZiT (z, ...,z),

BXt Xt (z, ...,z) = E
[

XitX⊤
it

∣∣∣Zi1 = z, ...,ZiT = z
]

fZi1,...,ZiT (z, ...,z).

Here, DBẌ Ẍ(z, ...,z) and DBXtXt (z, ...,z) are d ×dq gradient matrix of the form

DBXtXt (z1, ..,zT ) =


∂bXt Xt

11 (z1,...,zT )
∂ z1

· · · ∂bXt Xt
1d (z1,...,zT )

∂ z1... . . . ...
∂bXt Xt

d1 (z1,...,zT )

∂ z1
· · · ∂bXt Xt

dd′ (z1,...,zT )

∂ z1

 ,

and
bXtXt

dd′ (z1, ...,zT ) = E [XditXd′it |Zi1 = z1, ...,ZiT = zT ] fZi1,...,ZiT (z1, ...,zT ),

diagd {tr{Hmr(z)H}} stands for a diagonal matrix of elements tr{Hmr(z)H}, for r = 1, ...,d,
where Hmr is the Hessian matrix of the rth component of m(.) and D3

m(z,Zit − z) has as
general expression, for k = 3,

Dk
m(z,u) = ∑

i1,...,iq

Ck
i1,...,iq

∂ km(z)

∂ zi1
1 , . . . ,∂ ziq

q
ui1

1 , . . . ,u
iq
q ,

where the sums are over all distinct nonnegative integers i1, . . . , iq, such that i1 + . . .+ iq = k,
and Ck

i1,...,iq = k!/(i1! . . . iq!). Finally we denote by id a d ×1 unit vector
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Similarly, if we assume that 1
NT |H| ∑it KH(Zit − z)KH(Zi(t−1)− z)Z̃it Z̃⊤

it is invertible, we

can define the MELE for the first difference approach, β̂ f (d), write

β̂ f (z) =

(
1

NT |H|∑it
KH(Zit − z)KH(Zi(t−1)− z)Z̃it Z̃⊤

it

)−1

× 1
NT |H|∑it

KH(Zit − z)KH(Zi(t−1)− z)Z̃it∆Yit +op

(
1√

NT |H|

)
, (1.15)

where the asymptotic normality of the estimator is as follows

Theorem 1.3.2. Assuming that conditions 1.2.1 - 1.2.7 and 1.2.11 - 1.2.13 hold and H → 0
in such a way that NT |H| → ∞, then√

NT |H|
{

β̂ f (z)−β (z)−B f (z)
}
→d N

(
0,Σ f (z)

)
where,

B f (z) = diag
{

Id,
[(

BXX(z,z)+BX−1X−1(z,z)
)
⊗µ2(Ku)H

]−1
}

×

(
1
2 µ2(Ku)diagd {tr{Hmr(z)H}} id
1
2 µ2(Ku)

2B f 1(z)+ 1
3!B f 2(z)

)
,

and

Σ f (z) = 2σ
2
v diag

{
Id ,
[(

BXX(z,z)+BX−1X−1(z,z)
)
⊗µ2(Ku)H

]−1
}(

Σ f 1(z) 0
0 Σ f 2(z)

)

×diag
{

Id ,
[(

BXX(z,z)+BX−1X−1(z,z)
)
⊗µ2(Ku)H

]−1
}

;

12



1.3 Maximum empirical likelihood estimators

also, let

B f 1(z) =
(
DBXX(z,z)−DBX−1X−1(z,z)

)⊤ diagd
{

tr
{
Hmr(z)H

2}} id

− [DB∆X∆X(z, ...,z)(Id ⊗H)]⊤ diagd {tr{Hmr(z)H}} id ,

B f 2(z) =
(
BXX(z,z)−BX−1X−1(z,z)

)∫ (
H1/2u

)
D3

m(z,H
1/2u)K(u)K(v)dudv,

Σ f 1(z) = B∆X∆X(z,z)R(Ku)R(Kv),

Σ f 2(z) = [DB∆X∆X(z,z)(Id ⊗µ2(Ku)H)]⊤B−1
∆X∆X(z,z)R(Ku)R(Kv)

× [DB∆X∆X(z,z)(Id ⊗µ2(Ku)H)] ,

B∆X∆X(z,z) = E
[

∆Xit∆X⊤
it

∣∣∣Zit = z,Zi(t−1) = z
]

fZit ,Zi(t−1)(z,z),

BXX(z,z) = E
[

XitX⊤
it

∣∣∣Zit = z,Zi(t−1) = z
]

fZit ,Zi(t−1)(z,z),

BX−1X−1(z,z) = E
[

Xi(t−1)X
⊤
i(t−1)

∣∣∣Zit = z,Zi(t−1) = z
]

fZit ,Zi(t−1)(z,z).

Here, DB∆X∆X , DBXX(z,z) and DBX−1X−1(z,z) are d ×dq gradient matrices defined as
in theorem 1.3.1.

The results shown in Theorems 1.3.1 and 1.3.2 somehow correspond, under a different
setting, to Theorem 3.1 in Rodriguez-Poo and Soberón (2015) and Theorems 3.1 in Rodriguez-
Poo and Soberón (2014) respectively. However, we point out that the results obtained for
the vector of derivatives are fully new in this fixed effects panel data setting. An interesting
issue that needs to be considered here is the relative asymptotic efficiency of these estimators.
Note first, that as the reader surely realizes none of these estimators achieve the optimal
rate of convergence in terms of the Mean Integrated Square Error (MISE). Indeed, for this
type of problems the optimal rate is 1/NT |H|1/2 (see, Fan (1993) for details). For the
estimator based in the within transformation the rate of convergence in terms of the MISE
(see, Theorem 1.3.1) is 1/NT |H|T/2, whereas for the estimator based in the first differences
transformation (see, Theorem 1.3.2) it is 1/NT |H|. Therefore, the rate of convergence of
both Empirical Maximum Likelihood Estimators is suboptimal. However, note that the
relative asymptotic efficiency of β̂ f (z) with respect to β̂w(z) with the same bandwidths is of

order O
(
|H| T

2 −1
)

. If T > 2 then β̂ f (z) will exhibit a faster rate of convergence than β̂w(z).
Indeed as far as T gets larger this difference in rates increases. This is due to the so-called
curse of dimensionality that is more serious in the case of the estimator based in the within
transformation. In fact, in the case of β̂ f (z) we use a kernel function of dimension 2× q
whereas for the other estimator the dimension is T ×q. Finally, as an example, consider the
estimation of m(·) using both estimators. Using Theorems 1.3.2 and 1.3.1 and some standard
calculations note that the bandwidth that minimizes the MISE for the estimator based in
the within transformation is of order (NT )−

1
4+qT whereas for the estimator based in the
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first differences transformation converges to zero at the rate (NT )−
1

4+2q . Substituting these
optimal bandwidths in the asymptotic MISE expressions we obtain the following convergence
rates: (NT )−

4
4+qT for the within estimator, and (NT )−

2
2+q for the first differences estimator.

1.4 Bias corrected empirical likelihood

In fact, note that in order to show the convergence of both theorems, theorem 1.2.1 and
theorem 1.2.2, we have included one extra condition on the asymptotic behavior of the
sequence of bandwidth matrices, i.e.

√
NT |H|T/2tr(H)→ 0 for the within estimator and√

NT |H|tr(H) → 0 for the first differences transformation. These additional conditions
ensure that the smoothness bias becomes negligible as the sample size tends to infinity.
Unfortunately, these conditions on H exclude the bandwidth matrix that is optimal, therefore
this will end up in suboptimal rates of convergence for both Rw(β (z)) and R f (β (z)). In
order to avoid this problem we propose two modifications of the Empirical Likelihood ratio
that remove the bias term: the Mean-corrected Empirical Likelihood (MCEL) ratio and the
Residual-Adjusted Empirical Likelihood (RAEL) ratio. These bias corrections have already
been proposed in Xue and Zhu (2007) and what we will do here is to adapt them to our panel
data with fixed effect setting.

1.4.1 Mean-corrected empirical likelihood ratio

As we have already pointed out, if H tends to zero at the optimal rate then Rw(β (z))
will not converge in distribution to a χ2 random variable. The main reason is that the
smoothness bias will not vanish as NT |H|T/2 tends to infinity. However, from the proof
of Theorem 1.2.1 we know that, under the assumptions established in theorem 1.2.1,√

NT |H|T/2
(

1
NT |H|T/2 ∑i Twi (β (z))−bw(z)

)
→d N (0,υw(z)), as NT |H|T/2 tends to in-

finity. Here

bw(z) =

(
1
2bw1(z)
1
2bw2(z)+ 1

3!bw3(z)

)
, (1.16)

and

υw(z) = σ
2
v d

(
R(K)T BẌ Ẍ(z, ...,z) 0

0
(
1− 1

T

)
µ2(K2

uτ
)∏

T
l ̸=τ

R(Kul )BXt Xt (z, ...,z)⊗H

)
, (1.17)
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1.4 Bias corrected empirical likelihood

where

bw1(z) = µ2(Kuτ
)BẌ Ẍ(z, ..,z)diagd {tr{Hmr(z)H}} id,

bw2(z) = µ2(Kuτ
)2
(

1− 1
T

)
DB⊤

XtXt
(z, ..,z)diagd

{
tr
{
Hmr(z)H

2}} id,

bw3(z) =

(
1− 1

T

)
BXtXt (z, ..,z)⊗

∫ (
H1/2uτ

)
D3

m(z,H
1/2uτ)

T

∏
l=1

K(ul)dul.

Hence, the first proposal is to correct the empirical likelihood ratio, Rw(β (z)), by the
smoothing bias, given by

√
NT |H|T/2 bw(z). In order to do so we need a consistent estimator

of bw(z). By noting that

1
|H|T/2 E

[
Z̃∗

it

(
X⊤

it m(Zit)−
1
T

T

∑
s=1

X⊤
is m(Zis)− Z̃∗⊤

it β (z)

)
T

∏
l=1

KH(Zil − z)

]
= bw(z)+op(1),

(see, (A.8) for details) then a consistent estimator of bw(z) can be naturally defined as

b̂w (z) =
1

NT |H|T/2 ∑
it

Z̃∗
it

(
X⊤

it m̂w(Zit)−
1
T

T

∑
s=1

X⊤
is m̂w(Zis)− Z̃∗⊤

it β̂w(z)

)
T

∏
l=1

KH(Zil − z), (1.18)

where β̂ w(z) is the MELE defined in (2.18), m̂w(z) = e⊤β̂ w(z), and e =
[

Id
... 0

]
, Id is a

d-dimensional unit matrix and 0 is a dq×d matrix. Taking into account (1.18), let us denote

ξ̃w(β (z)) =

√
NT |H|T/2 b̂w(z)⊤

[
D̃w(β (z))

]−1

×

[
2√

NT |H|T/2

N

∑
i=1

Twi(β (z))−
√

NT |H|T/2 b̂w(z)

]
.

Finally, the mean-corrected empirical likelihood for β (z) will be

R̃w(β (z)) = Rw(β (z))− ξ̃w(β (z)). (1.19)

Similarly, for the first differences transformation, we can define the mean-corrected empirical
likelihood as

R̃ f (β (z)) = R f (β (z))− ξ̃ f (β (z)), (1.20)

where

ξ̃ f (β (z)) =
√

NT |H| b̂ f (z)⊤
[
D̃ f (β (z))

]−1

[
2√

NT |H|

N

∑
i=1

Tf i(β (z))−
√

NT |H| b̂ f (z)

]
.
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Also, b̂ f (z) is a consistent estimator of b f (z). In this case, it is easy to show (see, (A.19) for
details) that

1
|H|

E
[
Z̃it

(
X⊤

it m(Zit)−X⊤
i(t−1)m(Zi(t−1))− Z̃⊤

it β (z)
)

KH(Zit − z,Zi(t−1)− z)
]
= b f (z)+op(1),

then the estimator of b f (z), b̂ f (z) is

1
NT |H|∑it

Z̃it

(
X⊤

it m̂ f (Zit)−X⊤
i(t−1)m̂ f (Zi(t−1))− Z̃⊤

it β̂ f (z)
)

KH (Zit − z)KH
(
Zi(t−1)− z

)
,

where β̂ f (z) is the MELE defined in (1.15), and m̂ f (z) = e⊤β̂ w(z). Note that from the proof
of theorem 1.2.2,

b f (z) =

(
1
2b f 1(z)
1
2b f 2(z)+ 1

3!b f 3(z)

)
, (1.21)

where

b f 1(z) = µ2(Ku)B∆X∆X(z,z)diagd {tr{Hmr(z)H}} id,

b f 2(z) = µ2(Ku)
2
(
DB⊤

XX(z,z)−DB⊤
X−1X−1

(z,z)
)

diagd
{

tr
{
Hmr(z)H

2}} id,

b f 3(z) =
(
BXX(z,z)−BX−1X−1(z,z)

)
⊗
∫ (

H1/2uτ

)
D3

m(z,H
1/2uτ)K(u)K(v)dudv.

We state the asymptotic results of these two MCEL ratios in the following theorem.

Theorem 1.4.1. Assuming that conditions 1.2.1 - 1.2.13 hold, and β (z) is the true vector of
parameters, then R̃w(β (z))→d χ2

d(q+1) and R̃ f (β (z))→d χ2
d(q+1) as N → ∞ and T is fixed,

where →d means the convergence in distribution and χ2
d(q+1) is the standard chi-squared

distribution with d(q+1) degrees of freedom.

Note that to state this result we do not impose any extra condition. Here, we need
conditions 1.2.1 - 1.2.10 to ensure that R̃w(β (z))→d χ2

d(q+1) and conditions 1.2.1 - 1.2.7
and 1.2.11 - 1.2.13 to ensure that R̃ f (β (z))→d χ2

d(q+1) as N → ∞. Basically these condi-
tions are the same conditions of Theorems 1.2.1 and 1.2.2; however we do not need that√

NT |H|T/2tr(H) → 0 for the within transformation and
√

NT |H|tr(H) → 0 for the first
differences transformation.

1.4.2 Residual-adjusted empirical likelihood ratio

There exist an alternative method to the MCEL in order to cope with the asymptotic bias.
The main idea is to borrow the asymptotic expansion of the empirical likelihood ratio already
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1.4 Bias corrected empirical likelihood

derived. That is, for the within transformation, let T̂wi(β (z)) be an adjustment of the weighted
residuals, Twi(β (z)), that is defined as

T

∑
t=1

Z̃∗
it

[
Ÿit − Z̃∗⊤

it β (z)−

(
X⊤

it m̂w(Zit)−
1
T

T

∑
s=1

X⊤
is m̂w(Zis)− Z̃∗⊤

it β̂w(z)

)]
T

∏
l=1

KH(Zil − z).

Similarly, for the first differences transformation we have that T̂f i(β (z)) is defined as

T

∑
t=2

Z̃it

[
∆Yit − Z̃⊤

it β (z)−
(

X⊤
it m̂ f (Zit)−X⊤

i(t−1)m̂ f (Zi(t−1))− Z̃⊤
it β̂ f (z)

)]
KH(Zit − z)KH(Zi(t−1)− z).

Then, an adjusted empirical log-likelihood ratio function for β (z) can be defined, for the
within transformation, as

R̂w(β (z)) =−2max

{
N

∏
i=1

pi

∣∣∣∣∣pi ≥ 0,
N

∑
i=1

pi = 1,
N

∑
i=1

piT̂wi(β (z)) = 0

}
,

and, for the first differences transformation, as

R̂ f (β (z)) =−2max

{
N

∏
i=1

pi

∣∣∣∣∣pi ≥ 0,
N

∑
i=1

pi = 1,
N

∑
i=1

piT̂f i(β (z)) = 0

}
.

The asymptotic results for both, R̂w(β (z)) and R̂ f (β (z)), are stated in the following theorem

Theorem 1.4.2. Assuming that conditions 1.2.1 - 1.2.13 hold, and β (z) is the true parameter
value, then R̂w(β (z))→d χ2

d(q+1) and R̂ f (β (z))→d χ2
d(q+1) as N → ∞ and T is fixed, where

→d means the convergence in distribution and χ2
d(q+1) is the standard chi-squared distribution

with d(q+1) degrees of freedom.

Note that to state this result we do not impose any extra condition. Here, we need
conditions 1.2.1 - 1.2.10 to ensure that R̂w(β (z))→d χ2

d(q+1) and conditions 1.2.1 - 1.2.7

and 1.2.11 - 1.2.13 to ensure that R̂ f (β (z))→d χ2
d(q+1) as N → ∞ as N → ∞; however we do

not need that
√

NT |H|T/2tr(H)→ 0 for the within transformation and
√

NT |H|tr(H)→ 0
for the first differences transformation. Therefore, it is possible now to consider an optimal
bandwidth matrix and hence the rate of convergence of the estimators will be also optimal.

As in other nonparametric estimation problems, bandwidth selection is important. Since
the previous corrections enable us to use the optimal bandwidth then we can rely on standard
data driven bandwidth selection techniques to select a bandwidth matrix. Among them, we
propose to use a plug-in rule based on Sheather and Jones (1991). This proposal will be
investigated in numerical studies in Section 1.6 and it will be also applied for illustrating
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the proposed Empirical Likelihood method with an empirical application in Section 1.7.
Finally, there exists other data driven bandwidth selection criteria, such as cross-validation
or empirical MSE criteria, that can be used alternatively to the plug-in method. They are
detailed in the following section. Their main drawback is that their are computationally more
demanding.

1.5 Bandwidth Selection

In this section we introduce two alternative procedures to estimate the bandwidths of the
varying coefficients and its derivatives. If we are willing to assume that the bandwidth for
the function of interest and its derivatives are the same, e.g. H = hIq; we can define a cross
validation (CV) criterion function as in Xue and Zhu (2007) and choose the smoothing
parameter, h, that minimizes the following CV criterion function

CVw(h) =
1

NT

N

∑
i=1

T

∑
t=1

(
Ÿit − Z̃∗⊤

it β̂
(−it)
w (Zit)

)2
, (1.22)

where β̂
(−it)
w (Zit) is the MELE leave-one-out estimator of β (Zit) as in (1.14). Note that we

can also assume that there exist a different bandwidth for the function of interest h1 and its
derivatives h2; in this case we choose the smoothing parameters h1 and h2 that minimizes
CV criterion function

CVw(h1,h2) =
1

NT

N

∑
i=1

T

∑
t=1

(
Ÿit − Z̃∗⊤

it β̂
(−it)
w (Zit)

)2
, (1.23)

where we estimate the function of interest using h1 and its derivatives using h2. Note that,
we can also replicate this result for the first differences estimator.

A second approach is to consider a modified version of the bandwidth selection criteria
proposed in Fan and Gijbels (1995). It exhibits two main advantages against the previous
procedure: First, it is originally designed for local polynomial regression and second, it
enables us to compute by separate the bandwidths related to the levels and the derivatives of
the unknown functions. We propose the following measure of discrepancy,

MSE (H) = E
[
Z̃∗⊤

(
β̂w(Z)−β (Z)

)]2
,
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1.5 Bandwidth Selection

where Z = (Z11, . . . ,ZNT )
⊤,

W = blockdiag

(
KH(Zi1 − z)

T

∏
l=2

KH(Zil − z), . . . ,KH(ZiT − z)
T−1

∏
l=1

KH(Zil − z)

)
,

and

Z̃∗⊤ =

 Ẍ⊤
11 ,X⊤

11 ⊗ (Z11 − z)⊤− 1
T ∑

T
s=1 X⊤

1s ⊗ (Z1s − z)
...

...
Ẍ⊤

NT ,X⊤
NT ⊗ (ZNT − z)⊤− 1

T ∑
T
s=1 X⊤

Ns ⊗ (ZNs − z)

 .

In this Mean Square Error (MSE), the expectation is taken over Z1, · · · ,Zq; X1, · · · ,Xd .
Therefore, for our problem, we can define the optimal bandwidth matrix Hopt as the solution
to the following minimization problem,

Hopt = argmin
H

MSE (H) = argmin
H

E
[
Z̃∗⊤

(
β̂w(Z)−β (Z)

)]2
.

If Z1, · · · ,Zq; X1, · · · ,Xd are independent of the observed sample D=(X11,Z11, · · · ,XNT ,ZNT )
T ,

but they share the same distribution with (X11,Z11) it is straightforward to show that

MSE (H) = E
[
bT (Z)Ω(Z)b(Z)+ tr{Ω(Z)V (Z)}

]
, (1.24)

where

b(Z) = E
{

β̂w(Z)|D,Z
}
−β (Z),

V (Z) = Var
{

β̂w(Z)|D,Z
}
, and

Ω(Z) = E
(

Z̃∗Z̃∗⊤|Z
)
.

As it can be realized from the expression above, it has been now formalized the idea of
choosing a bandwidth matrix H that minimizes the MSE, that is the sum of the squared bias
and variance. Note that, the way we have defined the measure of discrepancy determines,
in our case, the choice of a global bandwidth. That is, we will choose a bandwidth that
remains constant with the location point. Unfortunately, the selection of Hopt does not solve
all problems in bandwidth selection. In fact, as it can be realized, the MSE depends on
some unknown quantities and therefore, our optimal bandwidth matrix can not be estimated
from data. There are several alternative solutions to approximate the unknown quantities
in the MSE. One alternative is to replace in (1.24) both bias and variance terms by their
respective first order asymptotic expressions that were obtained in Theorem 1.3.1. This is the
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so called ‘plug-in’ method (see, for details Ruppert et al. (1995) ). Another possibility is, as
suggested in Fan and Gijbels (1995), to replace directly in (1.24) bias and variance by their
exact expressions. That is

E
{

β̂ (Z)|D,Z
}
−β (Z) =

{
E
{

β̂ (z)|D
}
−β (z)

∣∣∣
z=Z

Var
{

β̂ (z)|D,Z
}

= Var
{

β̂ (z)|D
}∣∣∣

z=Z
, (1.25)

where clearly, according to Theorem 1.3.1

E
{

β̂ (Z)|D,Z
}
−β (Z) =

(
Z̃TWZ̃

)−1
Z̃TWτ (1.26)

Var
{

β̂ (z)|D,Z
}

=
(

Z̃TWZ̃
)−1

Z̃TWV WZ̃
(

Z̃TWZ̃
)−1

,

τ is a NT vector such that, for i = 1, · · · ,N, t = 1, · · · ,T ,

τit = X⊤
it m(Zit)−

1
T

T

∑
s=1

X⊤
is m(Zis)

−

{
X⊤

it Dm (z)(Zit − z)− 1
T

T

∑
s=1

X⊤
is Dm (z)(Zis − z)

}

and V is a NT ×NT matrix that contains the Vi j’s matrices,

Vi j = E(vivT
j |Xi1, ...,XiT ,Zi1, ...,ZiT ) = σ

2
v IT . (1.27)

In order to estimate both bias and variance we need to calculate τ and V . Note that for
τ , developing a fifth order Taylor expansion of both m(Zit) and m(Zis) around z a local
polynomial regression of order five would guarantee that the proposed bandwidth selection
procedure will be

√
N-consistent for the local linear fit (see, Hall et al. (1991) for details).

However, for the sake of simplicity a local cubic polynomial regression would be close to a√
N-consistent selection rule and it will lead to a nice reduction in the computational effort.

In this case (for d = q = 1), the vector τ̂ will contain the (estimated) expressions for the
second and third order derivatives of the local cubic polynomial regression.

On the other side, in order to estimate V , note that, under assumption 1.2.2 we can
consistently estimate this quantity by

σ̂
2
υ =

1
NT

N

∑
i=1

T

∑
t=1

{
Ÿit −X⊤

it m̂−i(Zit)+
1
T

T

∑
s=1

X⊤
is m̂−i (Zis)

}2

. (1.28)
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Note that both τ̂ and σ̂2
υ depend on a bandwidth matrix H that needs to be determined from

data. A suitable pilot bandwidth matrix H∗ that can be used for these computations can be
obtained using the global RSC procedure proposed in Fan and Gijbels (1995). Note that once
we have estimated τ and σ2

υ we can now provide an estimator for b(H), V (H) and Ω(H).
Mainly,

b̂(Zit) = E
{

β̂w(Z)|D,Z
}
−β (Z) =

(
Z̃TWZ̃

)−1
Z̃TW τ̂,

V̂ (Zit) = Var
{

β̂w(Z)|D,Z
}
=
(

Z̃TWZ̃
)−1

Z̃TW V̂ WZ̃
(

Z̃TWZ̃
)−1

,

Ω̂(Zit) =
∑ j ̸=i,t Z̃∗

it Z̃
∗⊤
it ∏

T
l=1 KH

(
Z jl −Zit

)
∑ j ̸=i,t ∏

T
l=1 KH

(
Z jl −Zit

) .

The corresponding estimator of the MSE(H), according with (1.24) will be

M̂SE (H) =
1

NT ∑
it

[
b̂T (Zit)Ω̂(Zit) b̂(Zit)+ tr

{
Ω̂(Zit)V̂ (Zit)

}]
. (1.29)

Then, we define the estimator of Hopt , Ĥopt as the solution to the following problem,

Ĥopt = argmin
H

M̂SE (H) .

Although we do not provide theoretical properties of this bandwidth, in a much simpler
context of a varying coefficient model with no heterogenity effect, in Zhang and Lee (2000)
it has been studied the theoretical properties of this bandwidth selection critearia, and we
believe it could be extended to our case. The same expressions can be obtained for the
Empirical Likelihood Estimator based in first differences. In fact, in a different context, these
expressions can be found in Rodriguez-Poo and Soberón (2014).

1.6 Monte Carlo results

In this section we propose a simulation exercise to analyse the small sample behaviour of
the empirical likelihood techniques that we have proposed in the previous sections when
constructing confidence bands. In order to do so, we consider the following data generating
process,

Yit = µqi +X⊤
ditm(Zqit)+ vit , i = 1, ...,N; t = 1, ...,T ;d,q = 1,2,

where Xdit and Zqit are random variables, where Zqit = wqit + wqi(t−1), (wqit are i.i.d.
N (0, 1)) and Xdit = 0.5ζdit + 0.5ξdit (ζqit and ξdit are i.i.d. N (0, 1)) and we consider
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three cases of study

a._ (d = 1,q = 1) : Yit = µ1i +X⊤
1itm1(Z1it)+ vit ,

b._ (d = 1,q = 2) : Yit = µ2i +X⊤
1itm1(Z1it ,Z2it)+ vit ,

c._ (d = 2,q = 1) : Yit = µ1i +X⊤
1itm1(Z1it)+X⊤

2itm2(Z1it)+ vit .

The chosen functional form for m(.) are m1(Z1it) = sin(Z1itπ), m1(Z1it ,Z2it) = sin((Z1it +

Z2it)π/2), and m2(Z1it) = exp(−Z2
1it). We also experiment with tow specifications for the

fixed effects

1._ µ1i depends on Z1it , where the dependence is imposed by µ1i = c0Z̄1i.+ ui for i =
1, ...,N and Z̄1i. = T−1

∑t Z1it ,

2._ µ2i depends on Z1it and Z2it by µ2i = c0Z̄i.+ui for i = 1, ...,N and Z̄i. =
1
2(Z̄1i.+ Z̄2i.),

where ui is an i.i.d. N (0, 1) and c0 = 0.5 controls the correlation between the unobservable
individual heterogeneity and some of the regressors of the model. Also, let εit be and
i.i.d. N (0,1) and vit a scalar random variable, for each model we work with the following
specification of the error term: vit = εit

In this experiment we use 1000 Monte Carlo replications (M). The number of period
(T ) is fixed to be 3 and the number of cross-sections (N) take the values 50, 100 and 150.
For the calculations we use a Gaussian Kernel and for the bandwidth matrix H we use
the standard choice Ĥ = ĥI, where I is the q× q identity matrix, and ĥ = σ̂z(NT )−1/5,
where σ̂z is the simple standard deviation of {Zit}N,T

i=1,t=1. For any replication we have built
up the confidence bands using the empirical likelihood confidence bands and the normal
approximation confidence bands introduced before. In table 1.1 we present the point-wise
confidence intervals, where NLB = Normal Approximation (NA) Lower Bound, NUB = NA
Upper Bound, MELLB = Mean Corrected Empirical Likelihood (MCEL) Lower Bound,
MELUB= MCEL Upper Bound, RELLB = Residual Adjusted Empirical Likelihood (RAEL)
Lower Bound and RELUB = RAEL Upper Bound.

As the reader may notice, from table 1.1, between the MCEL, the RAEL and the NA,
the length of the confidence interval is smaller in the RAEL; also note that, the confidence
interval length of the MCEL is smaller than the NA. Also, it is interesting that, as table 1.1
shows, the confidence intervals using NA are wider than ones using empirical likelihood.
Therefore we can say that when N goes to infinity the length the confidence bands of the NA
are wider that the confidence bands of the MCEL and the RAEL. Thus, we can conclude by
saying that the RAEL and MCEL confidence bands behave better than the NA confidence
bands. Between RAEL and MCEL confidence bands, simulations results show that the RAEL
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Size Model NLB MELLB RELLB β̂1(z) RELUB MELUB NUB
Within

N = 50
a -0.99 -0.60 -0.42 0.04 0.48 0.68 1.13
b -0.94 -0.62 -0.46 0.00 0.49 0.63 0.97
c -0.78 -0.67 -0.51 0.02 0.54 0.70 0.83

N = 100
a -0.95 -0.52 -0.28 0.01 0.30 0.54 0.98
b -0.98 -0.58 -0.42 -0.03 0.36 0.52 0.90
c -0.74 -0.53 -0.28 0.07 0.38 0.65 0.87

N = 150
a -0.91 -0.46 -0.21 0.00 0.21 0.47 0.93
b -1.02 -0.50 -0.34 0.03 0.39 0.57 1.10
c -0.83 -0.52 -0.23 0.00 0.23 0.52 0.78

First Difference
N = 50

a -0.96 -0.75 -0.41 0.00 0.38 0.74 0.94
b -0.85 -0.60 -0.38 0.03 0.43 0.66 0.94
c -0.92 -0.78 -0.43 0.00 0.43 0.78 0.92

N = 100
a -0.79 -0.64 -0.23 0.01 0.26 0.66 0.81
b -0.88 -0.52 -0.31 -0.01 0.29 0.49 0.87
c -0.77 -0.70 -0.26 0.00 0.28 0.71 0.80

N = 150
a -0.72 -0.58 -0.20 -0.00 0.19 0.56 0.71
b -0.93 -0.46 -0.27 0.00 0.26 0.45 0.92
c -0.69 -0.61 -0.20 -0.00 0.21 0.62 0.68

Table 1.1 Pointwise Confidence interval for β (z) at z = 0 based on the MCEL, RAEL and
NA, when the nominal level is 95%

confidence bands behave better than the MCEL. Also, by comparing the within method with
the first difference method we can conclude that for the NA and the RAEL confidence bands
the First Difference method reduces the length of the confidence interval; however the MCEL
confidence interval increases it length in comparison to the Within method (table 1.1).

1.7 An empirical aplication

In this section we offer a very simple application where our empirical likelihood based
confidence intervals can be of great interest; we consider the estimation of the production
efficiency of the EU firms. Conventionally, these type of studies are based on a Cobb-
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Douglas stochastic production function. A standard assumption in the literature is that capital
and labour elasticities are constant over time; studies conducted under such a restrictive
framework present some weaknesses. On the one hand, the estimation procedure can be
complicated by the presence of individual heterogeneity together with the inefficiency term;
especially, when there exist a correlation between the individual heterogeneity and the
covariates of the model. See Greene (2005) or Wang and Ho (2010) among others. On the
other hand, there are empirical studies that suggest that capital and labour elasticities vary
according to other features of the companies such as the research and development, R&D,
expenses. See Ahmad et al. (2005) among others, where they prove that varying coefficient
models are a natural way to extend these constant elasticities to the functional form. Also,
there exist a standard belief that the liquid capital marginal productivity is not affected by the
R&D expenses. In order to test this fact, we propose the following varying coefficient panel
data model

yit = witβ1(zit)+ litβ2(zit)+ kitβ3(zit)+µi + vit , i = 1, . . . ,N; t = 1, . . . ,T (1.30)

where yit = ln(Yit), wit = ln(Wit), lit = ln(Lit) and kit = ln(Kit). Also, Y represents the sales
of the company, W the liquid capital, L the labour input, K the fixed capital and Z the firms
R&D expenses. In addition µi stands for the individual heterogeneity and vit = νit −uit is a
composed error term, where νit is the idiosyncratic error and uit represents the inefficiency
that has expected value equal to E [vit ] =−E [uit ]. Note that in the specification (1.30) the
R&D variable has a neutral effect on the production function by shifting the level of the
production frontier but also affects the labour and capital marginal productivities.

Variable Average Standard Deviation Correlations
Y 6705377.60 25791397.23
W 1379564.74 5073321.65 0.66
K 1161082.07 3443125.02 0.79 0.83
L 17976.52 48686.98 0.59 0.83 0.86
Z 224303.78 937324.42 0.40 0.60 0.63 0.62

Table 1.2 Statistics of inputs and outputs.

The sample used in this empirical analysis includes 1220 observations divided in 160
companies and 7 time periods, form 2008 to 2014, from the Analyse Major Database form
European Sources (AMADEUS). The data contains information about the accounting and
financial statements of European firms. Note that we are working with expenses, thus all the
variables have been deflected using the implicit index of the GDP. The information related to
prices used to deflate the variables was obtained form the Spanish Statistical Office (various
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years). In Table 1.2 we present summary statistics of the observations, as it can be seen, the
standard deviations show that there exist a high degree of heterogeneity.

In figure 1.1 we present our results by plotting the estimated curves against the R&D
expenses; here the continuous lines denote the non-parametric estimated curve and the
doted lines represent the 95% pointwise confidence interval obtained using the MCEL (long-
dashed curve) and RAEL (short-dashed curve). The bandwidths, as in Section 5, have
been computed by a plug-in technique proposed in Sheather and Jones (1991) and already
explained in Section 1.4. Also, note that figure 1.1 shows the results for the marginal
productivity of liquid capital (W ), fixed capital (K) and labour (L), and the returns to scale
defined as β1(z)+β2(z)+β3(z).
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Figure 1.1 Averages of 95 % Confidence Intervals for β̂ j(z) for j = 1, . . . ,3 (Within method),
based on MCEL (long-dashed curve) and RAEL (short-dashed curve).

Focusing in the marginal productivity of liquid capital (W marginal productivity) we
have realized that it tends to be decreasing; however when it reaches a certain level of R&D
expenses it tends to be steady and close to zero. Basically, this means that companies with
small R&D expenses have a decreasing marginal productivity of liquid capital. Analysing
the graph, we can see that as the level of R&D expenses increases, first the companies see an
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increase in the marginal productivity of liquid capital; then they experiment a drop of the
marginal productivity of liquid capital until it become stable near to zero. On its part, the
marginal productivity of fixed capital (K marginal productivity) is not a linear function with
the level of R&D expenses. Clearly, there exist an upward general trend, with a bell shape
form for companies with large R&D expenses. This bell shape of the marginal productivity of
fixed capital curve suggests that, while modest R&D expenses can improve the fixed capital
productivity, higher R&D expenses leads to lower fixed capital productivity.

L marginal productivity shows the results of the labour marginal productivity. Here
we observe that the labour marginal productivity is not a linear function of R&D; broadly,
it decreases with R&D, however, with higher levels of R&D the marginal productivity of
labour becomes to increase. This inverted bell shape suggest that companies with reduced
R&D tend to have lower labour marginal productivity at the beginning while companies with
higher R&D are more likely to have an increase in labour marginal productivity. Note that
this behaviour is characteristic in companies that use R&D to improve the performance of
their machines rather than focusing in training their workers. Finally, using these results
we can not conclude that the returns to scale are not equal to one because one is within the
confidence interval. However, we can conclude that the returns to scale are not linear with
R&D and they seem to have a negative effect in the behaviour of the returns to scale.

1.8 Conclusions

In this chapter we adapt empirical likelihood techniques to construct confidence bands in a
fixed effects varying coefficient panel data model. First we consider a so called naive empiri-
cal likelihood technique. As a byproduct we provide two alternative empirical maximum
likelihood estimators of the varying coefficients and their derivatives. Since the use of naive
empirical likelihood techniques provides sub-optimal rates of convergence we slightly modify
the original techniques that enables us to obtain optimal nonparametric rates: Mean corrected
and residual adjusted empirical likelihood ratios. Finally we undertake a simulation study
and we apply successfully our techniques in a empirical study of of production efficiency of
the European Union’s companies.
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Chapter 2

Empirical likelihood based inference for
categorical varying coefficient panel data
model with fixed effects

This chapter also appeared as Arteaga-Molina and Rodríguez-Poo (2019).
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2.1 Introduction

In the last years there has been an increasing interest in the study of panel data models
combined with nonparametric techniques. On the one hand, the results are promising,
however it is true that the main disadvantages related to nonparametric techniques (e.g.,
the curse of dimensionality, see Härdle (1990)) continue to appear when we apply them to
panel data models. In order to overcome this drawback varying coefficient models appear
as a reasonable specification. Varying coefficient models encompass a great variety of
other simple models applied by econometricians as partially linear models or the fully
nonparametric models. On the other side, in many applied microeconomic problems, the
difficulty to have available all explanatory variables of interest has attracted the attention of
many applied economists towards panel data models. As it is well known, in a regression
model, these techniques enable us to estimate the objects of interest consistently by allowing
for individual heterogeneity of unknown form. Nowadays, we have available a pleiad of
varying coefficient estimators that exhibit good asymptotic properties under rather different
sets of assumptions such as random effects, fixed effects or cross sectional dependence (see,
Su and Ullah (2011), Rodriguez-Poo and Soberon (2017) and Parmeter and Racine (2018)
among others for comprehensive surveys of the literature). More precisely, the problem
of considering varying coefficients that depend on discrete data has attracted some interest
because the availability of discrete variables is rather common in economic analysis. In Li
et al. (2013b) it is proposed a semiparametric varying-coefficient with purely categorical
covariates; furthermore, in Feng et al. (2017) the previous setting is extended to fixed effects
and cross-sectional dependence.

Although in the previous papers the authors provide extensive results about the asymptotic
behavior of the estimators, inference is not always an easy problem to undertake. In fact,
in all above mentioned papers, asymptotic normal approximations are obtained. In the
discrete covariates case, under fairly general conditions, if the bandwidth is selected using
the cross-validation criteria, the asymptotic bias of the estimator is negligible and therefore
inference based on the asymptotic distribution is more feasible than in the continuous
covariate case where some undersmoothing is needed (Li and Racine (2007)). Unfortunately,
if additionally, we are willing to assume cross-sectional dependence inference becomes much
cumbersome. Besides, using confidence bands as a testing device is not straightforward as
uniform confidence bands are necessary to do so (see, Li et al. (2013a)).

Aside from the usual tools to make inference (e.g., asymptotic normality), Owen (1988)
introduced the empirical likelihood technique; there exist several advantages of this method
over the usual ones (e.g., no limiting variance estimation are necessary, it combines the
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reliability of nonparametric methods with the effectiveness of the likelihood approach,
among others). For further discussion on the advantages of the empirical likelihood technique
the reader should refer to Owen (1990, 1988), Hall and La Scala (1990), DiCiccio et al.
(1991), Owen (1991), Hall and Owen (1993), Kolaczyk (1994), Qin and Lawless (1994),
Owen (2001), Li and Van Keilegom (2002), among others. In fact, due to its properties,
empirical likelihood have been already applied in longitudinal data varying coefficient models
with random effects (e.g., Xue and Zhu (2007)); as for the fixed effects case, see, Zhang et al.
(2011) and chapter 1. Unfortunately these type of results are not available for the panel data
discrete/categorical varying coefficient setting. In fact, in chapter 1, the varying coefficient,
m(Z), varies according to a continuous variable, Z; therefore, the authors use a continuous
kernel functions. Also the authors derive the asymptotic theory for T fixed and N → ∞.

In this chapter, and starting from a panel data discrete/categorical varying coefficient
model with both fixed effects and cross sectional dependence, we develop empirical likelihood
ratios and we derive a nonparametric version of the Wilks’ theorem. Besides, we obtain
maximum empirical likelihood estimator of the varying parameters and its asymptotic theory.
Based on these results, we can build up confidence regions for the parameter of interest
through a standard chi square approximation. The rest of this chapter is organized as follows.
In Section 2.2 we propose to construct confidence bands for the unknown functions by using
what we call a naive empirical likelihood technique. In Section 2.3, as a by product, we
provide an alternative maximum empirical likelihood estimator of the fixed effect categorical
varying parameters. In Section 2.4 we present the proposed technique in an application that
reports estimates of strike activities from 17 OECD countries for the period 1951−1985.
Finally Section 2.5 concludes. The proofs of the main results are collected in the Appendix.

2.2 Naive Empirical Likelihood

We consider the following categorical varying coefficient panel data regression model

Yit = X⊤
it β (Zit)+ωi + vit i = 1, . . . ,N t = 1, . . . ,T, (2.1)

where Yit is the response, Xit =
(
Xit,1, . . . ,Xit,d

)⊤ and Zit =
(
Zit,1, . . . ,Zit,q

)⊤ are vectors of
dimension d and q respectively, and β (·) = {β1(·), . . . ,βd(·)}⊤ is a d ×1 vector of unknown
functions; here, ωi stands for so called fixed effects and vit are the random errors. Note
that when Zit is a vector of continuous random variables, model (2.1) stands for the so
called varying coefficient panel data model with fixed effects studied by authors such as
Rodriguez-Poo and Soberón (2014, 2015), Cai and Li (2008), Sun et al. (2009), Su and Ullah
(2011) and Chen et al. (2013) among others. In this paper we consider the case where Z is
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purely categorical and in order to distinguish between X and Z we will refer as regressor and
covariate respectively. Note that we are not willing to impose any restriction between ωi an
the pair (Xit ,Zit).

The model (2.1) is an extension of the cross-sectional varying coefficient model of Li
et al. (2013b) to the panel data framework as it appears in Feng et al. (2017). First, we will
obtain confidence bands for β (·) based on the empirical likelihood approach; to do so, we
need the first order condition of the minimization problem for obtaining β (·). Note that, this
condition, for given z, from (2.1) is

E
[

Xit

{
Yit −X⊤

it β (Zit)
}∣∣∣Zit = z

]
̸= 0,

due to the fixed effects. To deal with this problem, several transformations have been
proposed in the standard literature of panel data models. For example, when Z is continuous,
some differencing transformations combined with a Taylor series approximation could be
done (see, chapter 1). Unfortunately, if the elements of Z are of a discrete nature a Taylor
approximation is not feasible.

Here we propose to keep the same idea of using the within transformation but instead
of using a continuous kernel we aim to use a kernel function designed for discrete random
variables (see, Aitchison and Aitken (1976)). Thus, let 1 js,it = 1(Zit = Z js) and L js,it,γ =

L(Zit ,Z js,γ) for 1 ≤ i, j ≤ N and 1 ≤ t,s ≤ T . Note that L(Zit ,Z js,γ) represents a kernel
function for multivariate discrete spaces

L(Zit ,z,γ) =
q

∏
s=1

ℓ(Zit,s,zs,γs) =
q

∏
s=1

γ
1(Zit,s ̸=zs)
s , (2.2)

where γ = (γ1, . . . ,γq)
⊤, 1(Zit,s ̸= zs) denotes the usual indicator function, which takes the

value 1 when Zit,s ̸= zs, and 0 otherwise and

ℓ(Zit,s,zs,γs) =

1 if Zit,s = zs

γs if Zit,s ̸= zs
,

is the kernel function of Aitchison and Aitken (1976) for unordered covariates, where γs = 0
leads to an indicator function and γs = 1 gives a uniform weighted function. Thus, we can
conclude that γs ∈ [0,1] for s = 1, . . . ,q. Also, note that the kernel function (2.2) can also be
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expressed as

L(Zit ,z,γ) =
q

∏
m=1

ℓ(Zit,m,zm,γm)

=
q

∏
m=1

{1(Zit,m = zm)+ γm1(Zit,m ̸= zm)}

=
q

∏
m=1

1(Zit,m = zm)+
q

∑
m=1

γm1m,itz∗ + . . .+
q

∏
m=1

γm1(Zit,m ̸= zm)

= 1(Zit = z)+
q

∑
m=1

γm1m,itz∗ + . . .+
q

∏
m=1

γm1(Zit,m ̸= zm)

where 1m,itz∗ = 1(Zit,m ̸= zm)∏
q
n=1,n̸=m 1(Zit,n = zn) is an indicator function which takes

value 1 if Zit and z differs only in their mth component and 0 otherwise. Note that if we
assume that γ → 0 as (N,T )→ (∞,∞) it is reasonable to simplify the kernel product function
(2.2) as follows

L(Z js,Zit ,γ) = 1 js,it +
q

∑
m=1

γm1m, jsit +O(||γ||2), (2.3)

where 1m, jsit = 1(Z js,m ̸= Zit,m)∏
q
n=1,n̸=m 1(Z js,n = Zit,n) and ||.|| stands for the Frobenius

norm.
Expression (2.3) is of great interest because it enables us to apply a modified version of a

within transformation in (2.1) and then remove the fixed effects. Thus, let Tit = ∑
T
s=1 Lp

it,is,γ ,
where p ≥ 2 is a finite positive integer and chosen arbitrarily. In practice, the choice of
p = 2 is enough. Let X̃it = Xit − T−1

it ∑
T
s=1 Xis1is,it , Ỹit = Yit − T−1

it ∑
T
s=1Yis1is,it and ṽit =

vit −T−1
it ∑

T
s=1 vis1is,it . Applying this transformation in (2.1) we obtain

Ỹit = X⊤
it β (Zit)+ωi + vit −

1
Tit

T

∑
s=1

{
X⊤

is β (Zis)+ωi + vis

}
Lp

is,it,γ

= X⊤
it β (Zit)−

1
Tit

T

∑
s=1

X⊤
is Lp

is,it,γβ (Zit)+
1
Tit

∑
s=1

X⊤
is Lp

is,it,γβ (Zit)

− 1
Tit

T

∑
s=1

X⊤
is β (Zis)L

p
is,it,γ + ṽit

= X̃⊤
it β (Zit)+ρit + ṽit , (2.4)

where ρit = T−1
it ∑

T
s=1 X⊤

is {β (Zit)−β (Zis)}Lp
is,it,γ stands for the truncation residual. Due to

the fact that 1p(·) = 1(·) and {β (Zit)−β (Zis)}1(Zis = Zit) = 0, if γ → 0 as (N,T )→ (∞,∞)
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we obtain
{β (Zit)−β (Zis)}Lp

is,it,γ = O(||γ||p) (2.5)

uniformly. Therefore, due to (2.5), the truncation residual ρit is controlled by the bandwidth
γ only. Given this result we obtain that the first order condition, for given z, from (2.4) is

E
[

X̃it

{
Ỹit − X̃⊤

it β (Zit)
}∣∣∣Zit = z

]
= 0. (2.6)

In this case, the least squares estimator of β (z) is the solution to (2.6) when Zit = z; therefore,
the orthogonality condition (2.6) for β (z) has the following form

E
[

X̃it

{
Ỹit − X̃⊤

it β (z)
}∣∣∣Zit = z

]
= 0. (2.7)

Then, employing the constraint (2.7), the auxiliary random vector for the modified within
transformation is

Ti {β (z)}=
T

∑
t=1

X̃it

{
Ỹit − X̃⊤

it β (z)
}

L(Zit ,z,γ); (2.8)

note that, (2.8) is the sample version of (2.7) using a local smoothing method with a discrete
kernel function. Also, if β (z) is the true parameter, it is easy to show, due to (2.7), that
E [Ti {β (z)}] = 0. Therefore, using the information E [Ti {β (z)}] = 0 the naive empirical
log-likelihood ratio for β (z) is defined as

R {β (z)}=−2max

[
N

∑
i=1

log(pi)

∣∣∣∣∣pi ≥ 0,
N

∑
i=1

pi = 1,
N

∑
i=1

piTi {β (z)}= 0

]
, (2.9)

where pi = pi(z), i = 1, . . . ,N. Using the Lagrange multiplier method the probabilities pi are

pi =
1
N

1
1+λ⊤Ti {β (z)}

. (2.10)

By (2.9) and (2.10), R {β (z)} leads to

R {β (z)}= 2
N

∑
i=1

log
[
1+λ

⊤Ti {β (z)}
]

; (2.11)

where λ is a (d ×1) vector of Lagrange multipliers associated to the constraint

N

∑
i=1

piTi {β (z)}= 0
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and it is given by
N

∑
i=1

Ti {β (z)}
1+λ⊤Ti {β (z)}

= 0, (2.12)

subject to the constraint that satisfies the non-negativity condition and avoids a convex dual
problem (see, Owen (2001), Chapter 3). Using equation (2.11), (2.12), a Taylor expansion
and denoting D̃{β (z)}= (NT )−1

∑
N
i=1 Ti {β (z)}T⊤

i {β (z)} it can be shown that

R {β (z)}=

[
1√
NT

N

∑
i=1

Ti {β (z)}
]⊤ [

D̃{β (z)}
]−1

[
1√
NT

N

∑
i=1

Ti {β (z)}
]
+op(1). (2.13)

Hence, it is easy to show using (2.13) that R {β (z)} is asymptotically a standard Chi
square distribution. In order to formally introduce this result, we need the following assump-
tions.

Assumption 2.2.1. :

(i) Let D be the range of values assumed by Zit , then p(z) = Pr(Zit = z) > 0 ∀z ∈ D .
The function β (z) is bounded on the support D of z, i.e., maxz∈D ||β (z)||< ∞ and it
is not a constant function with respect to z. Denote zm as the mth component of the
q-dimensional vector z =

(
z1, ...,zq

)⊤, where zm is assume to take cm different integer
values in {0,1, . . . ,cm − 1} for cm ≥ 2 and m = 1, . . . ,q. Moreover, q is finite and
max1≤m≤qcm < ∞.

(ii) Let (Xit ,Zit ,vit) be independent across i for each fixed t. Besides, for each fixed i,
the process (Xit ,Zit ,vit) is strictly stationary and α-mixing. The α-mixing coefficient
between (Xit ,Zit ,vit) and

(
X js,Z js,v js

)
is determined by αi j(|t − s|), where

α(k) = sup |P(A
⋂

B)−P(A)P(B)| , k ≥ 1
A ∈ σ ((Xis,Zis,vis) ,s ≤ t)

B ∈ σ ((Xis,Zis,vis) ,s ≥ t + k)

besides, for a δ > 0, ∑
N
i=1 ∑

N
j=1 ∑

T
t=1 ∑

T
s=1
{

αi j(|t − s|)
} δ

4+δ = O(NT )

(iii) ∀z ∈ D , i = 1, . . . ,N and t = 1, . . . ,T, let ||µX(z)|| and ||ΣX(z)|| be uniformly bounded
in z, where µX(z) = E(Xit |Zit = z) and ΣX(z) = E

(
XitX⊤

it

∣∣Zit = z
)
.

(iv) Denote X =
{
(X js,Z js)

}N,T
j=1,s=1, then E(vit |X ) = 0 and 0 < E

(
v2

it |X
)
= σ2

v < ∞

almost surely (a.s.) for all 1 ≤ i ≤ N and 1 ≤ t ≤ T . For some constants δ > 0 and
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0 < a1 < ∞ , E
(
|vit |4+δ + ||Xit ||4+δ

)
≤ a1 uniformly. Also, over the time dimension,

(NT )−1
∑

N
i=1 ∑

T
t=1 ∑

T
s=1 |E (vitvis|X )|= O(1).

(v) Let ωi be arbitrarily correlated with both Xit and Zit with unknown correlation structure.

Assumption 2.2.1.(i) is quite standard and similar to Assumption 1.(i) in Li et al. (2013b).
Note that, in order to deal with the case where the cardinality of D is infinity, one can
work with the normalization used to deal with time varying coefficient model. That is,
as in Feng et al. (2017), suppose q = 1, Zit ∈ {0,1,2, . . . ,u(N,T )}, where u(N,T ) → ∞

and u(N,T )/(NT )→ c for 0 ≤ c < ∞ as (N,T )→ (∞,∞); then a variant of model (4.1) is
obtained by normalizing Zit by u(N,T ) as follows

Yit = X⊤
it β

{
Zit

u(N,T )

}
+ωi + vit , (2.14)

were β (·) can be treated as a continuous function of covariates; therefore, (2.14) is just
the model proposed by Sun et al. (2009) with β (·) being a continuous function. This
normalization is similar to the one employed in Chen et al. (2012b) and Cai (2007) when
dealing with time varying coefficients.

Assumptions 2.2.1.(ii) is similar to Assumptions B and C of Bai (2009). The strict
stationary assumption goes in the same line as Assumption A4 in Chen et al. (2012a) and
Assumption A2 in Chen et al. (2012b). More details and relevant discussion can be found in
Feng et al. (2017).

Assumption 2.2.1.(iii) sets restrictions on the unconditional moments as in Assumption
3.3−3.6 in Rodriguez-Poo and Soberón (2014). Due to the within transformation, we have
to assume it holds uniformly across i, which is in the same direction of Assumption A1 in
Chen et al. (2013) and Assumption C in Bai (2009)

Assumption 2.2.1.(iv) is the same as that in Arellano (1987) and goes in the same direction
as Assumption A2 and A4 Chen et al. (2012b). This assumption sets up the cross-sectional
dependence as a weak correlation between individuals by using a spatial error structure,
where a general spatial correlation structure has been imposed to link together the cross
sectional dependence and the stationary mixing condition. (e.g., Pesaran and Tosetti (2011),
Chen et al. (2012a) and Chen et al. (2012b) among others). Here, the last equation in
Assumption 2.2.1.(iv) it is a simplified version of the one in Chen et al. (2012a) (A.18); this
last equation is needed due to the within transformation.

Finally, Assumption 2.2.1.(v) imposes the so called fixed effects. Note that we are not
willing to assume any constraint in the relationship between the random heterogeneity ω and
the vector of regressors and covariates, (X ,Z).
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Having all these assumptions into consideration we can state formally the following
theorem.

Theorem 2.2.1. Assuming that condition 2.2.1 hold and if γm → 0 in such a way that√
NT γm → 0 for m = 1, . . . ,q as (N,T )→ (∞,∞) jointly, then R {β (z)} →d χ2

d . Here →d

means the convergence in distribution and χ2
d stands for the standard chi-square distribution

with d degrees of freedom.

Therefore, we can build up the confidence bands using theorem 2.2.1 as follows,

Rα = {β (z) : R {β (z)} ≤ cα}, (2.15)

where cα is the 1−α quantile of χ2
d .

Note that this result imposes an extra condition on the sequence of bandwidths γm, that is,√
NT γm → 0, which is similar to conditions used in nonparametric regression; as it is well

known this last extra condition implies that the rate of convergence is not optimal. As already
mentioned in other works (see, Li and Racine (2007)), in the presence of discrete covariates
it is possible to improve the rate of convergence by selecting γm for m = 1, . . . ,q to be the
minimizer of the cross validation (CV) criterion function

CV (γ) =
1

NT

N

∑
i=1

T

∑
t=1

{
Ỹit − X̃⊤

it β̂−it(Zit)
}2

(2.16)

where β̂−it(Zit) =
{

∑ js, js ̸=it X̃ jsX̃⊤
js L(Z js,Zit ,γ)

}−1
∑ js, js̸=it X̃ jsỸjsL(Z js,Zit ,γ) is the leave-

one-out kernel estimator of β (Zit). We use γ̂1, . . . , γ̂q to denote the cross-validated choices
of γ1, . . . ,γq that minimize (2.16). In order to state the asymptotic properties of the cross-
validated choices γ̂1, . . . , γ̂q we will need to borrow the following assumption from Feng et al.
(2017)

Assumption 2.2.2. :

(i) Define CV0(γ) as

CV0(γ) = ∑
z∈D

p(z){β (z)−η(z,γ)}⊤ Ω(z,γ){β (z)−η(z,γ)}

+ ∑
z∈D

p(z)
{

∆3β (z,γ)−∆3(z,γ)⊤β (z)
}2

+2 ∑
z∈D

p(z){µX(z)−∆3(z,γ)}⊤ {β (z)−η(z,γ)}
{

∆3β (z,γ)−∆3(z,γ)⊤β (z)
}

= CV0,1 +CV0,2 +CV0,3
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where

∆1(z,γ) = E{Lp(Zis,z,γ)|z,γ}
∆2(z,γ) = E{XitLp(Zis,z,γ)|z,γ}

∆2β (z,γ) = E{Xitβ (Zit)Lp(Zis,z,γ)|z,γ}
∆3(z,γ) = ∆2(z,γ)/∆1(z,γ)

∆3β (z,γ) = ∆2β (z,γ)/∆1(z,γ)

Ω(z,γ) = ΣX(z)+∆3(z,γ)∆3(z,γ)⊤−∆3(z,γ)µX(z)⊤−µX(z)∆3(z,γ)

ΣXX(z,γ) = E{Ω(z,γ)L(Zit ,z,γ)|z,γ}
ΣXXβ (z,γ) = E{Ω(z,γ)β (Zit)L(Zit ,z,γ)|z,γ}

η(z,γ) = Σ
−1
XX(z,γ)ΣXXβ (z,γ)

Kit =
1
Tit

T

∑
s=1

XisLp(Zis,z,γ)−∆3(Zit ,γ).

(ii) ∀z∈D , i= 1, . . . ,N and t = 1, . . . ,T, ∆3(z,γ) and ∆3β (z,γ) are uniformly bounded in z.
Let us suppose that, together with assumption 2.2.1(iii)-(iv), the following result holds,
(NT )−1

∑
N
i=1 ∑

T
t=1 E||Kit ||2 = O(1) and (NT )1

∑
N
i=1 ∑

T
t=1 |T/Tit |2 = O(1) uniformly in

γm ∈ [0,1] for m = 1, . . . ,q..

Assumption 2.2.2.(i) sets restrictions on the unconditional moments as in Assumption
2.2.1.(iii). Assumption 2.2.2.(ii) is a panel data version of assumption 2 of Li et al. (2013b)
and ensures that CV0(γ) is uniquely optimize at 0. By theorem 2.1 of Newey and McFadden
(1994), this assumption implies that γ̂ obtained by minimizing (2.16) converges to zero.
Under Assumptions 2.2.1 and 2.2.2 we can state the following results; for further discussion
and proofs the reader should refer to Feng et al. (2017).

Lemma 2.2.1. Under Assumptions 2.2.1 and 2.2.2, as (N,T )→ (∞,∞) jointly, γ̂ = oP(1)

This lemma ensures that γ converges to zero as the sample size increases. Then it is
reasonable to assume that γ is sufficiently small and close to zero. Therefore the product
kernel function can be simplified as in (2.3).

Lemma 2.2.2. Assuming that conditions 2.2.1 and 2.2.2 hold, as (N,T )→ (∞,∞) jointly,
γ̂ = OP

( 1
NT

)
This lemma gives the rate of convergence for γ̂; note that this result simplifies considerably

the proof of the previous result as we are able to use an indicator function (i.e., L(Zit ,z,γ) =
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1(Zit = z), letting γ = 0q×1). Note that using these results the proofs of theorem 2.2.1 will
simplify considerably since we will be working with

T̃i {β (z)}=
T

∑
t=1

X̃it

{
Ỹit − X̃⊤

it β (z)
}

1(Zit = z)+OP

(
1

NT

)
. (2.17)

Using (2.17) we can build up an empirical likelihood ratio function similar to (2.13),
R̃ {β (z)} and we can state the following result.

Corollary 2.2.1. Taking γ̂ to be the minimizer of the cross validation function (2.16), then
assuming that conditions 2.2.1 and 2.2.2 hold, and (N,T ) → (∞,∞) jointly, we get that
R̃ {β (z)}→d χ2

d .

Here we define the confidence bands in the same way as in (2.15), that is, the set of
values β (z) such that R̃ {β (z)}≤ cα where Pr

(
χ2

d ≤ cα

)
= α . Note that, using the empirical

likelihood technique, it is possible to implement both, theorem 2.2.1 and corollary 2.2.1
without imposing any extra conditions on the random errors.

In the following section we obtain the maximum empirical likelihood estimator (MELE)
using the empirical likelihood ratio defined in this section. Also, as the usual tool to construct
confidence bands, we will provide the asymptotic distribution of the estimators.

2.3 Maximum empirical likelihood estimator

We define the maximizer of (2.13), β̂ (z), as the maximum empirical likelihood estimator
of β (z), that is, β̂ (z) = maxβ (z)R {β (z)} . Using (2.11) and (2.13) and following the same
lines as in Qin and Lawless (1994) we can write

β̂ (z) =

{
N

∑
i=1

T

∑
t=1

X̃it X̃⊤
it L(Zit ,z,γ)

}−1 N

∑
i=1

T

∑
t=1

X̃itỸitL(Zit ,z,γ)+oP

(
1√
NT

)
(2.18)

Consequently, for comparison purposes, we derive the asymptotic distribution of MELE
estimator, (2.18), in the following theorem.

Theorem 2.3.1. Assuming that condition 2.2.1 hold, γ → 0 and (N,T ) → (∞,∞) jointly,
then √

NT
{

β̂ (z)−β (z)−Γ
−1
1 (z)b(γ)

}
→d N

{
0d×1,Γ

−1
1 (z)Γ0(z)Γ−1

1 (z)
}
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where

Γ0(z) = lim
N,T→∞

1
NT

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
s=1

E
[
vitv js {Xit −µX(z)}

{
X js −µX(z)

}⊤ 1(Zit = z)1(Z js = z)
]
,

Γ1(z) = p(z)
{

ΣX(z)−µX(z)µX(z)⊤
}
+O(||γ||) ,

b(γ) = Γ1(z∗){β (z∗)−β (z)}
q

∑
m=1

γm1m,itz∗ +O
(
||γ||2

)
.

Note that by imposing stronger conditions on the random errors, i.e., vit are i.i.d. over i and
t, Γ0(z) is reduced to a simpler expression such as Γ0(z)=σ2

v p(z)
{

ΣX(z)−µX(z)µX(z)⊤
}
=

σ2
v Γ1(z), then we can state the following result.

Corollary 2.3.1. Assuming that condition 2.2.1 hold, vit are i.i.d. over i and t, γ → 0, and
(N,T )→ (∞,∞) jointly, then

√
NT
{

β̂ (z)−β (z)−Γ
−1
1 (z)b(γ)

}
→d N

{
0d×1,σ

2
v Γ

−1
1 (z)

}
.

Also note that under unknown sequences of γ and using lemma 2.2.1 and 2.2.2 the
proof of theorem 2.3.1 will simplify considerably since we will be working with β̂ (z) =
β̃ (z)+OP

( 1
NT

)
, where β̃ (z) is a frequency estimator in the same way as in β̂ (z) when γm = 0

∀m = 1, . . .q. Therefore, is straightforward to obtain that

√
NT
{

β̂ (z)−β (z)
}
=
√

NT
{

β̃ (z)−β (z)
}
+OP

(
1√
NT

)
; (2.19)

then, we just need to focus on
√

NT
{

β̃ (z)−β (z)
}

.

Theorem 2.3.2. Taking γ̂ to be the minimizer of the cross validation function (2.16), then
assuming that conditions 2.2.1 and 2.2.2 hold, and (N,T )→ (∞,∞) jointly, we get that

√
NT
{

β̃ (z)−β (z)
}
→d N

{
0d×1,Γ

−1
1 (z)Γ0(z)Γ−1

1 (z)
}

where

Γ0(z) = lim
N,T→∞

1
NT

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
s=1

E
[
vitv js {Xit −µX(z)}

{
X js −µX(z)

}⊤ 1(Zit = z)1(Z js = z)
]
,

Γ1(z) = p(z)
{

ΣX(z)−µX(z)µX(z)⊤
}
.

Here, imposing that vit are i.i.d. over i and t, that is, Γ0(z) = σ2
v Γ1(z) will lead us to the

following result.
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Corollary 2.3.2. Taking γ̂ to be the minimizer of the cross validation function (2.16), then
assuming that conditions 2.2.1 and 2.2.2 hold, vit are i.i.d. over i and t and (N,T )→ (∞,∞)

jointly, we get that

√
NT
{

β̃ (z)−β (z)
}
→d N

{
0d×1,σ

2
v Γ

−1
1 (z)

}
.

Note that, when using asymptotic normality we need to estimate the variance-covariance
matrix and sometimes this estimation is no feasible (see variance expressions in Theorems
2.3.1 and 2.3.2). To cope with this issue, we imposed a stronger condition on the random
errors, that is, vit are i.i.d. over i and t; this allowed us to estimate the variance expression
using corollary 2.3.1 and 2.3.2. Hence, to construct the confidence bands, by (A.58) it is easy
to show that Γ̂1(z)→P Γ1(z), where

Γ̂1(z) =
1

NT

N

∑
i=1

T

∑
t=1

X̃it X̃⊤
it 1(Zit = z),

and if vit are i.i.d. over i and t, σ̂2
v →P σ2

v , where

σ̂
2
v =

1
NT

N

∑
i=1

T

∑
t=1

{
Ỹit − X̃⊤

it β̂ (Zit)
}2

.

In the following section we illustrate the proposed technique in an application that reports
estimates of strike activities from 17 OECD countries for the period 1951 - 1985

2.4 Empirical Application

The application reports estimates of strike activities from 17 OECD countries for the period
1951 - 1985. Strike activity is defined as the annual number of days lost per 1000 workers
though industrial disputes. Strike volume is written as

Yit = X⊤
it β (Zi)+ωi + vit ,

where Zi is a categorical variable containing country codes that do not vary with time; Yit

stands for the strike volume of the country i at time t. Xit = (1,Uit , Iit ,Pit ,UNit)
⊤ is a 4×1

vector containing Uit , unemployment, Iit , inflation, Pit , left party parliamentary representation,
and UNit , a time invariant measure of union centralization. As in Western (1996) we use the
log transformation to stabilized the volatility of the strike series.
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Continuing with our proposed methodology, we first apply the within transformation.
Due to the time invariant nature of Zi and UNit we have

Ỹit = X̃⊤
it β (Zi)+ ṽit ,

where X̃it =
(
Ũit , Ĩit , P̃it

)⊤ is a 3×1 vector. Now we apply the empirical likelihood approach
(corollary 2.2.1) and the asymptotic normality (corollary 2.3.2) to estimate the confidence
bands of the parameters of interest. Here, we use corollary 2.2.1 instead of theorem 2.2.1 due
to comparison purposes. The results are show in Tables 2.1-2.3; where NUB = Normal Upper
Bound, NLB = Normal Lower Bound, LUB = Empirical Likelihood Upper Bound and
ELLB = Empirical Likelihood Lower Bound. In Tables 1-3 we can see that the confidence
bands using empirical likelihood behave better than the ones estimated using the asymptotic
normal distribution.

z NLB ELLB β̂1(z) ELUB NUB
1 -0.16 -0.02 0.00 0.06 0.16
2 -0.64 -0.49 -0.30 -0.12 0.05
3 -0.22 -0.08 -0.02 0.03 0.17
4 -0.11 -0.15 -0.02 0.10 0.08
5 -0.14 -0.06 0.04 0.15 0.22
6 -0.24 -0.12 -0.08 -0.04 0.08
7 -0.04 -0.05 0.10 0.25 0.25
8 -0.16 -0.07 -0.01 0.05 0.14
9 -0.38 -0.22 -0.19 -0.15 0.01

10 -2.59 -2.12 -1.84 -1.31 -1.09
11 -0.08 -0.14 0.01 0.14 0.10
12 -0.17 0.05 0.09 0.13 0.35
13 -0.40 0.11 0.24 0.47 0.88
14 -0.53 -0.12 0.13 0.40 0.79
15 -0.14 0.74 1.10 1.39 2.34
16 -0.10 0.01 0.05 0.10 0.19
17 -0.47 -0.28 -0.25 -0.21 -0.02

Table 2.1 Confidence bands for β̂1(z)

40



2.4 Empirical Application

z NLB ELLB β̂1(z) ELUB NUB
1 -0.00 0.05 0.07 0.13 0.15
2 -0.12 -0.23 -0.04 0.13 0.03
3 -0.03 0.03 0.08 0.14 0.20
4 0.06 0.03 0.16 0.27 0.26
5 0.02 -0.00 0.09 0.21 0.17
6 -0.10 -0.06 -0.02 0.02 0.06
7 -0.14 -0.07 0.08 0.24 0.31
8 -0.00 0.00 0.06 0.12 0.12
9 -0.05 -0.01 0.03 0.07 0.11

10 -0.08 -0.28 0.00 0.54 0.08
11 -0.18 -0.20 -0.05 0.08 0.07
12 0.06 0.09 0.13 0.17 0.21
13 -0.12 -0.15 -0.01 0.21 0.09
14 0.11 -0.04 0.21 0.48 0.31
15 -0.23 -0.38 -0.02 0.26 0.19
16 -0.02 0.02 0.05 0.11 0.12
17 -0.11 -0.03 0.00 0.04 0.11

Table 2.2 Confidence bands for β̂2(z)

z NLB ELLB β̂1(z) ELUB NUB
1 -0.04 -0.02 0.00 0.06 0.05
2 -0.76 -0.77 -0.58 -0.41 -0.40
3 -0.01 -0.04 0.02 0.07 0.04
4 -0.04 -0.06 0.07 0.19 0.19
5 -0.02 0.02 0.11 0.23 0.24
6 -0.03 -0.05 -0.01 0.03 0.02
7 -0.19 -0.25 -0.10 0.06 -0.00
8 -0.11 0.04 0.10 0.16 0.31
9 -0.11 -0.01 0.03 0.07 0.18

10 -0.15 -0.34 -0.06 0.48 0.03
11 -0.16 -0.13 0.02 0.15 0.20
12 -0.05 -0.03 0.00 0.04 0.06
13 0.07 0.07 0.20 0.43 0.33
14 -0.14 -0.17 0.08 0.35 0.30
15 -0.19 -0.23 0.13 0.41 0.45
16 -0.09 -0.06 -0.02 0.04 0.05
17 -0.04 -0.03 0.01 0.05 0.06

Table 2.3 Confidence bands for β̂3(z)
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2.5 Conclusions

Extending Li et al. (2013b)’s work to the varying coefficient panel data framework with
fixed effects, we have shown that the resulting empirical log-likelihood ratio follows a Chi
square distribution; therefore we are able to apply empirical likelihood methods to set up
confidence bands for the functions of interest. As a by product we provide an alternative
empirical maximum likelihood estimator of the categorical varying coefficients and derive
its asymptotic theory. Finally we apply successfully our techniques in a empirical study of
estimates of strike activities from 17 OECD countries for the period 1951 - 1985.
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Chapter 3

Testing constancy in varying coefficient
models

This chapter also appeared as Arteaga-Molina and Delgado González (2019).
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3.1 Introduction

This chapter proposes a methodology for testing coefficients constancy in semi-varying
coefficient models. Let (Y,Z,X1,X2) be a R2+k1+k2 − valued random vector defined on
(Ω,F ,P) such that

E(Y |X ,Z) = X T
1β 0 (Z)+X T

2δ 0 a.s., (3.1)

where “T” means transpose, β 0 = (β00,β01, ...,β0k1)
T , X1 = (1,X11, ....,X1k1)

T and δ 0 =

(δ01, ...,δ0k2)
T and X2 = (X21, ....,X2k2)

T , β 0 : R→R1+k1 is a vector of unknown functions,
and δ 0 is an unknown parameter vector in Rk2. Henceforth, the discussion is centered on
the case where the constant term is in X1, but the procedure also applies to the case where
there is a constant intercept, i.e. when X1 = (X11, ....,X1k1)

T and X2 = (1,X21, ....,X2k2)
T.

The model with constant slopes, i.e. Var
(
β0 j(Z)

)
= 0 all j = 1, ...,k1, is known as partly

linear model, and inferences on β00 (·) and δ 0 have been justified under different regularity
conditions by Shiller (1984), Wahba (1985), Engle et al. (1986), Heckman (1986), Schick
(1986), Speckman (1988), Chen (1988) and Robinson (1988) among others. This requires
estimating the nonparametric regression functions of Y given Z and of each X2 component
given Z. Inferences when all the coefficients are varying, i.e. when δ 0 = 0, have been
proposed by Cleveland et al. (1991), Hastie and Tibshirani (1993), Chan and Tsay (1998),
McCabe and Tremayne (1995), Wu et al. (1998), Fan and Zhang (1999, 2000), Chiang et al.
(2001), Hoover et al. (1998), Cai et al. (2000), Kim (2007), Hoderlein and Sherman (2015)
or Feng et al. (2017). The semi-varying coefficient model, with δ 0 ̸= 0, has been studied
by Zhang et al. (2002), Xia et al. (2004), Ahmad et al. (2005), Fan and Huang (2005), Li
et al. (2011b), Li et al. (2011a), Hu and Xia (2012), or Li et al. (2017) among others. All
these methods use smooth estimators of the underlying nonparametric functions, generally
Nadaraya-Watson kernel regression.

Model (3.1) nests discontinuous regression models where

β0(z) = β̄00 + β̄011{z≤z0}, (3.2)

for parameter vectors β̄00 and β̄01, where the discontinuity is explained by the variable Z,
which is the typical alternative to parameter stability hypothesis in time series analysis, with
parameters changing at an unknown time point. It is not possible consistently estimating β0

in model (3.2) using smoothing based methods.
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The goal of this article consists of testing that the varying coefficients in model (3.1) are
constant in the direction of nonparametric alternatives, i.e., testing

H0 : Var
(
β0 j
)
= 0 for all j = 0,1, ...,k1vs. H1 : Var

(
β0 j
)
̸= 0 for some j = 0,1, ...,k1.

(3.3)
Model (3.1) also nests a model with

X2 =
(
gT

0(Z),X11gT
1(Z), ...,X1k1gT

k1
(Z)
)T

, δ 0 =
(
δ

T
00,δ

T
01, ...,δ

T
0k1

)T and k2 =
k1

∑
j=0

m j,

(3.4)
where δ0 j are unknown m j × 1 parameter vectors, and g j : R→Rm j are known functions,
j = 0, ...,k1. In this case, (3.1) can be expressed as

E(Y |X ,Z) = X T
1 [β 0(Z)+µ0(Z)] a.s. (3.5)

with nonparametric β 0 and parametric

µ0(·) =
(
gT

0(·)δ00, gT
1(·)δ01, ...,gT

k1
(·)δ0k1

)T ,

for some δ 0 =
(

δ T
00,δ

T
01, ...,δ

T
0k1

)T
∈ Rk2. Therefore, under the maintained hypothesis (3.3)

and (3.5) are equivalent to omnibus model checking that the marginal effects of X1 are
µ0(Z), which implies a particular parameterization of the interactive effects. Needless to say
that model (3.5) is not identifiable in many circumstances, but the test we propose does not
need estimating the model under the alternative hypothesis. In particular, our test is in fact a
directional specification test for the linear in parameters regression model in the direction of
a semi-varying coefficient model. It can also be applied as an omnibus specification test of a
simple regression model with explanatory variable Z, i.e. k1 = 0 in (3.5).

Kauermann and Tutz (1999), Cai et al. (2000), Fan and Zhang (2000), Fan et al. (2001),
Fan and Huang (2005), Qu and Li (2006) and Cai et al. (2017) have considered testing (3.3)
based on the discrepancy between restricted and unrestricted sum of squared residuals using
smooth estimates of the varying coefficients. In these proposals, smooth estimates of β0 j

are needed and, hence, situations like (3.2) are ruled out. Also,these tests are not applicable
when the model on the alternative is not identified.

In this chapter we adapt classical parameter stability tests in time series (e.g. Quandt
(1958, 1960); Chernoff and Zacks (1964); Bhattacharyya and Johnson (1968); Hinkley
(1970); Brown et al. (1975); Sen and Srivastava (1975); Hawkins (1989, 1977); Nyblom
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(1989); Andrews (1993); Csörgő and Horváth (1988, 1997); Aue et al. (2008) among many
others.)

Given (Yi,Zi, X1i,X2i)
n
i=1 i.i.d. as (Y,Z,X1,X2), we interpret (Yi, X1i,X2i)

n
i=1 as se-

quentially observed with respect to the ordered values of {Zi}n
i=1 . That is, denote by(

Y[i:n],X1[i:n],X2[i:n]
)n

i=1 the Z−concomitants, or induced order statistics, of
(Yi,X1i,X2i)

n
i=1 , i.e.

(
Y[i:n],X1[i:n],X2[i:n]

)
=
(
Yj,X1 j,X2 j

)
iff Z(n:i) = Z j, where Z(n:1) ≤

Z(n:2)≤ ...≤Z(n:n) are the ordered statistics of {Zi}n
i=1 . We propose to adapt union-intersection

(U-I) type tests in time series to our context. See Hawkins (1989), Andrews (1993),
Horváth and Shao (1995) or Csörgő and Horváth (1997) Section 3.1.5. The test consists
of comparing ordinary least squares (OLS) estimators of X1 coefficients using subsamples(
Y[i:n],X1[i:n],X2[i:n]

) j
i=1 and

(
Y[i:n],X1[i:n],X2[i:n]

)n
i= j+1 at each j− th sample Z−quantile.

The rest of the chapter is organized as follows. Next section discusses and justifies
the testing procedure. Section 3.3 studies the finite sample performance of the test in the
context of a Monte Carlo experiment. We report comparisons of existing tests for coefficient
constancy based on smooth β0 estimates, as well as specification CUSUM type tests, as
proposed by Stute (1997) and Andrews (1997), which are omnibus, i.e. designed to detect
any alternative, much broader than H1 in (3.1). In Section 3.4 we apply the testing procedure
to modeling interactive effects of IQ when studying education returns. Section 3.5 is devoted
to conclusions. Mathematical proofs can be found in an appendix at the end of the article.

3.2 Testing Method

Define Mℓ j(u) = E
(

X ℓX T
j 1{FZ(Z)≤u}

)
and S j(u) = E

(
X jY 1{FZ(Z)≤u}

)
, j, ℓ= 1,2, where FZ

is the cdf of Z. Assume that

Assumption 3.2.1. FZ is continuous.

Assumption 3.2.2.

Rank

{[
M11(u) M12(u)
M21(u) M22(1)

]}
= k1 + k2 +1 for all u ∈ [0,1] .

For the sake of exposition assume w.l.o.g. that Z is uniformly distributed on [0,1] . An
U-I test of H0 is based on the sample version of η0(u) =

(
θ
−
0 −θ

+
0
)
(u), where θ 0(u) =
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3.2 Testing Method

(
θ
−T
0 (u),θ+T

0 (u),θ oT
0 (u)

)T
,

θ 0(u) = argmin
θ
−,θ+,θ o

{
E
[(

Y −X T
1θ

−−X T
2θ

o)1{Z≤u}
]2 (3.6)

+E
[(

Y −X T
1θ

+−X T
2θ

o)1{Z>u}
]2}

= M−1(u)S(u), u ∈ [0,1] ,

M (u) =

 M11(u) 0k1+1 M12(u)
0k1+1 M11(1)−M11(u) M12(1)−M12(u)

M21(u) M21(1)−M21(u) M22(1)

 ,
0m is a m×m matrix of zeroes, and S(u) =

(
ST

1(u), [S1(1)−S1(u)]
T ,ST

2(1)
)T

.

Obviously, Var
(
β0 j(Z)

)
= 0 for all j = 0, ...,k1 implies that η0(u) = 0 for all u ∈ [0,1] .

In relevant circumstances, discussed below, also Var
(
β0 j(Z)

)
= 0 i f f η0(u) = 0 for all

u ∈ [0,1].

Remark 3.2.1. Consider M11(u) = uM11(1), which is always satisfied in the partly linear
model, and M12(u) = uM12(1) for all u∈ [0,1] , which is equivalent to E(X1X T

1|Z) =M11 (1)
a.s. and E(X1X T

2|Z) = M12(1) a.s. Therefore,S1(u) = M11(1)E
(
β0(Z)1{Z≤u}

)
, and apply-

ing Lemma A.5 in Andrews (1993),

η0(u) =
E
(
β0(Z)1{Z≤u}

)
−uE(β0(Z))

u(1−u)

=
1

u(1−u)

∫
{Z≤u}

[β0(Z)−E(β0(Z))]dP

= 0 for all u ∈ [0,1]⇔ β0(Z) = E(β0(Z)) a.s.

Remark 3.2.2. Consider δ 0 = 0, i.e. a pure varying coefficient model. Then, for all u∈ [0,1] ,

η0(u) = M−1
11 (u)S1(u)− [M11(1)−M11(u)]

−1 [S1(1)−S1(u)]

= [M11(1)−M11(u)]
−1 M11(1)

[
M−1

11 (u)S1(u)−M−1
11 (1)S1(1)

]
,

and

η0(u) = 0 all u ∈ [0,1] ⇔ S1(u)−M11(u)M−1
11 (1)S1(1) = 0 all u ∈ [0,1]

⇔
∫
{Z≤u} J (Z)

[
β0(Z)−E(J(Z))−1E(J(Z)β0(Z))

]
dP= 0.
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Testing constancy in varying coefficient models

with J (Z) = E(X1X T
1|Z) . Hence, if J (Z) is non-singular a.s.,

η0(u) = 0 all u ∈ [0,1] ⇔ β0(Z) = E(J(Z))−1E(J(Z)β0(Z)) a.s.
⇔ Var

(
β0 j(Z)

)
= 0 for all j = 0, ...,k1.

The above two remarks show that testing

H̄0 : η0 (u) = 0 all u ∈ [0,1] vs. H̄1 : η0 (u) ̸= 0 some u ∈ [0,1] .

is equivalent to (3.3) in pure varying coefficient regression models, as well as in situations
where the elements in X1X T

1 are mean independent of Z. Also, rejecting H̄0 in the direction
of H̄1 implies rejecting H0 in the direction of H1 for many other semi-varying coefficient
models, as discussed in Section 3.3.

The sample analog of (3.6) is θ̂ n(u) =
(

θ̂
−T
n (u), θ̂

+T
n (u), θ̂

oT
n (u)

)T
, with

θ̂ n(u) = argmin
θ
−,θ+,θ o

{
⌊nu⌋

∑
i=1

(
Y[i:n]−X T

1[i:n]θ
−−X T

2[i:n]θ
o
)2

+
n

∑
i=1+⌊nu⌋

(
Y[i:n]−X T

1[i:n]θ
+−X T

2[i:n]θ
o
)2
}

= M̂−1
n (u) Ŝn(u), u ∈ [0,1] ,

where ⌊·⌋ means smallest nearest integer, Ŝn(u)=
(
ŜT

n1(u), Ŝ
T
n1(1)− ŜT

n1(u), Ŝ
T
n2(1)

)T
, Ŝn j(u)=

∑
⌊nu⌋
i=1 X j[i:n]Y[i:n], j = 1,2,

M̂n (u) =

 M̂11n(u) 0k1+1 M̂12n(u)
0k1+1 M̂11n(1)− M̂11n(u) M̂12n(1)− M̂12n(u)

M̂21n(u) M̂21n(1)− M̂21(u) M̂n22(1)

 ,
and M̂nℓ j(u) = n−1

∑
⌊nu⌋
i=1 X ℓ[i:n]X T

j[i:n], ℓ, j = 1,2. Similar expressions can be found in time
series parameter stability testing. This suggests test statistics for H̄0 based on suitable
functionals of

η̂n(u) =
(

θ̂
−
n − θ̂

+
n

)
(u) = RM̂−1

n (u) Ŝn(u), (3.7)

with R =

[
Ik1+1

...− Ik1+1
... 0k2

]
and Im is a m×m identity matrix, which is the difference be-

tween (OLS) estimators of X1 coefficients under H0 using subsamples
(
Y[i:n],X1[i:n],X2[i:n]

) j
i=1

and
(
Y[i:n],X1[i:n],X2[i:n]

)n
i= j+1 .
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3.2 Testing Method

Notice that
θ̂ n(u) = θ 0(u)+ M̂−1

n (u)N̂n (u) ,

N̂n(u) =
(
N̂T

n1(u), N̂
T
n1(1)− N̂T

n1(u), N̂
T
n2(u)

)T, and N̂n j(u) = n−1
∑
⌊nu⌋
i=1 X j[i:n]U[i:n], j = 1,2

and Ui = Yi − X T
1iβ0(Z)− X T

2iδ0, . The asymptotic distribution of N̂n is obtained apply-
ing results for partial sums of concomitants in Bhattacharya (1974, 1976), extended by
Sen (1976), Stute (1993, 1997) or Davydov and Egorov (2000), among others. Define
N∞(u) = (NT

∞1(u),N
T
∞1(1)−NT

∞1(u),N
T
∞2(u))

T , where N∞ j be k j ×1, j = 1,2, vectors of cen-

tered Gaussian processes with E
(

N∞ℓ(u)NT
∞ j(v)

)
= E

(
X ℓX T

jU
21{Z≤u∧v}

)
, ℓ, j = 1,2. Next

assumption suffices to show weak convergence of
√

nN̂n and uniform convergence of M̂n.

Assumption 3.2.3. E∥XU∥2 < ∞.

Henceforth, for any matrix A, ∥A∥ =
√

λ̄
(
AT A

)
is the spectral norm, where λ̄ (C) is

the maximum eigenvalue of the matrix C, and "→d ” means convergence in distribution
of random variables, random vectors or random elements in a Skorohov’s space D [a,b] ,
0 ≤ a < b ≤ 1.

Proposition 3.2.1. Assuming that conditions 3.2.1, 3.2.2 and 3.2.3 hold,

√
n
(
N̂T

n1, N̂
T
n2
)T →d (NT

∞1,N
T
∞2)

T in D [0,1] , (3.8)

and
lim
n→∞

sup
u∈[0,1]

∥∥(M̂nℓ j −Mℓ j
)
(u)
∥∥= 0 a.s., ℓ, j = 1,2. (3.9)

Therefore, since

η̂n(u) =
(
θ
−
0 −θ

+
0
)
(u)+RM̂−1

n (u) N̂n(u),

under H̄0 and conditions in Proposition 3.2.1,

√
nη̂n →d η∞ in D [ε,1− ε] , ε ∈ (0,1) ,

where η∞(u)
d
= RTM−1(u)N0

∞ (u) with

N0
∞ (u) =

(
N0T

∞1(u),N
0T
∞1(1)−N0T

∞1(u),N
0T
∞2(u)

)T
,

and N0
∞ℓ, ℓ = 1,2 is a vector of mean zero Gaussian processes with E

(
N0

∞ℓ(u)N
0T
∞ j(v)

)
=

E
(

X ℓX T
jV

21{Z≤u∧v}

)
=: Ω0ℓ j(u ∧ v), with V = Y − X T

1β̄0 − X T
2δ̄0 uncorrelated with the
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Testing constancy in varying coefficient models

components of (X T
1,X

T
2)

T and
(

β̄ T
0 , δ̄

T
0

)T
∈ R1+k1+k2. That is

(
β̄0, δ̄0

)
are the parameters of

the best linear predictor of Y given (X1,X2) , and V =U a.s. under H̄0. Weak convergence of
√

nη̂n in D [0,1] is not possible even assuming that Z is independent of X and U , as shown
by Chibisov (1964) for the standard empirical process (see subsection 2.5 in Gaenssler and
Stute (1979) for discussion).

Therefore, for ε ∈ (0,1),

E(η∞(u)η T
∞(v)) = Σ0(u∧ v) = RTM−1(u)Ω0(u∧ v)M−1(v)R, u,v ∈ (ε,1− ε) ,

with Ω0(u) = E
(
N0

∞ (u)N0T
∞ (u)

)
. Applying the U-I testing principle, this suggests tests

based on functionals of the empirical process,

α̂n(u) = η̂
T
n (u) Σ̂

−1
n (u)η̂n (u) ,u ∈ (ε,1− ε) .

where
Σ̂n(u) = RTM̂−1

n (u)Ω̂n(u)M̂
−1
n (u)R,

estimates Σ0(u), and

Ω̂n(u) =

 Ω̂n11(u) 0k1+1 Ω̂n12(u)
0k1+1 Ω̂n11(1)− Ω̂n11(u) Ω̂n12(1)− Ω̂n12(u)

Ω̂n21(u) Ω̂n21(1)− Ω̂n21(u) Ω̂n22(1)


estimates Ω0(u), with Ω̂nℓ j(u) = n−1

∑
⌊nu⌋
i=1 X ℓ[i:n]X T

j[i:n]V̂
2
[i:n], and ℓ, j = 1,2; also let V̂i =Yi−

X T
1iθ̂

+

n (1)− X T
2iθ̂

o
n (1) be the OLS residuals under H̄0. A sufficient condition for consistency

of Ω̂n(u) is

Assumption 3.2.4. E∥X∥4 < ∞ and E∥V∥4 < ∞.

This condition can be relaxed by assuming that E
(

V 2
∣∣X ,Z

)
= E

(
V 2)= σ2 a.s., which

implies that Ω0(u) = σ2Mn(u) and Σ̂n(u) = σ2RTM̂−1
n (u)R. Consider the U-I type test,

ϕ̂nε = max
⌊nε⌋+K≤ j≤⌊n(1−ε)⌋−K

n · α̂n

(
j
n

)
for small ε ∈

(
0,

1
2
− K

n

]
, with K <

n
2
,

and K = k1 + k2 +1. The trimming parameter ε is introduced to avoid boundary points and
should be chosen as close to zero as possible in order to detect any possible coefficient
variation on all its domain, including those close to the boundary. However, too small ε

values can produce serious size distortions (see, section 3.3). The asymptotic distribution
of ϕ̂nε is derived as an immediate consequence of proposition 3.2.1 after showing uniform
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3.2 Testing Method

consistency of Σ̂n. Define the vector of random processes,

{α∞(u)}u∈[ε,1−ε]
d
=
{

N0T
∞ (u)M−1(u)RT

Σ
−1
0 (u)RM−1(u)N0

∞(u)
}

u∈[ε,1−ε]
.

Next proposition establishes the asymptotic distribution of ϕ̂nε as a consequence of Proposi-
tion 3.2.1, after providing consistency of Σ̂n(u) uniformly on u ∈ [ε,1− ε] .

Proposition 3.2.2. Assume that conditions 3.2.1 - 3.2.4 hold. Under H̄0, for any small fixed
ε ∈ (0,1/2−K/n] , K < n/2

ϕ̂nε →d ϕ∞ε

d
= sup

u∈[ε,1−ε]

α∞(u).

Therefore, a test with α significance level is given by the binary random variable
Φ̂nε (α) = 1{ϕ̂nε>cε (α)}, where cε (α) is the (1−α)− th quantile of ϕ∞ε .

These U-I tests in time series are asymptotically distribution-free under suitable regularity
conditions, which has a counterpart in our context assuming that

Assumption 3.2.5. Z is independent of X and U.

Of course, this assumption is not acceptable in practice, but it is worth discussing to
illustrate the relation of our proposal with related ones in time series parameter instability
testing and the behaviour of our test statistic when ε is too small. Consider the δ 0 = 0 case
for simplicity. Under assumption 3.2.5, M1 j(u) = uM1 j(1), Ω1 j(u) = σ2 · u ·M1 j(1), j =

1,2, {N∞1(u)}u∈[0,1]
d
=
{

M1/2
11 (1) ·W0(u)

}
u∈[0,1]

, W0 is a (1+ k1)×1 vector of independent

Wiener’s processes and

Σ0 (u) = σ
2RT

[
uM11(1) 0

0 (1−u)M11(1)

]−1

R = σ
2 M11(1)

u(1−u)
. (3.10)

Therefore, under assumption 3.2.5,

ϕ∞ε

d
= sup

u∈[ε,1−ε]

B0(u)
u(1−u)

, (3.11)

where B0(u) = [W0(u)−uW0(1)]
T [W0(u)−uW0(1)] is the sum of 1+k1 squared independent

Brownian bridges. The distribution of ϕ∞ε has been tabulated by James et al. (1987) for B0

scalar and different values of ε, and by Andrews (1993) in the general case.
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Testing constancy in varying coefficient models

Under assumption 3.2.5, one can exploit the information in (3.10) and, after estimating
σ2 by σ̃2

n = n−1
∑

n
i=1 V̂ 2

ni, use as test statistic,

ϕ̃
(0)
n = n · max

K≤ j≤n−K
α̃n

(
j
n

)
,

with

α̃n(u) = η̂
T
n (u)

M̂11n(1)u(1−u)
σ̃2

n
η̂n (u) , u ∈ [0,1] ,

which resembles the classical U-I tests avoiding any trimming. This statistics, suitably
standardized, converges to a extremum distribution, which is proved applying Darling et al.
(1956) type results for normalized partial sums. To this end, we need the alternative conditions
that replace 3.2.3 and 3.2.4 by,

Assumption 3.2.6. E |U |2+δ < ∞ and E∥X∥2+δ < ∞ for some δ > 0.

This implies, under condition 3.2.5, that E∥XU∥2+δ < ∞, which is stronger than as-
sumption 3.2.6. These type of moment conditions was proposed by Shorack (1979) to
extend Darling et al. (1956) result to allow less than three moments. These can be fur-
ther relaxed using Einmahl (1989) moment condition. Henceforth, Γ(x) =

∫
∞

0 yx−1e−ydy,
, and E is a random variable such that P(E ≤ x) = exp(−2exp(−x)), a(x) =

√
2logx and

bm(x) = 2logx+(m/2) log logx− logΓ(m/2). The convergence of ϕ̃
(0)
n is slow, which re-

sults in a poor size accuracy, and some alternatives may be preferred when condition 3.2.5 is
satisfied.

We can also consider the Cramér-von Mises type statistic

ϕ̃
(1)
n =

n−K

∑
j=K

α̃n

(
j
n

)
,

and the unweighted statistic

ϕ̃
(2)
n = max

K≤ j≤n−K

j(n− j)
n

α̃n

(
j
n

)
,

which both have better size accuracy under condition 3.2.5 than the test based on ϕ̃
(0)
n . Next

proposition provides the limiting distribution of ϕ̃
( j)
n , j = 0,1,2 under H0.
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Proposition 3.2.3. Assume δ 0 = 0, and assumptions 3.2.1, 3.2.2, 3.2.6 and 3.2.5 hold, under
H̄0,

a(logn)
√

ϕ̃
(0)
n −b1+k1(logn) d→ E, (3.12)

ϕ̃
(1)
n

d→
∫ 1

0

B0(u)
u(1−u)

du, (3.13)

ϕ̃
(2)
n

d→ sup
u∈[0,1]

B0(u). (3.14)

This suggests that, because the rate of convergence of ϕ̂nε changes suddenly at ε = 0, tests
based on critical values of the asymptotic approximation (3.12) are expected to exhibitpoor
size accuracy. See simulations in section 3.3.

Next, we study the power of the test in the direction of sequences of local alternatives of
the form,

H̄n1 : β (Z) = β̄0 +
τ(Z)√

n
a.s.,

for constant β̄0 and a function τ : R→ R1+k1 such that T (u) =E
[
X T

1τ(Z)1{U≤u}
]

is bounded

for all u ∈ [0,1]. Define T (u) =
[
T T(u),T T(1)−T T(u),0T

k2

]T
and the random processes,

{
α

1
∞(u)

}
u∈[ε,1−ε]

d
=
{
(N∞ +T )T (u)M−1(u)RT

Σ
−1
0 (u)RM−1(u)(N∞ +T )(u)

}
u∈[ε,1−ε]

.

In order to study the power of the test under H̄n1, we need the following extra assumption.

Assumption 3.2.7. E∥X1τ(Z)∥< ∞.

Proposition 3.2.4. Assume that conditions 3.2.1 - 3.2.4 and 3.2.7 hold for ε ∈
(
0, (n−2K)

/
2n
]

,K < n/2. Under H̄1,

ϕ̂nε →p ∞, (3.15)

and under H̄1n,

ϕ̂nε →d sup
u∈[ε,1−ε]

α
1
∞(u), (3.16)

Therefore, the test does not have trivial power in the direction of H̄n1 when
supu∈[ε,1−ε] γ(u)> 0 with

γ(u) = T T(u)M−1(u)RT
Σ
−1
0 (u)RM−1(u)T (u).

Under condition 3.2.5,

γ(u) =
T (u)TM−1

11 (1)T (u)
σ2 ·u(1−u)

.
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Testing constancy in varying coefficient models

This suggests choosing ε as small as possible in order to give more weight to the extreme
values of Z.

The bootstrapped test statistic is

ϕ̂
∗
nε = n sup

K+⌊nε⌋≤ j≤n−K−⌊nε⌋
α̂
∗
n

(
j
n

)
for small ε ∈

(
0,

1
2
− K

n

]
, K <

n
2
,

with
α̂
∗
n (u) = η̂

∗T
n (u) Σ̂

−1
n (u)η̂∗

n (u),

and
η̂
∗
n (u) = RM̂−1

n (u)N̂∗
n (u) ,

where N̂∗
n(u)=

(
N̂∗T

n1 (u), N̂
∗T
n1 (1)− N̂∗T

n1 (u), N̂
∗T
n2 (u)

)T, N̂∗
n j(u)= n−1

∑
⌊nu⌋
i=1 X j[i:n]V̂ ∗

[i:n], j = 1,2,
V̂ ∗

i = V̂iξi, {ξi}n
i=1 are i.i.d. as ξ , which satisfies that,

Assumption 3.2.8. E(ξ ) = 0, E
(
ξ 2)= 1 and ξ ≤ κ < ∞ a.s

The bootstrap test, justified in next Proposition, is Φ̂∗
nε (α) = 1{ϕ̂nε>ĉ∗εn(α)}, where

ĉ∗εn(α) = inf
{

c : Pξ (ϕ̂
∗
nε ≤ c)≥ 1−α

}
and Pξ is the induced probability of a random

variable ξ .

Proposition 3.2.5. Assume that conditions 3.2.1 - 3.2.4 and 3.2.8 hold for ε ∈
(
0, (n−2K)

/
2n
]
,

K < n/2. Under H̄1,

lim
n→∞

Pξ (ϕ̂
∗
nε ≤ c) = P(ϕ∞ε ≤ c) a.s.,

and under H̄1 there exists a C > 0 such that,

lim
n→∞

Pξ (ϕ̂
∗
nε >C) = 1 a.s.

This implies that the asymptotic power function takes the value α under H̄0 and 1 under
H̄1, i.e. limn→∞E

[
Φ̂∗

nε (α)
]
= α under H̄0 and limn→∞E

[
Φ̂∗

nε (α)
]
= 1 under H̄1. The test

can also be based on the bootstrap p− values, p̂∗ε = Pξ (ϕ̂
∗
nε ≥ ϕ̂nε) , and we reject H̄0 at

α − level of significance when p̂∗ε < α.

Since ĉ∗εn(α)and p̂∗ε are difficult to compute in practice, they can be approximated by
Monte Carlo as accurately as desired using the following algorithm.

1. Generate b sets of random numbers
{

ξ
( j)
i

}n

i=1
, j = 1, ...,b i.i.d. as ξ , with b large.

2. Compute b test statistics ϕ̂
(b)∗
nε j , j = 1, ...,b, as ϕ̂∗

nε , using the random numbers in 1.
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Approximate the bootstrap critical values ĉ∗εn(α) by

ĉ(b)∗εn (α) = inf

{
c :

1
b

b

∑
j=1

1{
ϕ̂
(b)∗
nε j <c

} ≥ 1−α

}
,

and the corresponding p− values, p̂∗ε , by

p̂(b)∗ε =
1
b

b

∑
j=1

1{
ϕ̂
(b)∗
nε j ≥ϕ̂nε

}.
The greater b, the better the bootstrap critical values and p− values approximation.

The same bootstrap approximations can be performed for tests based on test statistics ϕ̃
( j)
n ,

j = 0,1,2.

3.3 Finite Sample Properties

We generate samples
{

Yi,Zi,X11i, ...,X1k1i,X21i,X2k2i
}n

i=1 with

Yi = β00(Zi)+
k1

∑
j=1

β0 j(Zi)X1 ji +
k2

∑
j=1

δ0 jX2 ji +Ui, i = 1, ...,n, (3.17)

with {Zi}n
i=1 i.i.d. as uniform in [0,1], Xℓ ji = Zi + eℓ ji, eℓ ji iid as uniform in [0,1] , ℓ= 1,2,

j = 1, ...,kℓ, and

Ui =
εi exp(τZi

/
2)√

Var(εi exp(τZi
/

2))
,

with εi iid N(0,1); that is, Var(Ui) = 1, and τ governs how severe the heteroskedasticity is.
We generate the random coefficients as

β0 j(z) = 1+λ
f (z)√

Var( f (z))
,

for all j = 0,1, ...,k1, i.e. Var(β0 j(Z)) = λ 2, i.e. λ governs how serious is the departure
from the null under the following models,

a) f (z) = z, b) f (z) = [1+ exp(−ρz)]−1 ,

c) f (z) = sin(2πz), d) f (z) = 1+2 ·1{z≤0.4}.
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Testing constancy in varying coefficient models

Model a) is a simple linear model and b) is a nonlinear alternative, almost indistinguishable
for ρ = 1 when z ∈ [0,1] , the lower ρ, the smaller the departure from linearity. We use model
b) to check departures form linearity under different values of ρ. Model c) is harder to fit
than a) or b) using smooth methods with moderate sample sizes, and d) is a jump model that
cannot be estimated using smoothing methods. We only report results for the 0.4 quantile,
but we have also tried other values and the results do not change substantially if the jump
is not placed in extreme quantiles. Figure 3.1 represents η0 for the different models and
different λ values.
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d): ϕ(z) = 1 + 2 × 1{z<0.4}

Figure 3.1 Representation of η0 for different models when λ = 0 (blue curve), λ = 0.25
(purple curve), and λ = 0.5 (red curve).

The simulation study is implemented to provide evidence on the effect of ε’s choice on
Φ̂nε(α), the accuracy of the bootstrap test, the relative performance of our test with respect
to existing alternatives, and the performance of our test for model checking of interactive
effects. The Monte Carlo study is based on 1.000 replications and the bootstrap replications
are set to 1.000.

Figure 3.2 provides the percentage of rejections for different ε ′s for α = 0.05. As
expected, size accuracy is poor when ε is close to zero. For reasonable ε values, i.e. bigger
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3.3 Finite Sample Properties

that 0.1, the level is close to 5%, particularly for the larger sample sizes. On the other hand,
under the alternatives, i.e., a), c) and d), the power converges to 1 as n diverges, independently
of the value of ε . Of course , the power always increases with λ .
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Figure 3.2 Representation of Φ̂nε(α) for different models when λ = 0.25 (red curve), and
λ = 0.5 (blue curve).

In order to check the level accuracy of the bootstrap test, we compare the percentage of
rejections using values of the asymptotic (Proposition 3.2.3) and bootstrap (Proposition 3.2.5)
tests when Z is independent of X1 and U using the test statistics ϕ̃

( j)
n , j = 0,1,2 in a pure

varying coefficients model, i.e. with δ 0 = 0. Table 3.1 reports these results. The bootstrap
tests exhibit very good size accuracy for the three test statistics. As expected, the asymptotic
test based on ϕ̃

(0)
n shows quite poor size properties, particularly for n small. However, the

size accuracy of the asymptotic tests based on ϕ̃
(1)
n and ϕ̃

(2)
n is fairly good, but much worse

than the corresponding bootstrap tests, as expected.

57



Testing constancy in varying coefficient models

α 1% 5% 10%
n\ k1 0 1 2 3 0 1 2 3 0 1 2 3

ϕ̃
(0)
n (bootstrap)

50 0.2 0.3 0.2 0.5 2.5 2.5 2.8 2.4 5.7 6.1 6.4 5.9
100 0.5 0.5 0.7 0.6 3.5 3.2 3.1 2.4 8.5 6.6 6.0 5.8
200 1.2 1.1 0.5 0.4 4.4 4.2 3.6 2.1 8.4 7.9 6.3 4.4
500 0.7 0.7 0.7 1.1 4.1 3.8 3.6 4.5 9.1 7.7 8.4 8.4

ϕ̃
(1)
n (bootstrap)

50 0.6 0.7 0.1 0.1 4.1 4.1 3.2 3.4 8.7 9.6 8.0 8.3
100 1.2 1.0 0.7 0.5 4.6 4.5 3.9 3.6 9.5 9.4 9.1 8.5
200 1.2 1.2 0.7 0.7 5.3 4.3 5.2 3.9 9.7 10.5 9.2 7.8
500 1.0 0.9 0.6 1.2 4.7 4.1 4.5 5.1 11.1 9.0 8.7 9.5

ϕ̃
(2)
n (bootstrap)

50 0.7 1.0 0.3 1.3 4.5 5.1 5.2 4.6 9.2 11.6 9.9 11.3
100 1.0 1.0 0.7 0.6 5.1 4.5 4.5 4.4 11.0 9.4 9.2 9.6
200 1.2 1.0 0.7 0.7 5.2 5.1 4.9 2.6 10.3 10.8 9.2 8.4
500 1.2 1.0 1.2 1.5 4.7 5.4 5.7 5.9 9.7 10.0 9.4 10.2

ϕ̃
(0)
n (asymptotic)

50 0.0 0.1 0.5 3.6 1.7 2.4 6.7 23.3 5.9 8.2 18.1 43.9
100 0.0 0.0 0.1 1.0 1.3 1.1 3.9 9.1 5.3 5.9 10.3 21.8
200 0.0 0.0 0.0 0.4 1.5 1.4 2.5 4.6 4.4 4.6 5.9 13.4
500 0.0 0.0 0.0 0.0 1.5 1.0 2.4 3.3 4.3 3.9 6.2 10.3

ϕ̃
(1)
n (asymptotic)

50 0.5 0.1 0.0 0.0 2.9 2.7 1.9 1.0 6.8 6.4 5.1 3.3
100 1.0 0.7 0.6 0.1 4.9 3.8 3.7 2.4 10.8 8.5 7.9 6.7
200 1.3 1.2 0.5 0.6 4.6 5.3 4.0 4.1 8.5 10.3 8.8 7.4
500 0.8 1.1 0.8 0.4 4.9 4.5 4.9 4.3 9.5 9.4 9.5 8.7

ϕ̃
(2)
n (asymptotic)

50 0.2 0.1 0.1 0.0 2.0 1.5 1.2 1.4 4.9 4.0 4.1 3.7
100 0.3 0.2 0.4 0.1 3.3 2.5 2.6 4.6 7.8 5.5 5.0 4.6
200 0.7 0.7 0.4 0.3 4.1 3.5 3.2 1.6 8.2 7.2 6.4 4.1
500 0.7 0.7 0.7 0.8 4.4 3.9 4.0 4.7 8.1 8.3 7.8 8.1

Table 3.1 Percentage of times H0 was rejected ( k2 = 0 and τ = 0)

Now we perform the comparison with existing tests in the context of the partly linear
model. We consider the omnibus specification test proposed by Stute (1997) for consistent
testing of any nonparametric alternative, which is based on the CUSUM of residuals type
process,

ψ̂n(x) =
1
n

n

∑
i=1

Ûi

k1

∏
j=1

1{X1 j≤x j}

k2

∏
m=1

1{X2m≤xk1+m}, x = (x1, ...,xk1+k2)
T .
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3.3 Finite Sample Properties

The CUSUM test is designed for omnibus regression model checking i.e. it detects, in
principle, any departure form linearity, including specifications different to the varying
coefficient model. We consider the Kolmogorov-Smirnov type statistic,

φ̂n = sup
x∈Rk1+k2

√
n |ψ̂n(x)| .

Our test is directional and is expected to be more powerful under H1. We also consider
the LR type bootstrap test of Cai et al. (2000) for testing H̄0 in the direction of H̄1, T̂n =

(RSS0/RSS1)−1 that compares restricted and unrestricted sum of squared residuals. LR type
tests are asymptotically distribution free by the bandwidth converging to zero at a suitable
rate as the sample size diverges (see Fan and Huang (2005) or Cai et al. (2017)). However,
tests based on critical values corresponding to the asymptotic distribution exhibit a poor size
performance in finite samples. Cai et al. (2017) page 7 lines 15-19 argue that this is because
the sensitivity of the test to bandwidth choice and recommend approximating critical values
with the assistance of bootstrap. This is why we only report the bootstrap version of Cai et al.
(2000)’s test.

Model H0 H1 : a H1 : c H1 : d
n\ k2 1 2 3 1 2 3 1 2 3 1 2 3

ϕ̂n0.02
50 3.3 4.4 4.6 11.5 9.5 7.1 13.3 12.5 11.4 15.0 11.2 10.3

100 4.0 5.0 4.6 26.6 15.9 12.4 25.9 23.0 21.2 30.0 20.5 19.8
200 4.5 4.3 3.6 49.1 31.4 22.4 56.0 45.6 40.6 60.9 45.4 38.4

φ̂n
50 4.5 4.4 4.6 12.7 9.4 4.8 14.0 8.1 6.4 14.4 7.9 6.3

100 4.6 5.0 5.4 26.8 10.9 7.8 27.8 16.5 9.9 28.4 14.4 8.5
200 4.4 4.7 4.1 48.1 20.9 11.7 57.0 34.6 18.2 56.9 30.5 15.0

T̂n
50 4.7 4.9 6.6 15.8 9.0 7.6 15.0 13.7 7.4 13.2 10.3 9.3

100 3.8 4.0 6.2 32.1 21.6 12.1 31.9 29.0 18.7 29.5 21.4 18.8
200 4.9 5.1 4.2 57.7 40.4 28.3 62.4 55.3 45.5 56.8 41.5 33.6

Table 3.2 Percentage of times H0 was rejected, 5% of significance ( k1 = 0, λ = 0.25 and
τ = 1)

In the following set of simulations we consider different X2 dimensions, k2 = 1,2,3,
λ = 0.25 and τ = 1. Table 3.2 provides the percentage of rejections in this simulation study.
It shows that, under H̄1, our directional test works better than the omnibus CUSUM as k2

increases because of the curse of dimensionality. For instance, when k2 = 3 and under model
d), our test rejects more than twice than the CUSUM test. The smoothing based test has
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Testing constancy in varying coefficient models

similar power than ours in all models but the jump model d), due to the poor performance of
the Nadaraya-Watson estimator for estimating discontinuous regressions.

Table 3.3 reports the percentage of rejections for different X1 dimensions, k1 = 1,2,3,
λ = 0.25 and τ = 1. Note that, again, our directional test works better than the omnibus
CUSUM as k1 increases. For instance, when k1 = 3 and under model d), the power of our test
is almost twice the CUSUM test. The test using T̂n works similarly to ours in general, but our
test performs better when k1 = 3. The smooth test also suffers of the curse of dimensionality;
the power decreases as k1 increases. Also, the LM test detects departures from the null in the
direction of jump model d) much less than the other tests, which do not require to estimate
the model under the alternative using smoothing.

Under model d) our test also works much better than the LM smoothing based test
because of the curse of dimensionality of the Nadaraya-Watson estimator needed to compute
T̂n.

Model H0 H1 : a H1 : c H1 : d
n\ k1 1 2 3 1 2 3 1 2 3 1 2 3

ϕ̂n0.02
50 2.7 3.4 2.3 18.3 20.5 20.5 26.8 41.6 54.1 25.2 30.6 34.1

100 3.8 4.1 3.1 47.2 59.2 69.7 66.9 92.7 98.5 63.6 85.9 94.6
200 3.9 3.2 4.0 84.1 96.3 98.9 97.2 100 100 97.1 100 100

φ̂n
50 4.4 4.6 5.2 21.3 17.7 16.4 22.9 23.4 22.9 18.8 18.4 16.1

100 5.0 5.4 4.3 41.6 40.5 39.6 55.4 61.6 56.7 45.8 42.3 35.8
200 4.7 4.1 5.9 76.3 83.2 81.4 93.8 96.2 94.7 86.2 84.2 76.7

T̂n
50 4.5 4.8 5.7 18.2 20.2 22.7 22.0 48.4 27.2 15.8 42.7 19.8

100 4.2 4.9 4.7 44.8 55.3 36.5 67.0 61.5 42.8 48.8 54.8 39.6
200 4.9 4.8 4.5 71.1 94.0 53.5 97.2 97.7 53.6 89.0 89.8 52.2

Table 3.3 Percentage of times H0 was rejected, 5% of significance ( k1 = 1, λ = 0.25 and
τ = 1)

In the next set of simulations we apply the test as a regression model check of the linearity
hypothesis when k1 = 0,k2 = 1 and X2 = Z. That is, H̄0 is equivalent to omnibus specification
testing of the simple regression model E(Y |Z) = β̄00+Zδ00 a.s. The resulting test competes
with the CUSUM test based on φ̂n. Since β00 is not identifiable, tests based on comparing
fits under the null and the alternative, like the LR test using T̂n as test statistic, cannot be
implemented. We compare our test with the omnibus specification test, designed to detect
more general non-linear alternatives. We consider model b) with different ρ values in order
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to check the performance of the test under small departures from the linearity hypothesis.
Table 3.4 shows that our test rejects almost double than the CUSUM test for all ρ values.

λ 0.25 0.5
n\ρ 1 2 3 4 5 15 1 2 3 4 5 15

ϕ̂n0.02
50 3.8 4.4 5.3 6.6 7.5 11.8 4.1 5.4 8.3 11.6 16.6 35.5

100 4.0 4.7 6.1 7.8 10.6 25.2 3.9 6.2 11.7 21.5 33.6 76.2
200 3.9 4.3 6.4 11.2 18.3 56.3 4.1 6.5 19.0 39.7 61.5 98.7

φ̂n
50 5.6 5.4 5.8 6.0 6.5 7.7 5.6 5.7 6.6 8.6 10.9 19.2

100 4.9 5.6 6.7 7.7 9.0 13.7 5.2 7.2 10.0 14.4 20.8 49.7
200 4.3 4.7 6.7 8.6 12.0 24.8 4.6 6.8 13.9 25.4 40.0 87.1

Table 3.4 Percentage of times H0 was rejected, 5% of significance (k1 = 0, k2 = 1 and τ = 1)

We also consider the test for model checking of non-linear regression models. We
consider testing that E(Y |Z) = β̄00 +∑

L
ℓ=1 Zℓδ0ℓ−1 a.s. in the direction

E(Y |Z) = β00(Z)+
L

∑
ℓ=1

Zℓ
δ0ℓ−1a.s. with Var (β00(Z))≥ 0 a.s.

and β00 unknown. Our test is omnibus for the nonlinear specification hypothesis, since the
direction of interest nests any possible departure from the null. This corresponds to applying
our test to model (3.5) with g j(z) = z j, j = 1, ...,L. Table 3.5 reports rejections for model b)
with ρ = 15, which produces a sensitive departure from linearity, for different L values

λ 0.25 0.5
n\L 1 2 3 4 1 2 3 4

ϕ̂n0.02
50 11.8 7.2 4.4 2.9 35.5 16.4 6.1 2.9
100 25.2 11.8 6.3 4.7 76.2 38.4 11.7 4.9
200 56.3 24.9 7.3 3.9 98.7 77.9 19.6 6.2

φ̂n
50 7.7 5.3 6.2 6.1 19.2 8.2 6.0 5.9
100 13.7 6.0 5.6 6.2 49.7 10.5 5.7 6.1
200 24.8 6.3 4.3 4.2 87.1 18.7 5.4 4.6

Table 3.5 Percentage of times H0 was rejected, 5% of significance (k1 = 0, k2 = 1, ρ = 15
and τ = 1)
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Next, we consider the performance of the test as a specification test of interactive effects
in the context of model (3.5) with k1 > 0, L = 1, g0(z) = 1 and g1(z) = z. That is, our test is
implemented for testing the hypothesis

E(Y |X1,Z) = β00(Z)+δ00Z +
k1

∑
j=1

(
β0 j(Z)X1 j +δ0 jX1 jZ

)
a.s.

in the direction

E(Y |X1,Z) = β̄00 +δ00Z +
k1

∑
j=1

(
β̄0 jX1 j +δ0 jX1 jZ

)
a.s..

Table 3.6 reports the percentage of rejections for ours and CUSUM test in model b) with
λ = 0.5, different ρ values and k1 = 1,2,3. Our test performs better than CUSUM in most
cases.

ρ 1 2 3 15
n\ k1 1 2 3 1 2 3 1 2 3 1 2 3

ϕ̂n0.02
50 3.6 3.3 2.8 4.2 3.7 3.8 4.8 4.4 5.4 8.5 13.8 16.7

100 3.7 5.4 3.0 4.8 5.8 5.4 6.1 8.8 11.6 19.8 38.8 51.6
200 3.8 3.8 4.9 4.9 6.7 10.4 8.1 16.6 26.7 48.3 84.1 94.0

φ̂n
50 4.5 6.1 7.0 4.6 6.5 6.6 4.9 7.0 7.8 7.8 9.4 10.3

100 5.3 7.1 4.8 6.4 6.9 5.6 7.1 8.7 7.3 12.1 15.5 11.2
200 4.5 5.9 5.1 4.9 7.1 6.8 8.6 9.0 10.6 21.2 34.1 27.5

Table 3.6 Percentage of times H0 was rejected, 5% of significance ( k2 = 0, λ = 0.5 and
τ = 1)

Now, we consider testing non-linear specification of interactive effects in the context of
model (3.5) with k1 > 0, L = 1,2,3,4, g0(z) = 1 and g j(z) = z j. Our test is implemented for
testing the hypothesis

E(Y |X1,Z) = β00(Z)+
L

∑
ℓ=1

Zℓ
δ0ℓ−1 +

k1

∑
j=1

(
β0 j(Z)X1 j +X1 j

L

∑
ℓ=1

Zℓ
δ0 j+L+ℓ−1

)
a.s

in the direction

E(Y |X1,Z) = β̄00 +
L

∑
ℓ=1

Zℓ
δ0ℓ−1 +

k1

∑
j=1

(
β̄0 jX1 j +X1 j

L

∑
ℓ=1

Zℓ
δ0 j+L+ℓ−1

)
a.s.
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Table 3.7 reports the percentage of rejections for both ours and CUSUM tests under model b)
with λ = 0.5, ρ = 15, k1 = 2 and different L values. Our test performs better in general.

n\L 1 2 3
ϕ̂n0.02

50 13.8 7.0 4.6
100 38.8 17.3 6.9
200 84.1 47.4 10.4

φ̂n
50 9.4 7.7 8.7

100 15.5 8.5 6.3
200 34.1 14.5 7.5

Table 3.7 Percentage of times H0 was rejected, 5% of significance (k1 = 2, k2 = 0, λ = 0.5
ρ = 15 and τ = 1)

3.4 An Application to Modeling Education Returns

We complement the previous Monte Carlo study with an application to using IQ as control,
or proxy, variable of "ability" in a returns of education model. This is based on Blackburn
and Neumark (1995) work, which is used in Wooldridge (2009) textbook (example 9.3).
The data consists of 663 observations from the Young Men’s Cohort National Longitudinal
Survey. The main objective consists of estimating the marginal effect of education on wages,
controlling for relevant covariates, which include unobserved "ability". A reasonable model
using IQ as proxy variable (Wooldridge (2009), example 9.3) is

Log(WAGE) = β̄00 + β̄01 ·EDUC+ β̄02 · IQ+X T
2δ 01 +U, (3.18)

where WAGE are USD monthly earnings, EDUC is years of education, IQ is intelligence
quotient (proxy of ability), and X T

2 = (EXPER, T ENURE, MARRIED, SOUT H, URBAN,

BLACK)T , EXPER are years of work experience, T ENURE years with current employer,
MARRIED a dummy (1 if married), BLACK dummy (1 if black), SOUT H dummy (1 if live
in south), URBAN dummy (1 if live in urban area SMSA), and δ 01 = (δ01, ...,δ06)

T. The
OLS estimators of β̄01 and β̄02 in this model (heteroskedasticity robust SE in parenthesis) are
0.054 (0.006) and 0.0036 (0.001) , respectively. The OLS estimator of the marginal effect
of EDUC (β̄01) is inconsistent when E(U |EDUC, IQ,X2) depends on EDUC, i.e. IQ is
not a good proxy for ability, but also when it only depends on IQ in a nonlinear form. A
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reasonable alternative to (3.18) is the varying coefficients model

Log(WAGE) = β00(IQ)+β01(IQ) ·EDUC+X T
2δ 0 +U, (3.19)

which allows EDUC partial effects to be an unknown function of IQ. Figure 3.3 provides
estimates of β00 and β01 varying coefficients using Cai et al. (2000) procedure, which uses a
modified manifold cross-validation criterion for choosing the bandwidth. We also provide
OLS estimates of the parametric specification β0 j(IQ) = β̄

(1)
0 j + β̄

(2)
0 j IQ+ β̄

(3)
0 j IQ2, j = 0,1.
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Figure 3.3 Representation of β00(IQ) and β01(IQ) for the estimates of the varying coefficients
using kernels with a plug-in bandwidth (red curve), and OLS estimates of the parametrization
(purple curve).

The p−values for testing H0 : Var(β0 j(IQ)) = 0, j = 1,2 versus H1 : Var(β0 j(IQ))> 0
some j = 1,2, or H2 : Var(β00(IQ)) = 0 and Var(β01(IQ)) > 0 are reported in Table 3.8,
where we provide the p− values.

We also report the smoothing LR test of Cai et al. (2000). Here the CUSUM test is
unable to reject the null hypothesis, but the directional tests reject H0 in the two directions
considered. The p− value of our test is the smallest when testing in the direction H1, but
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H1 : Var(β00(IQ))> 0 H2 : Var(β00(IQ)) = 0 H2 : Var(β00(IQ))> 0
Test or and and

Var(β01(IQ))> 0 Var(β01(IQ))> 0 Var(β01(IQ)) = 0
ϕ̂n0.003 0.012 0.017 0.08

φ̂n 0.734
T̂n 0.041 0.009 0.009

Table 3.8 p-value of testing H0 versus H1 and H2

the corresponding p− value for the smoothing LR test based on T̂n is the smallest in the
direction H2.

Next, we apply our test as a model check of the interactive effect of EDUC. The main-
tained specification is

Log(WAGE) = (β00(IQ)+δ07IQ)+(β01(IQ)+δ08) ·EDUC+X T
2δ0 +U, (3.20)

which is model (3.19) augmented with the explanatory variables (IQ,EDUC) in the constant
coefficients terms, i.e. X T

2 in (3.19) is substituted by (X T
2, IQ,EDUC) in (3.20). Then H0 is

in fact a specification test of the functional form of the varying coefficients in (3.19).

H1 : Var(β00(IQ))> 0 H2 : Var(β00(IQ)) = 0 H2 : Var(β00(IQ))> 0
Test or and and

Var(β01(IQ))> 0 Var(β01(IQ))> 0 Var(β01(IQ)) = 0
ϕ̂n0.003 0.6489 0.405 0.484

φ̂n 0.491 0.653 0.543
Table 3.9 p-value of testing H0 versus H1 and H2

In this case, see table 3.9, we are unable to reject the specification of the interactive effect
either with the CUSUM or with our test. We conclude that the specification including IQ and
a simple interactive effect EDUC with IQ cannot be rejected.

3.5 Conclusions

We have proposed a test for constancy of coefficients in semi-varying coefficients models,
where the variable responsible for the coefficient varying may depend on the rest of explana-
tory variables in an unknown form. The test, implemented using bootstrap, is based on
comparing the OLS coefficients of subsamples of concomitants to the explanatory variable in
the varying coefficients. The test is justified under fairly weak regularity conditions, which
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allow discontinuous random coefficients under the alternative hypothesis. Our test forms a
basis for specification testing of parametric varying coefficients and, in particular, for testing
the functional form of interactive effects. Simulation results have provided evidence of the
good performance of our test in finite samples compared with a CUSUM-type test, designed
to omnibus specification testing of linear regression models, and a smooth LR test, designed
to test varying coefficients constancy in the direction of smooth alternatives. The CUSUM
test, like ours, does not require estimating the model on the alternative, but the LR-type
test compares the restricted and unrestricted sum of squared residuals and, hence, requires
estimating the nonparametric smooth varying coefficients. Simulations show that, unlike our
test, the two competitors suffer of the curse of dimensionality. These also show that the LR
smooth test exhibit a lack of power, compared with the two competitors, under alternatives
with discontinuous varying coefficients. We have also included a real data application to
model interactive effects of IQ in a returns of education model.

The proposed methodology is applicable to testing constancy of a subset of varying
coefficients or a linear combination of them. However, since the model under the null must
be estimated, smooth estimation of the unrestricted varying coefficients is necessary. A
formal justification of the resulting test is technically demanding, but it seems possible to
take advantage of existing asymptotic inference results for varying coefficient models.
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4.1 Introduction

Capital asset pricing models (CAPM) are used to reveal how portfolio returns are determined
and which factors affect returns. For these type of models, the error-in-variables problem is
well known and translates in dependence of the error term with the explanatory variables,
which makes the estimator to be inconsistent. In order to overcome this problem, the
instrumental variable method is proposed in works such as Amano et al. (2012), Dumas
(1994), Jegadeesh et al. (2019), and Roy and Shijin (2018) among others. Instrumental
variables (IV) models have attracted the attention of researches in empirical studies due to the
possibility to correct potential endogeneity between the regressors and the structural errors
(see, e.g., Wooldridge (2010) chapters 5, 8 and 14).

It is common in these type of modes to write the expected returns as a linear function of
one or more beta coefficients that measure the asset’s systematic risk; however, this linear
relationship assumption in asset pricing models have been proven wrong by several studies
based on empirical evidence of time variation in betas and expected returns (see, Bansal
et al. (1993), Bansal and Viswanathan (1993), Cochrane (1996), Jagannathan and Wang
(1996, 2002), Reyes (1999), Ferson and Harvey (1991, 1993, 1997, 1999), Cho and Engle
(1999), Wang (2002, 2003), Akdeniz et al. (2003), Ang and Liu (2004), Fraser et al. (2004),
Gagliardini et al. (2011), among others). In this context, authors such as Bansal et al. (1993)
and Bansal and Viswanathan (1993) assume a nonlinear function and Dittmar (2002), Dumas
and Solnik (1995) and Cochrane (1996) assume that the parameters are linear function of
some instrumental variables. In these situations, nonparametric and semiparametric models
have gained importance as little or no restrictive prior information of the functional form
is needed, e.g., Wang (2002, 2003) used a Nadaraya-Watson kernel regression, Gourieroux
and Monfort (2007) considered a class of nonlinear parametric and semiparametric models,
Cai et al. (2015) proposed an estimation method in the spirit of local generalized estimating
equations and Escanciano et al. (2015) used nonparametric estimation in consumption based
asset pricing Euler equations.

The combination of both problems, endogeneity and no prior assumptions of the func-
tional form, result in the need of varying coefficient models that take into account the
endogeneity of the regressors; here, it is of great relevance the studies of Cai et al. (2006),
Cai and Li (2008), Escanciano et al. (2015) and Cai et al. (2017). Their work add to the
vast amount of literature on nonparametric estimation of instrumental variable models (see,
Blundell and Powell (2003), Newey and Powell (2003), Florens (2005) Hall and Horowitz
(2005), Blundell et al. (2007), Horowitz and Lee (2007), Darolles et al. (2011), Florens
et al. (2011, 2012), Florens and Simoni (2012), among others). In this context, we pro-
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pose a nonparametric estimation procedure for varying coefficient models with endogenous
regressors.

Conditional asset pricing literature provides a framework in which returns and pricing
factors are predictable, in the sense of a significant time variation in their joint conditional
distribution; besides, these models do not provide much information the functional form of
the conditional moments. There exist a wide literature that employs parametric techniques to
evaluate conditional asset pricing models; for instance, Jagannathan and Wang (1996) find
that a conditional CAPM can explain the cross section of stock of returns, while the static
CAPM model cannot, also Lettau and Ludvigson (2001) show that the value premium can
be explained by a conditional CAPM with time varying price of risk. Nevertheless, other
authors such as Lewellen and Nagel (2006) and Nagel and Singleton (2011) suggest that this
superior performance of the conditional CAPM is an illusion caused by the low statistical
power of standard CAPM.

Following these ideas, there exist significant contributions to avoid specifying the condi-
tional distribution of returns and factors by using nonparametric techniques. Here, Nagel
and Singleton (2011) estimate nonparametrically first and second conditional moments and
then work with parametric CAPM. In contrast, Wang (2003), Orbe et al. (2008), Roussanov
(2014) and Peñaranda et al. (2018) consider varying coefficient CAPM; Wang (2003) uses
the stochastic discount factor to estimate pricing errors nonparametrically and test if pric-
ing errors are independent of the conditioning variables, unfortunately this test has zero
power when there exist a nonlinear dependence between pricing errors and the conditioning
variables. Orbe et al. (2008) estimate consistently the time varying parameters of a general
conditional beta pricing model using a nonparametric version of the two-pass approach (see,
Black et al. (1972), Fama and MacBeth (1973), Shanken (1985, 1992)); they also develop a
test to test for invariance of the prices of the risk factors through time or to test whether or
not the risk premium can be considered significantly non-zero. Roussanov (2014) estimates
nonparametric betas with a focus on consumption based models but he does not develop a
formal test; models are evaluated by means of tests of a particular zero average pricing error.
Finally, Peñaranda et al. (2018) consider nonparametric estimation and testing of conditional
asset pricing models, they present and adaptive omnibus specification test that is robust to
functional form misspecification of both conditional moments and prices of risk.

In this context, our proposal is to build up a test to detect constancy of the price of risk
or beta constancy, that is, unconditional asset pricing models. The proposed test is based in
works such as Kauermann and Tutz (1999), Cai et al. (2000), Fan and Zhang (2000), Fan et al.
(2001), Fan and Huang (2005), Qu and Li (2006) and Zhou and Liang (2009) where they
proposed a test based on the discrepancy between restricted and unrestricted sum of squared
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residuals for varying coefficient models without endogenous regressors; as for the case of
varying coefficient models with endogenous regressors although under a completely different
setting, the reader may refer to Cai et al. (2017). In all the previous works, the test is suppose
to detect linearity or significance of the parameters using parametric and nonparametric
estimates to build up the test. Although there exists a great literature on detecting constancy
in varying coefficient models, little has been applied to CAPM setting; the reader may refer
to Wang (2003), Orbe et al. (2008), Roussanov (2014) and Peñaranda et al. (2018) to find
inference applied to CAPM models.

The rest of the chapter is organized as follows. Section 4.2 describes our varying
coefficient model with endogenous regressors, its estimation procedure and we also present
the asymptotic results. Section 4.3 describes the testing procedure and gives the outline
of how to obtain the bootstrap p-vales. Section 4.4 presents numerical results based on
simulations Finally, section 4.5 concludes the paper. All the proofs are contained in the
Appendix.

4.2 Econometric model and estimation procedure

4.2.1 Model

Consider the varying coefficient model with endogenous regressors of the form

Yt = g(Xt ,Z1t)+ut

= X⊤
t β (Z1t)+ut , t = 1, . . . ,T, (4.1)

where Yt is a m× 1 vector of responses, Xt is a d ×m matrix of endogenous explanatory
variables, β (·) is a d×1 vector of unknown functions that needs to be estimated, ut is a m×1
vector of random errors and Zt is a p+ q dimensional vector containing a q dimensional
vector Z1t of exogenous variables and a p dimensional vector Z2t of instrumental variables.
In CAPM models Yt are the returns of m assets, Xt are the d factors that affect the returns of
the m assets and β (Z1t) are the prices of risk.

Note that this nonparametric model is different from the standard nonparametric model
because E[ut |Xt ,Z1t ] ̸= 0; therefore to estimate β (·) we use the assumption

E[ut |Zt ] = 0, (4.2)
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then taking conditional expectations we have

E [Yt |Zt ] = E [Xt |Zt ]
⊤

β (Z1t) = π(Zt)
⊤

β (Z1t),

where π(Zt) = E [Xt |Zt ] is an unknown d ×m matrix to be estimated. Because π(Zt) are
unknown, we will need a preliminary step to estimate β (Z1t). Note that, we need to impose
p ≥ d, that is, the number of instruments is larger than the number of endogenous variables;
which is a usual identification condition in instrumental variables problems.

4.2.2 Estimation procedure

As (Yt ,Xt ,Zt) are the only observed data our suggested procedure is a three-stage approach.
The first stage is in charge of estimating the conditional expectation π(z) = E [Xt |Zt = z] by
a regression of Xt on Zt , the second stage involves estimation of optimal weighting matrix
and finally the third stage proceeds by estimating β (·). In all three stages, we consider local
linear fitting techniques mainly because of its high statical efficiency (see, Fan and Gijbels
(1995) and Kniesner and Li (2002) for discussion on the local linear fitting technique).

We begin with the first stage, where we obtain, π̂(Zt), the fitted value for π(Zt). Note
that we have to estimate π(Zt) which is d ×m matrix, so in order to simplify the estimation
process we will use the vec operator; thus, we now need to estimate a dm × 1 vector,
vec(π(Zt)) = (π1(Zt), . . . ,πdm(Zt))

⊤. Now, assuming that vec(π(Zt)) has continuous
second derivatives, for z in the neighborhood of Zt , a Taylor expansion approximates
vec(π(Zt)) by γ(z)+ I⊤dm ⊗ (Zt − z)⊤vec

(
Dγ(z)

)
, that is,

vec(π(Zt))≈ γ(z)+ I⊤dm ⊗ (Zt − z)⊤vec
(
Dγ(z)

)
,

where ⊗ is the Kronecker product, Idm is dm×dm identity matrix and Dγ(z) is a dm×(p+q)
matrix of partial derivatives of the dm×1 function γ(z) with respect to the elements of the
(p+q)×1 vector z, e.g., Dγ(z) = ∂γ(z)/∂ z. Then, we derive the local linear estimator as
the minimizer of

1
T

T

∑
t=1

[
vec(Xt)− Z̃∗⊤

t g(z)
]⊤ [

vec(Xt)− Z̃∗⊤
t g(z)

]
LH1(Zt − z), (4.3)

where Z̃∗
t =

(
Idm, Idm ⊗ (Zt − z)⊤

)⊤ is a dm(p+ q+ 1)× dm matrix of regressors, g(z) =(
γ(z)⊤,vec

(
Dγ(z)

)⊤)⊤ is a dm(p + q + 1)× 1 vector of unknown functions, LH1(·) =

|H1|−1/2L(·H−1/2
1 ), H1 is a (p+q)×(p+q) bandwidth matrix and LH1(·) is a kernel function;
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then, if 1
T ∑

T
t=1 Z̃∗

t Z̃∗⊤
t LH1(Zt − z) is invertible, the local linear estimator of vec(π(Zt)),

denoted by vec(π̂(z)) = γ̂(z) = e⊤1 ĝ(z) is

vec(π̂(z)) = e⊤1

[
1
T

T

∑
t=1

Z̃∗
t Z̃∗⊤

t LH1(Zt − z)

]−1
1
T

T

∑
t=1

Z̃∗
t vec(Xt)LH1(Zt − z), (4.4)

where e1 =

(
Idm

...0⊤dm(p+q)×dm

)⊤
is a dm(p+q+1)×dm selection matrix and 0dm(p+q)×dm

is a dm(p+q)×dm matrix of zeros.
Once we have obtained the estimator of the conditional expectation, we can proceed with

the estimation of β (·). To do so, as it is usual in IV estimation procedures, we first obtain
the estimator of the optimal weighting matrix and then we estimate β (·). Therefore, our
second stage proceeds by estimating the optimal weighting matrix; to this end, we assume
that β (Z1t) has continuous second order derivatives at any given point z1, and by a Taylor
expansion for Z1t in a neighborhood of z1, we have

π̂(Zt)
⊤

β (Z1t)≈ π̂(Zt)
⊤

β (z1)+ π̂(Zt)
⊤⊗ (Z1t − z1)

⊤vec
(
Dβ (z1)

)
,

where Dβ (z1) is a d ×q matrix of partial derivatives of the d ×1 function β (z1) with respect
to the elements of the q× 1 vector z1. Then, the local linear estimator comes from the
following first order condition

1
T

T

∑
t=1

Π̃t(Zt)
(

Yt − Π̃t(Zt)
∗⊤

η(z1)
)

KH2(Z1t − z1) = 0, (4.5)

where KH2(·) = |H2|−1/2K(·H−1/2
2 ), H2 is a q×q bandwidth matrix, K(·) is a kernel func-

tion, Π̃t(Zt) =
(
π̂(Zt)

⊤, π̂(Zt)
⊤⊗ (Z1t − z1)

⊤)⊤ is a d(q+ 1)×m matrix containing the

estimates of the first stage, and η(z1) =
(

β (z1)
⊤,vec

(
Dβ (z1)

)⊤)⊤ is a d(q+ 1)× 1 vec-

tor of unknown functions; thus, if we assume that 1
T ∑

T
t=1 Π̃t(Zt)Π̃t(Zt)

⊤KH2(Z1t − z1) is
nonsingular, the second stage local linear estimator of β (z1), denoted by β̄ (z1) = e⊤2 η̄(z1) is

β̄ (z1) = e⊤2

[
1
T

T

∑
t=1

Π̃t(Zt)Π̃t(Zt)
⊤KH2(Z1t − z1)

]−1
1
T

T

∑
t=1

Π̃t(Zt)YtKH2(Z1t − z1), (4.6)

where e2 =

(
Id

...0⊤dq×d

)⊤
is a d(q+1)×d selection matrix, Id is a d ×d identity matrix and

0dq×d is a dq× d matrix of zeros. Now, using the second stage local linear estimator of
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β (z1), we define the estimator fir the optimal weighting matrix, Ω̂(z), as follows

Ω̂(z) =
1

f̂ (z)T

T

∑
t=1

ūt ū⊤t LH1(Zt − z), (4.7)

where ūt = Yt −X⊤
t β̄ (Z1t) and f̂ (z) = 1/T ∑

T
t=1 LH1(Zt − z). Note that for the next stage we

need for Ω̂(z) to be positive definite.
Finally, in the third stage we derive the local linear estimator of β (·), using the estimates

of π(Zt) and Ω(Zt), as the minimizer of the sum of weighted least squares

1
T

T

∑
t=1

[
Yt − Π̃t(Zt)

⊤
η(z1)

]⊤
Ω̂(Zt)

−1
[
Yt − Π̃t(Zt)

⊤
η(z1)

]
KH2(Z1t − z1); (4.8)

then, if we assume that 1
T ∑

T
t=1 Π̃t(Zt)Ω̂(Zt)

−1Π̃t(Zt)
⊤KH2(Z1t − z) is invertible, the third

stage local linear estimator of β (z1), denoted by β̂ (z1) = e⊤2 η̂(z1) is

β̂ (z1) = e⊤2

[
1
T

T

∑
t=1

Π̃t(Zt)Ω̂(Zt)
−1

Π̃t(Zt)
⊤KH2(Z1t − z)

]−1
1
T

T

∑
t=1

Π̃t(Zt)Ω̂(Zt)
−1YtKH2(Z1t − z).

(4.9)

Before we continue with the large sample properties of our estimators, we will discuss
a particular form of model (4.1). Note that model (4.1) encompasses models such as the
partially linear model (see, Robinson (1988)) and the estimators proposed above apply with

very little modifications. For instance, if we are willing to assume that Z1t =
(

Z⊤
11,t ,Z

⊤
12,t

)⊤
,

then

Yt = g(Xt ,Z1t)+ut ,

= Z⊤
11,tγ0 +X⊤

t β (Z12,t)+ut , t = 1, . . . ,T,

and we obtain a semiparametric instrumental variable varying coefficient model. Note that
we can impose the same condition on the first stage, e.g., π(Zt) = Z⊤

11,tγ0 +π(Z12,t ,Z2t).

4.2.3 Asymptotic properties

Here we derive the consistency and asymptotic normality of our estimators. First we intro-
duce some notation,

∫
k(z)dz = 1,

∫
zk(z)dz = 0,

∫
zz⊤k(z)dz = µ2(k)I, and

∫
k(z)2dz =

R(k), where µ2(k) ̸= 0 and R(k) ̸= 0 are scalars and I is the identity matrix. For the
first stage estimator, let vt = Xt − π (Zt), for the second stage estimator let Γ∗(z1) =

E
[

π(Zt)π(Zt)
⊤∣∣Z1t = z1

]
, for the optimal weighting matrix Ωu(z) = E

[
utut⊤

∣∣Zt = z
]
;

for the third stage estimator Γ(z1) = E
[

π(Zt)Ω(Zt)
−1π(Zt)

⊤∣∣Z1t = z1
]

.
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The following conditions underlay the asymptotic theory of our estimators.

Assumption 4.2.1. Let (Yt ,Xt ,Zt ,ut) be strictly stationary and α-mixing process with
α(t) = O(t−τ), where τ = (2+δ )(1+δ )/δ for some δ > 0.

Assumption 4.2.2. For the random errors, ut , E[ut |Zt ] = 0.

Assumption 4.2.3. Let f (·) and f1(·) the probability functions of z and z1 and there exist a
compact set D such that infz∈D f (z)> 0. All density functions are continuously differentiable
in all their arguments and they are bounded from above and below in any point of their
support.

Assumption 4.2.4. The kernel functions L(·) and K(·) are compactly supported and bounded.
Besides, let |L(z)−L(z′)| ≤C |z− z′| for all z and z′.

Assumption 4.2.5. The bandwidth matrices H1 and H2 are symmetric and strictly definite
positive in such a way that H1 = o(H2). Moreover, each entry of the matrices tend to zero as
T → ∞ in such a way that T |H1|1/2/ logT → ∞ and T |H2|1/2 → ∞.

Assumption 4.2.6. The second order derivatives of γ1(·) . . .γdm(·) are bounded and uniformly
continuous and satisfy the Lpschitz condition.

Assumption 4.2.7. Let E
[

vec(vt)vec(vt)
⊤∣∣Zt = z

]
< ∞ and E

[
|vec(vt)|2+δ

∣∣∣Zt = z
]

be
bounded and uniformly continuous in its support for some δ , where δ was defined in
assumption 4.2.1.

Assumption 4.2.8. Let the second order derivatives of β1(·) . . .βd(·) be bounded and uni-
formly continuous in any point of their support.

Assumption 4.2.9. Let, Γ∗(z1), Ω(Zt) and Γ(z1) be positive definite, continuous and invert-
ible

Assumption 4.2.10. For the same δ defined in assumption 4.2.1, let the matrices E |Xt |2+δ <

∞, E
[
|ut |2+δ

∣∣∣Z1t = z1

]
and E

[∣∣π(Zt)π(Zt)
⊤∣∣2+δ

∣∣∣Z1t = z1

]
be bounded and uniformly

continuous in their support.

Assumption 4.2.11. Let the following matrices E
[∣∣π(Zt)Ω(Zt)

−1ut
∣∣2+δ

∣∣∣Z1t = z1

]
and

E
[∣∣π(Zt)Ω(Zt)

−1π(Zt)
⊤∣∣2+δ

∣∣∣Z1t = z1

]
be bounded and uniformly continuous in their

support, for the same δ defined in assumption 4.2.1.

Assumption 4.2.12. T |H2|
1
2 [1+

2
1+δ

] → ∞
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Assumption 4.2.1 is a standard assumption in the asset pricing literature; the α-mixing
condition is one of the weakest mixing conditions for weakly dependent stochastic pro-
cesses. Many financial time series are α-mixing, see, Cai (2002a), Carrasco and Chen
(2002), Chen and Tang (2005) among others for examples. Assumption 4.2.2 imposes
the endogeneity of Xt and Z1t and the exogeneity of Zt . Assumption 4.2.3 requires the
densities of Z1t and Zt to be bounded and smooth functions , this assumption and as-
sumption 4.2.4 are standard in nonparametric literature. Assumption 4.2.5 goes in the
same direction as assumptions 3 and 8 in Cai et al. (2000); these assumptions are com-
mon in local fitting and two-stage nonparametric estimation. Note that here we assume
that LH1(·) = |H1|−1/2L(·H−1/2

1 ) and KH2(·) = |H2|−1/2K(·H−1/2
2 ) but we can also assume

Lh1(·) = h−(p+q)
1 L(·/h1) and Kh2(·) = h−q

2 K(·/h2); it is easy to show that our results hold
with little change if we replace assumptions 4.2.5 and 4.2.12 with 4.2.13 and 4.2.14 respec-
tively.

Assumption 4.2.13. The bandwidths h1 and h2 tend to zero as T → ∞ in such a way that
T hp+q

1 / logT → ∞ and T hq
2 → ∞. Besides, we also need that h1 = o(h2).

Assumption 4.2.14. T h
q[1+ 2

1+δ
]

2 → ∞

Assumptions 4.2.6 and 4.2.8 are common in local linear fitting literature and ensure
that the Taylor approximation could carry through. Assumptions 4.2.7, 4.2.9, 4.2.10 and
4.2.11 are moment conditions similar to those in Cai et al. (2015), Cai et al. (2000), Cai et al.
(2006), Cai and Li (2008), Fan and Huang (2005) or Cai et al. (2017) among others. Finally,
assumption 4.2.12 is necessary for the central limit theorem, note that this assumption is not
restrictive (see, Cai et al. (2015) for discussion).

The following theorems establish the main result of our work.

Theorem 4.2.1. Assuming that conditions 4.2.1-4.2.7 hold, then as T → ∞ we obtain

vec(π̂(z)) = vec(π(z))+
1
2

µ2(L)diagdm
[
tr
(
Hγr(z)H1

)]
idm +op (tr(H1)) ,

where diagdm
[
tr
(
Hγr(z)H1

)]
stands for the diagonal matrix of elements tr

(
Hγr(z)H1

)
, for

r = 1, . . . ,dm, and Hγr(z) is a (p+q)× (p+q) Hessian matrix of the rth component of γ(z).

Theorem 4.2.2. Assuming that conditions 4.2.1-4.2.10 hold, then as T → ∞ we obtain

β̄ (z1) = β (z1)+
1
2

µ2(K)diagd
[
tr
(
Hβr(z1)H2

)]
id +op (tr(H2)) ,

where tr
(
Hβr(z1)H2

)
, for r = 1, . . . ,d, and Hβr(z1) is a q× q Hessian matrix of the rth

component of β (z1).
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Theorem 4.2.3. Assuming that conditions 4.2.1-4.2.10 hold, then as T → ∞ we obtain

Ω̂(z)→P Ω(z)

Theorem 4.2.4. Assuming that conditions 4.2.1-4.2.12 hold, then as T → ∞ we obtain√
T |H2|1/2

(
β̂ (z1)−β (z1)−b(z1)

)
→ N

(
0d,R(K) f (z1)

−1
Γ(z1)

−1)
where b(z) = 1

2 µ2(K)diagd
[
tr
(
Hβr(z1)H2

)]
id .

As consequence of theorems 4.2.1-4.2.4 it is easy to verify that the estimator is consistent
with a coverage rate depending on T and H2 but not H1 as long as the condition H1 = o(H2)

is satisfied. Similar to the standard nonparametric regression (Fan and Gijbels (1996)),
the bias appears mainly from the second order derivative of π(·) and β (·). Indeed, the
approximation errors of the functions π(·) are transmitted to the bias in estimating β (·) but
are asymptotically negligible due to our regularity conditions.

4.2.4 Bandwidth selection

Bandwidth selection is a challenging issue in noparametric and because of the nature of
the multi-stage estimation. There are two bandwidths involved in the proposed three-stage
estimation procedure. As mentioned before H1 has to fulfill the condition H1 = o(H2); that
is, H1 is chosen small enough that the bias term in the first stage is not too large. Then as
suggested in Cai (2002b) we use a cross validation function to select the bandwidth Ĥ01;
then, use H1 = A0Ĥ01 where A0 = 1/2 or smaller so that we choose a very small bandwidth
for the first stage estimator.

For the second and third stage bandwidth, the choice can be done using standard methods
of nonparametric regression (see, Li and Racine (2007)); for instance cross validation (Stone
(1974)), pre-asymptotic substitution method (Fan and Gijbels (1995)), the plug-in bandwidth
selector (Ruppert et al. (1995)), and the empirical bias method (Ruppert (1997)) among
others. Unfortunately, there is no existing literature of a data driven bandwidth selection with
optimal properties (Newey et al. (1999)).
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4.3 Inference

Now, we consider constructing a test statistic on the varying coefficient β (z1). Consider the
following general testing problem

H0 : β (z1) = β (z1;θ) vs H0 : β (z1) ̸= β (z1;θ), (4.10)

where β (z1;θ) is a know parametric function of z1. Note that this problem is different
from the omnibus specification test proposed by Peñaranda et al. (2018) in the sense that
their model under the null is also nonparametric. However, the above testing problem is a
nonparametric test against a parametric form; the test is general enough that we can test,
linearity β (z1;θ) = θ , significance β (z1;θ) = 0, or functional form if β (z1;θ) is taken to be
a given parametric function of z1. The goal of this article consists of testing that the betas of
the CAPM model are constant in the direction of nonparametric alternatives, that is testing

H0 : Var
(
β j(z1)

)
= 0 for all j = 1, . . . ,d

vs

H1 : Var
(
β j(z1)

)
̸= 0 for some j = 1, . . . ,d , (4.11)

As we already stated in the introductory section, testing on varying coefficients is of great
interest as it means testing on the structural information and the underlying economic theory.
For instance, one can test time variation of betas to support the studies of Bansal et al. (1993),
Bansal and Viswanathan (1993), Cochrane (1996), Jagannathan and Wang (1996, 2002),
Reyes (1999), Ferson and Harvey (1991, 1993, 1997, 1999), Cho and Engle (1999), Wang
(2002, 2003), Akdeniz et al. (2003), Ang and Liu (2004), Fraser et al. (2004), Gagliardini
et al. (2011), among others,

Following the idea of Cai and Tiwari (2000), Cai et al. (2000), Fan et al. (2001), Fan and
Huang (2005) and Cai et al. (2017) we build up the test statistic based on the ratio of the
residual sum of squares (RSS) of the model under the null and under the alternative. Here it
is useful to restate the testing problem as

H0 : E [Yt |Zt ] = π(Zt)β vs H1 : E [Yt |Zt ] = π(Zt)β (Z1t);

note that we allow the parameter β to be unknown, but to be
√

T consistent under the null
hypothesis. Then, following Fan et al. (2001), the generalized likelihood ratio statistic is
defined as

λT =
T
2

log
RSS0

RSS1
≈ T

2
RSS0 −RSS1

RSS1
(4.12)
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where

RSS0 =
[
Yt − π̂(Zt)

⊤
β̂

]⊤ [
Yt − π̂(Zt)

⊤
β̂

]
,

RSS1 =
[
Yt − π̂(Zt)

⊤
β̂ (z1)

]⊤ [
Yt − π̂(Zt)

⊤
β̂ (z1)

]
,

are the residual sum of squares of the model under H0 and under H1 respectively. Here
β̂ is the least square estimator under the null hypothesis and β̂ (z1) is the nonparametric
estimate of the varying coefficient obtained by (4.9). Note that, if we look at the (4.12), and
following Fan and Huang (2005), we can use the Wilks phenomenon to derive the asymptotic
distribution of the test.

Although we can obtain the asymptotic distribution of the test statistic, λT , the test is
sensitive to the bandwidths in the finite sample case. It is also true that the studies of Fan et al.
(2001), Fan and Huang (2005) and Cai et al. (2017) derive the asymptotic distribution of the
test statistic, however in finite samples they prefer to use bootstrap critical values because of
the sensitivity to the bandwidths; in the study of Cai et al. (2000) knowing that there exist
a problem of bandwidth sensitivity, they prefer not to derive the asymptotic distribution of
the test statistic. Therefore, and relaying on the previous studies, to gain better performance
we suggest using a bootstrap method to calculate the p-value for the test statistic, λT . Here,
we adopt the wild bootstrap method that takes account of heteroscedasticity of unknown
form proposed by Davidson and MacKinnon (2010) and similar to the one used by Cai et al.
(2017); then, the bootstrap approach is as follows:

1. Generate the bootstrap residuals {u∗t ,v
∗
t }

T
t=1 = {(ût , v̂t)e∗t }

T
t=1 with

e∗t =

 −
√

5−1
2 , with probability

√
5+1

2
√

5
,

√
5+1
2 , with probability

√
511

2
√

5
,

where

ût = Yt −X⊤
t β̂ (Z1t) , v̂t = Xt − π̂(Zt),

and define the bootstrap sample as follows:

Y ∗
t = π

∗(Zt)
⊤

β̂ +u∗t ,

π
∗(Zt) = π̂(Zt)+ v∗t ,

where β̂ is the least square estimator under H0.
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2. Calculate the bootstrap statistic λ ∗
T based on the sample {Y ∗

t ,π
∗(Zt),Zt}T

t=1 .

3. Reject the null hypothesis H0 when λT is greater than the upper α point of the condi-
tional distribution of λ ∗

T given {Yt ,π(Zt),Zt}T
t=1 .

As for the p-value of the test, this is simply the frequency of the event λ ∗
T ≥ λT in the

replication of the bootstrap sample. Note that for the sake of simplicity we use the same
bandwidth in calculating λ ∗

T and λT . Note that here we bootstrap the residuals from the
nonparametric estimation instead of the parametric estimation; that is so because the non-
parametric estimates of the residuals are always consistent regardless if we are under the null
or the alternative.

4.4 Monte Carlo study

To illustrate the validity of our methodology we conduct a Monte Carlo experiment to
examine the finite sample performance of the proposed test. For this purpose, observations are
generated according to the following varying coefficient model with endogenous regressors

Yt = Xtβ (Z1t)+ut , t = 1, . . . ,T,

where Z1t = 0.05Z1(t−1)+0.9ε1t , Z2t = 0.05Z2(t−1)+0.9ε2t , ε1t follows a uniform [2,6] and
ε2t follows a uniform [0,4]. Also let ut = 0.05ut−1 +0.9ε1t and the endogenous variable Xt

is generated following the next reduced form equation

Xt = 2sin(Z1t +Z2t)+ ε2t ,

and the noises follow (
ε1t

ε2t

)
→ N

[(
0
0

)
,

(
1 0.7

0.7 1

)]
;

here 0.7 controls the correlation between ε1t and ε2t . Finally we generate the random
coefficients as

a)β (Z1t) = 1, b)β (Z1t) = (1+0.1Z1t)exp(−(0.5Zit −1.5)2),

c)β (Z1t) = 1.6+4.6I(Z1t ≥ 4), d)β (Z1t) = cos(Z1t).

Here model a) represents the null hypothesis and the rest are different alternatives;
alternatives b) and d) are smooth alternatives and alternative c) is a discontinuous alternative.
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Note that in this study we have set m = 1, d = 1, p = 1, and q = 1. The sample size is chosen
to be T = 50, 100 and 200 and for each sample size, the Monte Carlo study is based on
1000 replications and the bootstrap replications are set to 1000. For the kernel function K(u)
we choose the Epanechnikov kernel, K(u) = 0.75(1−u2)I(|u| ≤ 1), and the bandwidth are
chosen as it was described in section 4.2.4.

Model a) b) c) d)
Size λT
50 6.2 98.2 99.6 99.8

100 4.8 99.8 100 100
200 5.0 100 100 100

Table 4.1 Percentage of times H0 was rejected, 5% of significance

The results of the simulation study are presented in table 4.1; here, we can see that our
test is able to detect parameter constancy.

4.5 Conclusions

In this chapter, we estimate consistently the varying parameters of a conditional asset pricing
model. The proposed nonparametric estimation procedure makes possible to estimate prices
of risk from observed asset returns without imposing any parametric structure on price of risk
function. The proposed test can be seen as a tool to test unconditional beta pricing models
so that one can avoid Ghysels’ critique (Ghysels (1998)) who states that misspecification of
time-varying conditional moments and market prices of risk may induce larger pricing errors
than those obtained by unconditional beta pricing models.
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Since Cleveland et al. (1991) introduced varying coefficients models, econometric models
have been greatly enriched. In the past three decades varying coefficient models have
experienced a great growth, from both a methodological and a theoretical point of view, and
the main reason is that they offer a quite general setting to handle many of the specification
problems of nonparametric and semiparametric models. Varying coefficient models allow
the coefficients of the regression model to be unknown functions of some other variables.
Therefore, testing on varying coefficients implies testing on structural information and the
underlying economic theory; thus, developing inference devices for varying coefficient
models is crucial.

In this context, the goal of this Ph.D. thesis is twofold. On the one hand, to develop
confidence bands for varying coefficient models using the empirical likelihood technique.
On the other hand, testing that the varying coefficients are constant in the direction of
nonparametric alternatives. In this way, and as conclusion, we summarize the main objectives
pursued in each of the chapter of this dissertation and the main results obtained.

In Chapter 1 we investigate empirical likelihood based inference for fixed effects varying
coefficient panel data models to build up confidence bands for the varying coefficients; firstly,
and following the idea of removing the fixed effects, (Rodriguez-Poo and Soberón, 2014,
2015), we get rid of the fixed effects using the first different and the within transformation.
Then, we show that the naive empirical likelihood ratio is asymptotically chi-squared when
undersmoothing is employed. The interesting fact about the empirical likelihood ratio is that
it does not need plug-in estimates of the limiting variance as the studentization is carried out
internally. As in the work of Xue and Zhu (2007) we correct for the bias, and propose a mean-
corrected and residual-adjusted empirical likelihood ratios that without undersmoothing, both
have standard chi-squared limit distributions.

As a by product, we give the empirical maximum likelihood estimators of the varying
coefficient and their derivatives; the results resembles to those obtained in Rodriguez-Poo and
Soberón (2014, 2015), however the result for the derivative of the varying coefficient is brand
new. The idea is that this derivative result can be use to test constancy, that is, derivative
results that are not statistically significant are equivalent to state that the varying coefficient
is constant. We also obtain the asymptotic distribution of these estimators and we propose
some procedures to calculate the bandwidths empirically.

To show the feasibility of the technique and to analyse its small sample properties we
implement a Monte Carlo simulation exercise; here we conclude the length of the confidence
interval is smaller for the residual adjusted empirical likelihood ratio (RAEL), being smaller
than the mean corrected empirical likelihood ratio (MCEL) and the asymptotic normal
approximation (NA). Thus, we can conclude by saying that the RAEL and MCEL confidence
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bands behave better than the NA confidence bands. Between RAEL and MCEL confidence
bands, simulations results show that the RAEL confidence bands behave better than the
MCEL. Also, by comparing the within method with the first difference method we can
conclude that for the NA and the RAEL confidence bands the First Difference method reduces
the length of the confidence interval; however the MCEL confidence interval increases it
length in comparison to the Within method.

In the empirical analysis about the production efficiency of the European Union’s compa-
nies, we can conclude that the marginal productivity of liquid capital tends to be decreasing;
however when it reaches a certain level of R&D expenses it tends to be steady and close
to zero. Basically, this means that companies with small R&D expenses have a decreasing
marginal productivity of liquid capital. On its part, the marginal productivity of fixed capital
is not a linear function with the level of R&D expenses. Clearly, there exist an upward
general trend, with a bell shape form for companies with large R&D expenses, which means
that, while modest R&D expenses can improve the fixed capital productivity, higher R&D ex-
penses leads to lower fixed capital productivity. For labour marginal productivity we observe
that the labour marginal productivity is not a linear function of R&D with an inverted bell
shape that suggests that companies with reduced R&D tend to have lower labour marginal
productivity at the beginning while companies with higher R&D are more likely to have an
increase in labour marginal productivity. Finally, using these results we can not conclude
that the returns to scale are not equal to one because one is within the confidence interval.
However, we can conclude that the returns to scale are not linear with R&D and they seem to
have a negative effect in the behaviour of the returns to scale.

In Chapter 2 we investigate empirical likelihood based inference for nonparametric
categorical varying coefficient panel data models with fixed effects under cross-sectional
dependence. The main difference with chapter 1 is that in this case the varying coefficient
varies according to a discrete variable and therefore we need kernel functions for discrete
variables. In this context, and following the same outline of chapter 1 we first get rid of
the fixed effects using a modified version of the within transformation, (Feng et al., 2017),
used in chapter 1. Then we show that the naive empirical likelihood ratio is asymptotically
standard chi-squared using a nonparametric version of the Wilks’ theorem, (Wilks, 1938).
Note that because in this case due to the cross sectional dependence the estimation variance
becomes cumbersome, it is a good thing that we do not need plug-in estimates of the limiting
variance.

As a by product, we propose also an empirical maximum likelihood estimator of the
categorical varying coefficient; the result obtained are similar to the ones obtained in Feng
et al. (2017) but we add by giving results when the bandwidth parameter is unknown. We also
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obtain the asymptotic distribution of this estimator. We also illustrated the proposed technique
in an application that reports estimates of strike activities from 17 countries of the OECD for
the period 1951−1985. Note that because of the cumbersome expression of the variance, the
empirical likelihood approach is easier to implement than the asymptotic normality. From
the empirical application we can see that the confidence bands using empirical likelihood
behave better than the ones estimated using the asymptotic normal distribution.

In Chapter 3, we propose constancy test for coefficients in semi-varying coefficients
models. The testing procedure resembles in spirit the union-intersection (U-I) parameter
stability tests in time series, where observations are sorted according to the explanatory
variable responsible for the coefficients varying. Here, the variable responsible for the
coefficient varying may depend on the rest of explanatory variables in an unknown form. In
this context, we use induced order statistics or concomitants to sort the data according to the
regressor responsible for the varying coefficient.

The test, implemented using bootstrap, is based on comparing the OLS coefficients
of subsamples. The test is justified under fairly weak regularity conditions, which allow
discontinuous random coefficients under the alternative hypothesis. Our test forms a basis
for specification testing of parametric varying coefficients and, in particular, for testing the
functional form of interactive effects.

Simulation results have provided evidence of the good performance of our test in finite
samples compared with a CUSUM-type test (Stute, 1997), designed to omnibus specification
testing of linear regression models, and a smooth LR test, (Cai et al., 2000), designed to
test varying coefficients constancy in the direction of smooth alternatives. The CUSUM
test, like ours, does not require estimating the model on the alternative, but the LR-type
test compares the restricted and unrestricted sum of squared residuals and, hence, requires
estimating the nonparametric smooth varying coefficients. Simulations show that, unlike our
test, the two competitors suffer of the curse of dimensionality. These also show that the LR
smooth test exhibit a lack of power, compared with the two competitors, under alternatives
with discontinuous varying coefficients.

We have also included a real data application to model interactive effects of IQ in a
returns of education model. We show that the returns to education varies according to IQ, a
proxy for ability.

Finally, extending chapter 3 by allowing endogenous explanatory variables, chapter 4
propose a methodology for testing coefficients constancy in varying coefficient capital asset
pricing models (CAPM) with endogenous regressors. The testing procedure is defined as a
generalized likelihood ratio that focus on the comparison of the restricted and unrestricted
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sum of squared residuals. The proposed test can be seen as a tool to test unconditional beta
pricing models.

As a by product, we have developed a nonparametric method that makes possible to
estimate prices of risk from observed asset returns without imposing any parametric structure
on price of risk function; besides we establish the asymptotic properties of the estimators.
Finally, the Monte Carlo experiments study, using critical values and p-values estimated
by the bootstrap technique, provides evidence of the good performance of our test in finite
samples.

5.1 Future research

Throughout this thesis and given the advantages of introducing varying coefficient models,
some future lines of research have arisen. In this sense, a first line of future research consist
in the extension of chapters 1 and 2 by allowing a the varying coefficient to vary according
to a mixture of discrete and continuous variables, see, e.g., kernel estimation with mixed data
in Li and Racine (2007).

Another line of relevant research is the development of nonparametric tests using em-
pirical likelihood; here it would be interesting to extend the work of chapter 3 and obtain a
distribution free test based on the empirical likelihood technique. Some relevant work have
been done in Chen et al. (2003), Einmahl and McKeague (2003), Zou et al. (2007) and Liu
et al. (2008) under different settings. Also it would be interesting to extend chapter 3 to the
panel data framework. We can also extend Chapter 4 by using a test based on empirical
likelihood and derive its asymptotic distribution.
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Desde que Cleveland et al. (1991) introdujeron los modelos de coeficientes variables,
los modelos econométricos se han enriquecido enormemente. En las tres últimas décadas,
estos modelos de coeficientes variables han experimentado un gran crecimiento, tanto desde
el punto de vista metodológico como teórico, y la razón principal es que ofrecen un marco
bastante general que nos permite lidiar con muchos de los problemas de especificación
en modelos no paramétricos y semiparamétricos. Los modelos de coeficientes variables
permiten que los coeficientes del modelo de regresión sean funciones desconocidas de otras
variables. Por lo que, los contrastes sobre los coeficientes variables implican contrastar
la información estructural y la teoría económica subyacente; por lo tanto, el desarrollo de
técnicas de inferencia para modelos de coeficientes variables es crucial.

En este contexto, el objetivo de esta tesis docotoral es doble. Por un lado, desarrollar
bandas de confianza para modelos de coeficientes variables utilizando la técnica de verosimil-
itud empírica. Por otro lado, desarrollar tests que nos permitan discernir si los coeficientes
variables son constantes en la dirección de alternativas no paramétricas. De esta manera, y
como conclusión, resumimos los principales objetivos de cada uno de los capítulos de esta
disertación y los principales resultados obtenidos.

En el capítulo 1 se investiga técnicas de inferencia estadística basadas en la verosimilitud
empírica para modelos de datos de panel con coeficientes variables y efectos fijos para
construir bandas de confianza para los coeficientes; En primer lugar, y siguiendo la idea de
eliminar los efectos fijos, (Rodriguez-Poo and Soberón, 2014, 2015), nos deshacemos de los
efectos fijos utilizando las ténicas de primeras diferencias y la transformación within. Luego,
demostramos que el ratio de verosimilitud empírica es asintóticamente chi-cuadrado cuando
se emplea undersmoothing. Un hecho interesante acerca del ratio de verosimilitud empírica
es que no necesita estimaciores para la varianza, ya que la estudianteización se lleva a cabo
internamente. Al igual que en el trabajo de Xue and Zhu (2007), corregimos por el sesgo y
proponemos dos correciones del ratio de verosimilitud empírica, una corregida por la media
y otra ajustada por residuos; además demostramos que , sin undersmoothing, ambas tienen
distribuciones asintóticas chi cuadrado.

Como subproducto, proporcionamos los estimadores de máxima verosimilitud empírica
del coeficiente variable y sus derivadas; los resultados se asemejan a los obtenidos en
Rodriguez-Poo and Soberón (2014, 2015), sin embargo, el resultado para las derivadas del
coeficiente variable es completamente nuevo. La idea es que este resultado se pueda usar
para probar la constancia, es decir, si las derivadas no son estadísticamente significativas,
es equivalente a decir que los coeficientes variables son constantes. También obtenemos
la distribución asintótica de los estimadores y proponemos algunos procedimientos para
calcular los bandwidth empíricamente.
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Para mostrar la viabilidad de la técnica y analizar sus propiedades en muestras finitas,
implementamos un ejercicio de simulación de Monte Carlo; aquí concluimos que la longitud
del intervalo de confianza es menor para el ratio de verosimilitud empírica ajustado por los
residuos (RAEL), siendo más pequeña que la del ratio de verosimilitud empírica corregido
por la media (MCEL) y la de la aproximación normal asintótica (NA). Por lo tanto, podemos
concluir diciendo que las bandas de confianza de RAEL y MCEL se comportan mejor
que las bandas de confianza de NA. Entre las bandas de confianza de RAEL y MCEL, los
resultados de las simulaciones muestran que las bandas de confianza de RAEL se comportan
mejor que el MCEL. Además, al comparar el método within con el método de primeras
diferencias, podemos concluir que para las bandas de confianza NA y RAEL, el método de
primeras diferencias reduce la longitud del intervalo de confianza; sin embargo, el intervalo
de confianza de MCEL aumenta su longitud en comparación con el método within.

En el análisis empírico sobre la eficiencia en la producción de las empresas de la Unión
Europea, podemos concluir que la productividad marginal del capital líquido tiende a dis-
minuir; sin embargo, cuando alcanza un cierto nivel de gastos de I+D, tiende a ser constante
y cercano a cero. Básicamente, esto significa que las empresas con gastos pequeños de
I +D tienen una productividad marginal del capital líquido decreciente. Por su parte, la
productividad marginal del capital fijo no es una función lineal con el nivel de gastos de
I+D. Claramente, existe una tendencia ascendente, lo que significa que, mientras que gastos
modestos de I +D pueden mejorar la productividad del capital fijo, gastos muy elevados de
I+D conducen a una menor productividad del capital fijo. Para la productividad marginal del
trabajo, observamos que esta no es una función lineal de I +D, con una forma de campana
invertida sugiere que las empresas con I +D reducido tienden a tener una productividad
marginal del trabajo más baja al principio mientras que las empresas con mayores I +D
tienen más probabilidades de tener un aumento en la productividad marginal del trabajo.
Finalmente, a la vista de estos resultados, no podemos concluir que los rendimientos a
escala no sean iguales a uno porque uno está dentro del intervalo de confianza. Sin embargo,
podemos concluir que los rendimientos a escala no son lineales con I +D y parecen tener un
efecto negativo en el comportamiento de los rendimientos a escala.

En el capítulo 2 se investiga tecnicas de inferencia estadística basadas en la verosimilitud
empírica para modelos de datos de panel con efectos fijos y coeficientes variables categóricos
o discretos bajo dependencia de sección cruzada. La principal diferencia con el capítulo 1
es que, en este caso, el coeficiente variable varía según una variable discreta y, por lo tanto,
necesitamos funciones de kernel para variables discretas. En este contexto, y siguiendo el
mismo esquema del capítulo 1, primero nos deshacemos de los efectos fijos usando una
versión modificada de la transformación within, (Feng et al., 2017), utilizada en el capítulo 1.
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Luego demostramos que el ratio de verosimilitud empírica es asintóticamente chi-cuadrado
utilizando una versión no paramétrica del teorema de Wilks, (Wilks, 1938).

Como subproducto, proponemos un estimador de máxima verosimilitud empírica del
coeficiente variable categórico; los resultados obtenidos son similares a los obtenidos en
Feng et al. (2017), pero nuestros resultados se obtienen también cuando el bandwidth es
desconocido. Además obtenemos la distribución asintótica de este estimador. También
ilustramos la técnica propuesta en una aplicación que informa de las estimaciones de las
actividades de huelga de 17 países de la OCDE para el periodo 1951− 1985. En este
caso, debido a la dependencia de sección cruzada, la estimación de la la varianza se vuelve
complicada; en este contexto resulta deseable que la técnica de verosimilitu empírica no
necesite estimaciones de la varianza. Bajo los supuestos de este capítulo, la verosimilitud
empírica resulta ser más sencilla de implementar que la normalidad asintótica. Con lo que
se refiere a la aplicación empírica podemos ver que las bandas de confianza que usan la
verosimilitud empírica se comportan mejor que las estimadas usando la distribución normal
asintótica.

En el capítulo 3, proponemos un test de constancia para coeficientes en modelos de
coeficientes semi-variables. El procedimiento de contraste se asemeja en espíritu a las
pruebas de estabilidad de parámetros de unión-intersección (U-I) en series temporales, donde
las observaciones se clasifican de acuerdo con la variable explicativa responsable de que los
coeficientes varíen. En este contexto, la variable responsable de la variación del coeficiente
puede depender del resto de variables explicativas en una forma desconocida. Para ordenar los
datos de acuerdo con el regresor responsable del coeficiente variable, utilizamos estadísticos
de orden inducido o concomitantes.

El test, implementado utilizando bootstrap, se basa en la comparacion de los coeficientes
MCO de submuestras. El contraste se justifica bajo condiciones de regularidad bastante
débiles, lo que permite coeficientes aleatorios discontinuos bajo la hipótesis alternativa.
Nuestro test constituye la base para contrastes de especificación de coeficientes variables
paramétricos y, en particular, para contrastar la forma funcional de los efectos interactivos.

Los resultados de las simulaciones han demostrado el buen funcionamiento de nuestro
test en muestras finitas en comparación con el test de tipo CUSUM (Stute, 1997), diseñado
para contrastes de especificación de tipo omnibus en modelos de regresión lineal, y el test
de tipo LR basado en el suavizado, (Cai et al., 2000), diseñado para contrastar la constancia
de coeficientes variables en la dirección de alternativas no paramétricas. El test de tipo
CUSUM, como el nuestro, no requiere estimar el modelo bajo la alternativa, sin embargo el
test de tipo LR compara la suma de cuadrados de los residuso del modelo restringido y no
restringido y, por lo tanto, requiere de la estimación de los coeficientes no paramétricos bajo
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la alternativa. Las simulaciones muestran que, a diferencia de nuestro test, los competidores
sufren la maldición de la dimensionalidad. Estos también muestran que el contraste de tipo
LR muestra una falta de potencia, en comparación con sus competidores, en alternativas con
coeficientes variables discontinuos.

También hemos incluido una aplicación con datos reales para modelizar los efectos
interactivos de IQ (una proxy de habilidad) en un modelo de rendimientos educativos. Con
nuestro test mostramos que los rendimientos educativos varían de acuerdo con IQ.

Finalmente, y extendiendo el capítulo 3 al permitir variables explicativas endógenas,
el capítulo 4 se propone una metodología para contrastar constancia de los coeficientes en
modelos de valoración de activos financieros (CAPM) con coeficientes variables y regresores
endógenos. El test se define como un ratio de verosimilitud generalizado que se centra en la
comparación de la suma de cuadrados de los residuso del modelo restringido y no restringido.
El contraste propuesto puede verse como una herramienta para contrastar modelos CAPM
incondicionales.

Como producto derivado, hemos desarrollado un método no paramétrico que hace posible
estimar los coeficientes a partir de la rentabilidad de los activos observados sin imponer
ninguna estructura paramétrica en en ellos; Además establecemos las propiedades asintóticas
de los estimadores. Finalmente, el experimento de Monte Carlo, que utiliza valores críticos y
p-valores estimados por la técnica bootstrap, proporciona evidencia del buen desempeño de
nuestro test en muestras finitas.

6.1 Líneas de investigación futura

A lo largo de esta tesis y dadas las ventajas de los modelos de coeficientes variables, han
surgido algunas líneas de investigación futuras. En este sentido, una primera línea de
investigación futura consiste en la extensión de los capítulos 1 y 2 al permitir que el coeficiente
variable varíe de acuerdo con una mezcla de variables discretas y continuas, ver, por ejemplo,
estimación kernel con datos mixtos en Li and Racine (2007).

Otra línea de investigación relevante es el desarrollo de contrastes no paramétricas
utilizando la verosimilitud empírica; Aquí sería interesante extender el trabajo del capítulo
3 y obtener una test de distribución libre basado en la técnica de verosimilitud empírica.
Algunos trabajos relevantes se han realizado en Chen et al. (2003), Einmahl and McKeague
(2003), Zou et al. (2007) y Liu et al. (2008) entre otros, aunque bajo un contexto diferente.
También sería interesante extender el capítulo 3 al marco de datos del panel. El capítulo 4
también se puede ampliar usando un contraste basado en la técnica de verosimilitud empírica
y derivando su distribución asintótica.
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A.1 Proof of Theorem 1.2.1

Note that, Rw(β (z)) is given by[
1√

NT |H|T/2

N

∑
i=1

Twi(β (z))

]⊤ [
D̃w(β (z))

]−1

[
1√

NT |H|T/2

N

∑
i=1

Twi(β (z))

]
+oP(1),

as N tends to infinity (see, equation (1.12)). The proof of this result is done in three steps:
first, we show the asymptotic normality of the vector 1√

NT |H|T/2 ∑
N
i=1 Twi(β (z)), second, we

show the consistency of D̃w(β (z)) and finally we use a Cramer-Wold device to close the
proof.

In order to obtain the asymptotic distribution of 1√
NT |H|T/2 ∑

N
i=1 Twi(β (z)) note that

1
NT |H|T/2

N

∑
i=1

Twi(β (z)) =
1

NT |H|T/2

N

∑
i=1

(Twi(β (z))−E[Twi(β (z))|X,Z])

+
1

NT |H|T/2

N

∑
i=1

E [Twi(β (z))|X,Z]≡U1N +U2N , (A.1)

where X= (X11, ...,XNT ) and Z= (Z11, ...,ZNT ) are the sample covariate values. We first
work on the bias term U2N . Then, substituting Twi (β (z)) by (2.8) into E [Twi (β (z)) |X,Z],
applying Assumption 1.2.2 and taking Taylor expansion around X⊤

it m(Zit)−T−1
∑s X⊤

is m(Zis)

we obtain

U2N ≡ 1
NT |H|T/2

N

∑
i=1

E[Twi(β (z))|X,Z] =

(
A1.1N +A1.2N

A1.3N +A1.4N +A1.5N

)
. (A.2)
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Here

A1.1N =
1

2NT |H|T/2 ∑
it

ẌitQm(z)KH(Zi − z),

A1.2N =
1

NT |H|T/2 ∑
it

ẌitR1(z)KH(Zi − z),

A1.3N =
1

2NT |H|T/2 ∑
it

(
Xit ⊗ (Zit − z)− 1

T

T

∑
s=1

Xis ⊗ (Zis − z)

)
Qm(z)KH(Zi − z),

A1.4N =
1

3!NT |H|T/2 ∑
it

(
Xit ⊗ (Zit − z)− 1

T

T

∑
s=1

Xis ⊗ (Zis − z)

)
Cm(z)KH(Zi − z),

A1.5N =
1

2NT |H|T/2 ∑
it

(
Xit ⊗ (Zit − z)− 1

T

T

∑
s=1

Xis ⊗ (Zis − z)

)
R2(z)KH(Zi − z),

where KH(Zi − z) = ∏
T
l=1 KH (Zil − z) and

Qm(z) = X⊤
it ⊗ (Zit − z)⊤Hm(z)(Zit − z)− 1

T

T

∑
s=1

X⊤
is ⊗ (Zis − z)⊤Hm(z)(Zis − z),

Cm(z) = X⊤
it ⊗D3

m(z,Zit − z)− 1
T

T

∑
s=1

X⊤
is ⊗D3

m(z,Zis − z),

R1(z) = X⊤
it ⊗ (Zit − z)⊤R(Zit ;z)(Zit − z)− 1

T

T

∑
s=1

X⊤
is ⊗ (Zis − z)⊤R(Zis;z)(Zis − z),

R2(z) = X⊤
it ⊗R∗(Zit ;z)− 1

T

T

∑
s=1

X⊤
is ⊗R∗(Zis;z).

The remainder terms in the Taylor expansion are defined as

R(Zit ;z) =
∫ 1

0
[Hm(z+ω(Zit − z))−Hm(z)] (1−ω)dω,

R∗(Zit ;z) =
∫ 1

0

[
D3

m(z+ω(Zit − z),Zit − z)−D3
m(z,Zit − z)

]
(1−ω)2dω,

where ω is a weight function. Now we analyze the limit behavior of each of these terms
when N tends to infinity and T remains fixed. First we will show that

A1.1N =
1
2

µ2(Kuτ
)BẌ Ẍ(z, ..,z)diagd {tr{Hmr(z)H}} id +op (tr{H}) , (A.5)
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and using standard results from nonparametric regression analysis and Assumption 1.2.4 we
have that

E (A1.1N) =
1
2

∫
E
[

ẌitX⊤
it

∣∣∣Zi1 = z+H1/2u1, ...,ZiT = z+H1/2uT

]
⊗ (H1/2uτ)

⊤

×Hm(z)(H1/2uτ) f (z+H1/2u1, ...,z+H1/2uT )
T

∏
l=1

K(ul)dul

− 1
2T

T

∑
s=1

∫
E
[

ẌitX⊤
is

∣∣∣Zi1 = z+H1/2u1, ...,ZiT = z+H1/2uT

]
⊗ (H1/2us)

⊤

×Hm(z)(H1/2us) f (z+H1/2u1, ...,z+H1/2uT )
T

∏
l=1

K(ul)dul.

Then a straightforward application of a Taylor expansion and assumptions 1.2.1 and 1.2.5
are enough to show that (A.5) holds. Also, note that to show (A.5) we need to prove that
Var(A1.1N)→ 0, as N tends to infinity and T is fixed. Under Assumption 1.2.1, Var(A1.1N) =

1
NT Var(ait) +

1
NT 2 ∑

T
t=3(T − t)Cov(ai2,ait) , where ait =

1
|H|T/2 ẌitQm(z)KH(Zi − z). Then,

under assumptions 1.2.5 and 1.2.9 the first element shows the following bound Var(ait)≤
C

NT |H|T/2 and Cov(ai2,ait) ≤ C′

N|H|T/2 . Therefore, if N|H|T/2 tends to infinity the variance
tends to zero and applying a weak law of large numbers (A.5) follows.

Following a similar procedure, and noting that due to Assumption 1.2.4 the odd order
moments of K(.) disappear, it easy to show that

A1.3N =
1
2

µ2(Kuτ
)2
(

1− 1
T

)
DB⊤

Xt Xt
(z, ..,z)diagd

{
tr
{
Hmr(z)H

2} id
}
+op

(
tr
{

H2}) , (A.6)

and

A1.4N =
1
3!

(
1− 1

T

)
BXt Xt (z, ..,z)⊗

∫ (
H1/2uτ

)
D3

m(z,H
1/2uτ)

T

∏
l=1

H(ul)dul +op
(
H2) . (A.7)

Finally focusing on the residual terms A1.2N and A1.5A and using the same procedure as
in the proof of (A.18)-(A.28) in Rodriguez-Poo and Soberón (2015) it can be shown that
A1.2N = op (tr{H}) and A1.5N = op

(
tr
{

H2}). Then by replacing the different asymptotic
expressions for the AN’s into U2N , we obtain,

U2N =
1

NT |H|T/2

N

∑
i=1

E[Twi(β (z))|X,Z] =

(
1
2 bw1(z)
1
2 bw2(z)+ 1

3! bw3(z)

)
+op

(
tr{H}
tr
{

H2
} ) , (A.8)

where bw1(z), bw2(z) and bw3(z) were defined in (1.16).
Now we obtain the limiting distribution of the quantity

√
NT |H|T/2U1N . In order to do so

we apply Liapunov’s Central Limit Theorem. We do it by obtaining the variance-covariance
matrix of the limiting distribution and verifying the so called Liapunov’s condition. By
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substituting (1.7) into U1N we obtain, U1N ≡ 1
NT |H|T/2 ∑

N
i=1 [Twi(β (z))−E [Twi(β (z))|X,Z]] =

1
NT |H|T/2 ∑it Z̃∗

itvitKH(Zi − z). Now, because of assumptions 1.2.1 and 1.2.2 we have that

NT Var(U1N |X,Z) =
σ2

v
NT |H|T ∑

it
Z̃∗

it Z̃
∗⊤
it K2

H(Zi − z). (A.9)

Applying assumptions 1.2.1 - 1.2.2 and 1.2.4 and mimicking (A.33)-(A.35) in Rodriguez-Poo
and Soberón (2015) we obtain the following,

NT |H|T/2Var (U1N) =

σ2
v

(
R(K)T BẌ Ẍ(z, ...,z) Op(|H|T )

Op(|H|T )
(
1− 1

T

)
µ2(K2

uτ
)∏

T
l ̸=τ

R(Kul )BXt Xt (z, ...,z)⊗H

)
(1+oP(1)).

(A.10)

Now, we check Liapunov’s condition; we must show that for any unit vector b ∈ Rd(q+1)

and some δ > 0, as N tends to infinity, 1√
NT |H|T/2 ∑it E

[∣∣b⊤Z̃∗
itvit ∏

T
l=1 KH(Zil − z)

∣∣2+δ
]
→ 0.

To prove this, let us define φit = |H|T/4b⊤Z̃∗
itvit ∏

T
l=1 KH(Zil − z) ∀i = 1, ...,N; t = 1, ...,T .

Following assumption 1.2.4 we can write

Var(φit) =

σ2
v b⊤

(
R(K)T BẌ Ẍ(z, ...,z) 0

0
(
1− 1

T

)
µ2(K2

uτ
)∏

T
l ̸=τ

R(Kul )BXt Xt (z, ...,z)⊗H

)
b(1+oP(1)).

and ∑
T
t=1 |Cov(φi1,φit)|= op(1). Note also that we can write φit = φ1it +φ2it where

φ1it = b⊤Ẍitvit

T

∏
l=1

KH(Zil − z)

φ2it = b⊤Xit ⊗ (Zit − z)−b⊤
1
T ∑s = 1T Xis ⊗ (Zis − z)vit

T

∏
l=1

KH(Zil − z).

Furthermore, let us define φ∗
n,i = T−1/2

∑
T
t=1 φit = T−1/2

∑
T
t=1 (φ1it +φ2it). For fixed T , the

φ∗
n,i are independent random variables and n = NT . Then, using Minkowski inequality and

due to the matrix structure of Z̃∗
it we get

E|φ∗
n,i|2+δ ≤CT (2+δ )/2E|φit |2+δ =CT (2+δ )/2E|φ1it +φ2it |2+δ .

Analysing each term separately, (see, Rodriguez-Poo and Soberón (2015) for details), we
obtain

(NT )−(2+δ )/2
N

∑
i=1

E|φ∗
n,i|2+δ ≤C(N|H|T/2)−δ/2, (A.11)
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which tends to zero when N|H| → ∞. Therefore, Liapunov’s Central Limit Theorem applies
and hence √

NT |H|T/2U1N →d N (0,υw(z)) . (A.12)

Therefore, by substituting (A.8) and (A.12) into (A.1) and imposing the following extra
condition

√
NT |H|T/2tr(H)→ 0 we obtain that 1√

NT |H|T/2 ∑i Twi (β (z))→d N (0,υw(z)) ,

as N tends to infinity.
Now we prove the consistency of D̃w(β (z)). As N tends to infinity and T is fixed, if

conditions 1.2.1 - 1.2.10 hold and, similar to the proof of (A.10), by applying a Law of Large
Numbers it is straightforward to show that

D̃w(β (z)) =
1

NT |H|T/2

N

∑
i=1

Twi(β (z))T⊤
wi (β (z)) = υw(z)+op (tr{H}) , (A.13)

where υw(z) was defined in (1.17). From (A.8), (A.12) and (A.13), and using the same
arguments as in the proof of (2.14) in Owen (1990), we can prove that

λ = Op

(
(NT |H|T/2)−1/2

)
, (A.14)

where λ was defined in (1.11). Then applying Taylor expansion to (1.10) and invoking (A.8),
(A.12) and (A.13), we obtain

Rw(β (z)) = 2
N

∑
i=1

[
T⊤

wi (β (z))λ −
(

T⊤
wi (β (z))λ

)2
/2
]
+op(1). (A.15)

By (1.11) and applying Taylor expansion again it follows that

0 =
N

∑
i=1

Twi(β (z))
1+λ⊤Twi(β (z))

=
N

∑
i=1

Twi(β (z))−
N

∑
i=1

Twi(β (z))T⊤
wi (β (z))λ +

N

∑
i=1

Twi(β (z))(T⊤
wi (β (z))λ )

2

1+λ⊤Twi(β (z))
.

Then, recalling (A.8), (A.12) and (A.13) we can prove that

N

∑
i=1

(T⊤
wi (β (z))λ )

2 =
N

∑
i=1

T⊤
wi (β (z))λ +op(1), (A.16)
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and

λ =

[
N

∑
i=1

Twi(β (z))T⊤
wi (β (z))

]−1 N

∑
i=1

Twi(β (z))+op

(
(NT |H|T/2)−1/2

)
. (A.17)

Now, if we rely on (A.8), (A.12) and (A.13) the proof is concluded by applying the Cramer-
Wold device.

A.2 Proof of Theorem 1.2.2

This proof is similar to that of Theorem 1.2.1 and therefore most of the details are omitted.
In order to obtain the asymptotic distribution of 1√

NT |H| ∑
N
i=1 Tf i(β (z)) we follow similar

steps to those in (A.1),

1
NT |H|

N

∑
i=1

Tf i(β (z)) =U∗
1N +U∗

2N . (A.18)

For the bias term U∗
2N , defining a similar multivariate Taylor expansion around X⊤

it m(Zit)−
X⊤

i(t−1)m(Zi(t−1)) as the one used in (A.2), and applying Assumption 1.2.2 we obtain

U∗
2N =

1
NT |H|

N

∑
i=1

E[Tf i(β (z))|X,Z] =

(
1
2 b f 1(z)
1
2 b f 2(z)+ 1

3! b f 3(z)

)
+op

(
tr{H}
tr
{

H2
} ) , (A.19)

where b f 1(z), b f 2(z) and b f 3(z) were defined in (1.21).
Now we obtain the limiting distribution of the quantity

√
NT |H|U∗

1N . By substituting
(1.8) into U∗

1N we obtain that U∗
1N = 1

NT |H| ∑it Z̃it∆vitKH(Zit − z,Zi(t−1)− z), and taking into
account that because of assumptions 1.2.1 and 1.2.2 we have that

E[∆vit∆vi′t ′|X,Z] =


2σ2

v if i = i′, t = t ′

−σ2
v if i = i′, |t − t ′|< 2

0 otherwise

. (A.20)

Then, mimicking (A.30)-(A.36) in Rodriguez-Poo and Soberón (2014) we obtain the follow-
ing,

NT |H|Var (U∗
1N) =

2σ2
v

(
R(Ku)R(Kv)B∆X ,∆X(z,z) Op(|H|2)

Op(|H|2) µ2(K2)R(Ku)
(
BXX(z,z)+BX−1X−1(z,z)

)
⊗H

)
(1+oP(1))

(A.21)
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The rest of the proof follows exactly the lines of the proof of Theorem 1.2.1.

A.3 Proof of Theorem 1.3.1

Note that,

β̂w(z)−β (z) =
(

β̂w(z)−E
[

β̂w(z)
∣∣∣X,Z])+(E

[
β̂w(z)

∣∣∣X,Z]−β (z)
)
≡ I1N + I2N . (A.22)

To prove the desired result we will show that, under the conditions of this theorem, I2N =

Bw(z)+op(
1√

NT |H|T/2
) and

√
NT |H|T/2I1N →d N (0,Σw(z)), as N tends to infinity, where

Bw(z) and Σw(z) have been defined in theorem 1.3.1. If we substitute (1.14) into (A.22) and
we make a second order Taylor expansion around X⊤

it m(Zit)− 1
T ∑s X⊤

is m(Zis) we obtain that

I2N =

(
1

NT |H|T/2 ∑
it

KH(Zi − z)Z̃∗
it Z̃

∗⊤
it

)−1(
A1.1N +A1.2N

A1.3N +A1.4N +A1.5N

)
. (A.23)

Note that A1.1N , A1.2N , A1.3N , A1.4N and A1.5N have been already defined in the proof of
Theorem 1.2.1. Furthermore, the asymptotic behavior of the second term in (A.23) has been
already obtained in (A.8); therefore, all what we need to calculate the asymptotic behavior
of I2N is to study the first term. Proceeding as in Rodriguez-Poo and Soberón (2015) (see,
expressions (A.8)-(A.12)), it is straightforward to show that(

1
NT |H|T/2 ∑

it

T

∏
l=1

KH(Zil − z)Z̃∗
it Z̃

∗⊤
it

)−1

=

(
C11 C12

C21 C22

)
, (A.24)

where

C11 = B−1
Ẍ Ẍ(z, ...,z)+op(1)

C12 = −B−1
Ẍ Ẍ(z, ...,z)(DBẌ Ẍ(z, ...,z)(Id ⊗µ2(Kuτ

)H))

×
((

1− 1
T

)
BXtXt (z, ..,z)⊗µ2(Kuτ

)H
)−1

+op(1)

C21 = −
((

1− 1
T

)
BXtXt (z, ..,z)⊗µ2(Kuτ

)H
)−1

(DBẌ Ẍ(z, ...,z)(Id ⊗µ2(Kuτ
)H))⊤

×B−1
Ẍ Ẍ(z, ...,z)+op(1)

C22 =

((
1− 1

T

)
BXtXt (z, ..,z)⊗µ2(Kuτ

)H
)−1

+op(H−1),

Using the terms (A.24) and (A.8) and applying Slutsky’s Theorem to (A.23) we finish the
proof.
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In order to show the asymptotic behavior of I1N note that by (1.14) we have that

I1N = β̂w(z)−E
[

β̂w(z)
∣∣∣X,Z]=(∑

it
KH(Zi − z)Z̃∗

it Z̃
∗⊤
it

)−1

∑
it

KH(Zi − z)Z̃∗
itvit , (A.25)

and considering assumptions 1.2.1 and 1.2.2 the variance term of β̂w(z), using the Slutsky’s
Theorem and previous results can be written as

NT |H|T/2Var
(

β̂w(z)
∣∣∣X,Z) = Σw(z)(1+op(1)); (A.26)

the Liapunov condition needed to apply a Central Limit Theorem here is the same as the one
as in the proof of Theorem 1.2.1 (see A.11) and then a further application of the Cramer-Wold
device closes the proof.

A.4 Proof of Theorem 1.3.2

The proof of this theorem is similar to that of Theorem 1.3.1 and therefore the details are
omitted.

In order to show Theorems 1.4.1 and 1.4.2 we need the following additional lemma that
is proved at the end of this Appendix.

Lemma A.4.1. Assuming that conditions of Theorems 1.4.1 and 1.4.2 hold. Then b̂w(z)→p

bw(z) and b̂ f (z)→p b f (z) respectively, as N tends to infinity.

A.5 Proof of Theorem 1.4.1

If we substitute (1.12) into (1.19) we obtain that R̃w(β (z)) is equal to

R̃w(β (z)) = L1(z)+L2(z)+op(1)
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where

L1(z) =

[
1√

NT |H|T/2

N

∑
i=1

Twi(β (z))−
√

NT |H|T/2 bw(z)

]⊤
D̃−1

w (β (z))

×

[
1√

NT |H|T/2

N

∑
i=1

Twi(β (z))−
√

NT |H|T/2 bw(z)

]

L2(z) =

[√
NT |H|T/2

{
b̂w(z)−bw(z)

}]⊤
D̃−1

w (β (z))

×

[√
NT |H|T/2

{
b̂w(z)+bw(z)

}
− 2√

NT |H|T/2

N

∑
i=1

Twi(β (z))

]
.

In Theorem 1.2.1, we have already proved that

1√
NT |H|T/2

N

∑
i=1

Twi(β (z))→d N

(√
NT |H|T/2 bw(z),υw(z)

)

and D̃w(β (z))→p vw(z). Then, together with the proof of Lemma A.4.1 we can conclude
that L1(z)→d χ2

d(q+1) and L2(z)→p 0. Thus the proof of Theorem 1.4.1 is closed.

A.6 Proof of Theorem 1.4.2

The proof of this theorem is similar to that of Theorem 1.4.1 and therefore the details are
omitted.

A.7 Proof of Lemma A.4.1

Let us consider,

b̂w(z)−bw(z)

=
1

NT |H|T/2 ∑
it

Z∗
it

(
X⊤

it (m̂w(Zit)−m(Zit))−
1
T ∑

s
X⊤

is (m̂w(Zis)−m(Zis))

− Z∗⊤
it

(
β̂w(z)−β (z)

))
KH (Zi − z)

+
1

NT |H|T/2 ∑
it

Z∗
it

(
X⊤

it m(Zit)−
1
T ∑

s
X⊤

is m(Zis)−Z∗⊤
it β (z)

)
KH (Zi − z)

−bw(z)

= L∗
1(z)+L∗

2(z).
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Then, by Theorem 1.2.1, equation (A.8), we have that, as N tends to infinity, L∗
2(z)→p 0.

Furthemore, the conditions of this Theorem guarantee that supz |m̂w(z)−m(z)|= op(1) and

supz

∣∣∣β̂w(z)−β (z)
∣∣∣ = op(1) (see Masry (1996), Theorem C) and jointly with assumption

1.2.9 it is easy to show that L∗
1(z)→p 0
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From here on, we will be using the notation that has been defined in the previous
Assumptions 2.2.1 and 2.2.2 and Theorems 2.2.1 and 2.3.1. Also, as in Feng et al. (2017),
O(1) denotes some constants which my be different at each appearance.

B.1 Proof of Theorem 2.2.1

Note that , using equation (2.13), the proof of this theorem is completed in three steps:
first, we show the asymptotic normality of (NT )−1/2

∑
N
i=1 Ti {β (z)}, second, we show the

consistency of D̃{β (z)} and finally we use a Cramer-Wold device to close the proof.
In order to obtain the asymptotic distribution of (NT )−1/2

∑
N
i=1 Ti {β (z)} note that

1
NT

N

∑
i=1

Ti {β (z)} =
1

NT

N

∑
i=1

[Ti {β (z)}−E [Ti {β (z)}|X ]]+
1

NT

N

∑
i=1

E [Ti {β (z)}|X ]

≡ U1NT +U2NT , (A.27)

where X =
{
(X js,Z js)

}N,T
j=1,s=1. Also, Note that, as we already mentioned, γ → 0 as

(N,T )→ (∞,∞); this allow us, in the same lines as Li and Racine (2007), to simplify the
kernel product function as in (2.3) and using the same argument we are able to write

T ∗
it =

T

∑
s=1

1isit +O(||γ||p) , Y ∗
it = Yit −

1
T ∗

it

T

∑
s=1

Yis1isit)+o(1)

X∗
it = Xit −

1
T ∗

it

T

∑
s=1

Xis1isit +o(1) , v∗it = vit −
1

T ∗
it

T

∑
s=1

vis1isit +o(1)

ρ
∗
it =

1
T ∗

it

T

∑
s=1

X⊤
is {β (Zit)−β (Zis)}1isit +o(1) , (A.28)

where 1isit = 1(Zis = Zit). We first work on the bias term U2NT ; then, substituting Ti (β (z))
by (2.8) into U2NT , applying Assumption 2.2.1.(iv) and replacing L(Zit ,z,γ) with (2.3) and
using (A.28), we have

U2NT =
1

NT

N

∑
i=1

T

∑
t=1

X̃it

[
X̃⊤

it {β (Zit)−β (z)}+ρit

]
Lit,z,γ

=
1

NT

N

∑
i=1

T

∑
t=1

X∗
it

[
X∗⊤

it {β (Zit)−β (z)}+ρ
∗
it

](
1itz +

q

∑
m=1

γm1m,itz∗

)
+Op

(
||γ||2

)
=

1
NT

N

∑
i=1

T

∑
t=1

X∗
it X

∗⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗ +Op

(
||γ||2

)
(A.29)
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where Lit,z,γ = L(Zit ,z,γ), 1itz = 1(Zit = z) and 1m,itz∗ = 1(Zit,m ̸= zm)∏
q
n=1,n̸=m 1(Zit,n = zn)

is an indicator function which takes value 1 if Zit and z differs only in their mth component and
0 otherwise. Note that in the last equality, due to construction, {β (Zit)−β (z)}1itz = 0d×1

and {β (Zit)−β (Zis)}1(Zis = Zit) = 0d×1; therefore, all the terms containing ρ∗
it vanish. We

continue the analysis of (A.29); to do so, we follow Feng et al. (2017) and use Lemma A2 of
Newey and Powell (2003). This lemma is a three steps process given that the cardinality of
D is finite.

Step 1: [0,1]q is a compact subset of Rq with Euclidean norm ||.||

Step 2: Rewrite (A.29) as follows

1
NT

N

∑
i=1

T

∑
t=1

X∗
it X

∗⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗

=
1

NT

N

∑
i=1

T

∑
t=1

(
Xit −

1
T ∗

it

T

∑
s=1

Xis1itis

)(
Xit −

1
T ∗

it

T

∑
s=1

Xis1itis

)⊤

×{β (Zit)−β (z)}
q

∑
m=1

γm1m,itz∗

=
1

NT

N

∑
i=1

T

∑
t=1

XitX⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗

+
1

NT

N

∑
i=1

T

∑
t=1

1
T ∗

it

T

∑
s1=1

Xis11itis1

1
T ∗

it

T

∑
s2=1

X⊤
is2

1itis2 {β (Zit)−β (z)}
q

∑
m=1

γm1m,itz∗

− 1
NT

N

∑
i=1

T

∑
t=1

Xit
1

T ∗
it

T

∑
s=1

X⊤
is 1itis {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗

− 1
NT

N

∑
i=1

T

∑
t=1

1
T ∗

it

T

∑
s=1

Xis1itisX⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗, (A.30)
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For the last two terms of (A.30), note that we can write

E

∣∣∣∣∣
∣∣∣∣∣ 1
NT

N

∑
i=1

T

∑
t=1

1
T ∗

it

T

∑
s=1

Xis1itisX⊤
it β (Zit)

q

∑
m=1

γm1m,itz∗

− 1
NT

N

∑
i=1

T

∑
t=1

µ(Xit)X⊤
it β (Zit)

q

∑
m=1

γm1m,itz∗

∣∣∣∣∣
∣∣∣∣∣

= E

∣∣∣∣∣
∣∣∣∣∣ 1
NT

N

∑
i=1

T

∑
t=1

K∗
itX

⊤
it β (Zit)

q

∑
m=1

γm1m,itz∗

∣∣∣∣∣
∣∣∣∣∣≤ 1

NT

N

∑
i=1

T

∑
t=1

E

∣∣∣∣∣
∣∣∣∣∣K∗

itX
⊤
it β (Zit)

q

∑
m=1

γm1m,itz∗

∣∣∣∣∣
∣∣∣∣∣

≤ 1
NT

N

∑
i=1

T

∑
t=1

E ||K∗
it ||

2 E

∣∣∣∣∣
∣∣∣∣∣X⊤

it β (Zit)
q

∑
m=1

γm1m,itz∗

∣∣∣∣∣
∣∣∣∣∣
2


1/2

≤

{
1

NT

N

∑
i=1

T

∑
t=1

E ||K∗
it ||

2

}1/2
 1

NT

N

∑
i=1

T

∑
t=1

E

∣∣∣∣∣
∣∣∣∣∣X⊤

it β (Zit)
q

∑
m=1

γm1m,itz∗

∣∣∣∣∣
∣∣∣∣∣
2


1/2

= op(||γ||)

where K∗
it =

1
T ∗

it
∑

T
s=1 Xis1itis − µ(Zit). We now obtain that for any given z ∈ D and

γ ∈ [0,1]q

1
NT

N

∑
i=1

T

∑
t=1

1
T ∗

it

T

∑
s=1

Xis1itisX⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗

=
1

NT

N

∑
i=1

T

∑
t=1

µ(Zit)µ(Zit)
⊤ {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗ +op(||γ||)

Similarly, for the second term of (A.30), we have

1
NT

N

∑
i=1

T

∑
t=1

1
T ∗

it

T

∑
s1=1

Xis11itis1

1
T ∗

it

T

∑
s2=1

X⊤
is2

1itis2 {β (Zit)−β (z)}
q

∑
m=1

γm1m,itz∗

=
1

NT

N

∑
i=1

T

∑
t=1

µ(Zit)µ(Zit)
⊤ {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗ +op(||γ||)

According to all the above, we obtain

1
NT

N

∑
i=1

T

∑
t=1

X∗
it X

∗⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗

=
1

NT

N

∑
i=1

T

∑
t=1

{Xit −µ(Zit)}{Xit −µ(Zit)}⊤ {β (Zit)−β (z)}
q

∑
m=1

γm1m,itz∗ +op(||γ||)
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for any given z ∈ D and γ ∈ [0,1]q. We then just need to consider

E

∣∣∣∣∣
∣∣∣∣∣ 1
NT

N

∑
i=1

T

∑
t=1

XitX⊤
it β (Zit)

q

∑
m=1

γm1m,itz∗ − p(z∗)ΣX(z∗)β (z∗)
q

∑
m=1

γm1m,itz∗

∣∣∣∣∣
∣∣∣∣∣
2

=
1

(NT )2

d

∑
h,ℓ=1

N

∑
i, j=1

T

∑
t,s=1

E

[{
Xit,hXit,ℓβh(Zit)

q

∑
m=1

γm1m,itz∗ − p(z∗)ΣX ,hℓ(z∗)βh(z∗)
q

∑
m=1

γm1m,itz∗

}

×

{
X js,hX js,ℓβh(Z js)

q

∑
m=1

γm1m, jsz∗ − p(z∗)ΣX ,hℓ(z∗)βh(z∗)
q

∑
m=1

γm1m, jsz∗

}]

≤ O
(
||γ||2

) 1
(NT )2

d

∑
h,ℓ=1

N

∑
i, j=1

T

∑
t,s=1

cδ

{
αi j (|t − s|)

} δ

4+δ

≤ O
(
||γ||2

) 1
(NT )2

d

∑
h,ℓ=1

N

∑
i, j=1

T

∑
t,s=1

{
αi j (|t − s|)

} δ

4+δ = O
(
||γ||2

NT

)
(A.32)

where cδ = 2(4+2δ )/(4+δ )(4+ δ )/δ ; the first inequality comes from using Cauchy-
Schwarz inequality, and the second inequality from the fact that 1(Zit = z) is uniformly
bounded. Also, let Xit,h be the hth element of Xit and ΣX ,hℓ(z∗) denotes the (h, ℓ)th

element of ΣX(z∗) for h, ℓ= 1, . . . ,d.

Therefore, we have proved that

1
NT

N

∑
i=1

T

∑
t=1

X∗
it X

∗⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗

→P p(z∗)
{

ΣX(z∗)−µX(z∗)µX(z∗)⊤
}
{β (z∗)−β (z)}

q

∑
m=1

γm1m,itz∗

= Γ1(z∗){β (z∗)−β (z)}
q

∑
m=1

γm1m,itz∗ = b(γ) (A.33)

for any given z ∈ D and γ ∈ [0,1]q. Therefore, (A.29) has the following expression

Step 3: By Step 2 we can write

1
NT

N

∑
i=1

T

∑
t=1

X∗
it X

∗⊤
it {β (Zit)−β (z)}

q

∑
m=1

γm1m,itz∗ = b(γ)+OP
(
||γ||2

)
,
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and for any γ1,γ2 ∈ [0,1]q, we have

||b(γ1)−b(γ2)|| ≤ O(1)||γ1 − γ2||,

which implies the third condition of Lemma A2 of Newey and Powell (2003) holds.
Therefore, we can conclude that

U2NT = b(γ)+Op

(
||γ||2

)
(A.34)

Now we obtain the limiting distribution of the quantity
√

NTU1NT . By substituting (2.8)
into U1NT and replacing L(Zit ,z,γ) with (2.3) we obtain

U1NT =
1

NT

N

∑
i=1

[Ti {β (z)}−E [Ti {β (z)}|X ]]

=
1

NT

N

∑
i=1

T

∑
t=1

X∗
it v

∗
it

(
1itz +

q

∑
m=1

γm1m,itz∗

)
+Op

(
||γ||2

)
, (A.35)

therefore, we first focus on the analysis of 1
NT ∑

N
i=1 ∑

T
t=1 X∗

it v
∗
it1(Zit = z), then

1
NT

N

∑
i=1

T

∑
t=1

X∗
it v

∗
it1(Zit = z)

=
1

NT

N

∑
i=1

T

∑
t=1

(
Xit −

1
T ∗

it

T

∑
s=1

Xis1is,it

)(
vit −

1
T ∗

it

T

∑
s=1

vis1is,it

)
1(Zit = z). (A.36)

Applying Step 2, we can write the leading term of
√

NTU1NT as

1√
NT

N

∑
i=1

T

∑
t=1

X∗
it v

∗
it1(Zit = z) =

1√
NT

N

∑
i=1

T

∑
t=1

{Xit −µX(z)}vit1(Zit = z)+oP

(
1+ ||γ||2

)
, (A.37)

then we will focus on 1√
NT ∑

N
i=1 ∑

T
t=1 {Xit −µX(z)}vit1(Zit = z). For notational simplicity,

denote
1√
NT

N

∑
i=1

T

∑
t=1

{Xit −µX(z)}vit1(Zit = z) =
T

∑
t=1

VT,N(t). (A.38)

By Assumption 2.2.1.(ii) and construction, VT,N(t) is stationary and α-mixing. Thus, the
large-block and small-block technique can be applied in order to prove the normality below
(see, Lemma A.1 in Gao (2007), Theorem 2.21 in Fan and Yao (2003) and lemma A.1 in
Chen et al. (2012a)).To employ this technique, we partition the set {1, . . . ,T} into 2kT +1
subsets with large blocks of size ℓT , small blocks of size sT and the remaining set of size
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T − kT (ℓt + sT ), where ℓT and sT are selected such that

sT → ∞, sT/ℓT → 0 ℓT/T → 0, and kT ≡ {T/(ℓT + sT )}= O(sT ).

For instance, for any φ > 2, ℓT = T
φ−1

φ , sT = T
1
φ ; thus kT = O(T

1
φ ) = O(sT ). For n =

1, . . . ,kT define

Ṽn =
nℓT+(n−1)sT

∑
t=(n−1)(ℓT+sT )+1

VT,N(t) , V̄n =
n(ℓT+sT )

∑
t=nℓT+(n−1)sT+1

VT,N(t) , V̂ =
T

∑
t=kT (ℓT+sT )+1

VT,N(t).

Besides, note that α(T ) = o(T−1) and kT sT/T → 0; then, by the properties of α-mixing and

using similar techniques as the used in the previous results, we obtain that E
∣∣∣∣∣∣∑kT

n=1 V̄n

∣∣∣∣∣∣2 =
O
(

kT sT
T

)
= o(1), and E

∣∣∣∣V̂ ∣∣∣∣2 = O
(

T−kT ℓT
T

)
= o(1). Therefore, we just need to focus the

analysis on ∑
kT
n=1 Ṽn. Using the Feller-Lindeberg central limit theorem, we first need to show

that {Ṽn}kT
n=1 are independent for each n. By Proposition 2.6 in Fan and Yao (2003) and the

condition of α-mixing coefficients, we have∣∣∣∣∣E
[

exp

{
kT

∑
n=1

||Ṽn||

}]
−

kT

∏
n=1

E
[
exp
{
||Ṽn||

}]∣∣∣∣∣≤C(kT −1)α(sT )→ 0, (A.40)

where C is a constant and α(.) is the upper bounded of the α-mixing coefficient defined in
Assumption 2.2.1.(ii). This upper bound is achievable in the same way as Assumption A.4
of Chen et al. (2012a). Therefore we obtain that {Ṽn}kT

n=1 are asymptotically independent.
Furthermore, as in the proof of Theorem 2.210(ii) in Fan and Yao (2003), we have to show
finite variance ( Feller condition)

Cov
[
Ṽ1
]

= Cov

[
ℓT

∑
t=1

VN,T (t)

]
= Cov

[
1√
NT

N

∑
i=1

ℓT

∑
t=1

{Xit −µX(z)}vit1(Zit = z)

]

=
1

NT

N

∑
i=1

ℓT

∑
t=1

Cov [{Xit −µX(z)}vit1(Zit = z)]

=
ℓT

T
Γ0(z){Id +o(1)} , (A.41)

which implies that

kT

∑
n=1

Cov
(
Ṽn
)
= kT Cov

(
Ṽ1
)
=

kT ℓT

T
Γ0(z){Id +o(1)}→ Γ0(z). (A.42)
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As a result, the Feller condition is satisfied. Now we just need to check the Lindeberg
condition

kT

∑
n=1

E
[∣∣∣∣Ṽn

∣∣∣∣2 I
{∣∣∣∣Ṽn

∣∣∣∣≥ ε
}]

→P 0 (A.43)

where ε > 0. Using Cauchy-Schwarz inequality, we have

E
[∣∣∣∣Ṽn

∣∣∣∣2 I
{∣∣∣∣Ṽn

∣∣∣∣≥ ε
}]

≤
{

E
∣∣∣∣Ṽn

∣∣∣∣3}2/3{
Pr
(∣∣∣∣Ṽn

∣∣∣∣≥ ε
)}1/3

≤ C
{

E
∣∣∣∣Ṽn

∣∣∣∣3}2/3{
E
∣∣∣∣Ṽn

∣∣∣∣2}1/3
, (A.44)

and by Lemma B.2 in Chen et al. (2012a)

E
∣∣∣∣Ṽn

∣∣∣∣3 ≤ (ℓT

T

)3/2
E

∣∣∣∣∣
∣∣∣∣∣ 1√

N

N

∑
i=1

{Xi1 −µX(z)}vi11(Zi1 = z)

∣∣∣∣∣
∣∣∣∣∣
4
3/4

< ∞, (A.45)

E
∣∣∣∣Ṽn

∣∣∣∣2 ≤ (ℓT

T

)E

∣∣∣∣∣
∣∣∣∣∣ 1√

N

N

∑
i=1

{Xi1 −µX(z)}vi11(Zi1 = z)

∣∣∣∣∣
∣∣∣∣∣
4
1/2

< ∞. (A.46)

Thus, E
∣∣∣∣Ṽn

∣∣∣∣3 = O
{(

ℓT
T

)3/2
}

and , E
∣∣∣∣Ṽn

∣∣∣∣2 = O
(
ℓT
T

)
which, using (A.44), implies

E
[∣∣∣∣Ṽn

∣∣∣∣2 I
{∣∣∣∣Ṽn

∣∣∣∣≥ ε
}]

≤ O

{(
ℓT

T

)4/3
}

= o
(
ℓT

T

)
, (A.47)

therefore,
kT

∑
n=1

E
[∣∣∣∣Ṽn

∣∣∣∣2 I
{∣∣∣∣Ṽn

∣∣∣∣≥ ε
}]

= o
(

kT ℓT

T

)
= o(1). (A.48)

Consequently, the Lindeberg condition is satisfied; using (A.33), (A.40), (A.42) and (A.48)
it is east to see that if γm → 0 we can conclude that

√
NTU1NT →d N {0d×1,Γ0(z)} . (A.49)

as N and T tend to infinity.
Now we prove the consistency of D̃{β (z)}. Similar to the proof of (A.38) - (A.42), it is
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B.1 Proof of Theorem 2.2.1

straightforward to show that

D̃{β (z)}= 1
NT

N

∑
i=1

Ti {β (z)}T⊤
i {β (z)}= Γ0(z)

{
Id +op (1)

}
. (A.50)

From (A.33), (A.49) and (A.50), and using the same arguments as in the proof of (2.14) in
Owen (1990), we can prove that

λ = Op

(
1√
NT

)
, (A.51)

where λ was defined in (2.12). Then applying Taylor expansion to (2.11) and invoking
(A.33), (A.49) and (A.50), we obtain

R(β (z)) = 2
N

∑
i=1

[
T⊤

i {β (z)}λ −
[
T⊤

i {β (z)}λ

]2
/2
]
+op(1). (A.52)

By (2.12) and applying Taylor expansion again it follows that

0 =
N

∑
i=1

Ti {β (z)}
1+λ⊤Ti {β (z)}

=
N

∑
i=1

Ti {β (z)}−
N

∑
i=1

Ti {β (z)}T⊤
i {β (z)}λ +

N

∑
i=1

Ti {β (z)}
[
T⊤

i {β (z)}λ
]2

1+T⊤
i {β (z)}

Then, recalling (A.33), (A.49) and (A.50) we can prove that

N

∑
i=1

[
T⊤

i {β (z)}λ

]2
=

N

∑
i=1

T⊤
i {β (z)}λ +op(1), (A.53)

and

λ =

[
N

∑
i=1

Ti {β (z)}T⊤
i {β (z)}

]−1 N

∑
i=1

Ti {β (z)}+op

(
(NT )−1/2

)
. (A.54)

Now, if we rely on (A.33), (A.49) and (A.50) the proof is concluded by applying the
Cramer-Wold device.
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B.2 Proof of Theorem 2.3.1

Note that, without loss of generality, we are able to write

β̂ (z)−β (z) =
[
β̂ (z)−E

{
β̂ (z)

∣∣∣X }]
+
[
E
{

β̂ (z)
∣∣∣X }

−β (z)
]
≡ I1NT + I2NT (A.55)

To prove the desired result, under assumption 2.2.1, we will show first that I2NT =Γ−1(z)b(γ)
and second that

√
NT I1NT →d N

{
0d×1,Γ

−1
1 (z)Γ0(z)Γ−1

1 (z)
}

, as (N,T ) tend to infinity
jointly and γs → 0. If we substitute (2.18) into (A.55) we obtain

I2NT = E
{

β̂ (z)
∣∣∣X }

−β (z) (A.56)

=

{
1

NT ∑
it

X̃it X̃⊤
it L(Zit ,z,γ)

}−1{
1

NT ∑
it

X̃it

[
X̃⊤

it β (Zit)+ρit −β (z)
]

L(Zit ,z,γ)

}
.

We begin the analysis with the inverse term of (A.56) and by replacing L(Zit ,z,γ) with (2.3)
and using (A.32)-(A.33) we obtain

1
NT ∑

it
X̃it X̃⊤

it L(Zit ,z,γ) =
1

NT ∑
it

X∗
it X

∗⊤
it 1itz +Op (||γ||)

→P p(z)
{

ΣX(z)−µX(z)µX(z)⊤
}
+Op (||γ||) . (A.57)

Then, using (A.57) we have proved that

1
NT ∑

it
X̃it X̃⊤

it L(Zit ,z,γ)→P p(z)
{

ΣX(z)−µX(z)µX(z)⊤
}
+Op (||γ||) = Γ1(z). (A.58)

Now we continue with the second term of (A.56) and using (A.29)-(A.34) we obtain that

1
NT ∑

it
X̃it

{
X̃⊤

it β (Zit)+ρit −β (z)
}

L(Zit ,z,γ) →P Γ1(z∗){β (z∗)−β (z)}
q

∑
m=1

γm1m,itz∗

+Op

(
||γ||2

)
= b(γ). (A.59)

In order to show the asymptotic behavior of I1N note that by (2.18) we have that

I1NT = β̂ (z)−E
{

β̂ (z)
∣∣∣X,Z}=

{
1

NT ∑
it

X̃it X̃⊤
it L(Zit ,z,γ)

}−1{
1

NT ∑
it

X̃it ṽitL(Zit ,z,γ)

}
, (A.60)
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where the inverse term was already study (see, (A.58)); therefore, we will study the asymp-
totic behaviour of (A.60) by studying the behaviour of the second term. Based on the results
obtained in (A.35) - (A.48) in the proof of theorem 2.2.1 and (A.58) the following result
holds √

NT I1NT →d N
{

0d×1,Γ
−1
1 (z)Γ0(z)Γ−1

1 (z)
}
,

and the proof is closed.

B.3 Proof of Corollary 2.2.1

From equation (2.17) we know that the auxiliary random vector Ti {β (z)}= T̃i {β (z)}, where

T̃i {β (z)}=
T

∑
t=1

X̃it

{
Ỹit − X̃⊤

it β (z)
}

1(Zit = z)+OP

(
1

NT

)
.

Then, the proof of Corollary 2.2.1 is similar to the proof of Theorem 2.2.1 but setting γm = 0
for m = 1, . . . ,q.

B.4 Proof of Corollary 2.3.2

From equation (2.19) we now that
√

NT
{

β̂ (z)−β (z)
}

can be rewrite as

√
NT
{

β̂ (z)−β (z)
}
=
√

NT
{

β̃ (z)−β (z)
}
+OP

(
1√
NT

)
;

where β̃ (z) is a frequency estimator in the same way as in β̂ (z) when γm = 0 ∀m = 1, . . .q.
Then, the proof of Corollary 2.3.2 is similar to the proof of Theorem 2.3.1 but setting γm = 0
for m = 1, . . . ,q.

129





Proofs of Chapter 3

131



Proofs of Chapter 3

C.1 Proof of Proposition 3.2.1

Equation (3.8) follows from Davydov and Egorov (2000) Theorem 1. Recall that Z is dis-
tributed as an U(0,1). A typical uniformity argument shows that supu∈[0,1]

∥∥(M̃ jn −M j
)
(u)
∥∥=

op(1) a.s. with

M̃ jn(u) = n−1
n

∑
i=1

X jiX T
ji1{Zi≤u}, j = 1,2.

Then (3.9) follows by noticing that M̂ jn(u) = M̃ jn(Zn:⌊nu⌋) and that supu∈[0,1]
∣∣Zn:⌊nu⌋−u

∣∣=
o(1) a.s. by Glivenko-Cantelli theorem.

C.2 Proof of Proposition 3.2.2

Define X i(u) =
[
X T

1i(u),X
T
1i(1)−X T

1i(u),X
T
2i
]T
, with X1i(u) = X1i(1)1{Zi≤u}, and θ̄ 0 =(

β̄
T
0, β̄

T
0, δ̄

T
0

)T
. The result is immediate from Proposition 3.2.1 assuming 3.2.3 and 3.2.3,

after showing that
sup

K
n +ε≤u≤K

n −ε

∥∥∥(Ω̂n − Ω̂
0
n

)
(u)
∥∥∥= op(1),

with

Ω̂
0
n (u) =

1
n

n

∑
i=1

X i(u)X
T

i (u)V
2
i .

Under H̄0, θ̂ n(1) = θ̄ 0 +Op(n−1/2) and

Ω̂n (u)− Ω̂
0
n (u) =

1
n

⌊nu⌋

∑
i=1

(
X

T

[i:n](u)
(
θ̂ n(1)− θ̄ 0

))2
X [i:n]X

T
[i:n]

−2
(
θ̂ n(1)− θ̄ 0

)T 1
n

⌊nu⌋

∑
i=1

X [i:n]X [i:n]X
T
[i:n]V[i:n].

By Proposition 3.2.1,
∥∥θ̂ n(1)− θ̄ 0

∥∥ = Op

(
n−1/2

)
. Then, by assumption 3.2.3 and 3.2.4,

after applying Hölder’s inequality,

sup
K
n +ε≤u≤K

n −ε

∥∥∥(Ω̂n − Ω̂
0
n

)
(u)
∥∥∥= Op

(
n−1)+Op

(
n−1/2

)
.
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C.3 Proof of Proposition 3.2.3

C.3 Proof of Proposition 3.2.3

First notice that because Z is independent of (U,X), the concomitants
{

U[i:n],X [i:n]
}n

i=1 are
i.i.d. as (U,X) . Define

ϕ̃
†
n = n max

K≤ℓ≤n−K
α̃

†
n

(
ℓ

n

)
with

η̂
†
n (u) = M−1

11 (1)
N̂1n(u)−uN̂1n(1)

u(1−u)
,

α̃
†
n (u) = n · η̂†T

n (u)
M11 (1)u(1−u)

σ2 η̂
†
n (u)

Applying the extension of Darling-Erdős’ theorem (Darling et al. (1956)) to the vector case,
as in Horváth (1993)

a(logn)
√

ϕ̃
†
n −b1+k1(logn)→d E.

Therefore, it suffices to prove that

sup
K≤ℓ≤n−K

∣∣∣∣(ϕ̃
(0)
n − ϕ̃

†
n

)( ℓ

n

)∣∣∣∣= op (1) . (A.61)

To this end, first, apply the Marcinkiewicz-Zygmund strong law of large numbers (Chow and
Teicher (1988), pp 125), to establish that, for the δ > 0 in assumption 3.2.6,[

nM̂11

(
ℓ

n

)
− ℓM11 (1)

]
= o

(
ℓ2/(2+δ )

)
a.s. as ℓ→ ∞.

[
n
(

M̂11 (1)− M̂11

(
ℓ

n

))
− (n− ℓ)M11 (1)

]
= o

(
(n− ℓ)2/(2+δ )

)
a.s. as ℓ→ ∞,

n

∑
i=1

V 2
i −nσ

2 = o
(

n2/(2+δ )
)

a.s. as n → ∞. (A.62)

Hence,

max
K≤ℓ≤n

∥∥∥∥ ℓnM11(1)− M̂11n

(
ℓ

n

)∥∥∥∥ = op

(
n−

δ

(2+δ )

)
, (A.63)
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max
1≤ℓ≤n−K

∥∥∥∥n− ℓ

n
M11(1)−

(
M̂11n (1)− M̂11n

(
ℓ

n

))∥∥∥∥ = op

(
n−

δ

(2+δ )

)
. (A.64)

By assumption 3.2.2,

max
K≤ℓ≤1

∥∥∥∥ ℓnM̂−1
11n

(
ℓ

n

)∥∥∥∥ = Op (1) , (A.65)

max
1≤ℓ≤n−K

∥∥∥∥∥n− ℓ

n

[
M̂11n (1)− M̂11n

(
ℓ

n

)]−1
∥∥∥∥∥ = Op (1) . (A.66)

Also, by the law of the iterated logarithm for partial sums,

max
1≤ℓ≤n

∥∥∥∥ n√
ℓ

N̂1n

(
ℓ

n

)∥∥∥∥= Op

(√
log logn

)
(A.67)

and by (A.62), (A.65) and (A.67)

σ̂
2
n −σ

2 =
1
n

n

∑
i=1

(
V 2

i −σ
2)− ŜT

n(1)M̂
−1
11n(1)Ŝn(1) = op

(
n−δ/(2+δ )

)
+Op

(
log logn

n

)
.

Notice that,

n ·
(

α̃n − α̃
†
n

)( ℓ

n

)
=

[√
ℓ(n− ℓ)

n

(
η̂n − η̂

†
n

)( ℓ

n

)]T
 M11

σ2 +op

(
n−

δ

2+δ

)


×

[√
ℓ(n− ℓ)

n

(
η̂n − η̂

†
n

)( ℓ

n

)]
,

where√
ℓ(n− ℓ)

n

(
η̂n − η̂

†
n

)( ℓ

n

)
=

√
ℓ(n− ℓ)

n

{[
M̂−1

11n

(
ℓ

n

)
− n

ℓ
M−1

11 (1)
]

N̂1n

(
ℓ

n

)
−

[(
M̂11n (1)− M̂11n

(
ℓ

n

))−1

− n
n− ℓ

M−1
11 (1)

]

×
[

N̂1n (1)− N̂1n

(
ℓ

n

)]}
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=

√
(n− ℓ)ℓ2

n3

{
n
ℓ

M̂−1
11n

(
ℓ

n

)[
ℓ

n
M11 (1)− M̂11n

(
ℓ

n

)]
M−1

11 (1)
n√
ℓ

N̂1n

(
ℓ

n

)}

−

√
ℓ(n− ℓ)2

n3

{
n

n− ℓ

(
M̂11n (1)− M̂11n

(
ℓ

n

))−1

×
[

n− ℓ

n
M11 (1)−

(
M̂11n (1)− M̂11n

(
ℓ

n

))]
×M−1

11 (1)
n√

n− ℓ

[
N̂1n (1)− N̂1n

(
ℓ

n

)]}
Therefore, by (A.63)-(A.67),√
ℓ(n− ℓ)

n
max

K≤ℓ≤n−K

∥∥∥∥(η̂n − η̂
†
n

)( ℓ

n

)∥∥∥∥ ≤ Op(1)×op

(
1

n
δ

(2+δ )

)
×Op

(√
log logn

)
= op(1), (A.68)

which proves (A.61).
Finally, (3.13) and (3.14) follow by (A.68) and{

u(1−u)M1/2(1)η̂†
n (u)/σ

}
u∈[0,1]

→d {W0(u)−uW0(1)}u∈[0,1] in D [0,1] ,

by Proposition 3.2.1.

C.4 Proof of Proposition 3.2.4

First notice that, by Propositions 3.2.1 and 3.2.2, uniformly in u ∈ [ε,1− ε] ,

ϕ̃n

n
→p= sup

ε≤u≤1−ε

η
T
0 (u)Σ

−1
0 (u)η0(u),

which proves (3.15). In order to prove, (3.16), notice that under H̄1n

√
n
(
θ̂ n − θ̄ 0

)
(u) = M̂−1

n (u)

[
1
n

⌊nu⌋

∑
i=1

X [i:n]τ(Zi:n)+
√

nN̂n(u)

]
,

where, under assumption 3.2.7, supε≤u≤1−ε

∥∥∥n−1
∑
⌊nu⌋
i=1 X [i:n]τ(Zi:n)−T (u)

∥∥∥= o(1) a.s. us-
ing same arguments to prove (3.8) in Proposition 3.2.1. Then, apply (3.8), (3.9) and the
continuous mapping Theorem to complete the proof.
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C.5 Proof of Proposition 3.2.5

Let Pξ be the induced probability distribution of ξ . It suffices to show that for any c > 0,

Pξ (ϕ̂
∗
nε ≤ c)→ P(ϕ∞ε ≤ c)+o(1) a.s., (A.69)

Notice that uniformly in u ∈ [0,1],

η̂
∗
n (u) = R [M (u)+o(1)]−1 N̂∗

n(u) a.s.,

Mimicking the strategy of proof in Stute et al. (1998) (SGQ) for a similar bootstrap statistics,
(A.69) follows by showing that conditional to the sample,

√
nN̂∗

n converges in distribution
to N∞ a.s., i.e. for almost all sample {Yi,X1i,X2i,Zi}n

i=1 , by showing the convergence of
the finite dimensional distributions (fidis) and tightness. Henceforth, Eξ is the expectation
operator corresponding to Pξ . For fidis convergence, first notice that for u1,u2 ∈ [0,1] ,

nEξ

[
N̂∗

n (u1) N̂∗T
n (u2)

]
=

1
n

⌊n(u1∧u2)⌋

∑
i=1

X [i:n]X
T
[i:n]V̂

2
[i:n]

=
1
n

n

∑
i=1

X iX T
i V 2

i 1{
Zi≤Z⌊n(u1∧u2)⌋:n

}
+

1
n

n

∑
i=1

[
X T

i
(
θ̂ n(1)− θ̄ 0

)]2
X iX T

i V 2
i 1{

Zi≤Z⌊n(u1∧u2)⌋:n

}
= Ω0 (u1 ∧u2)+o(1) a.s. (A.70)

since θ̂ n(1) = θ̄ n+o(1) a.s., and applying the arguments for proving (3.9) using assumption
3.2.3 and 3.2.4. Then, fixing u1, ...,uq, by the Cramér-Wold device, it suffices to show that
for any c < ∞,

Pξ

{
√

n
q

∑
j=1

a jbTN̂∗
n
(
u j
)
≤ c

}
→p P

{
q

∑
j=1

a jbTN∞

(
u j
)
≤ c

}
, (A.71)

for any b = (b1, ...,bk+1)
T and a = (a1, ...,ap)

T. Write Wi = ∑
q
j=1 a jbTX i1{

Zi≤Z⌊nu j⌋:n

}

√
n

q

∑
j=1

a jbTN̂∗
n
(
u j
)

=
1√
n

n

∑
i=1

WiV̂iξi

=
1√
n

n

∑
i=1

WiV̂iξi.
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Then (A.71) follows by checking the Linderberg’s condition

Ln (δ ) =
1
n

n

∑
i=1

W 2
i

∫
{|WiV̂iξi|≥δ

√
n}

W 2
i V̂ 2

i ξ
2
i dPξ → 0 a.s.

Define W̄i = ∑
q
j=1 a jbTX i. Since |ξ | ≤ τ,

Ln (δ ) ≤ κ2

n

n

∑
i=1

1{|W̄iV̂i|≥ δ
√

n
τ

}W̄ 2
i V̂ 2

i

=
κ2

n

n

∑
i=1

1{
|W̄iVi|≥ δ

√
n

τ

}W̄ 2
i V 2

i +o(1) a.s.

= o(1) a.s.

using arguments in (A.70). In order to show tightness, it suffices to check Billingsley (1968)
Theorem 15.7 as in SGQ Lemma A3. Define

α̂
∗
nb(u) =

√
nbTN̂∗

n (u) =
1√
n

n

∑
i=1

bTX i1{Zi≤Z⌊nu⌋:n}V̂iξi.

We must show, as in SGQ Lemma 3, that for any b ∈ R1+k and 0 ≤ u0 ≤ u1 ≤ u2 ≤ 1,

Eξ [α̂
∗
nb(u1)− α̂

∗
nb(u0)]

2 [α̂∗
nb(u2)− α̂

∗
nb(u1)]

2 ≤C [Jn(u2)− Jn(u0)]
2 , (A.72)

where C < ∞ is a generic constant, Jn monotone a.s., and Jn → J a.s. Then, applying Lemma
5.1 of Stute (1997),

LHS(A.72)≤ 3
n2 ∑∑

i ̸= j
Eξ λ

2
i Eξ γ

2
i ,

λi = bTX iV̂iξi1{Z⌊nu0⌋:n≤Zi≤Z⌊nu1⌋:n

} and γi = bTX iV̂iξi1{Z⌊nu2⌋:n≤Zi≤Z⌊nu1⌋:n

}. Then,

LHS(A.72) ≤ 3
n2 ∑∑

i ̸= j
(bTX i)

2 (bTX j
)2 V̂ 2

i V̂ 2
j 1{

Z⌊nu0⌋:n≤Zi≤Z⌊nu1⌋:n

}1{
Z⌊nu1⌋:n≤Zi≤Z⌊nu2⌋:n

}
≤ 3 [Jn(u2)− Jn(u0)]

2 ,

where

Jn(u) =
1
n

n

∑
i=1

(bTX i)
2 V̂ 2

i 1{Zi≤Z⌊nu⌋:n}

is monotone and Jn(u)→ J(u) = E
(
(bTX)2V 21{Z≤u}

)
a.s. uniformly in u.
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To prove theorems 4.2.1-4.2.4 we need the following lemmas, which are stated without
proof. To find the proof the reader my refer to Hall and Heyde (2014) for lemma D.0.1 and
Volkonskii and Rozanov (1959) for lemma D.0.2. Besides, throughout the profs we denote C
a generic positive constant, which takes different values at different times. We also use the
notation at which can also take different values at different times.

Lemma D.0.1 (Davydov’s lemma). Suppose that two random variables X and Y are Ft
−∞

and F∞
t+τ adapted, respectively, and that ||X ||p < ∞ and ||Y ||q∞, where ||X ||p = {E|X |p}1/p,

p,q ≥ 1, and 1/p+1/q < 1. Then,

sup
t
|Cov(X ,Y )| ≥ 8α

1/r(τ){E|X |p}1/p{E|Y |q}1/q,

where r = (1−1/p−1/q)−1 and α(·) is the mixing coefficient.

Lemma D.0.2. Let V1, . . . ,VL1 be α-mixing stationary random variables that are F j1
i1 , . . . ,F

jL1
iL1

-
measurable, respectively, with 1 ≤ i1 < j1 < .. . < jL1 , iℓ+1 − jℓ ≥ τ , and |Vℓ| ≤ 1 for
ℓ= 1, . . . ,L1. Then, ∣∣∣∣∣E

(
L1

∏
ℓ=1

Vℓ

)
−

L1

∏
ℓ=1

E(Vℓ)

∣∣∣∣∣≥ 16(L1 −1)α(τ),

where α(·) is the mixing coefficient.

D.1 Proof of theorem 4.2.1

Here we focus on the analysis of the conditional bias of the estimator vec(π̂(z)). Note that
from (4.4) we can write

vec(π̂(z)) = e⊤1 S
−1
T,1(z)TT,1(z), (A.73)

where

ST,1(z) =

(
ST,1.0 S

⊤
T,1.1

ST,1.1 ST,1.2

)
, TT,1(z) =

(
TT,1.0

TT,1.1

)
,
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D.1 Proof of theorem 4.2.1

and

ST,1.0 =
1
T

T

∑
t=1

IdmLH1(Zt − z),

ST,1.1 =
1
T

T

∑
t=1

Idm ⊗ (Zt − z)LH1(Zt − z),

ST,1.2 =
1
T

T

∑
t=1

Idm ⊗ (Zt − z)(Zt − z)⊤LH1(Zt − z),

and

TT,1.0 =
1
T

T

∑
t=1

Idmvec(Xt)LH1(Zt − z),

TT,1.1 =
1
T

T

∑
t=1

Idm ⊗ (Zt − z)vec(Xt)LH1(Zt − z).

We start the analysis studying the inverse term in (A.73), S−1
T,1(z); here we will show that as

T to infinity
ST,1.0 = Idm f (z)+oP(1); (A.74)

to this aim we will use the following 3 steps procedure.

Step 1: Under the strictly stationarity assumption (see, assumption 4.2.1) and the law of iterated
expectations we have

E(ST,1.0) =
1

|H1|1/2 E

[
IdmL

(
Zt − z

H1/2
1

)]

=
Idm

|H1|1/2

∫
f (Zt)L

(
Zt − z

H1/2
1

)
dZt =

Idm

|H1|1/2

∫
f (u+H1/2

1 z)L(u) |H1|1/2du

= Idm f (z)+oP(1),

where u = Zt−z
H1/2

1

and the last equality comes from assumption 4.2.3 and a Taylor expansion.

Step 2: To conclude we just need to sow that Var(ST,1.0)→ 0 as T → ∞. To this end,

T |H1|1/2Var(ST,1.0) = |H1|1/2Var [IdmLH1 (Zt − z)]

+
2|H1|1/2

T

T−1

∑
t=1

(T − t)Cov [IdmLH1 (Z1 − z) , IdmLH1 (Zt − z)]

≡ J1,1 + J1,2.
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By assumptions 4.2.1 and 4.2.3,

Var [IdmLH1 (Zt − z)] = OP

(
|H1|1/2

)
,

which implies that J1,1 = OP(1). Next we prove that J1,2 → 0; to this end, we reformulate
J1,2 as J1,2 = J1,3 + J1,4, where

J1,3 =
2|H1|1/2

T

dT

∑
t=1

(T − t)Cov [IdmLH1 (Z1 − z) , IdmLH1 (Zt − z)] ,

J1,4 =
2|H1|1/2

T

T−1

∑
t=dT+1

(T − t)Cov [IdmLH1 (Z1 − z) , IdmLH1 (Zt − z)] .

Let dT → ∞ be a sequence of integers such that dT |H1|1/2 → 0. First we show that J1,3 → 0;
conditional on Z1 and Zt and using assumptions 4.2.1, 4.2.3-4.2.4 we obtain that

Cov [IdmLH1 (Z1 − z) , IdmLH1 (Zt − z)] ≤ E [IdmLH1 (Z1 − z)LH1 (Zt − z)]

≤
∫

f (u,v)L(u)L(v)dudv

= OP(1).

Thus, it follows that J1,3 ≤ dT |H1|1/2 → 0. We now show the contribution of J1,4; then, for
an α-mixing process we use Davydov’s inequality (see, Lemma D.0.1) to obtain

|Cov [IdmLH1 (Z1 − z) , IdmLH1 (Zt − z)]| ≤ C [α(t)]
δ

2+δ ∥IdmLH1 (Z1 − z)∥2+δ

×∥IdmLH1 (Zt − z)∥2+δ

By assumptions 4.2.1, 4.2.3-4.2.4

E |IdmLH1 (Zt − z)|2+δ =

∣∣∣∣ Idm

|H1|1/2

∣∣∣∣2+δ

f (z)|H1|1/2
∫

L2+δ (u)du+oP

(
|H1|−

1
2 (1+δ )

)
= OP

(
|H1|−

1
2 (1+δ )

)
.

Thus,
|Cov [IdmLH1 (Z1 − z) , IdmLH1 (Zt − z)]|= OP

(
[α(t)]

δ

2+δ |H1|−
1+δ

2+δ

)
,

and

∣∣J1,4
∣∣=C

2|H1|1/2

T

T−1

∑
t=dT+1

(T − t) [α(t)]
δ

2+δ |H1|−
1+δ

2+δ ≤C
T−1

∑
t=dT+1

[α(t)]
δ

2+δ |H1|−
1
2

δ

2+δ .

142
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Then by assumption 4.2.1 and choosing d2+δ

T |H1|1/2 = OP(1),

J1,4 =C
T−1

∑
t=dT+1

[α(t)]
δ

2+δ |H1|−
1
2

δ

2+δ = oP

(
d−δ

T |H1|−
1
2

δ

2+δ

)
= oP(1),

where dT satisfies the requirement that dT |H1|1/2 → 0. Then by assumption 4.2.5 as T → ∞

Var(ST,1.0) = oP(1).

Step 3: Thus (A.74) follows.

Using the same 3 steps technique we get that

ST,1.1 = 0dm(p+q)×dm, (A.75)

where 0dm(p+q)×dm is a dm(p+q)×dm matrix of zeros, and

ST,1.2 = Idm f (z)⊗H1µ2(L)+oP(H1). (A.76)

Therefore by (A.74), (A.75) and (A.76),

ST,1(z) = Idm f (z)⊗diag{1+oP(1),H1µ2(L)+oP(H1)} ,

and

S
−1
T,1(z) = Idm f−1(z)⊗diag

{
1+oP(1),H−1

1 µ
−1
2 (L)+oP(H−1

1 )
}
. (A.77)

Now, we just need to study TT,1(z); to this end, we need to center the vector TT,1(z) by
replacing vec(Xt) with vec(Xt)− Z̃∗⊤

t A (z); note that as we did to estimate (4.4) we need to
approximate vec(π(Zt)) using the multivariate Taylor expansion

vec(π(Zt)) = Z̃∗⊤
t g(z)+QT +RT

where

QT =
1
2

Idm ⊗ (Zt − z)⊤Hγ(z)(Zt − z),

RT = Idm ⊗ (Zt − z)⊤R(Zt ;z)(Zt − z),
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and Hγ(z) is a dm(p+q)× (p+q) matrix such that Hγr(z) is the Hessian matrix of the rth
component of γ(z); also, let rth component of R(Zt ;z) be

Rr(Zt ;z) =
∫ 1

0

[
∂ 2αr

∂ z∂ z⊤
(z+ω(Zt − z))− ∂ 2αr

∂ z∂ z⊤
(z)
]
(1−ω)dω,

where ω is a weight function. Then let

T
∗
T,1(z) =

(
T
∗
T,1.01 +T

∗
T,1.02 +T

∗
T,1.03

T
∗
T,1.11 +T

∗
T,1.12 +T

∗
T,1.13

)
,

where

T
∗
T,1.01 =

1
2T

T

∑
t=1

Idm ⊗ (Zt − z)⊤Hγ(z)(Zt − z)LH1(Zt − z),

T
∗
T,1.02 =

1
T

T

∑
t=1

Idm ⊗ (Zt − z)⊤R(Zt ;z)(Zt − z)LH1(Zt − z),

T
∗
T,1.03 =

1
T

T

∑
t=1

Idmvec(vt)LH1(Zt − z),

T
∗
T,1.11 =

1
2T

T

∑
t=1

Idm ⊗ (Zt − z)(Zt − z)⊤Hγ(z)(Zt − z)LH1(Zt − z),

T
∗
T,1.12 =

1
T

T

∑
t=1

Idm ⊗ (Zt − z)(Zt − z)⊤R(Zt ;z)(Zt − z)LH1(Zt − z),

T
∗
T,1.13 =

1
T

T

∑
t=1

Idm ⊗ (Zt − z)vec(vt)LH1(Zt − z).

Note that by construction and the condition (4.3),E
[(

T
∗⊤
T,1.03,T

∗⊤
T,1.13

)⊤]
= 0dm(p+q+1); using

similar arguments to those used to prove (A.74) and using assumptions 4.2.1-4.2.7 we can
prove that,

T |H1|1/2Var

[(
T
∗
T,1.03

T
∗
T,1.13

)]
= Ωv(z) f (z)⊗diag

{
R(L)+oP(1),H1µ

2
2 (L)+oP(H1)

}
+oP(1) (A.78)

We continue the analysis studying the rest of the terms in T
∗
T,1(z), so using similar

techniques to those used to prove (A.74) we get

T
∗
T,1.01 =

1
2

Idm f (z)µ2(L)diagdm
[
tr
(
Hγr(z)H1

)]
idm +oP (tr(H1)) , (A.79)
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and by the same token, we can show that the variance of H−1
1 T

∗
T,1.01 converges to zero.

Similarly, we can show that
T
∗
T,1.02 = oP (tr(H1)) , (A.80)

T
∗
T,1.11 = OP

(
H3/2

1

)
, (A.81)

T
∗
T,1.12 = OP

(
H3/2

1

)
. (A.82)

Therefore by (A.79), (A.80), (A.81) and (A.82)

T
∗
T,1(z) =

(
1
2 Idm f (z)µ2(L)diagdm

[
tr
(
Hγr(z)H1

)]
idm +oP (tr(H1))

OP

(
H3/2

1

) )
. (A.83)

Thus, using (A.77) and (A.83) into (A.73) we close the proof.
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Proofs of Chapter 4

Before proving the next theorem, we first consider the term π̂(z)−π(z). It follows from
the proof of Theorem 4.2.1 that we can write, for 1 ≤ j ≤ d and 1 ≤ k ≤ m, the ( j,k)− th
component of (4.4) as π̂( j,k)(z) =

1
T ∑

T
t=1W H1

T,1(Zt − z)X( j,k),t , where

W H1
T,1(Zt − z) = e⊤3 {S∗T,1(z)}−1

(
1

Zt − z

)
LH1(Zt − z),

e3 =
(
1,0p+q

)⊤, 0p+q is a (p+q)×1 vector of zeros, and

S∗T,1(z) =

(
1 (Zt − z)⊤

(Zt − z) (Zt − z)(Zt − z)⊤

)
LH1(Zt − z).

By (A.77) we can infer that S∗T,1(z) = f (z)diag{1+oP(1),H1µ2(L)+oP(H1)}, then

W H1
T,1(Zt − z) =

1
f (z)

LH1(Zt − z){1+oP(1)} (A.84)

holds and

π̂( j,k)(z) =
1

T f (z)

T

∑
t=1

LH1(Zt − z)X( j,k),t{1+oP(1)};

see Fan and Gijbels (1996) for more details. Thus,

π̂( j,k)(z)−π( j,k)(z) =
1
T

T

∑
t=1

W H1
T,1(Zt − z)

(
π( j,k)(Zt)−π( j,k)(z)

)
+

1
T

T

∑
t=1

W H1
T,1(Zt − z)v( j,k),t ,

where taking Taylor expansion, for z in the neighborhood of Zt and taking into account the
proof of Theorem 4.2.1

π̂( j,k)(z)−π( j,k)(z) =
1
T

T

∑
t=1

W H1
T,1(Zt − z)

{
1
2
(Zt − z)⊤Hπ( j,k)(z)(Zt − z)+ v( j,k),t

}
+oP (tr{H1}) .

(A.85)

D.2 Proof of theorem 4.2.2

Here, as in the proof of theorem 4.2.1, we focus on the analysis of the conditional bias of the
estimator β̄ (z1)). Note that from (4.6) we can write

β̄ (z1)) = e⊤2 S
−1
T,2(z1)TT,2(z1), (A.86)
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where

ST,2(z) =

(
ST,2.0 S

⊤
T,2.1

ST,2.1 ST,2.2

)
, TT,2(z) =

(
TT,2.0

TT,2.1

)
,

and

ST,2.0 =
1
T

T

∑
t=1

π̂(Zt)π̂(Zt)
⊤KH2(Z1t − z1),

ST,2.1 =
1
T

T

∑
t=1

π̂(Zt)π̂(Zt)
⊤⊗ (Z1t − z)KH2(Z1t − z1),

ST,2.2 =
1
T

T

∑
t=1

π̂(Zt)π̂(Zt)
⊤⊗ (Z1t − z)(Z1t − z)⊤KH2(Z1t − z1),

and

TT,2.0 =
1
T

T

∑
t=1

π̂(Zt)YtKH2(Z1t − z1),

TT,2.1 =
1
T

T

∑
t=1

π̂(Zt)⊗ (Z1t − z)YtKH2(Z1t − z1).

We start the analysis studying the inverse term in (A.86), S−1
T,2(z); here we will show that as

T → ∞

ST,2.0 = Γ∗(z1) f (z)+oP(1), (A.87)

where Γ∗(z1) = E
[

π(Zt)π(Zt)
⊤∣∣Z1t = z1

]
; to this end let

ST,2.0 =
1
T

T

∑
t=1

π̂(Zt)π̂(Zt)
⊤KH2(Z1t − z1) = J2,1 + J2,2 + J⊤2,2 + J2,4,

where

J2,1 =
1
T

T

∑
t=1

π(Zt)π(Zt)
⊤KH2(Z1t − z1),

J2,2 =
1
T

T

∑
t=1

π̂(Zt) [π̂(Zt)−π(Zt)]
⊤KH2(Z1t − z1),

J2,3 =
1
T

T

∑
t=1

[π̂(Zt)−π(Zt)] [π̂(Zt)−π(Zt)]
⊤KH2(Z1t − z1).
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Proofs of Chapter 4

We first consider J2,1, and as in Step 1 in the proof of theorem 4.2.1, under the strictly
stationarity assumption and the law of iterated expectations we have

E(J2,1) =
1

|H2|1/2 E

[
π(Zt)π(Zt)

⊤K

(
Z1t − z

H1/2
2

)]

=
Γ∗(z1)

|H2|1/2

∫
f (Z1t)K

(
Z1t − z

H1/2
2

)
dZ1t =

Γ∗(z1)

|H1|1/2

∫
f (u+H1/2

2 z1)K (u) |H2|1/2du

= Γ∗(z1) f (z1)+oP(1), (A.88)

where u = Z1t−z1

H1/2
2

and the last equality comes from assumption 4.2.3 and a Taylor expansion.

To conclude we just need to sow that Var(J2,1)→ 0 as T → ∞, as in Step 2. To this end and
for notational simplicity let at = π(Zt)π(Zt)

⊤, then

T |H1|1/2Var(J2,1) = |H2|1/2Var [atKH2(Z1t − z1)]

+
2|H2|1/2

T

T−1

∑
t=1

(T − t)Cov [a1KH2(Z11 − z1),atKH2(Z1t − z1)]

≡ J2,4 + J2,5.

By assumptions 4.2.1 and 4.2.3,Var
[
π(Zt)π(Zt)

⊤KH2(Z1t − z1)
]
= OP

(
|H2|1/2

)
, which

implies that J2,4 = OP(1). Next we prove that J2,5 → 0; to this end, we reformulate J2,5 as

J2,5 = J2,6 + J2,7, where J2,6 =
2|H2|1/2

T ∑
dT
t=1(. . .) and J2,7 =

2|H2|1/2

T ∑
T−1
t=dT+1(. . .).

Let dT → ∞ be a sequence of integers such that dT |H2|1/2 → 0. First we show that
J2,6 → 0; conditional on Z1 and Zt and using assumptions 4.2.1, 4.2.3-4.2.4 and 4.2.9 we
obtain that

Cov [a1KH2(Z11 − z1),atKH2(Z1t − z1)] ≤ E
[
a1a⊤t KH2(Z11 − z1)KH2(Z1t − z1)

]
≤

∫
f (u,v)K(u)K(v)dudv

= OP(1).

Thus, it follows that J2,6 ≤ dT |H2|1/2 → 0. We now show the contribution of J2,7; then, for
an α-mixing process we use Davydov’s inequality (see, Lemma D.0.1) to obtain

|Cov [a1KH2(Z11 − z1),atKH2(Z1t − z1)]| ≤ C [α(t)]
δ

2+δ ∥a1KH2(Z11 − z1)∥2+δ

×∥atKH2(Z1t − z1)∥2+δ
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By assumptions 4.2.1, 4.2.3-4.2.4 and 4.2.9-4.2.10

E |atKH2(Z1t − z1)|2+δ =

∣∣∣∣ Γ∗(z1)

|H2|1/2

∣∣∣∣2+δ

f (z1)|H2|1/2
∫

K2+δ (u)du+oP

(
|H2|−

1
2 (1+δ )

)
= OP

(
|H2|−

1
2 (1+δ )

)
.

Thus,
|Cov [a1KH2(Z11 − z1),atKH2(Z1t − z1)]|= OP

(
[α(t)]

δ

2+δ |H2|−
1+δ

2+δ

)
,

and

∣∣J2,7
∣∣=C

2|H2|1/2

T

T−1

∑
t=dT+1

(T − t) [α(t)]
δ

2+δ |H2|−
1+δ

2+δ ≤C
T−1

∑
t=dT+1

[α(t)]
δ

2+δ |H2|−
1
2

δ

2+δ .

Then by assumption 4.2.1 and choosing d2+δ

T |H2|1/2 = OP(1),

J2,7 =C
T−1

∑
t=dT+1

[α(t)]
δ

2+δ |H2|−
1
2

δ

2+δ = oP

(
d−δ

T |H2|−
1
2

δ

2+δ

)
= oP(1),

where dT satisfies the requirement that dT |H2|1/2 → 0. Note that in assumption 4.2.5 we
assume that H2 → 0 and T |H2|1/2 → ∞ as T → ∞; then

Var(J2,1) = oP(1),

and (A.88) follows, as in Step 3 .
Next, we study J2,2, by assumption 4.2.1, 4.2.3,4.2.5, 4.2.6 and 4.2.10 and applying

Theorem 6 of Masry (1996), we have

max
t

|π̂(Zt)−π(Zt)|= OP


(

T |H1|1/2

logT

)−1/2
+OP(|H1|) = oP(1).

Then, since 1
T ∑

T
t=1 KH1(Z1t − z1) |π(Zt)|= OP(1),

∣∣J2,2
∣∣≤ 1

T

T

∑
t=1

KH1(Z1t − z1) |π(Zt)|max
t

|π̂(Zt)−π(Zt)|= oP(1).

Similarly, we can show that J2,3 = oP(1). Therefore (A.87) follows.
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Using similar arguments we can sow that

ST,2.1 = 0dq×d, (A.89)

where 0dq×d is a dq×d ,and finally we obtain

ST,2.2 = Γ∗(z1) f (z1)⊗H2µ2(K)+oP(H2). (A.90)

Therefore by (A.87), (A.89) and (A.90),

S
−1
T,2(z) = Γ

−1
∗ (z1) f−1(z1)⊗diag

{
1+oP(1),H−1

2 µ
−1
2 (K)+oP(H−1

2 )
}
. (A.91)

Now, we just need to study TT,2(z); to this end, as in the proof of theorem 4.2.1 we need
to center the vector TT,2(z) by replacing Yt with Yt −Πt(Zt)

⊤η(z1); then, observe that

T
∗
T,2(z) =

1
T

T

∑
t=1

Π̃t(Zt)
[
Yt −Πt(Zt)

⊤
η(z1)

]
KH2(Z1t − z1)

=
1
T

T

∑
t=1

Π̃t(Zt)
[
X⊤

t β (Z1t)−Πt(Zt)
⊤

η(z1)+ut

]
KH2(Z1t − z1)

= TT,2.1 +TT,2.2. (A.92)

where

TT,2.1 =
1
T

T

∑
t=1

Π̃t(Zt)
[
X⊤

t β (Z1t)−Πt(Zt)
⊤

η(z1)
]

KH2(Z1t − z1),

TT,2.2 =
1
T

T

∑
t=1

Π̃t(Zt) [ut ]KH2(Z1t − z1).

Note that we can express TT,2.1 as

TT,2.1(z1) =

(
TT,2.11 +TT,2.12

TT,2.13 +TT,2.14

)
,
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where, taking onto account that KH2,t = KH2(Z1t − z1) and πzt = π(Zt),

TT,2.11 =
1
T

T

∑
t=1

πzt

[
X⊤

t β (Z1t)−Π
⊤
t,zt

η(z1)
]

KH2,t ,

TT,2.12 =
1
T

T

∑
t=1

[π̂zt −πzt ]
[
X⊤

t β (Z1t)−Π
⊤
t,zt

η(z1)
]

KH2,t ,

TT,2.13 =
1
T

T

∑
t=1

πzt ⊗ (Z1t − z1)
[
X⊤

t β (Z1t)−Π
⊤
t,zt

η(z1)
]

KH2,t ,

TT,2.14 =
1
T

T

∑
t=1

[π̂zt −πzt ]⊗ (Z1t − z1)
[
X⊤

t β (Z1t)−Π
⊤
t,zt

η(z1)
]

KH2,t .

Then, under the strictly stationarity assumption and the law of iterated expectations we have
that

E(TT,2.11) = E
(

E
[

πzt

{
E(Xt |Zt)

⊤
β (Z1t)−Π

⊤
t,zt

η(z1)
}

KH2,t

∣∣∣Z1t=z1

])
= E(E [πzt {QT +RT}KH2,t |Z1t=z1])

= E
(
E
[
TT,2.111

∣∣Z1t=z1

])
+E

(
E
[
TT,2.112

∣∣Z1t=z1

])
,

where the second equality comes from the fact that E(Xt |Zt) = π(Zt) and approximating
π(Zt)

⊤β (Z1t) using the multivariate Taylor expansion

π(Zt)
⊤

β (Z1t) = Πt(Zt)
⊤

η(z1)+
1
2

π̂(Zt)
⊤⊗ (Z1t − z1)

⊤Hβ (z1)(Z1t − z1)

+π̂(Zt)
⊤⊗ (Z1t − z1)

⊤R(Z1t ;z1)(Z1t − z1)

= Πt(Zt)
⊤

η(z1)+QT +RT .

Now using the 3 steps technique we can show that

E
(
E
[
TT,2.111

∣∣Z1t=z1

])
=

1
2

Γ∗(z1) f (z1)µ2(K)diagd
[
tr
(
Hβr(z1)H2

)]
id +oP (tr(H2)) .

(A.93)
and

E
(
E
[
TT,2.112

∣∣Z1t=z1

])
= oP (tr(H2)) ; (A.94)

then using (A.93) and (A.94) we get that

TT,2.11 =
1
2

Γ∗(z1) f (z1)µ2(K)diagd
[
tr
(
Hβr(z1)H2

)]
id +oP (tr(H2)) . (A.95)
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Similarly, we can show that

TT,2.13 = OP

(
H3/2

2

)
, (A.96)

We now analyse TT,2.12; to this end, let π( j,k),zt be the ( j,k)− th element of π(Zt); then

TT,2.12( j,k) =
1
T

T

∑
t=1

[
π̂( j,k),zt −π( j,k),zt

][
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]

KH2,t ,

where Π( j,k),t,zt =
(
π( j,k),zt ,π( j,k),zt ⊗ (Z1t − z1)

⊤)⊤ and η j(z1)=
(

β1(z1),Dβ j(z1)
⊤
)⊤

. Note
that using (A.85) and (A.84) we get that

TT,2.12( j,k) = J2,2.1( j,k)+ J2,2.2( j,k)+ J2,2.3( j,k),

where, naming ast = (Zs −Zt)
⊤Hπ( j,k)(Zt)(Zs −Zt), and LH1,st = LH1(Zs −Zt)

J2,2.1( j,k) =
1
T

T

∑
t=1

1
2T f (Zt)

T

∑
s=1

astLH1,st

[
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]

KH2,t

J2,2.2( j,k) =
1
T

T

∑
t=1

1
T f (Zt)

T

∑
s=1

v( j,k),sLH1,st

[
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]

KH2,t

J2,2.3( j,k) =
1
T

T

∑
t=1

1
2T f (Zt)

T

∑
s=1

OP (tr{H1})LH1,st

[
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]

KH2,t .

We look at each term separately, note that E(J2,2.2( j,k)) = 0 and following Martins-Filho
and Yao (2009),

T |H2|1/2Var
(
H−1

2 J2,2.1( j,k)
)

=
|H2|1/2

T

T

∑
s=1

T

∑
s′=1

E
[
v( j,k),sv( j,k),s′asas′

]
= s1 + s2 + s3 + s4,

where as = ∑
T
t=1

1
T f (Zt)

[
X( j,k)tβ j(Z1t)−Π⊤

( j,k),t,zt
η j(z1)

]
LH1,stKH2,t . Then we need to study

several cases, first s = s′ and t = t ′

s1 = |H2|1/2H−2
2 E

[
v2
( j,k),s

T

∑
t=1

1
T 2 f 2(Zt)

[
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]2

L2
H1,stK

2
H2,t

]

= OP

(
1

T |H1|1/2

)
,
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s = s′ and t ̸= t ′

s2 =
|H2|1/2H−2

2
T

T

∑
s=1

(T − t)Cov

[
v( j,k),s

T

∑
t=1

1
T f (Zt)

[
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]

LH1,stKH2,t ,

v( j,k),s

T

∑
t=1

1
T f (Z1)

[
X( j,k)1β j(Z11)−Π

⊤
( j,k),1,z1

η(z1)
]

LH1,s1KH2,1

]
= s2.1 + s2.2 = oP(1),

where s2.1 =
|H2|1/2H−2

2
T ∑

dT
s=1(. . .) and s2.2 =

|H2|1/2H−2
2

T ∑
T−1
s=dT+1(. . .). Next s ̸= s′ and t = t ′

s3 =
|H2|1/2H−2

2
T

T

∑
s=1

(T − t)E

[
v( j,k),sv( j,k),1

T

∑
t=1

1
T 2 f 2(Zt)

[
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]2

× LH1,stLH1,1tK2
H2,t
]

= OP (1) ,

s ̸= s′ and t ̸= t ′

s4 =
|H2|1/2H−2

2
T

T

∑
s=1

(T − t)Cov

[
v( j,k),s

T

∑
t=1

1
T f (Zt)

[
X( j,k)tβ j(Z1t)−Π

⊤
( j,k),t,zt

η j(z1)
]

LH1,stKH2,t ,

v( j,k),1

T

∑
t=1

1
T f (Z1)

[
X( j,k)1β j(Z11)−Π

⊤
( j,k),1,z1

η j(z1)
]

LH1,11KH2,1

]
= s4.1 + s4.2 = oP(1),

where s4.1 =
|H2|1/2H−2

2
T ∑

dT
s=1(. . .) and s4.2 =

|H2|1/2H−2
2

T ∑
T−1
s=dT+1(. . .). Then it is easy to show

that Var
(
H−1

2 J2,2.1( j,k)
)
= oP(1); therefore, J2,2.2( j,k) = oP

(
(T |H2|1/2)−1/2

)
.

We continue our analysis by showing that

J2,2.1( j,k) = E
[

tr
{

µ2(L)Hπ( j,k)(Zt)H1

}
π( j,k),zt

∣∣∣Z1t = z1

]
tr
{

µ2(K)Hβ j(z1)H2

}
+oP (tr{H1} tr{H2})

= OP (tr{H1} tr{H2}) ;

and that Var
(
H−1

1 H−1
2 J2,2.1( j,k)

)
= oP(1). Similarly we can show that J2,2.3( j,k) =

OP (tr{H1} tr{H2}).
Therefore we can conclude that

TT,2.12( j,k) = OP (tr{H1} tr{H2})+oP

(
(T |H2|1/2)−1/2

)
+OP (tr{H1} tr{H2}) ,(A.104)

153



Proofs of Chapter 4

and similarly we can show that

TT,2.14( j,k) = OP

(
tr{H1}H3/2

2

)
+oP

(
(T |H2|1/2)−1/2

)
+OP

(
tr{H1}H3/2

2

)
, (A.105)

Next we study

TT,2.2 =
1
T

T

∑
t=1

(
π(Zt)

π(Zt)⊗ (Z1t − z1)

)
utKH2(Z1t − z1)

+
1
T

T

∑
t=1

(
π̂(Zt)−π(Zt)

(π̂(Zt)−π(Zt))⊗ (Z1t − z1)

)
utKH2(Z1t − z1)

= TT,2.21 +TT,2.22;

it is clear that E(TT,2.21) = 0d(q+1) and applying Step 2

T |H2|1/2Var(TT,2.21) = Γ̃(z1) f (z1)⊗diag
{

R(K)+oP(1),H2µ
2
2 (K)+oP(H2)

}
, (A.107)

where Γ̃(z1) = E[π(Zt)Ω(Zt)π(Zt)
⊤|Z1t = z1], also applying the same techniques as in

(A.104)

TT,2.22 =

oP

(
(T |H2|1/2)−1/2

)
oP

(
(T |H2|1/2)−1/2

) . (A.108)

Therefore by (A.91), (A.95), (A.96), (A.104), (A.105), and (A.108) we close the proof.

D.3 Proof of theorem 4.2.3

Note that we can write ūt = ut −X⊤
t
(
β̄ (Z1t)−β (Z1t)

)
; then we can rewrite (4.7) as

Ω̂(z) =
1

f̂ (z)T

T

∑
t=1

utu⊤t LH1(Zt − z)

+
1

f̂ (z)T

T

∑
t=1

X⊤
t
(
β̄ (Z1t)−β (Z1t)

)(
β̄ (Z1t)−β (Z1t)

)⊤
XtLH1(Zt − z)

= UT 1 +UT 2. (A.109)
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It is clear that UT 1 →P Ω(z), therefore we just need to study the asymptotic behaviour of
UT 2; note that we can write

(
β̄ (Z1t)−β (Z1t)

)
= e⊤2 S

−1
T,2(Z1t)

1
T

T

∑
s=1

Π̃s(Zs)(Ys −Πs(Zs)η(Z1t))KH2

= e⊤2 S
−1
T,2(Z1t)

1
T

T

∑
s=1

Π̃s(Zs)(Qs +Rs +us)KH2,

then using similar techniques to those used in the proof of theorem 4.2.2 we can say that
UT 2 → 0m×m as T |H2|1/2 → ∞

D.4 Proof of theorem 4.2.4

Here, as in the proof of theorem 4.2.1, we can write (4.6) as

β̂ (z1)) = e⊤2 S
−1
T,3(z1)TT,3(z1), (A.110)

where

ST,3(z) =

(
ST,3.0 S

⊤
T,3.1

ST,3.1 ST,3.2

)
, TT,3(z) =

(
TT,3.0

TT,3.1

)
,

and

ST,3.0 =
1
T

T

∑
t=1

π̂(Zt)Ω̂
−1(Zt)π̂(Zt)

⊤KH2(Z1t − z1),

ST,3.1 =
1
T

T

∑
t=1

π̂(Zt)Ω̂
−1(Zt)π̂(Zt)

⊤⊗ (Z1t − z)KH2(Z1t − z1),

ST,3.2 =
1
T

T

∑
t=1

π̂(Zt)Ω̂
−1(Zt)π̂(Zt)

⊤⊗ (Z1t − z)(Z1t − z)⊤KH2(Z1t − z1),

and

TT,3.0 =
1
T

T

∑
t=1

π̂(Zt)Ω̂
−1(Zt)YtKH2(Z1t − z1),

TT,3.1 =
1
T

T

∑
t=1

π̂(Zt)⊗ (Z1t − z)Ω̂−1(Zt)YtKH2(Z1t − z1).
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We start the analysis studying the inverse term in (A.110), S−1
T,3(z1); here we will show

that as T → ∞

ST,3.0 = Γ(z1) f (z)+oP(1), (A.111)

where Γ(z1) = E
[

π(Zt)Ω
−1(Zt)π(Zt)

⊤∣∣Z1t = z1
]
; to this end, let

ST,3.0 =
1
T

T

∑
t=1

π̂(Zt)Ω̂
−1(Zt)π̂(Zt)

⊤KH2(Z1t − z1)

=
1
T

T

∑
t=1

π̂(Zt)
[
Ω(Zt)+ Ω̂(Zt)−Ω(Zt)

]−1
π̂(Zt)

⊤KH2(Z1t − z1)

=
1
T

T

∑
t=1

π̂(Zt) [Ω(Zt)+oP(1)]
−1

π̂(Zt)
⊤KH2(Z1t − z1)

=
1
T

T

∑
t=1

π̂(Zt)Ω
−1(Zt)π̂(Zt)

⊤KH2(Z1t − z1)+oP(1) (A.112)

where the third equality comes from the fact that Ω̂(Zt)−Ω(Zt)→ 0m×m and T |H2|1/2 →∞,
(see, proof of theorem 4.2.3). The rest of the proof is similar to the proof of theorem 4.2.2;
therefore we can conclude that

ST,3.1 = 0dq×d, (A.113)

and
ST,2.2 = Γ(z1) f (z1)⊗H2µ2(K)+oP(H2). (A.114)

Then, by (A.111), (A.113) and (A.114),

S
−1
T,3(z) = Γ

−1(z1) f−1(z1)⊗diag
{

1+oP(1),H−1
2 µ

−1
2 (K)+oP(H−1

2 )
}
. (A.115)

Now, we just need to study TT,2(z); note that by the same reasoning as (A.112) we can
write

TT,3.0 =
1
T

T

∑
t=1

π̂(Zt)Ω
−1(Zt)YtKH2(Z1t − z1)+oP(1),

TT,3.1 =
1
T

T

∑
t=1

π̂(Zt)⊗ (Z1t − z)Ω−1(Zt)YtKH2(Z1t − z1)+oP(1).
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Then, as in the proof of theorem 4.2.2 we center the vector TT,2(z) by replacing Yt with
Yt −Πt(Zt)

⊤η(z1) and observe that

T
∗
T,3(z1) =

1
T

T

∑
t=1

Π̃t(Zt)Ω
−1(Zt)

[
Yt −Πt(Zt)

⊤
η(z1)

]
KH2(Z1t − z1)

=
1
T

T

∑
t=1

Π̃t(Zt)Ω
−1(Zt)

[
X⊤

t β (Z1t)−Πt(Zt)
⊤

η(z1)+ut

]
KH2(Z1t − z1)

=
1
T

T

∑
t=1

Π̃t(Zt)Ω
−1(Zt)

[
X⊤

t β (Z1t)−Πt(Zt)
⊤

η(z1)
]

KH2(Z1t − z1)

+
1
T

T

∑
t=1

Π̃t(Zt)Ω
−1(Zt)utKH2(Z1t − z1)

= TT,3.1 +TT,3.2. (A.116)

Following the same lines as in the proof of theorem 4.2.2

TT,3.1 =

(
1
2 Γ(z1) f (z1)µ2(K)diagd

[
tr
(
Hβr(z1)H2

)]
id +oP (tr(H2))

OP

(
H3/2

2

) )

+

(
OP (tr{H1} tr{H2})+oP

(
(T |H2|1/2)−1/2

)
+OP (tr{H1} tr{H2})

OP

(
tr{H1}H3/2

2

)
+oP

(
(T |H2|1/2)−1/2

)
+OP

(
tr{H1}H3/2

2

) ) (A.117)

and

TT,3.2 =
1
T

T

∑
t=1

Πt(Zt)Ω
−1(Zt)utKH2(Z1t − z1)

+

oP

(
(T |H2|1/2)−1/2

)
oP

(
(T |H2|1/2)−1/2

) . (A.118)

It is clear that E(TT,3.2) = 0d(q+1) and applying Step 2

T |H2|1/2Var(TT,2.21) = Γ(z1) f (z1)⊗diag
{

R(K)+oP(1),H2µ
2
2 (K)+oP(H2)

}
. (A.119)
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Now we need to establish the asymptotic normality of

√
T |H2|1/2i⊤d(q+1)TT,3.2 =

√
T |H2|1/2 1

T

T

∑
t=1

i⊤d(q+1)Πt(Zt)Ω
−1(Zt)utKH2(Z1t − z1)+oP(1)

=
1√
T

T

∑
t=1

Vt(t)+oP(1), (A.120)

where

Var(Vt(t)) = i⊤d(q+1)Γ(z1) f (z1)⊗diag
{

R(K)+oP(1),H2µ
2
2 (K)+oP(H2)

}
id(q+1) = Σ(z1)

and ∑
T
t=2 |Cov(Vt(1),Vt(t))|= oP(1). Note that by construction and assumption 4.2.1 Vt(t)

is strictly stationary and α-mixing, thus the large-block and small-block technique can be
applied in order to prove the asymptotic normality. To do so, we partition the set {1, . . . ,T}
into 2kT +1 subsets with large blocks of size ℓT , small blocks of size sT and the remaining
set of size T − kT (ℓT + sT ), where

sT → ∞,
sT

ℓT
→ 0,

ℓT

T
→ 0,

kT sT

T
→ 0. (A.121)

For instance, for any φ > 2, ℓT = ⌊(T |H2|1/2)
φ−1

φ ⌋, sT = ⌊(T |H2|1/2)
1
φ / logT⌋; thus kT =

o(sT ). Then, for s = 1, . . . ,kT define

Ṽs =
sℓT+(s−1)sT

∑
t=(s−1)(ℓT+sT )+1

VT (t); V̄s =
s(ℓT+sT )

∑
t=sℓT+(s−1)sT+1

VT (t); V̂ =
T

∑
t=kT (ℓT+sT )+1

VT (t).

Then √
T |H2|1/2i⊤d(q+1)TT,3.2 =

1√
T

{
kT

∑
s=1

Ṽs +
kT

∑
s=1

V̄s +V̂

}
=

1√
T

{
JT,1 + JT,2 + JT,3

}
, (A.122)

and we will show that as T → ∞

1
T

E(JT,2)
2 → 0,

1
T

E(JT,3)
2 → 0, (A.123)

∣∣∣∣∣E [exp(JT,1)]−
kT

∏
s=1

E
[
exp
(
Ṽs
)]∣∣∣∣∣→ 0, (A.124)
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1
T

kT

∑
s=1

E
(
Ṽ 2

s
)
→ Σ(z1), (A.125)

and that for every ε > 0

1
T

kT

∑
s=1

E
[
Ṽ 2

s I
{
|Ṽs| ≥ εΣ

1/2(z1)
√

T
}]

→ 0. (A.126)

Clearly, these four conditions imply that the sum over the small and residual blocks are
asymptotically negligible in probability and that Ṽs are asymptotically independent. Besides,
we have the standard Lindeberg-Feller conditions for normality of T−1/2JT,1.

We start the analysis by showing (A.123) and (A.125). It is easy to show that

E
(
J2

T,2
)
=

kT

∑
s=1

Var(V̄s)+2 ∑
0≤ j≤s≤kT

Cov
(
V̄j,V̄s

)
= J3.1 + J3.2,

and by stationary and assumption 4.2.5,

J3.1 = kT Var(V̄1) = kT Var

(
sT

∑
t=1

VT (t)

)
= kT sT [Σ(z1)+o(1)] ,

and

|J3.2| ≤ 2
T−ℓT

∑
s1=1

T

∑
s2=s1+ℓT

|Cov(VT (s1),Vt(s1))| ≤ 2T
T

∑
s=ℓT+1

|Cov(VT (1),Vt(s))|= o(T ),

Hence, by (A.121), kT sT = o(T ), so that E(JT,2)
2 = kT sT Σ(z1)+o(T ) = o(T ). Besides, by

the stationary condition, (A.121) and (A.119) we get

Var(JT,3) = Var

(
T−kT (ℓT+sT )

∑
t=1

VT (t)

)
= O(T − kT (ℓT + sT )) = o(T ).

From Lemma D.0.2,∣∣∣∣∣E [exp(JT,1)]−
kT

∏
s=1

E
[
exp
(
Ṽs
)]∣∣∣∣∣≤C(kT −1)α(sT )→ 0,

159



Proofs of Chapter 4

which proofs (A.124). Now it remains to prove(A.126)

E
[
Ṽ 2

s I
{
|Ṽs| ≥ εΣ

1/2(z1)
√

T
}]

≤ CT−δ/2E
[
|Ṽs|2+δ

]
≤ CT−δ/2ℓ

1+δ/2
T

[
E|Ṽs|2(1+δ )

](2+δ )/(2(1+δ ))
,

and it is easy to show that
E|Ṽs|2(1+δ ) ≤C|H2|−δ/2,

then by the definition of ℓT

1
T

kT

∑
s=1

E
[
Ṽ 2

s I
{
|Ṽs| ≥ εΣ

1/2(z1)
√

T
}]

= O
(

T−δ/2ℓ
δ/2
T |H2|−1/2(2+δ )δ/(2(1+δ ))

)
= O

(
T−δ/2(T |H2|1/2)δ/4|H2|−1/2(2+δ )δ/(2(1+δ ))

)
= O

(
T−δ/4|H2|−

1
2(1+ 2

1+δ )
δ

4

)
→ 0,

by assumption 4.2.12. This proves Theorem 4.2.4
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Resumen

El objetivo de esta tesis doctoral es aplicar y desarrollar técnicas de inferencia estadística para
modelos de coeficientes variables. Por un lado, se investigan técnicas de inferencia estadística
basadas en la verosimilitud empírica para modelos de coeficientes variables continuos y
discretos, en un contexto de datos de panel con efectos fijos. Primero, demostramos que el
ratio de verosimilitud empírica para el coeficiente variable es asintóticamente chi-cuadrado.
El ratio es invariable a cambios de escala y no es necesaria la estimación de la varianza.
Como subproductos, proponemos los estimadores de máxima verosimilitud empírica de los
coeficientes variables. También obtenemos la distribución asintótica de estos estimadores
y proponemos algunos procedimientos para calcular los bandwidths empíricamente. Para
demostrar la viabilidad de la técnica y analizar sus propiedades en muestras finitas, imple-
mentamos un ejercicio de simulación de Monte Carlo, y también proponemos un análisis
empírico. Sería interesante ampliar los resultados obtenidos a modelos de coeficientes
variables con datos mixtos.

Por otro lado, se propone un test para detectar constancia de parametros en modelos de
coeficientes variables. Para regresores exógenos, el procedimiento para relaizar el contraste
se asemeja a los contrastes de unión-intersección (U-I) de estabilidad de parámetros en series
temporales. El test puede aplicarse para verificar la especificación de modelización de efectos
interactivos en modelos de regresión lineales. Debido a que el estadístico de contraste no es
asintóticamente pivotal, los valores críticos y los p-valores se estiman utilizando la técnica
del bootstrap. Para regresores endógenos, el test se define como un ratio de verosimilitud
generalizado que se enfoca en la comparación de la suma de cuadrada de los residuos del
modelo restringido y no restringido. Como subproducto, y mimetizando la literatura de
variables instrumentales, proponemos utilizar un procedimiento de estimación en tres etapas
para estimar los coeficiente variables; también establecemos las propiedades asintóticas de
los estimadores. Pra terminar, investigamos las propiedades en muestras finitas de nuestro
test por medio de experimentos de Monte Carlo. Aunque los resultados son prometedores,
serí interesante ampliar los resultados al marco de datos de panel.
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