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ABSTRACT. Ihis is a survey (including new results) of relations —sorneemergent,
others established— among three notions which the 1980s saw introduced into knot
theory: quasipositivity of a link; the enhanced MEinor nuniber of a fibered link; and
the new link poiynoniiats. The Seifert form taUs to determine these invariants;
perhaps diere exists an «enhanced Seifert form» which does.
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0.1. Knots, Iinks, surfaces; A link 18 a l-submanifold of S3, non-empty
and without boundary; a kno¡ is a connected link. A llnk type is an ambient
isotopy class of links. A surface is a 2-manifold which is connected relative to
its non-empty boundary; a surface F embedded in S3 is a Sefent surface
(for8fl. A. knot O for whicb sorne Seifert surface is a 2-disk is called an
unknot. The mirror ¡mage of XC S3, denoted by Mir X, is the image of X by
an orientation-reversing diffeomorphism of S3.

Let F be a Seifert surface. A push-off map F— S3\F: x —. x~ (unique up to
ambient isotopy) is defined by a field of positive normal vectors on F;
if b and c are 1-eycies on F then link(b, ci) depends only on the classes of
b and c in I-1

1(F;z); if l-cycles c1 Cd give a basis for 111(F;Z), then
[link (c1, 4)] =: L~ is a Seiferí matr¡x br F(or df), and represents the Setfer¡
form of F.

lf K is a knot and n is an integer, let A (K, ti) denote an annutus of £ype
K with n twis¡s--that is, A (1< ti) is a Seifert surface containing K, the class of
K generates Ji, (A (1=1,ti); Z), and LA (K n) is the l-by-l matrix [ti]. (Note that the
linking number of the two components of A (K, ti) is —n.) More generally, if
Lis a link andfis an irnegerframing of L (that is,fassigns an integer to each
component of L), then A (L,f) denotes the corresponding union of annuli.

Ihe posidve Hopf annulus is A (0, —-1) (its oriented boundary is a pair of
fibers of a positive Hopf fibration of S

3); the negaxive Hopf annulus is
A (0, 1) = Mir A (0, —1).

A link L is fibered if there is a fibration of S3\L over 5’ such that the
closure of each fiber is a Seifert surface for L (for example, O is fibered); a
fiber surface is any such Seifert surface. The fibration of a fibered link is
unique up to isotopy and a fibered tink determines its fiber surface up to
isOtopy.

Let K be a knot with tubular neighborhood N(K). A cable of type (m, ti)
on 1<, where ¡n>O and ti are integers, is a link K(m, nJ wbich lies on dN(K),
is homologous in N(K) to mK, has linking number ti with FC and has
GCD (ni, ti) components. If K is fibered then K(m, a] is fibered if and only if
n#O or m=l. In particular, 012,21 =e9A(O,—l) and O{2,—2]=OA (0,1)
are fibered. The positive and negative Hopf annuli are the only annuli which
are fiber suifaces.

If the Seifert surface F is the union of subsurfaces Y¡ and ~‘2, whose
intersection is a 2k-gonal 2-disk with alternate edges on OF

1 and OF2, and if
there is a 3-disk D

3 in 53 with F, =D3ÑF, F
2=(S

3\Int D3)ÑF, tben Fis
called a Murasugí sum of F

1 and F2, denoted F= E, *F2; if also k = 2 and
E2 A (FC ti) and the 4-gon E1 ÑA (FC ti) meets both components of dA (K, ti),
then Fis a plurnbing olA (FC a) to E,.
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A Murasugi suni of two fiber surfaces is a fiber surface. If Xis fibered,
,n>l, and n#0, then ([N&R3]) the fiber surface for K{m,n~ is the
•Murasugi sum of a fiber surface for K[m, n/¡n~ and a fiber surface for
O (ni, nj, cf. Figure 0.2.

fl~a

1%)
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*

X(2,3}=e9F 0(2 31*K12,l]

0.2. FIGURE

A Hopf-plunibed surface is either a disk or a plumbing of A (0, ±1)to a
Hopf-plurnbed surface; a Hopf-plumbed surface E isflat if

F(...((D2*A,) *A
2)

tAm, A=A(0,sff)) s(i)=+1,
where ((...((D2*A,)*A

2...)*A,,)ÑA, CD
2 for ¡=2 ni.

Figure 0.3 illustrates sorne Hopf-plumbed surfaces.

not fiatfiat

0.3. FIGURE
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0.4. Bra¡ds and bands. For elements x, y of any group, we will write
Xy := xyr’, [x, y]: = XyyA, c (x, y): xyxy’x—’y—’. The usual presentation
of ihe n—str¡ng braid group B0 has generators u(l <iCn~~I), and relators
[a¡,a1] (l<i<j—lSn—l) and c(u¡, a,-f-,) (l=i=n—2)..

It is convenient to generalize this ([Rut 3,15]). Let Tbe atree with vertex
set fi nJ (the edges of Tare unordered pairs of vertices); T 18 espaliered II,
wbenever 1 =bCj<k<m =n,then ¡ji, k} and [fmi are not both edges of 7’.
To an espaliered tree T corresponds a T-s¡aadard group presentation, as
follows: there is a (T-swndard) generator u, for cadi edge e and a relator for
each pair fe,fJ of distinct edges; for e and fdisjoint, the corresponding relator
is [u,,ad; for e and f with one common vertex, the corresponding relator is
c(u,, u,).

•theLet 1=111,2] fi, ¡±1] (n—l,tifl. If we abbreviate ~ to u~, then
1-standard presentation is exactly the usual presentation of 13,,; more

generally, for any espaliered tree 7’, the group of the T-standard presentation
is isomorphic to 4,, and becomes identical with it if, for 1=i<j=n,we
identify

01M with u
1~: =(u1u,± ,...b~~2)o=~~,(u¡u,s¡ a_2)’ e4,. The exponetil

sum e (¡3) of ¡3 E fi,,. with respect to the T-standard generators is independent
of 7’; in fact e: fi,, —~ Z is the abelianization hornomorpl-iism.

The (~) elements u~ of fi,, are calleé positive embedded bands in fi,,; their
inverses are tiegative embedded bands. A positive (resp., tiegative) batid is any
conjugate w~’ of a positive (resp., negative) embedded band; ah bands of a
given sign are, in fact, rnutually conjugate. A batid represeatation of ¡36 fi,, is
a word b=(b(1),...,b(k)) where each b(s) is a band in 4, and
13=13(b): = b (1) ... b (k); b is embedded if each b (s) is embedded. A braid is
quasiposihive if it is a product of positive bands.

0.5. Closed braids. With respect to a given fibration ir:S~\0—. 5’ for
the unknot, a link L (disjoint from O) is a dosed braid (mi ti strings) if w/L
is an orientation-preserving covering map (of degree ti). Figure 0.6 (where dic
axis O is drawn in, and ir is left to dic imagination) is a reminder of the
familiar way to construct a closed braid 13”, calleé thc closure of fi, from a
braid ¡3e4,; it also establishes orientation conventions. Conjugate elements
of fi,, determine closed braids of the same link type, and, conversely, a closed
braid determines a conjugacy class in fi,,. A well-known theorem of
Alexander says that (with O and ir fixed) every link type contains closed
braids.

0.7. Braided surfaces. Figure 0.8 shows how to construct a Seifert
surface 5(b), cquipped with a handie decomposition into n 0-handíes and k
1-handies, from an embedded band representation b=(b(l) b<’k)) in 13,,;
dic boundary of 5(b) is ¡3” (b):=fi(b)”. Such an S(b) is calleé a braided
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LA-
o

K=(a, og2)”, ti=4

0.6. FIGURE

surface (as always, with respect to a given fibration ir:S~\O—.S’ for the
unknot). Every ambient isotopy class of Seifert surfaces in 53 contains
braided surfaces 5(b); it 18 not true, however, that givcn a Seifert surface 5
for ¡3”, tbere is nccessarily an embcddcd band representation b of ¡3 such that
5(b) is ambient isotopic to 5 by an isotopy fixing ¡3”.

b (3) a
2 fi5

b(2)aj4cB5
b (1) = 6

5(b)

0.8. FIGURE

(Note: in [Ru4, 15] it is shown 1mw to construct a «Seifert ribbon» 5(b) -

-that is, according to taste, either a ribbon-immersed surface in 53, or a
ribbon-crnbedded surface in L~, in either case bounded by ¡3” (b) --from a
not-necessarily-cmbedded band representation b. Except for Remark 4.6, we
will ignore this more general situation.)
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0.9. Generalized homogeneous braids. A T-braidword is an embedded
band representation Ii such that, for cvery s, eithcr b (s) or b (sft’ is a
7’-standard generator. lf every T-standard generator appears either as sorne
b(s) or as sorne b(s)—’, thcn b is siria; if no generator of the T-standard
presentation appears both as sorne b(s) and as sorne b(t’, then b is
homogeneous. A T-braidword surface 5(b) is a fiber surface if and only if b
is stríct and hornogeneous. (The «if» statement is proved by [St] and [B&W],
though diese authors treat cxplicitly only the case T= t cf. also [Rul 4]. Here
is a sketch proof of the «only if» statemcnt: (1) if b is not strict, then 5(b) is
casily seen to be disconnected; (2) u b is not homogcneous, then 5(b) is
almost as easily seen to be compressible; but (3) a fiber surface is connected
and incomprcssible.) According to [Rul 3], the class of strict homogeneous 7’-
braidword surfaces (for ah possible ti and 7’) is coextensive with the class of
fiat Hopf-plumbed surfaces. (This is somewhat sharper than the combination
of the two well-known facts that (1) a strict homogeneous T-braidword
surface 5(b) is an iterated Murasugi sum of surfaces 5(b,) S(b,,,) where
each h1 is a strict hornogeneous I-braidword in ~2, and (2) each strict
homogencous J-braidword surface in ~2 is a fiat Hopf-plumbed surface.)

1. REVIEW OF QUASIPOSITIVITY

1.1. Definition. A SeVerí surface E is quasipositive ~f it is ambiení
isotopic ¡o a braided surface 5(b) where each b (s) ¡ti ¡he ernbedded band
represeníahon b is positive. A link L is quasipositive ifL is ambiení isowpic
¡o (he closure ofa quasipositive braid, atid strongly quasipositive ~f¡here isa
quasiposhive 54/en surface for L. ¡

1.2. It is known that no invariant of the Seifert form (e.g., Alexander
polynomial, equivariant signatures) can detect thc presence or absence of
(even strong) quasipositivity.

Theorem [Ru 5]. Leí F be a Se Ven surface, L~ ¡is 54/en rna¡rix (with
respea ¡o sorne honiology basis of J-cycles,). Then here is ati embedding
i: F —. S

3 such thai i (F) is quasipositive atid (he SeVen rnatrix L~ ~ (whh
respecí w ¡he corresponding hornology basis of J-cycles) equals L~. ¡

1.3. A subsurface G of a surface E isfulí if every simple closed curve on
G which bounds a disk on E already bounds a disk on O.

Theorem [Rul]: A fulí subsurface of a quas¡~osiñvé sunface is quasiposí-
(¡ve. ¡

1.4. For integers ni, ti, with zn>0, titO, let d{rn,nJ be the I-braidword
of length (rn—l)¡ti[ in ~m with d{rn,tifli+(m—l)j)=a~ (¡=1 rn—l,
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j=O,...,n—l) ifti>O, dQ+(rn~I)fl—ur’ (i=1 m—l, j=0 —n—1) if
n<0. Then d(mnl is strict and homogeneous, so S(d{ntti}) is a fiber
surface (in fact its boundáry is O {m, ti], the torus link of type (m, ti)).

Theorem [Rul]. A SeVer¡ surface Eis quasipositive ~and only 1/ for sorne
n>0, Fis ambiení isotopie ¡o afulísubsurface of S(d(n,n)). ¡

This should be compared with a theorem of Herbert Lyon [L], which
shows that, for any Seifert surface E, there is an ti >0 such that E is ambient
isotopic to a subsurface of the boundary— connected sum of S(d(n, n)) with
its mirror image S(d(n,—n)).

1.5. Theorem [Ru6]. For atiy K, ¡here exists qe?? such ¡bat A (K, n) is
quasipositive V~ ~ q. (More genera¡ly, for any link L, ihere exisis afranuing
f of L such ¡bat A (L, f9 is quasiposilive V f’ is less ¡han or equal. ¡o f
coniporzentwise.) 1

1.6. Theorem [Rul3]. A plurnbirzg F=F,*A(K,n) Ls quasipositive V
(and, by 1.3, only V) both E¡ atid A(K,n) are.

1.7. Conjecture. An arbitrar>’ Murasugi surn of quas¿vosi¡ive surfaces
is quasipositive.

APPENDIX to Section 1: Knot theory of coínplex plane curves.

Por a more detailed survey of the knot theory of complex plane curves, up
to 1982, the reader is referred to [Rul4] (where, regrettably, Suzuki’s 1974
paper [Su] went unnoticed). Sorne post-1982 references are included below,
as appropriate, but 1 make no claims for completeness.

Let FC C2 be a complex-algebraic curve (reduced but not necessarily non-
singular or irreducible), (O,0)eF. For r>0, set D4(r):={(z, w)6C2:
1z12+IwI’=r21,53(r) :=0D4(r).

IA.1. Problem. Describe ¡he topological type of ¡he pair

In other words, study complex curves in complex 2—space via their
topological placement in the large--x.e., not necessarily either «in the small»
(infrnitesimally) or globally, but in a «middle range» (which at its limits
encompasses both extremes).

By «passing to the boundary of the situation» we may pose a more specific
problem. The (dense open) subset R<T) of regular points of F is of course a
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smooth 2-submanifold of C2; for alí but finitely rnany radil re]0,oo¡j, S3(r)
intersects 1” only at points of R (E), and there transversely, so that dic
(naturally oriented) intersection L (17, r): = 53 (r)fl E is a link (it is not empty,
by the maximum modulus principie for E).

IA.2. Problem. Describe (he lirzk ¡j’pe of L(E, r).

In the extreme cases IA.2 is solved, or nearly solved; sometimes its
solution implies a solution for IAl.

1A.3. Example. Por fixed 17, ané alí sufficiently small r>0, the link
type of L(I’, r) is constant, known as the link of ¡he singu/ari¡y of E al (0, 0);
let L(E,0) denote a representative of this hink type. (Por instance, if
(0, 0) eR(f’) then L(J’,0)=O.) Links of singularities are cornpletely
classif¡ed, ané their topology is very well understood (cf. [E&N], [M&W],
and references cited therein). Here are sorne facts: L (E, O)is an i¡era¡ed ¡orus
linlc, obtained frorn an unknot O by successive cabling operations; L(E,0) is
fibered, [Mi]; if L(E,0) isa slice knot (Le., the boundary of sorne smoothly
embedded 2-disk in the 4-disk) then it is trivial [U]). Furthermore [M], for
small r, the pair (D4(rj fY(r)fl 17) is homeomorphic to the cone on
(53, L(E,0)), so in this case Problem 1 also is solved. ¡

14.4. Example. Por fixed E, and alí sufficiently large r, the link type of
L(F,r) is constant, known as the Iink-a¡.inflniíy of E; let L(F,oc) denote a
representative of this link type. Links-at-infinity have been much less studied
than links of singularities; they are partially classified, and a good
understanding of their topology is beginning to emerge (cf. [Su], [Ru7],
[N&R3], and especially dic beautiful paper [Ne]). Here are sorne facts:
L(f’,oo) is an iterated torus link; L(E,co) need not be fibered, but is often
«approximated» by a fibered link (or «fibered rnultilink»), [Né]; if L(E,oo) is
a slice knot then it is trivial, [Ru7]. Furthermore, according to [Ne], L(fl, oc)
often (but not always) determines (¡Y (r). Ji» (r)Ñ E) for large r (and non-
singular T’)--again, a solution to 14.1 in an extreme case. ¡

In contrast with links of singularities and liñks-at-infinity, general links
L(E,r) seem haré to get one’s hanés on (although sorne progress has been
made by Fiedíer [FI-2]). They need not be iterated torus links, they need
not be fibered (even approximately), ané they can be slice but highly
nontrivial, [Ru2].

XA.5.Caution. In [Rulí] it is shown that, given an arbitrary pair (¡Y, 5),
where 5 is an oriented surface (without closed cornponents) srnoothly ané
properly embedded in Ji», there is a srnooth ernbedding i:D4 C. £2 aud a
complex-algebraic curve 1’ such that i (5) is a connected component of
PÑi(D4). Thus IA.1 and IA.2 may becorne uninteresting if modified to omit
such geornetrical hypotheses as the roundness of 1Y(r) (the point is that one
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has no control over the geometry of the ernbedding; i(JY) may be very
twisted--e.g., not convex or even pseudoconvex). ¡

To rnake further progress, we change the terms of the problems. Given E,
after an arbitrarily small unitary change of coordinates in £2 we may assume
that its reduced defining polynomial ja [z, w] is rnonic in w when written in
Weierstravs forrn, i.e., f(z. w)=w”-vf,(z)w”—’+...-i-f,,(z) for sorne n>0 ané
f(z)eC [.. There isa finite set Zsuch that, ifzcc\Z, then {w:f(z, w)=0]
contains n distinct points. Let RGC be a srnooth 2-disk such that ¿9RCC\Z.
There exists M>O such that, 11 zcOR ané f(z,w)=0, then lwI CM; a
maxirnum modulus argument (using the rnonicity offin w) shows that then
¡w¡<M whenever zeR and f(z,w)=0. The product D:=R.x{wct:
w¡=M]is a piecewise-smooth 4-disk; ~D is a 3-sphere-witb-corners

equipped with a natural genus-1 Heegaré splitting into srnooth solid tori
c9,D:=ORx{wcC: w¡=M} and 02D, ané we have just seen that
FO OD= EÑO,D. In fact (with the notion of closed braid modified in an
obvious way) ¡he lirzk 1’ ÑOD is a closed braid in OD.

IA.6. Theorem [Ru2]. Such a closed braid is quasipositive. Conversely
(eveti Vl7~ is resíricíed ¡o be {(z, w): ¡z¡=l,IwI=1D,up to isotopy through
closed braids every quasiposilive closed braid can be realized cts IÑODfor
sorne (non-singular) cornplex algebraic curve E. Furihermore (afier identjfyinga 11) wi¡h 53 by rouuzding i¡s cortzers), every quasi»osi¡ive closed braid FO OD
can be realized cts L(F’, r)for sorne 1” atid r>0. ¡

This was the original motivation for studying quasipositive links.

IA.7. The link of a singularity 18 quasipositive; that is, though L(F, 0)is
delineé a priori as the intersection of 17 with a small round sphere, a link of
the sarne type can be realized (after at worst a linear change of coordinates)
as the closed braid intersection of a curve and a bidisk boundary, so 1A.6
applies. (Ibis is a standard trick, cf. [1)2], which basically bojís down to the
existence oftangent unes for the branches of a singularity.) In fact, it can be
seen that the fiber surface of L(F, 0) is quasipositive, so ¡he link of a
singular»>’ is sirongí>’ quasipositive.

A link-at-infinity is quasipositive (again, the proof is easy), but need nol
be s¡rongly quas¡~osiuive (cf. the last paragraph of §4).

As in [RuS], it is still not known (to me) whether or not every link L(I’, r)
15 quasipositive.

2. REVIEW OF THE ENHANCED MILNOR NUMBER

Although the theory of the enhanced Milnor number can be extended in
various ways (to fibered links and multilinks in other 3-rnanifolds, [RuS],



94 Lee Rudo/ph

[N&RI]; to fibered links in higherdimensional spheres, [N&R2]; perhaps,
using work of Gabai, to arbitrary non-split hinks in 53), this review will be
limited to fibered links in 53, approached via isolated critical points.

We identify the three real vectorspaces ~, £2, and 01 (the real
quaternions), in the usual way. Then the group S3=S3(l)GD~ of unit
quaternions contains the (quaternionic) square roots of —1 as its great 2-
sphere 53 of pure unit quaternions.

If Mis a 2-by-4 real matrix of rank 2, let (u(M), v(M)) be the ortho-
normal frame obtained by applying the Gram-Schrnidt process to the rows of
M: so u (M) and y (M) belong to 53 ané are mutuahly orthogonal. Then
p(M):=v(M) u—’ (M)e 52.

([he referee has kindly contributed this geometrical interpretation of
p (M): «represent 53 ~ stereographic projection as 0? 3+oo», where the space
of pure quaternions 0? ~ is also the tangent space to 53 at 1; «then p (M) is the
helix turn of angle 42, pushing forward ir!2 ané sending u (M) to y (M).»)

Let f: (0?~, O)— (0? 2,0) be continuous, ané smooth in a punctured
neighborhood of O E IR ‘~. Then f has ati isolaled critical poiní (at O) if the
2-by-4 matrix Df(X) (i.e., the total differential offat X) has rank 2 for ah
X#0 of sufficiently small norm. In this case, ahí the maps
(u o Df p o DflJ 53(E): 53(e) 53>< 52, for sufficiently small e> 0, determine
die same element of w

3(S
3xSY)=w

3(S3)®,r3(52).

Of course irÁ53)ew3(S
2)~zez. We choose the isomorphism so that

(id,*) corresponds to (1,0) and (*, H) to (0, 1), where
H:S3~S2:v w)—.(¡z¡2—-Iw¡2,2zw) isa negative Hopffibration, and we let
(g(/O), >«f O)> denote the homotopy class in question. Direct calculation
now shows that, if f(z, w)=z2±w2(complex coordinates), then (p(f;O),
X(f0))=(1,0), whereas if f(z, w)~z2± iV then (¡HfO), X<fO)) = (1, 1).
More generally, the following 18 readily established [Ru8], [N&R3].

2.1. Theorem. Leí f have ati iso/ated cri¡icalpoitií al O ¡‘ben X (f; O) = O
Vf is cornp/ex-analy¡ic near O. Leí Q (z, w) = (z, «‘). ¡‘¡¡en p(f o Q; O) = p(f; O)
atid X(f

0 Q; 0)p(f;O)—X(f;O). ¡.

Now we are ready to introduce (g, A) for fibered links.

Let f:(0?tO)—.(IR
2,O) have an isolated critical point at O. Following

Kauffman & Neumann, we define the isolated critical point off at O to be
lame iffor alí sufficiently small e>0, (1) the set f’’(O) (wbich isa smooth 2-
manífold in a punetured neighborhood of O) intersects 53(e) transversely, and
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(2) for alí sufficiently small 6=8(e)>0, D(f.~ 6, c):=D4(e)flfr’ (D2(6)) isa
4-disk-with-corners; ané we observe that, if (1) and (2) hold, then
f—’ (O) ÑO D <j8, e) is a fibered link in the (piecewise-smooth) 3-sphere
OD(f8, E), with arnbient isotopy type L(fiO) depending only on (the germ of)
f Furthermore ([L], [K&N]), every type of fibered link occurs as L(fiO) for
sorne tame f ané if L (f• O) = L(g; O) then ([K&N]) fand g are equivalent in
a sense strong enough to make 2.2 work.

2.2. DJrnition. Jf L is a fibered ¡itik, ¡¡¡en (ji (L). A (L))= (ji (fO).
X(f,~O))for anyfwiíhL=L(f 0). 1

2.3. Theorem. 1fF is afiber surface, (¡¡en ji (OF) is ¡he firsí Betli number
of

Theorern 2.3 is due to Milnor [Mí] in the cornplex-analytic case; a proof
in the general case can be given along exactly the same unes [N&R3]. It is
now standard to cali the first Betti number of dic fiber surface of a fibered
link the Miltior number of the link. We will calI (ji, A) dic enhanced Miltior
number, ané A tite enhancernení.

The next result, proved quite otherwise in [RuS], is imrnediate from 2.1.

2.4. Theorem. X(K)+
1k(Mir K)=g(’K). ¡

2.5. Example. The posilive Hopflink dA (0, ~Ll) is L (z
2±w2;(0,0)), the

sunplest non-trivial link of a cornplex plane curve singuharity. Its Milnor
number is 1. By 2.1, X(OA(0,—l))=0; by 2.4 (or direct computation),
X(c9A (0, 1))1.

2.6. Ihe development of the enhanced Milnor number through isolated
critical points ties it suggestively to the geornetry of two cornplex variables.
(Another way to think of the enhancernent is as the obstruction to extending
the almost-complex structure «left multiplication by poDf» over O, up to
homotopy.) It is also useful, however, to have methods of calculation which
take place purely «in the 3-sphere». One such (whose proof, though, does
rnvolve an excursion into the 4-disk) is the following.

Theorem [N&R3]. ¡‘he enhanced Miltior number is addi¡ive ayer
Murasugi surns. 1

(Actually, it is additive over a more general composition of fibered links,
unfolding, which was introduced in [N&R3].)
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2.7. Corollary. Jf E is a Hopf-plurnbed surface, then X(OF) is ¡he
nurnber of tiegalive Hopf annuli in atiy p/urnbitig preseníation of E. (Of
course g(OF) is ¡he ¡ola! tiumber of Jlopf antiuli.)

Proof: Immediate from 2.5 ané 2.6. ¡

In particular, one has the formula for Á(dS(b)), ha strict homogeneous
T-braidword, which was derived by entirely different methods in [Ru9]:
X(c95(b))=#{s, l=s=k:b(s)is the inverse of a T-standard generator 1---
#( ¡LJ]eT:for sornes with l=s=k,b(s)= cUjí].

2.8. A second method of calculation «in the 3-sphere». this one from
[N&R 1], applies to cables on fibered knots, ané has an irnportant corollary.

Theorem. Leí K be a fibered kno¡, rn>0 atid ti#0 in¡egers. ¡‘¡¡en
X(K{rn,n])=X(K) ¿1 n>0, X(K{rn,n})=X(K)+(m—l) (g(K)—n--l) ¿1
n<0. 1

Corollary. ¡‘he enhancernení is nol de¡errnined by ¡he Seferíforrn. (Of
course ¡he Miltiornumber ofFis deíerrnirzedby Me 54/en fon of F--infact,
¡¡y ¡he Alexander polynornial of OF.)

In fact, if K is any fibered knot other than the unknot, ané m is any
integer greater than 1, then the fiber surfaces of K{m, 1} ané K{rn, —1] have
identical Seifert matrices (with respect to an obvious diffeomorphism of the
surfaces), but different enhancements.

2.9. Another result of [N&RI] is that the enhancement can take on any
value in Z. In light of 2.7, this provides graphic evidence of how far the class
of Hopf-plumbed links is frorn exhausting the class of alí fibered links.

3. REVIEW OF THE NEW LINK POLYNOMIALS

This exposition follows [Ru 3], which is closely based (except for the
framed polynomial) on [Li].

~KXi’
3.!. FIGURE
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L.

3.2. FIGURE

Let L± ,h~ and L... be tbree links with diagrarns identical except as
indicated in 3.1. If dxc visible crossing (of L+ ané L) involves just one
cornponent, then segrnents of two components of I1~ are visible; let p be the
linking number of tbe riglxt-hand component of L« with the rest of Lo, and let
L be the link indicated in 3.2 (i). If the visible crossing involves two
cornponents, let q be the linking number of the bottom-right to top-heft
component of L+ witl-x the rest of L+, ané let L. be the link indicated in
3.2(u).

3.3. Theorem ([FYHLMO], [P&T]). ¡‘¡¡ere is one and only one way lo
assign each link L an elernení ~L of [v± í, z~’] so as lo sa¡isfy:

(Pl) P0=l;
(P2) P,4 = vzPk-f.v

2 ~L for ah insíances of 3.1. ¡

In 3.3, dic choice of variables y ané z follows [Mo]. Though 1 would wish
it otherwise, Morton’s evocative name «twisted Alexander polynomial» for
~L has not caught on; 1 will follow [Li] and cal! ~L the orieníed polynornial
of L.

3.4. Tbeorem ([&9). ¡‘¡¡ere is oír atid onu>’ one way ¡o assign each link L
an element FL of [a±I,x±í] so as to saúsfy:

(FI) F
0=l;

(F2) a FU+aíF¡=x(Fk+a
4PFIJ br alí instances

of Case 1 (resp., ~F+aíF~=x(F~+a4~+2F¡j
for alí instances of Case 2) of 3.1 and 3.2.

Again following [Li], 1 will calI EL the seiní-orieníed polynornial of L.

Each of these 2-variable Laurent polynornials can of course be specialized
to a 1-variable Laurent polynomial in infxnitely many ways. In particular,
~L(’, t—’I2—¡’/2)—A~¿’t) is tbe classical Alexander polynomial of L;
~L(l. t’12—t—’12) VL(l) = FL(l~3f4, —(r’14± t’14)is the JonespolynomialofL
(see [1]; the seconé equality is dueto Lickorisb, [Li]);and FL(l,x)= QL(X)
is the absoluíepotynornial of L ([BLM], [II]). Examples show that, of alí
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these polynomials, only the Alexander polynomial can be calculated from a
Seifert matrix for L.

In [Ru 3], 1 introduced sorne technical modifications of P1> which turn out
to be useful in the theory of quasipositivity.

3.5. Notations. Let [L,j] denote F~ (Lfl’ where fis a framing of L (cf.
0.1). Let u denote [0, 0] = (v—’—v) r-’. (Of course dA (0,0) is the unlink of
two components.)

Although uis not invertible in Z [v± í,z± ¡], it can be handy to invert it
forrnally, and with discretion to interpret u

1 as P~, where ~‘ is odie empty
hink» (which is «the unlink of O cornponents»).

3.6. Proposition. (1) Leí —L denole
~—L—~L (2) Leí Mir L denole
PMirL(V, z) = PL(—v, z). (3) For n=
componenís; ¡¡¡en P

05= u”—
1. (4) Leí L,

L
2; ihen PLI’~L2=u P1, ~L2 (5) Leí fatid

on the componení K,
[L~K,fl~rv

2c[L,fl. ¡

L wilh lis orieníation reversed; then
(he mirror image of L; í¡¡eti

O, leí O,, detioie an unuink of n
~ L

2 denote Ihe sp/ii sum of L, ami
fi beframings of L which d<ffer only

wií¡¡ f’(K)=f(K)±c;

Proof: These are alí well-known consequences of
consider 3.7, wbere c=—l).

(Pl) ané (¡‘2) (to see (5),

SA (FCf(K))
C SA(L,f)

0C049A(L—FCf)

r
<I-

SA (K,j(K))
C OAQf)

3.7. FIGURE

3.8. Delinition. Leí L be a link wiíh ti componenís, fa frarning of L.
¡‘¡¡e frarned polynomial [L,fleZ[v±¡,z±¡] Ls u limes ¡he surn, over a!!
sublinks K of L (iticluditig it,), of QJJ—k [K,j] (where K has 1c componenís,
O~k~n); RdA (c/i,f) is of course 4,.

3.9. Proposition [Ru 3]. (1) {L,f] is independení of iheorieníation of L.
(2) [Mir L,f](v, z)={L,fl(—v’,z). (3) 10,01 = u

2—l.
(4)[L,\~L

2,f]=jL,,f]jL25f}. (5) v=f(LIL,flis independení of f, where f(L)
denotes ihe total frarning, ¡bat is, ¡he sum of ihe in¡egers which f assigns to
the conuponenís of L. (6) [L, f] is u’ ¡hes ¡he sum_of{K, f} over alí sublinks
K of L (in paticular, ¡bis sum is divisible by’u in Z [v”,z~’]). ¡
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3.10. Remark. Up to the normalizing factor u, {L,fl is a «Móbius
transform» of (U]. Yamada has made a general stuéy of Mñbius transforms
of link polynornials; 3.9(6) is essentially Proposition ¡ of [Y].

3.11. Notation. Let O be the framing which assigns Oto each component
of L; then {L] will denote {L, 0].

In this notation, 3.9 (5) becomes the attractively simple formula
{L,f} = v—2f(L)IL}.

3.12. Congruence theorem [Ru 3]. (1 +(lr’2±v2)r’~)EL(v—2,z2)Ls con-
gruení modulo 2¡o iAt(L4L](v,z). ¡

(Here ¡ (U) denotes the total linking of U, that is, the sum of the linking
numbers of alí pairs of components of L.)

3.13. Remark. As remarked by the referee of [Ru 3], the Congruence
Theorem is «a generalization, to alí values of vané z, but only modulo 2,» of
Prop. 10 of [Y], which relates--by equality, not congruence--a certain
specialization of the semioriented polynomial of U and a Móbius transform
of the iones polynomial of SA (L, 0).

4. QUASIPOSITIVITY AND THE NEW
LINK POLYNOMIALS

As already mentioned (1.2), the Alexander polynomial of a quasipositive
link is utterly undistinguished arnong alí Alexander polynornials. Of course,
the Alexander polynornial is also insensitive to handedness. lntuitively,
quasipositivity seems to be éeeply related to handedness. This intuition rnight
give sorne reason to hope that the oriented ané serni-oriented polynomials
(ané their cornrnon specialization, the Jones polynomial), wbich are sensitive
to handedness, should also be sensitive to quasipositivity. We will see in this
section that, in fact, suclx a hope is to sorne extent justified.

4.1. Notation. For any coefficient ring R ané indeterminates x, y, if
Al

S(x,y)=~ ~ ané S~,S~cR~y~’] are
7,,

non-zero, then ord~ 5: = ni, deg~ 5: = M. Trivially, for any quotient ring RIF,
jf S*(x,y)e<’RII)[x± I,y± l]denotes the reduction of 5 modulo L then
oré_S*=ord~S,deg

55*~deg~5.

4.2. Theorem. ([Mo], [F&W]). Forall¡3eR,,, ordVPfl-=e(13)—n+l.’¡

4.3. Corollary. Leí b be a quas¡~ositive embedded batid represeníalion
in B,,. ¡‘ben ord~ Py (b)=l—d, wbere d is ¡be number ofcomponenís of 5(b)
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wbicb are 2-disks. A/so, VS (b) is afiber surface, ihen ord~ ~ (b)> ji (¡3” (b)).

Proof: Because b is quasipositive, its length is e(¡3); thus n—e(13) is the
Euler characteristic of 5(b), so by 4.1, ord~ .Ps’(b)> l—dim 110(S(b); IR)±
dim Ji1 (5(b); IR). The contribution of each non-éisk cornponent of 5(b) to
—dirn H0(s(b); fl)±dimH, (5(b); IR) 15 non-negative, whereas the contribution
of each of the ddisks is —1; the first conclusion follows. The seconé is similar
by 2.3. ¡

4.t Corollary [Ru 3]. Leí f be a frarning of ¡he link L. If A (L, O is
quasiposilive, iben oré»{L, f} =0.

Proof: Imrnediate from 4.3, the definition of the frarned polynomial, and
standard properties of ord~. ¡

45. Corollary. If K is a sírongly quasiposilive kiwi olber iban ¡be
unknoí, ihen ord~iK,O]=0.

Proof: Let 5 be a quasipositive Seifert surface for K. Then a regular
neighborhood of K on É is A (KO) (the Seifert self-linking of K is O because
K bounds on 5). lf 5 is not a disk, then A (K, 0) is fuhí on 5 and therefore
quasipositive by 1.3, so ord~1K,O}=Oby4.4. ¡

4.6. Remark. In fact, 4.3. remains true (with the same proof) in the
context of not-necessarily-embedded bané representations and their associated
Seifert ribbons (cf the end of 0.8). This shows, for instance, that if a knot K
ané its mirror irnage Mir K are both quasipositive then they are shlce (actually
ribbon); thus, any non-slice kno¡ which ls frs own mirror irnage (e.g., the
figure-8 knot) is nol quasiposilive. This was the first proof that non-
quasipositive knots exist.

More can be said. According to Morton, ifa knot K ané Mir K are both
quasipositive, then ¡‘KÓ4Z)= 1 (=PMirx(V,Z)). It is not known if any hink
other than O has PK(v, z)= 1.

Conjecture. If a link L is such thai L atid Mir L are boíl> quasipositive,
ihen L ls an unlink (i.e., ji has a SeVerí surface wbicb is ilie union ofdisjoiní
2-disks). ¡

4.7. Corollary (converse to 1.5). For any knoí K, íhere exisis qE?? sucb
thai A (K, n) is nol quasipositive ~ n > q. (More general/y. for any link L,
ihere exisis qez such íhat A(L,f) is not quasipositive ~f(L)>q.)

Proof: By 4.4, this is the case for q=(1/
2) ord~ {FC O). ¡
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4.8. In light of 1.5 ané 4.7, we may define the modulus of quasiposi¡ivity
q (1<) of the knot K to be the greatest integer q such that A (FC q) is
quasipositive. (Fssentially this definition appears in [RuS], where, however,
the possibility of an infinite modulus of quasipositivity was left open.) The
proof of 4.7 sbows that q(K)=(l/2)ord~(K,OI. By 3.12, tbis implies tbe
weaker (but more easily calculated) bound q (K) =— ¡ —dega EX (a, x), where
FZ denotes the reduction of Ex modulo 2.

4.9. Examples. (1) Since A(0,—l)=S(b) where b=(u¡,a,) in ~2, the
modulus of quasipositivity of the unknot is=—l.By 4.8, q(O)=(I/2)ord~
{K,O1=(l/2)ord~(l—u)=—l/2. So q(O)=—l. (2) Since A(0j2,—3},
—6) = 5(b) where b is the quasipositive embedded bané representation

a, 2,a23,u34,ai ) in B5, q(O{2,—3fl=—6.By 4.8 ané a consultation
of the table of semioriented polynomials in [K]. q(0(2,—3)) <—6~ so
q(0(2,—3]) =—6. (The corresponding calculation using the framed polyno-
mial, without reducing the coefficients, can be done by hand--barely; the
forbidding prospect of similar calculations, for knots witlx more crossings
than the mere three of O[2,—3}, was the original motivation for the
investigation which led to the Congruence Theorem.)

4.10. Remark. There is sorne evidence that q(K) is the maxxmum
Maslov index of a knot of type K which is Legendrian with respect to the
standard contact structure on 53, cf. [Ar]; tbis is the case for O, [Be].

4.11. Corollary. Leí O be arz unknol lying on a quasipositive surface F.
Leí n=link(0. 0+) be ¡be Seferí self-linking of O on E. ¡‘hen n>0 atid
n=0 Vandontv VO bounds a disk on F.

Proof: A regular neighborbooé N of O on Fis an annulus A (O, —ti). If N
18 not a fuhí subsurface of E, then O bounds a disk on F, and n = 0. If N is fulí,
then (by 1.3) Nis quasipositive, so —r¡=—l(by 4.9). ¡

4.12. The next result can extracted from [Be], where it is proved with
different machinery (although, tantalizingly, the quantity e(/3)—n+l of [Mo]
ané [F&W] is prominent in [Be] also).

Corollary. A quasipositive surface is incompressible.

Proof: Tite boundary of a compressing éisk would be an unknot of self-
linking O which bounés no éisk on E. ¡

4.13. Corollary. A fibered link is sírongí>’ quas¡posi¡ive Of and,) onu>’ V
fis fiber surface is quasipositive.

Proof (of «only if»): A fiber surface is tite unique incompressible Seifert
surface for its own boundary. ¡
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In particular, a fibered hink is not strongly quasipositive if it itas A (0, 1)
as a Murasugi summand, or if it can be subjected to a Stallings-Harer
±l—twistor a (non-trivial) Stallings-Harer 0-twist (cf [St.], [Ha], and--for
the present notation--[N&R 1]).

Must a quasipositive fibered link be strongly quasipositive? 1 do not
know. However, a rzon-fibered quasipositive link need nol be strongly
quasipositive. For instance tite closure K of U> U~ u~2 6133 itas 3 unknotted
components 0,, 02, 03, witere (say) link (02, O>+03)=0, so titat on any
Seifert surface Efor K, tite Seifert self-hinking of ~2 isO, yet ~2 cannot bound
a disk on Esince link(02, O,)#O. (It is interesting to note titat Xis tite link-
at-infinity of E={(z, w)eC

2:z(zw+l)=0j, cf 1A.7; this is most easily seen
rn tite boundary of a large bi-disk.)

4.14. Remark. In a recent preprint [E3], Piedíer derives various
interesting results on the iones polynomial VL(í), ané states a conjecture
witich can be pitrased as folhows: Vb is a batid represeníation ¡ti B~, wiíb p
positive and q tiegalive bands, ¡ben ord

1 V$.(~)<(p±qi-l~n)/2 atid
—(p±q±l—n)/2=deg~VW(b). Titis would imply, for instance, that if Kis a
strongly quasipositive knot, titen ord~ VK and —deg~ V~ are bounded aboye by
tite genus of K. It also implies (as Fiedíer points out) the affirmative answer
to tite «question of Milnor» on the unknotting number of the link of a
singularity.

5. QUASJPOSITIVITY AND THE ENHANCEMENT OF THE
MILNOR NUMBER

5.1. Tbeoreni [Rul3]. A Hopf-plurnbedfibered link is slrong/y quasipo-
silive Vatid oní>’ ¿[jis enhancernení is O.

Proof: By 1.6 ané 2.7, a Hopf-plumbed fiber surface is quasipositive if ané
only if its enitancement is 0; the titeorem follows from 4.13. ¡

5.2. A lorus knoí is a cable O [ni, ti}, GCD (ni, ti) = 1, on an unknot; an
¡¡erated lorus knoí is 0{m,,n,;m2,n2; ...;rnk, tikl := 0{rn,,tijjm2,ti2j
{mk,tikj with rn1>O,n,#0, GCD(m~n3= 1 (i=l k). Without loss of
generahity we may assume titat ni,> 1, ti, ¡>1 (else tite same knot could be
realized with strictly smaller k). An iterated torus knot is fibered, but need not
be be 1-Iopf-plumbed (e.g., 0{2, 3; 2, 1], [N&R3]).

Tlieorem. Arz iterated torus kno¡ is sírongly quasiposifive ¿latid oti/y V
jis enbancement is 0.

Proof: Por j=l,... k, let be tite fiber surface of 0[rn,,n,;rn2,ti2;
ni~, tifl; there are m~ (linked, disjoint) copies of 1>, embeddeé in 1 as fulí
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subsurfaces. Using induction (statting from 1.4), it is straigbtforward to write
éown an embeééed band representation O [m,, ti1; ni2, ti,;...; nik, tikl inj
(not necessarily a braidword if k> 1), which is quasipositive if and onlykall
n~ are positive, with S(O{rn,,n,;m,,n,; ...;mk, tikj)=Fk. Since (by 2.8) it is
also the case titat tite enitancement of O{rn¡, ti,; ni2, ti,; ...; mk, ‘~kI is O if ané
only if alí ti1 are positive, it remains to show titat, if sorne ti1 is negative, then
Ek is not quasiposítive.

This is easy if for sorne] we have ti1<—l: then Fj, has A (0, 1) as a
Murasugi summand (0.1), 50 E) 18 not quasipositive (4.8), so E~< is not
quasipositive (1.3). A more finicky proof (which also works in the preceding
case) is needeé ifti.>—1 for i= 1,..., k ané n~=—l for somejgreater tban 1:
Inspection shows tbat E) contains an annulus A (0[2, 3],]) withf=—5, whicit
is not quasipositive (by calculation and 4.2). ¡

5.3. The fohlowing seems credible, though tite evidence for it is
essentially limited to 5.1-5.2.

Conjécture. The etibancement of a quasipositive (resp., sírorzgly quasí-
positive)fibered link is non-positive (resp., zero). ¡

APPENDIX to Section 5: Complex plane curves and dic enbancement

The link L(J’, O) of a singuharity is botit quasipositive ané fibered (in fact
it is Hopf-plumbed), ané has enitancement O (e.g., by 2.1). A link-at-infinity
L(P,oo) is quasipositive, but need not be fibered; ané, when L(E,oo) is
fibered, it is not known whether its enhancement 18 necessarily O, ahthough
this is the case when L(P,oo) is regular in the sense of [Ne]. If L(F,oo) is
connected, titen it is regular, ané titus fibered with enhancement O, as asserted
in [N&R3]; note that the proof titere is incomplete, [N&R3, corrigenéum].

As remarkeé in 1 A.7, it is not known whether or not a general link L(1’, r)
(tite transverse intersection of a complex plane curve with a round sphere
witich need be neither very small nor very large) is quasipositive. Certainly
L(P,r) need not be fibered. Nonetheless, in analogy with 5.3, we may ask
witether, when L(F, r) is fibered, its enhancement must be non-positive.

6. THE ENHANCEMENT AND THE NEW LINK
POLYNOMIALS

6.1. Fantasy. Imagine that J. W. Alexander, whose «Note on Riemann
Spaces» [Al] essentially introduced open-book structures, had developed a bit
more of tite geometrical theory of fibered links and knots before he
discovered (quite combinatorially) tite polynomial invariant which now bears
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his name [A2]. In sucit an alternative univetse, how migitt tite searcit for tite
geometrical underpinnings of the Alexander polynomial itave proceeded? 1
suggest a scenario like the following. Immediately, it would have been noticed
that the degree of tite Alexander polynomial of a fibered hink equals the first
Betti number of its fiber surface; ané, soon thereafter, thai (up to
normalization) the leading coefficient is 1. Titis would itave suggested,
correcthy, thai the polynomial of a fibered link is an invariant of the fiber
surface--namehy, the citaracteristic polynomial of its algebraic monodromy.
Tite interpretation for general links, vía Seiferí surfaces ané infinite cyclic
coverings, would have followed very naturally.

6.2. At presení, the enitancement ané tite new link polynomiahs of a
fibered link are known to be related only in certain cases, ané titere only by
an inequality. 1 still cherish a hope that tite analogy «Milnor number: Alexander
polynomial:: enhanced Milnor number: oriented pohynomial» will be fruliful,
ané not just in tite fibered case.

6.3. Tite following estimate is derived in [Rul3].

Theorem [Rul3]. Jf L ls ehíber a generalized síricí bornogeneous braid or
a fibered arborescení litik. theti

(*) oTdVPL=4X(L)+lJ(L)

(and equalhí>’ carz occurfor alt possible values of A). ¡

Tite proof uses 5.1 and 4.1, ané inductions on the Milnor number (slightly
different for tite two cases) within tite class of fibered links being considereé.

Since geixeralizeé strict itomogeneous brajés ané fibered arborescent links
are Hopf-plumbed, tite following seems reasonable.

Conjecture. ¡‘he inequa/i¡y (*) ho/dsfor alt Hopf-p/umbedfibered links.

The obstacle to generalizing tite proof of the Titeorem to cover tite
Conjecture is the inductive step.

6.4. Tite itope expressed in 6.2 would be distinctly encouraged if tite
Conjecture of 6.3 were true for alí fibered links. Titis, alas, is not the case.
Altitough, for instance, Ihe iterated torus knots 0[2,3;2,2k±l} ané links
0(2, 3;2, 2k1, whicit are not alí Hopf-plumbed, can indeed be sitown lo
satisfy (‘9, for otiter fibered links titis inequality can fail arbitrarily baély. Por
instance, the link K,, in Figure 6.5 is fibered for every integer ti (K« is tite
connected sum of a positive ané a negative Hopf link, ané 1<,, is produced
from K3 by repeated Stallings-Harer O-íwists) ané can be shown to itave
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enitancement 1 fa ahí ti (a proof is given in [N&R]); it falsifies (*) for negative
ti.

(jo
~‘~2ti

6.5. FIGURE

6.6. It may be possible to salvage something from tite Conjecture. Tite
following idea has not been developed, ané is put forward itere partly for
amusement value.

Specialize the oriented polynomial to RL(w)= PL<v, y2), w=v2. Titis is
not unmotivated; in fact, RL itas (ané is nearly citaracterized by) tite
geometrically interesting property that, though non-trivial, it cannot distinguish
tite positive Hopf link from tite unknot. Titis suggests that, for fibereé K,
ord~ R~ migitt be relateé (by an inequality) to tite enitancement of K.

Indeed, 6.3 appears to generalize; moreover, the behavior of ord~ R~ for
tite links of 6.5 is just as good as for tite Hopf-plumbed examples. Here, tite
major obstacle to progress is tite following inequality (an analogue of 4.2),
which 1 itave been unable to establish.

Conjecture. 1fF Ls a quas4nosi¡ive Seiferí surface with s(F) «spli¡ pieces»
(i.e.. s(F)— 1 is ¡be ratik of ¡be free abeliarz group n-

2(S~\F), thai
ord~K¡=l—s(F).

7. CAN THE SEIFERT FORM BE «ENHANCED»?

Let E be a Seifert surface. As we have seen, the Seifert form of E doesn’t
determine quasipositivity of E, is insufficient to calculate tite orienteé, semi-
oriented, absolute, and iones polynomials of tite boundary of E, and--sitould
E happen to be a fiber surface--is ignorant of the enhancement of (tite
boundary of) F. One may wonder witether titere is an «enitanced Seifert
form» which does determine one or more of titese--preferably alí of them, ané
in sucit a way as. to advance our understanding of titeir interrelations.



106 Lee Rudo/ph

There are ample itints in the preceding sections that in sorne way the
geometry of two complex variables provides an underlying connection among
quasipositivity, the enitancement, ané (less clearhy) tite new link polynomials;
perhaps that 18 the place to look for an enhanced Seifert form. On a éifferent
tack, on August 12, 1988, at the American Mathematical Society’s Centennial
meeting in Providence, Ritode Island, the matitematical physicist Edward
Witten anounced a geometric interpretation [Wi] of tite iones polynomial
(ané at least sorne of the otiter new polynomials) in terms of Quantum Field
Theory; as the details emerge, they may reveal an enitanced Seifert form as a
sidelight.

The speculation which follows itas ratiter a different flavor, ané is meant
to be suggestive ratiter titan programmatic.

lf 5 is a surface, cali a l-submanifold C of 5/u!! if C is non-empty ané no
component of C bounds a disk on 5 (i.e., tite regular neigitboritood of C on
5 is a fulí subsurface). Write SCC (5) for tite set of fulí (oriented)
l-submanifohds of 5 modulo ambiení isotopy on 5 (possibly excitanging
components). Each embeéding f:S ~53 as a Seifert surface E=f(S) induces
a mapping from SCC (5) into Links, tite set of orienteé link types in 53, and
(using a pusit-off map on tite seconé factor) from SCC (S)XSCC (5) into
LinksX Links. In sorne sense, titese mappings give a «universal enitanceé
Seifert form», ané Iess enhanceé Seifert forms result by composition witit
suitable link invariants. For instance, composing SCC (S)X SCC (5)— Links
X Links with «linking number» essentially recovers tite usual Seifert form.

Of course, titis «universal enitanced Seifert form» begs too many
questions--for instance, it determines tite link type of tite boundary of E ané
titerefore alí the invariants of that boundary. Rut one may still wonder
whether a useable invariant migitt be yieldeé by a mapping of Links or
LinksXLinks whicit retains (even sligittly) more information titan linking
number.

ACKNOWLEDGEMENT. This survey is based on a talk given atibe
1988 Leitigh University Geometry and Topology Conference. 1 titank
Professors Donalé Davis ané David Johnson of Leitigh for titeir invitation
ané the excellence of titeir arrangements, ané my audience for titeir kind
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