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Exact controllability of the radial solutions of
the semilinear wave equation in IR®.

Luz DE TERESA

Abstract

The exact internal controllability of the radial solutions of a
semilinear heat equation in R is proved. The result applies for
nonlinearities that are of an order smaller than | s | log? | s | at
infinity for 1 < p < 2. The method of the proof combines HUM
and s fixed point technique.

1 Introduction

In this paper we present a result related with the following general con-
trollability problem for the semilinear wave equation in R". Let €} be a
bounded domain of R™ with boundary 852 of class C%. Let w C Q, be a
nonempty open subset, x., its characteristic function and f € C'(R").
We consider the following semilinear equation:

yu — Ay + f(y) = hxw in Q% (0,7)
y=10 on 8 x (0,7T) (1)
y(z,0) = yofm),yt(:c, 0) = yl(m) forz € Q

where {y°,y1} € H}(Q) x L%(Q), and h(z,t) € L?(w % (0,T)) is a control
function. Suppose that the nonlinearity f is such that the equation has
a unique solution

y € C%((0,T); H5 () n ([0, T); L*()).

A.M.S. Subject Classification: 93B05, 35105, 35B37.
Servicio Publicaciones Univ. Complutense. Madrid, 1998,
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The problem of exact controllability can be formulated in the following
way:

Find conditions on T and w (control time and support of the control)
such that for every {3 y'}, {20 2!} € H§(R) x L* Q) we can find a
control h € L2(w x (0, T)) such that the corresponding solution y to (1)
satisfies the following:

v(2,T) = 2%z), w(z,T) = 2X(z) forz € Q.

Thus, the question is whether we can drive the system from any
initial state to any final state in time 7' by means of the action of a
control with support in w x (0,7). When this property holds true we
will say that system (1) is exactly controllable at time T

In the linear framework (f = 0), the problem is by now well under-
stood. In one space dimension with w = (I1,12),2 = (0,1) the exact
controllability holds in time T > 2max(l,1 — l2) (see {13]). However,
in several space dimensions, the geometric control property is needed on
the subset w in order to ensure the exact controllability. {See [1].)

When the nonlinearity f is globally Lipschitz there are resulis of
exact controllability in R. In fact, in [14}, the exact controllability is
proved in several space dimensions when w is a neighborhood of the
boundary of 2.

In the one-dimensional case Zuazua [14] proved the existence of
Bo > 0 such that if

17(s)]

limsup ——5— < fg (2)
sl—oo 15| log? [s|

then system (1) is exactly controllable at time T with the same control
time that in the linear case. Condition (2) allows nonlinearities that
growth at infinity in a superlinear way. This condition is almost optimal
since no assumption is done on the sign of the nonlinearity. Indeed, in
[11] is proved that if f behaves at infinity like ~slog”(|s]) with p > 2,
then system (1) is not exactly controllable at any time T > 0.

‘The aim of this paper is to adapt the techniques used by Zuazua in
[1%} to the exact controllability problem for the radial solutions of (1) in
R,
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We shall assume the existence of a constant C > 0and 1 < p < 2
such that the nonlinearity f satisfies the following grow condition:

. 17 (s)}
l —
Voloo. 15I| Tog? ]|

Under this assumption, by the methods of Cazenave and Haraux |2, it
follows that system (1) has a unique global solution

v € C°((0, T]; HH(Q) n GX((0, 7], LA(®)).

< C. (3)

On the other hand if 3%, ¥* are functions of |z|, & is function of (|, t)
we obtain that the solution is radial, that is, it depends of (|z|, ). That
allows us to transform equation (1), by a change to spherical coordinates,
to a semilinear wave equation in . Nevertheless, working on the space
of three-dimensional radial functions introduces new technical difficul-
ties, Observe that these additional difficulties make the grow condition
(3), that we are asking to be satisfied by the nonlinearity, to be more
restrictive that the condition (2) of the one-dimensional case since we
do not reach the critical exponent p = 2. Nevertheless, this hypothesis
improves the result in [10], where we proved the exact controllability
of the radial solutions of (1) in R> under the grow condition for the
nonlinearity

lim su i(fﬂ__ < C
— oo stttogts]|
for C small enough.

In order to state in a rigorous way the problem, we need to introduce
some functional spaces and some of its properties.

Definition 1. Let Q= (0,1) C R

L2(Q) = {f measurable on Q| rf(r) € L2(Q)}
1
172 = ([ r2r%ar)3

HYQ) = {f e LR and fr=2L L)

1£0ez = WA + 17 E)

223
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LY (2) = {f measurable on Q, | rf € L*(N)}
£l zge = lir fil £

V= {f € H(Q)f(1) =0}
We consider in V the norm induced by H1(Q).

Lemma 1. Let Q = {0, 1), then

HYQ) — L®(Q) with compact embedding. (4)

Proof. Let us see first that f € H}(Q) implies that rf € HY(Q). It is
enough to prove that f € L%(Q) since therefore (rf), = f+rfr € L%(R).
In fact, this is a consequence of the Hardy inequality that ensures the
existence of C > 0 such that:

1
[ far < Ul )

for every f € H().

Therefore, the mapping that to f € H1() associates »f € H(RQ)
is continuous. On the other hand, we know that the embedding H(Q)
in L°(Q) is compact. We easily conclude that the embedding H}(2) in
L(9) is compact. ]

Remark 1. This lemma allows to prove that the norm of f in V is
equivalent to the norm of f, in L(S). =

2 Statement of the problem and main result

Once we have introduced the spaces in which we are going to work, we
are in conditions to state our problem. Let T > 0 and f € CYR)
satisfying (3).

Weputin(1) Q=B C R w= B \B,, 0 < 1 < Iy £1; where B,
denotes the ball centered at zero of radius r. Assume that y° ,y! are
functions of |z| and h is function of (|z|,¢). We state the problem of exact
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controllability making a change of variables to spherical coordinates r =
{z| that transforms the equation in R* to a wave equation in R. Since
the initial data and h depend only of r and of (r,t), respectively, we
obtain the following equation for y the solution of (1):

r2ytt - (r2yr)’" + r2f(y) = 1"2th in (Oa 1) X (0! T)
yr(0,t) = y(1,t) =0 fort € (0,7) (6)
y(r! 0) = yO(s.), yt(r, 0) = yl(r) in (01 1)

where now w = (I1,12) C R, h € L(0,1). Since y is the solution of (1)
we obtain that y = y(r, t) is the solution of (6) with

y € C(|0,T], V) nc'({0,T], LX(0,1)).

The controllability problem is in this case: Find conditions on T > 0
such that for every

{yo, v}, {2% 2} e V x LE(0,1)
there exists & € L%([0,T|, L2(w)) such that the solution y of (6) satisfies
y(r, T) = 2°(r), yu(r,T) = 21(r). (M

The main result of this paper is the following:

Proposition 1. Let w = (I1,12) # 0, T > T(l1,1p) = 2max(l;, 1 — I2).
Suppose that f € C*(R) satisfies

|7 () < Clsfllog™ |s]| + D (8)

for some constants C, D > 0 and for some 1 < pg < 2.

Then, system (6) is exactly controllable in time T.

For the proof we adapt the methods introduced by E. Zuazua in
[11}, where the exact controllability of the semilinear wave equation in
F is proved. First the exact controllability of the linear equation is
proved. The proof is based in HUM (Hilbert Uniqueness Method), a
method introduced by J.L. Lions [4] to study the exact controilability
of linear systems. Chapters 1 and 2 of |4] give a precise description of
this method. ,

Then, the exact controllability of the semilinear wave equation is
obtained by a fixed point argument introduced by Zuazua in [14]. This
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fixed point method reduces the exact controllability problem of a semi-
linear equation to the obtention of suitable a priori estimate for the
linear wave equation with a potential.

The rest of the paper is organized as follows. Section 3 is devoted to
the development of the fixed point method: Proposition 1 is reduced to
the obtention of suitable observability estimates for the wave equation
with potential. This estimates are proved in Section 4.

3 Description of the fixed point method

In this section we describe the fixed point technique used in the proof
of Proposition 1. The proof of Proposition 1 will be teduced to the
obtention of a suitable observability property (Proposition 2} for the
linear wave equation with a particular potential. This will be done in
the next section.

We proceed in several steps.

Step 1 (Linearization).
Let us fix the initial and final data {4°, y'}, {2 2!} € V x LE(f),
with @ = (0, 1), and let us introduce the continuous function

_ﬂi)—_-—_ﬂ_gl if s#£0
f’(O)s if s =0.

g9(s) =

We can write (6) as

rly — (rPyr)r + rig()y = —r2f(0) + r%hxw in Q% (0,T)
yr(0,8) = y(1,8) =0 for every t € (0,T)
y(r,0) = yo(r), yi(r, 0) = yl(r) in Q.
(9)
‘Then, the proof of Proposition 1 can be reduced to prove the exact
controllability of

P2y ~ (Fyede + r29(Qy = —r2£(0) + r*hxw  In 2 x (0,T)
vr(0,t) = y(1,¢) =0 for every t € (0,7)
y(r,0) = ¥°(r), 1e(r, 0) = ' (r) in Q
(10)
where ¢ € C([0, T}; L(S1)) and then to obtain a fixed point.
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Remerk 2. The bound given by (8) for the nonlinearity f implies, in
particular, that r%g(¢}) € L®(8 x (0, 7)), for every § > 0 and for every
¢ € C([0, T|; L°(R)):

If [|¢]lco,r = O we have that r{ = 0 for almost every r € Q2. Therefore
¢(r,t) = 0 for almost every (r,t) and g(¢) = f'(0) = k; where k;is a
constant.

Now, if {[{loo,r # 0 we use (8) :

IA

F1(s] Crd)log™ (|| + D

Cr®|logP |"T_Cl| + D

Cr?|logh "CI%| +D

C17?| log? {|¢[| o] + Car®llogP #| + D
C 7% log? I¢]| Leo| + D + k3
C1|logP ¢l Lot + k4 since r < 1 (11)

IA A A A

The first step is to prove the existence of a control A = h(r, t;() €
L2(|0, 7], LZ(w)) such that the solution y(r, t; ¢) of (10) satisfies (7), that
is, ’

y(r. T) = 2°(r), we(r, T) = 2'(r).

To prove this we use HUM.
We first solve the system

r2zy — (r2zp)r + 72g(Q)z = —r%f(0) in Qx (0,T)
z(0,¢) = z(1,t) =0 for t € (0,7)
2(r, T) = 2%(r), 2t(r, T) = 2'(7) in Q

with {z0,21} € V x L2, This system has a unique solution
2= 2(r, t;¢) € C([0, T|; V) n C'([0, T]; LE())

and it depends continuously on {2, 2}, ¢} € V x L2(§2) x LL(2x (0, T)).
Therefore
z(r,0,{) = zg eV, z(r,0,¢)= zé €L
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For any {¢°, ¢!} € L2 x V' we solve the system

2oy — (r2r)r +r29(Q)¢ =0  inQx (0,7)
é-(0,t) = ¢(1,t) =0 fort € (0,T) (12)
#(r,0) = ¢°(r), #¢(r,0) = ¢} () In Q

2o — (rPup)y + r2g(C)r = rPdxw  in % (0,T)
vr(0,t) = v(1,t) =0 for t € (0,T) (13)
v(r, Ty = vy(r,T) =0 in §2.

We define the linear and continuous operator
Ac:LixV' o Lixv

by

Ac{6%, 6"} = {~w(r, 0),4(r, 0)}. (14)

The problem is reduced to prove the existence of some {¢°, ¢!} € LZx V'
such that

Ac{8®0'} = {—v' + 20, y° — 20} (15)
Indeed, if {¢° ¢'} is the solution of (15), then », the corresponding
solution of (13), satisfies

v(0) = YO — z?, r(0) =y - zé

and therefore y = v + z satisfies both (10) and (7).
In order to solve (15) we multiply (13) by the solution ¢ of (12} and
integrating by parts we observe that

1
—-f 2u(r, 0)¢"+ < v(r,0), ! >vaf=/ r2¢2drdt.
0 % (0,T)

That implies that

< Ac{e® 0"} {8% 0} >= f +2p2drdt for every {¢°, ¢} € LZ(Q) x V'
wx (0,T)

where < , > denotes the duality pairing between LZ(Q) x V and L2(Q) x
V.
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Step 2. Let us assume that the following observability inequality holds
for system (12): there exist ¢ = ¢(p), 2 < ¢ < co and two positive
constants A, B > 0 such that

ri/ &
K™, ¢ Wiy < AP SORE [ Ptarar (10
wx(0,T)

We get

1/p

< Ac{9%, 81}, {8°, ¢'} > A PIr MOl 40, o132
and therefore
A LEx V' — L2 x V is an isomorphism.
Then, equation (15) has a unique solution
(6% '} = {8°(r. ), 6 (n ()} € L x V.
Moreover, the solution of (10) corresponding to the control
h = ¢(rt;()

satisfies (7).

We have defined in a unique way a control h(r, t; ¢} € L%((0,T}, Liw))
for system (10)-(7) and this for every 7({ € L€ x (0,7)). The so-
lution y of (10) belongs to C({0,T);V) N C(0, T]; L4(R)) and since
HY(Q) c L2(N) we deduce that y € C([0,T]; L(R)). Therefore, we
have constructed a nonlinear operator

K : 0([0,T], L) — C((0, T}, Ly ()

such that K(¢) = y where y is the solution of (10}-(7) with the control
function h € L2({0, T), L2(w)) defined above.

Since the solutions of (10) depend continuously on {° ¥' ¢ h}e
vV x L) x C([0,T}; LL(Q)) x L0, T; LE(w)), we have that the op-
erator K sends bounded sets of C({0, T], L(f2)) into bounded sets of
c([0,7};v) n ([0, T): LH)).-

This fact, combined with the compactness of the embedding
c([0,7); V) nci((0,T): LX) € ¢([0,T], L (Q)) (see Simon [7] The-
orem 5) allows us to prove both the continuity of K and the fact that
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K maps bounded sets of C{[0,T), L%()) into relatively compact sets
of itself. Therefore the operator

K :C([0,T), L;°(R)) — €([0, T], L (2))

is compact.

Step 3 (Fixed point).

It is enough to prove the existence of a fixed point of K.
Indeed, if ( =y e C([0,T],L>X(N)} is a fixed point of K, then
¢ =y €C(0,T;V)nC}[0,T]; L2(Q)} and y satisfies both (6) and (7).

Therefore, if ( = y is a fixed point of K, it is sufficient to choose
h(r, ;) as control for the nonlinear system (6).

In order to prove the existence of a fixed point for K, we use the
Leray-Shauder’s degree theorem. We define the operator

K {0, 1] x ([0, T}, L°(S)) — €((0, T}, L°(2))

such that

K:(Ur C) = KU(C)
where K, is the compact operator defined in Step 2 but for the nonlinear-
ity og. The operator X is compact and K(0,¢) = Kp(¢) is independent

of ¢. Therefore, in order to conclude the existence of a fixed point for
K = K, it is enough to prove that the identity

K(o,ys) = Yo (17)

with ¢ € [0,1] and y, € C([0, 7], L°(£2)) implies an uniform bound for
Yo in C([0, 7], L2 ().
By construction of X, equation (17) is equivalent to the system

4

sza,tt - (T2ya.r)r + TQUf(ya) = 7'2¢aXu in Q x (0, T)
Yor(0,8) = y(1,) =0 for t €(0,T)
yg(f‘, 0) = yo(r): ya,t(r, 0) = yl(r) in Q
¢ yo(r,T) = zo(r),yo,:(r, T)= zl(r) in Q (18)
7'2¢‘a',tt - (7'2¢a,r)r + 7'20'9(ya)¢0 = in 02 x (01 T)
$or(0,t) = ¢5(1,8) =0 for te (0,7)
| $0(r,0) = ¢2, ¢0.(r,0) = ¢L(r) - for reQ.
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Let us assume for the moment that f(0) = 0. Multiplying by ¢, the
equation satisfied by y, and integrating by parts in Q x {0, T), we get

1 1
j ri¢Zdrdt = f 22 9o (T) - f ry' oo (19)
wx(0,T) 0 0
- < 2%60:(T) vy + < ¥ ¢L Sy
From (19) we deduce '

[ oy FRAr S U8, 88 v + 8o ), 0T M) 20

with Co = max{[[{s°, ' Hiv sz, I{z% #* Hlvxz2}-
In view of (16) and by the time-reversibility of the equation satisfied
by ¢, we deduce

163,60y < AP ONEE [ 2
T wx (0,T)
Heo(T), bar(T) ey < AeBolr/Mstwe)l;E [ r2¢2drdt
4 wx{0,T)
and we get
({63, 85 Hizzwv + 1{8e(T), bot(T)Hl 12w ) (21)

1/
< CeaB”rl/?'g(ﬂc)"Lo% fwx(O ) r2¢c2,d1‘dt.

Combining {20) and (21) we get
(I1{85, 85}l 2xvr + I{8o(T), $oe(T)H 2xv)?

< CeaB[]rU?qg(%)”}_/of:/ r2¢3drdt
wx (0,T)

1/p

< Coe? BIF/*0@al( (| {0, 6L} ax v + {$o(T), ot(T)} | axv)
that means that
({83, 2 Hlzzx v + 1{6a (T), bo,e(T)HlLaxve) < Coe? Bl atuo)t

Since o € (0,1)

1/p
Lo

(22)

BT ¥a(wo)L < oBilrt/Mg(ye)lel?
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Now, if |rys]co > 1, in view of {11) we have

TBIP M g(ya) 58P C1P ol log(lIrue lloo) | +Kal

where ks is a constant independent of y,, o and 8y = logP®/P~ Hryo |l co-
In consequence,

({23, 65 H L2xve + {6a(T), $0t(T)}lL2xv7) (23)
< CpeC1/7BoBl108(lrve lloa) +al

Step 4.

We need to estimate ||ryq| oo in terms of fwx(O,T) r2¢ldrdt. Assume
that we have the following estimate (consequence of Lemma 4 in the
next section) for y,:

172 L/p-
|mﬁmm5A(m%%+MWh+ r%%quw olve )T

(24)
By the continnous embedding (4) we deduce that for C large enough

wx (0,

2 02 1,2
T <C -+ =+ /
” ya“ = (”y ”V “y “LE x(0,T)

r2¢gdrdt) ecﬁ"mqg(”‘)lié‘épT
which combined with (11}, yields

?

lryell2, < € (Hyoll% + [ly]%2 +‘/
r wx {0

£CAT ,CTC}/? o] log(lI74o l|oo)|

r2¢gdrdt)
T) (25)

where fp = 10,:,_;”"/"_1 lrye|lco- Since p > po, there exists C > 0 such that

if [ryolloo > € then CTCII/P,BO < 1. We can assume that |ryslleo > €
since the contrary will conclude the proof.
We deduce that

wwhs1+c@wﬁ+MWﬁ+f“M;%@m0f”.(%)
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Combining (26) with (20) we get

Irvolloo < 14+C [IWOU13 + o 32 + Coll {63, 81 + {60 (T), 6oa(TI}] O
(27)

Let us denote F = ||{¢2, L 2xvr + 1{a(T), b0t (TH 2y From
(23) and (27) we deduce that

Fe D BCCTIVPB g LGN+l 2+ CoF)e™T |4k

where D, Cg, C, k3 are positive constants independent of o. Again, we
get that Go(CC1T)B < 1 for ||ryslleo large enough. We deduce that
({22, oL I+ {#o(T), ¢54(T)}|} is uniformly bounded, which combined
with (27) yields an uniform bound for ||rys|lco.

Step 5.
Let us return to the case f(0) # 0. Instead of (19) we have

1 1 1
j 1‘2¢§drdt = / T221¢0(T)—] r2y1¢g+crf(0)f ¢
wx(0,T) 0 0 0
— <22 ¢0(T) >y + <18l >vv.  (28)

and in consequence

[ rtarar < Coll(62, ¢ Hluzsv: + H8o(T), b0l Mhizuv: +©)
wx{0,T)

' (29)
where the constant € > 0 is independent of o.

Since inequality (25) does not depend on the value of f(0), we can
assume that

C < I{4%, ¢: L2 v + 1{6o(T), b0 (TV i 2xv

since the contrary will conclude the proof. Then, proceeding as in steps
3 and 4 we easily obtain the uniform bound for |[rys|lco. It remains to
prove the observability property (16) and the estimate (24). This will
be done in the following section (Proposition 2 and Lemma 4) and the
proof of Proposition 1 will be concluded. . [

233
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4 Observability estimates

The aim of this section is to prove the observability result (16). To prove
this estimate we introduce the following class of functions:

P = {a measurable : rla(r,t) € L®(N x (0, T)) for every 6 > 0}.

Observe that, in particular, the function g defined in the previous section
belongs to this class,

Remark 3. If a € P then e € L%°(0,T; LI(R)), forevery ] < ¢ < 0o :

1 1 q
gy - 12 lal?
L. la(r, £)|%r £ r i

12 /2al?(t) | Loogo 1y 7 ™2 11 0,1y
1/21!"'1/2‘1'“[(“') “100(0'1)

IA

Therefore
fla(®)liLsco,n) < C[l‘l"l/?qa“Lm(nx(Q’T)), for almost every t € (0,7). (30)

Moreover, for every ! # 0, it is clear that a(r,t) € L%((l},1s) x
(0,T)) with

% ()]l Leoax (0,))
i1

(31)

llel] Zoo (21,1 x (0B}

]
Let Q0 = (0,1), we consider the following equation with potential
e €P:

P2y ~ (r2,)e + r2a(r )€ =0 in Q% (0,T)
&(0,t)=¢€(1,¢)=0 for t€ (0,T) (32)
£(r,0) = £%(r), &(r, 0) = €'(r) in Q.

The main result of this section is the following:

Proposition 2. Let2 > p > 1. If T > 2max(l,1 —l3), then there exist
g =4¢(p), 2 < ¢ < 00 and two positive constanis A, B > 0 such that

, |
O R
wx (0,T)
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for every a(r,t) € P and for every solution £ of (82) with initial data
{€9,€1} € L2 x V' and where || ||oo denotes the norm in L((0,T) x Q).

In the proof of Proposition 2 we are going to do the following change
of variables:

v = r§.

Let £ be the solution of (32) with {€%,¢'} € L2 x V'. Then v is solution
of the following equation:

vy — vpr +a(r,tjo =0 in x(0,T)
v(0,2) =v(1,t) =0 for t €(0,T) (34)
o(r,0) = vO(r), w(r,0) =o' inQ :

where v%(r) = r€%(r) € L%(0,1), v!(r) = r£*(r) € H71(0,1). Observe
that for every initial data {v° v} € L%(0,1) x H~1(0,1), (34) has a
unique solution for ¢ € P and

v € ¢([0,T); L3(0,1)) n C*([0, T); H (0, 1)).

Reciprocally, if v is the solution of (34) with data v0, vi, then £ = v/r
is solution of (32) for initial data €0 =0y, gl = vl/r.

We observe then a biunique correspondance between the solutions of
(32) with initial data in L2 x V' and the solutions of (34) with initial
data in L%(Q) x H~1(N). Then Proposition 2 is equivalent to:

Proposition 8. Let 2 > p > 1. If T > 2max(ly,1—I2), then there exist
g =q(p), 2 < ¢ < 00, end a constant C > 0 such that

i/
{00, v H 22 -t < C1 + [[r/Pa]oo)eCNolloo f vidrdt  (35)
wx (0,T) .
where || |oo,q denotes the norm in L([0, T]; L9(0, 1)).
For the proof of Proposition 3 we first study the behavior of the
energy

£0) = 5 IVOIEa + -0}

Where Vol -1y = I|f;[§-;i‘:—]_1v!im(m and —;Tj‘:- denotes the Lapla-
cian with homegeneous Dirichlet conditions.
We have the following estimate.
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Proposition 4. Let 2> p > 1. There ezist ¢ = q(p), 2 < q < 00 and
two positive constants A, B > 0 such that :

£(t) < AeBlolite(0) vt e (0,7) (36)

for every potential a € P, for every solution of (9§).

Let us assume that Proposition 4 held in order to prove Proposition
3. The proof of this proposition will be given at the end of this section.

Proof of Proposition 3.
We proceed by steps.

Step 1.
First of all we observe that time-revertibility of the system satisfied
by v and Proposition 4 imply that for every 0 < t; <t < T, we have

(t2 = t1lIv°l 320y + o' IF-10,0))

a 1/p t2 (37)
< AgeClaliits jt e 12200,1) + loeld-10,0)-
1

Then, it is sufficient to prove the existence of t1,ty € {0, 7], t; < ty and
C > 0 such that

ta /p
2 2 Cllalloo 2
L ["”(t)"Lﬂ(o,u+“”\'-||H-1(o,1)] < CeClat 'q./;x(O,T)u (r, t)drdt. (38)
We now observe that, in order to get (38), it is sufficient to prove

iz Cllallt?
2 ”“”oo, f 2
t <C a r, t}drdt. 39
jh v ( )i|1,2(0,1) = e wx(O,T)u (r,t) (39)

Indeed, multiplying (34) by m(t)[ﬁ%l‘lv and integrating by parts
in § x (13, t2) we get

io t2
[t m@ o k-100) = [ m(&) () 320, +

1 1

"‘d2 1
./f;x(tl,tg) (Balr, )U[dr2] vear

- [t ; —d? -1
- l m'(t) < Em v(t), v >H6,H—1 dt -

1
tz
t i

—d2
4 {ml) < 1351790, v >y}
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Choosing m € C([t1,ta]), m > 0, such that m{t;) = m(te) = 0,
m(t) = 1 for every t € [t}, t] with t} = #; + {234 ¢h = ¢ — 22l)

J—%L € L°(t1, tz) we obtain

ty t2
[ el gt < Ot Halon) [ @G @0
1

Combining (39) and (40) it is easy to get (38).

Step 2.
If v € L% (w x (0, T)) = L%(l1, lg; L%(0, T)) by using the equation

Upp == U + QU
we deduce that ver € L2(11, Io; H™2(0,T)) with

Norel L2y 1202007y < C(L+ el Loo o,y v ll 22w (0,7))-

Interpolating (see [6] Vol I, pp. 12-23), we obtain wu,. €
L2(13,10; H™Y(0,T)) with

2
el z2qty go;r-100,1y) < (1 + ||a||},/oo((o,q~)xw))||vI|L2(wx(o,'r)) (41)

From (41) we deduce that, in order to get (39) it is sufficient to
obtain

2 Cilall?, f 2 /‘2 9
drdt < C ry drdt+ i 4
‘/‘;x(tht?)v ’ ) {wx(o,'r)TU i I el ‘(O’T)} (42)

for some C > 0. Indeed, combining (42) with (41) we get

f vidrdt <Cc(l+ ”a"Loo((o,T)Xw))eC”aHéé?q ./ vidrdt
Qx (t1,t2) wx(0,T}

and in view of (31)

/ v2drdt < C(1+ ||rY/2a||L{7)eCllolh / vidrdt.  (43)
Ox(ty,tz) wx (0,T)

We observe that in order to prove (42) it is enough to obtain

T
f vidrdt < CeC"““g?"{/ v (ro, t)dt + [[vr(ro, )| 3-1(0 T)} (44)
T(rp) 0 . ’
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for every ro € Q and T > max(ro, 1 — rg) with 7(rg) = 71(ro) U T2(ro)
where

71(ro) = {(r,t) € (0,70) x (0,T): t € (ro—r,7 + T — ro)}
ma(ro) = {(r,t) € (r0,1) x (0,T): t € (r — 70, T — v + 1)}
Indeed, integrating (44) with respect to those ry € w for which the

time given in Proposition 2 satisfies T > 2max(rg, 1 — rp) we get (42)
with £, = max(ly, 1 ~ lg), t2 =T ~ max(ly,1 — Ip).

Step 3.
Let us finally prove (44). We observe that due to finite propagation
(= 1) in system (34) we have

v=w en 7(rp) (45)
where w = w(r, t) is the solution of

Wep — Wyt — aw = {) in QX(O,T)
w(r,0) =w(r,T) =0 for every r € Q (46)
w(ro, t) = v(rg, t), wp(ro, t) = vy(ro, t) in (0,T)

System (46) is a wave equation where the roles of the time and
space variables have been interchanged. It is an evolution equation with
respect to r.

We can apply Proposition 4 to system (46). We get

e 20y + ler () 1F-10m)
1/ -
< eC||a||ao]:; max(rp,1 7‘0){"1}(1‘0)"%2(0'71) + "Ur(T'O)"?I—l(O’T)} (47)

Combining (47) and (45) we get (44). [
We proceed now to prove Proposition 4. In this aim we remember
two technical Lemmas that are going to be used during the proof.
First we recall the Sobolev’s embeddings in dimension one:

Lemma 2. Let I C R be anintervaland 0 < r < 5 < 1,1 <p<qg<co.
Then

WoP(I) € WH(T) if s — > = 5 —
P

-

I lwrsry < Clifllwergy V5 € WP(1),
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with C = C(r,s) > 0. Moreover,

we(r) c (1) if0< L - L <.
P q

For the proof see e.g. [8].
The following result is due to Simon in [9] p. II-15.

Lemma 3. Let p > 1, O C R® an open and regular subset. Suppose
that
veWI(O) where o0 < p, p<r <o0.

Then
lPt0 € WE12(0) for every 5> 0,

uith
ol ollyro-srre < Cllvlifyor Yo € WOT(O)

for a constant C > 0.
We can teke § = 0 if r = 00 or if o is an integer.

We consider the following linear wave equation:
yu—Yer+ay=bin Qx (0, T)

y(0,8) = y(1,¢) =0 for t € (0, T) (48)
y(r,0) = yo:yt(f, 0) =y in Q.

witha € P, 1/2> e > 0, b € L%0,T, H5()), y € C([0,T]; H (D))
and y € C({0, T]; HE(R)).
We define the energy:

1
B(2) = 5 {lvlf-e + uelf-},
2l _d2 =
where [[yllg-e = [[3%] T vl 22, ¥ Nl = 1135 T el 22

We have the following estimate:

Lemma 4, Let 2> p > 1. If1/2 > € > 0 is small enough, then there
exist ¢ = g(p), 2 < g < oo end constants A, B > 0 such that

l 1/p
E(t) < A(E(O) + b2, m-+(qy)e®W2t, vee (0,1).  (49)
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For the proof of Lemma 4 we proceed by steps. First of all we are
going to prove the following Lemma:

Lemma 5. Let @ =(0,1) and 2 < § < 3. There exist 1 > 6 > 1/2 and
e small enough such that

wiebgi(Q) ¢ wTrTE () (50)
for some 6 > 0.
Proof.
We can choose # such that
g—2
—_— 1-86 1/2, 51

since 2 < ¢ < 3 implies

For this election of § we have

§-2 g—-1 g§-1
0 = 1.
“U-62 ¢ 2 °©

g—2 dg—1
) In consequence for € > 0 small enough, s = e+ 155+ ﬁhﬂt—i - -‘15— +
95—1 satisfies
0<s <l

Let § =1~ s. By Lemma 2.

wi-s=b3ti(q) c wratmam ().

|
Proof of Lemma 4.
Let us define the perturbed energy
1 2
Ex(t) = E(t) + 5K lvllzs
where 2 < ¢ < 3 is going to be chosen later, K = {|a|/c0,q and %-I— % = %
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By Lemma 3 we know that y9=! € H%(f}) and

—Ilyllz3 -2 [ y? e 2yl < y7 Ny > e g -
q dt Jn q ? ’

We need to estimate ||y9~! | ge. In view of Lemmas 3 and 5 we have that
for & small enough and for a good selection of 8

i1 e wimaten I ().
Therefore we have that
. c i-2 g 3 i-2 3§
e [wirnER ), )] = wr R
¢

where [X, Y]g denotes the interpolation space between the spaces X and
Y. The equality of these spaces can be found in Grisvard [J].

Moreover, by Lemma 2, we have that

W EI(Q) ¢ HY(Q)
and therefore

g-1 <Cl@ Y ss s
[ e M N

-8
SO Y g WO e
-

g—1)8 —a
< ¢yl ) 31009,



242 . Luz de Teresa

Let us multiply (48) by [-;—f;-] “Fy; € H5(Q).Then

dE g

""d2 e —d? —'s
2t = —_ G(T,t)y, 1dr_2] Yt >H—¢,Hz — < b, IE—J] Ui >H—¢,H:

2-§ _  g-
+E Il < v v > e e

IA

Cllvlia—<la@llslyllLe + 15l - el 2«

2—g+8{(g-1 F—13(1-&
K Il 23 F 0 g A= e

IA

1 K K 2(2-g+o(5- 201-6)(g-1
cK'/2 [Enytu%-c + g lvliEe + Sl T s

1 1 1
gllrec | + U0 + g -
< OKMA[Ex+ KGDA-OB] 1 Hbi-. + vl
S QL+ KV E () 4 bl
By Gronwall's Lemma we obtain
Ex(t) < CeV(Bi(0) + 03aozia—v) for every ¢ € (0,T)

where v = C + C||“||},{a2°j;(é—1)(l_9).
Now, if we write 1/p = 1/24+ 8 with 1/2 > 8 > 0, it is clear that if we

can choose g, such that ¢ given by Lemma 5 satisfies ( — 1)(1-68) = 8

then the proof will be concluded. Let us see that this can be done.
It is enough to see that there exists 2 < ¢ < 3 such that

_ B
satisfies (52). That is, we have to see that for some 3 > § > 2 we have
that ( )
(g-2)(G-1)_
8> ) =m(q).

But we can obtain the last inequality because we have that 4 > 0 and
that m(q) is continuous in § = 2 with m(2).= 0. [
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Proof of Proposition 4. We write v = w + y where w is the solution
of
wyt — wepr = 0 in 2 x (0,7)
w(0,t) = w(l,t) = 0 for every ¢t € (0,T) (52)
w(r,0) = v°, wy(r,0) = v} in Q,
and y is the solution of
Yy — Yrr +ay = —aw in O x (0,7)
y(0,t) = y(1,t) = 0 for every t € (0, T) (563)
y(r,0) = 0,y:(r,0) = 0in Q.

The energy £ is conserved for system (52). Therefore
()1 Zag + e (B)1-1¢0) = 26(0) V¢ € [0, 7). (54)

We observe that for every 0 < e < 1/2, aw € L3(0,T; H~%()). In
view of Lemma 2, H*(Q}) C LP(2) for p = T% Moreover, we know
that a € L*(0, T; L%/¢(Q2)), in consequence

1
<aw,p >pepe= [ awe < Clwlzlalgarelol Yo € HQ),
and then
law|| -« < Cllwllg2llall gose-
We apply Lemma 4 with y° = y! = 0 and b = —aw. We get

1/p
Ty H1-e + vl < Cllal% grellwllaomyxmye™ =t

5|'
< 20| all2/ef (0)eBlalleTet 9
Combining (54) and (55), (36) follows easily. [
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