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Welcome to CoDawork 2019

CoDaWork 2019, is the 8th international Workshop on Compositional Data analysis, and offers a fo-
rum of discussion for people concerned with the statistical treatment and modelling of compositional
data or other constrained data sets, and the interpretation of models or applications involving them.
The primary goal of the workshop is to identify important potential lines of future research and gain
insight as to how they might be tackled.

CoDaWork 2019 intends to bring together specialist researchers, data analysts, master students, PhD
students, academic scholars, as well as those with a general interest in the field, to summarize and
share their contributions and recent developments.

This edition of the workshop has been organized jointly by the COSDA-UPC research group and
the CoDa Association. We acknowledge work of all organizers and the support of our hosts and
sponsors and promotors, in particular the city council of Terrassa, the International Association for
Mathematical Geosciences (IAMG), the Universitat Politècnica de Catalunya, the Statistical Mod-
elling Society (SMS), the Societat Catalana d’Estad́ıstica (SoCE) and the journal SORT published
by the Statistical Institute of Catalonia. We also want to acknowledge the technical support from
CaminsTech.

We wish you a pleasant and inspiring workshop in Terrassa!

Terrassa, June 1, 2019

Juanjo Egozcue, Chair Scientific Committee
Jan Graffelman, Chair Scientific Committee
Maribel Ortego, CoDaWork2019 Chair
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• Jesús Corral-López, Universitat Politècnica de Catalunya-BarcelonaTECH, Spain;
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Morais et al.

Covariates impacts in compositional models and simplicial derivatives

J. Morais1,2, and C. Thomas-Agnan2

1Avisia, Bordeaux, France; joanna.morais@live.fr
2Toulouse School of Economics, Toulouse, France

Summary

Compositions can be used as variables in regression models, either as explanatory variables (see
Hron et al. (2012)) or as dependent variables (see Egozcue et al. (2012)), or both (see Chen et al.
(2016), Morais et al. (2018b) and Nguyen T.H.A (2018)). However, measuring the marginal
impacts of covariates in these types of models is not straightforward, as the change in one
component of a composition may affect the rest of the composition.

Morais et al. (2018a) have shown how to measure, compute and interpret these marginal im-
pacts in the case of linear regression models with a dependent composition (Y) by compositional
explanatory variables (X). The resulting natural interpretation is in terms of an elasticity, com-
monly used in econometrics and marketing applications. Morais et al. (2018a) also demonstrate
the link between these elasticities and simplicial derivatives as defined in Egozcue et al. in
Pawlowsky-Glahn and Buccianti (2011), chapter 12 and Barcelo-Vidal et al. in Pawlowsky-
Glahn and Buccianti (2011), chapter 13.

The aim of this contribution is to show how to compute these semi-elasticites and simplicial
derivatives in other situations, namely first when the dependent variable is a composition and
the explanatory variables are non-compositional, and second when the dependent variable is non-
compositional and at least one of the explanatory variables is a composition. Moreover we also
consider the case where a total is used or not as an explanatory variable, with several possible
interpretations of the total.

Finally, we discuss how to compute confidence intervals for these elasticities or semi-elasticities,
which significantly improves the interpretability of the compositional regression models. This
contribution will be illustrated by real-data applications.

Key words: compositional regression model, interpretation, simplicial derivative, elasticity

1 Introduction

Compositional regression models have been investigated from a theoretical perspective, for example in the
following books: Pawlowsky-Glahn and Buccianti (2011), Van Den Boogaart and Tolosana-Delgado (2013),
and Pawlowsky-Glahn et al. (2015). However, few articles are applying them in practice. Hron et al.
(2012) present a case where the explanatory variables are compositional (called ‘X-compositional’ model
below). Egozcue et al. (2012) focus on the case where the dependent variable is a composition (called
‘Y-compositional’ model below).

The case where a compositional dependent variable is explained by component-dependent explanatory
variables (called ‘YX-compositional model’ below) has been addressed in quite recent articles: Wang et al.
(2013), Kynclova et al. (2015), Chen et al. (2016), Morais et al. (2018b), Morais et al. (2018a) and Morais
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et al. (2017). However, Wang et al. (2013) presents a simplified model compared to the others, which has not
been mentioned in the books we cite above. As shown in Morais et al. (2018b), this model is equivalent to
what is called MCI (multiplicative competitive interaction) model in the econometric / marketing literature.

2 Covariate impact in compositional models

2.1 Compositional model specifications

We are going to consider the impacts of covariates in the following three main types of compositional
regression models (see Table 1):

• Y-compositional model: the dependent variable is a composition and the explanatory variables are
non-compositional

• X-compositional model: the dependent variable is non-compositional and at least one of the explana-
tory variables is a composition

• YX-compositional model: the dependent variable is a composition and at least one of the explanatory
variables is a composition

Table 1: Compositional models and notations

Y-compositional model X-compositional model YX-compositional model

Specification
in SD

Yt = a⊕ X̌t � b⊕ εt
⊕T (Y̌)t � c

Y̌t = a+ < b,Xt >A +εt
+cT (X̌)t

Model ‘CODA’:

Yt = a⊕B � Xt ⊕ εt
⊕T (X̌)t � c

Model ‘MCI’:

Yt = a⊕ b�Xt ⊕ εt
⊕T (X̌)t � c

Specification
in RD−1

Y∗t = a∗ + b∗X̌t + ε∗t
+c∗T (Y̌)t

Y̌t = a+
∑DX−1

k=1 b∗kX
∗
t,k +εt

+cT (X̌)t

Model ‘CODA’:

Y∗t = a∗ + B∗X∗t + ε∗t
+c∗T (X̌)t

Model ‘MCI’:

Y∗t = a∗ + bX∗t + ε∗t
+c∗T (X̌)t

Notations Yt,a,b, εt ∈ SDY , X̌t ∈ R
Y∗

t ,a
∗,b∗, ε∗t ∈ RDY −1

Xt,b ∈ SDX , X̌t, a, εt ∈ R
X∗

t ,b
∗ ∈ RDX−1

B ∈ RDY ,DX , b ∈ R
B∗ ∈ RDY −1,DX−1
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Let us denote by X̌t = (X̌1t, · · · , X̌DX t)
′ ∈ RDX

+ a vector of so-called volumes for a variable X, with∑DX
i=1 X̌it = T (X̌t), and Xt = C(X̌1t, · · · , X̌DX t)

′ =

(
X̌1t

T (X̌t)
, · · · , X̌DXt

T (X̌t)

)′
= (X1t, · · · , XDX t)

′ ∈ SDX the

corresponding composition carrying the relative information, with
∑DX

i=1 Xit = 1.

In subsections 2.2 and 2.3 we define and give formulas and interpretations for elasticities and semi-elasticities
in these models. Then in section 3, we explain how these quantities are linked to simplicial derivatives, which
is the reason why they are the natural tool for interpreting impacts in these models.

2.2 Elasticities for YX-compositional models

Morais et al. (2018a) have shown how to interpret the relative impact of an X component on a Y component
(without total). The resulting interpretation uses an elasticity, commonly found in econometric applications:

E(Yt, X̌t)DY ×DX
=
∂ logE⊕Yt

∂ log X̌t

The interpretation is as follows: the relative impact of an increase of 1% of the volume of the jth component
X̌jt on the component Yit is equal to Eij%. Note that since E⊕Yt is a scale-invariant function of Xt,
the result is also scale-invariant. To compute the impact on the volumes Y̌ , one may multiply the above
elasticity by T (Y̌t) =

∑DY
i=1 Y̌it.

2.3 Semi-elasticities for Y-compositional models and X-compositional models

In the case of Y-compositional and X-compositional models, the natural tool is semi-elasticities. However
the formulas differ in the two cases:

• Y-compositional case: SE(Yt, X̌t) = ∂ logE⊕Yt

∂X̌t

• X-compositional case: SE(Y̌t, X̌t) = ∂Y̌t

∂ log X̌t

In the Y-compositional case, the interpretation is as follows: the relative impact of an additive increase of
1 unit of the volume of X̌t on the component Yit is equal to SEi%.

In the X-compositional case, the interpretation is as follows: the additive impact of an increase of 1% of
the volume of the component X̌jt on the dependent variable Y̌t is equal to SEj units.

2.4 Composition total as explanatory variable

In some cases, it may be relevant to also include in the model a variable measuring a total (not scale-
invariant). If the composition (X1, · · · , XD) is the closure of a vector of non-constant sum volumes (positive
numbers) (X̌1, · · · , X̌D)′, then Pawlowsky-Glahn et al. (2015) argue that different formulas can be used for
this total:

• Arithmetic total: T (X̌) =
∑D

i=1 X̌i

• Geometric total: T (X̌) = (
∏D

i=1 X̌i)
1/
√
D

The presence of this total variable has to be taken into account in the partial impact measure computations.
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2.5 Computation of elasticities and semi-elasticities

Table 2 presents the semi-elasticities and elasticities expressions for the three types of models, with or
without a compositional total. In the presence of a total, as we will explain in Section 3, we need to
distinguish three types of impacts:

• Type 1 impact: when the total remains constant and we look at derivatives in the direction of one of
the unitary vectors of an orthonormal basis of SDX . With a proper choice of basis and of contrast
matrix as in Hron et al. (2012), this corresponds to an infinitesimal change in one component keeping
all but the first ILR constant.

• Type 2 impact: when the composition remains constant and we look at ordinary derivatives with
respect to the total

• Type 3 impact: when one of the components varies together with the total.

Table 2: (Semi-)elasticities, without and with the total

Y-compositional model X-compositional model YX-compositional model

W
IT

H
O

U
T

T
O

T
A

L

SE(Yt, X̌t) = ∂ logE⊕Yt

∂X̌t

= W∗
tb
∗

= Wt log b

SE(Y̌t, X̌t) = ∂E(Y̌t)

∂ log X̌t

= Vb∗

= VV′ log b

Model ‘CODA’:

E(Yt, X̌t) = ∂ logE⊕Yt

∂ log X̌t

= W∗
tB
∗V′ = WtB

Model ‘MCI’:

E(Yt, X̌t) = Wtb

W
IT

H
T

O
T

A
L

Type 1 Like without total Like without total Like without total

Type 2 No meaning ME(Y̌t, T (X̌)t)

= ∂Y̌t

∂T (X̌)t
= c

Like Y-compositional
SE(Yt, T (X̌)t) = W∗

t c
∗

Type 3 SE(Yt, T (Y̌)t)
= W∗

t c
∗

= Wt log c

SE(Y̌t, X̌t)

= Vb∗ + c ∂T (X̌)t
∂ log X̌t

E(Yt, X̌t) =

W∗
t

(
B∗V′ + log c ∂T (X̌)t

∂ log X̌t

)
= Wt

(
B + log c ∂T (X̌)t

∂ log X̌t

)
Notations Wt(DY ,DY )

is a matrix with (1− Yit) on the diagonal and −Yit elsewhere on the ith row.

These results are based on the following lemmas. Lemma 2.1 computes a semi-log derivative of an ILR
transformation and Lemma 2.2 a semi-log derivative of the inverse of an ILR transformation.
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Lemma 2.1 If z is a D-composition which is the closure of the vector ž of RD
+ , and if z∗ = ilr(z) = V′log(z)

is the ILR-transformed composition associated to the contrast matrix V, then

∂ilr(z)

∂ log ž
= V′

Lemma 2.2 If z is a D-composition which is the closure of the vector ž of RD
+ , and if z∗ = ilr(z) = V′log(z)

is the ILR-transformed composition associated to the contrast matrix V, then

∂ log(ž)

∂ log z∗
= WV,

where W is the D ×D matrix with (1− zit) on the diagonal and −zit elsewhere on the ith row.

The results of Table 2 are obtained combining, according to each case, Lemma 2.1 (for z = X) and Lemma
2.2 (for z = Y) with the marginal effects of the model specified in RD−1.

3 Semi-elasticities and simplicial partial derivatives

Morais et al. (2018a) have shown how to compute elasticities for YX-compositional model, and how they
are linked to simplicial derivatives.

In the case of Y-compositional and X-compositional models, we can compute semi-elasticities of a composi-
tion relative to a non-compositional variable, and of a non-compositional variable relative to a composition,
and we can show that they are linked to the simplicial derivatives using (Egozcue et al. in Pawlowsky-Glahn
and Buccianti (2011), chapter 12, and Barcelo-Vidal et al. in Pawlowsky-Glahn and Buccianti (2011),
chapter 13), as presented in Table 3.

Indeed, in the case of the X-compositional model, Propositions (13.10) and (13.13) in Barcelo-Vidal et al.
in Pawlowsky-Glahn and Buccianti (2011), chapter 13, imply that the part-C derivatives of an homogeneous

function of degree zero f of a composition x = C(x̌), which we denote here by
∂f(x)

∂⊕x
is given by:

∂f(x)

∂⊕x
=

∂f(x̌)

∂ log(x̌)

Therefore the derivative of a function f of a simplex valued variable x = C(x̌) corresponds to the ordinary
semi-log derivative of the corresponding homogeneous function f of the volumes x̌.

Similarly, in the case of the Y-compositional model, for a simplex-valued function f of a real variable
x̌ ∈ R+, Theorem 12.2.6 in Egozcue et al. in Pawlowsky-Glahn and Buccianti (2011), chapter 12, implies
that:

∂⊕f(x̌)

∂x̌
= C

(
exp

(
∂ log f(x̌)

∂x̌

))′
This result links the derivatives of a simplex-valued function f to the semi-log derivatives (in the ordinary
sense) of the function f .

Finally, considering models including a total, one would need to define infinitesimal paths in the T -space.
Instead we consider three types of infinitesimal variations as described in Section 2.5. For Type 1 and 2,
no new theory is needed: Type 1 corresponds to derivatives with respect to a simplex valued variable and
Type 2 to ordinary derivatives with respect to the total. For Type 3, the easiest is to express the dependent
as a function of the volumes and use ordinary derivatives of the ensuing function.
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Table 3: Simplicial derivative and (semi-)elasticities

Y-compositional model X-compositional model YX-compositional model

Simplicial
derivative

in SD

∂⊕E⊕Yt
∂Xt

= C
(

exp
(
∂ logE⊕Yt

∂Xt

))′
= C (expSE(Yt, Xt))

′

∂EYt
∂⊕Xt

=
[

∂EYt

∂ log X̌jt

]
= SE(Y̌t, X̌t)

∂⊕E⊕Yt
∂⊕Xjt

= C
(

exp
(
∂ logE⊕Yt

∂ log X̌jt

))′
= C

(
expE(Yt, X̌t)

)′

4 Illustration

This application aims to explain the Body Mass Index (BMI) of Chinese individuals by the following char-
acteristics: their age, gender, ethnicity, education, physical activity, size of their household, along with their
food consumption composition in terms of macronutrients: calories in carbohydrate (KcalC), fat (KcalF )
and protein (KcalP ). Thus, it is a X-compositional model. This model can be specified as follows:

Yt = a+ b∗1ilr1t + b∗2ilr2t

+ c1 log(Aget) + c2 log(Aget)
2 + c3Gendert + c4Ethnict

+ c5EducUnivt + c6PhysHeavyt + c7Hsizet + εt

with ilr1, ilr2 the ILR coordinates of the composition Kcal = C(KcalC ,KcalP ,KcalF )′ and Y = log(BMI).
The parameters estimated by least squares are:

(b∗1, b
∗
2)′ = (−0.0176, 0.0108)′ ⇐⇒ (bC , bP , bF )′ = (0.3285, 0.3383, 0.3332)′

Then, the vector of semi-elasticities of Y relative to an infinitesimal relative variation of the components
of Kcal is (−0.0144, 0.0149,−0.0005)′, meaning that an increase of 1% of the carbohydrate kilo-calories,
keeping the consumption of fat and protein unchanged, results in an approximate 0.014 units decrease of the
log(BMI). If, in the same model, the arithmetic total is included, then this semi-elasticity is even stronger:
0.016 instead of 0.014, but with a geometric total, the semi-elasticity is lower: -0.010.

5 Conclusion

This contribution explains how to interpret all types of compositional regression models using the well-
adapted (semi-)elasticities. Confidence intervals on (semi-)elasticities can be computed by the Delta method,
or simply using a bootstrap approach. Further work have to be done on this part.
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Summary 
 

Residual wastes, material remaining after recycling and organics diversion, 
require disposal.  One alternative is to create Solid Recovered Fuels [SRF] for 
energy intensive industries. Frequently, potential users of SRF require that the 
material be fully characterised come with guarantees of energy values and 
contamination levels.  With limited data on compositional variations of residual 
wastes, particularly as it may pertain to an SRF product, a municipality in 
southern Ontario, Canada, required a detailed study of the composition and 
quality of their residual wastes.  The wastes are collected separately from both 
single-family [CS] and high-rise residential [MR] properties and the study 
afforded an opportunity to distinguish between these waste streams, as well as 
addressing seasonal differences by sorting materials at different times of the 
year. 
 
Changing priorities during the study resulted in differences in the sorting 
categories for the 2 phases reported here.  Moreover, components that were 
common to both phases showed different quantities by source and season.  The 
question arose, were the differences significant?  Not unexpectedly, the sort data 
was not normally distributed and applying classical statistical techniques was 
not successful.  Enter, compositional data analysis techniques.  When applying 
these techniques, it became evident that working with high dimensional data 
increases the complexity of the analyses and the difficulty of interpreting the 
results.  This extended abstract covers some of the methods used to date.  From 
these it was concluded that the dimensionality of the data should be further 
reduced to attempt to address the question raised above. The final presentation 
will include the analysis of the less complex data set.    

 
1 Introduction 
 
A team from the University of Waterloo helped the municipality develop a detailed 
waste composition study protocol, Chandler et al. (2017), aimed at gathering data on a 
wide range of materials in the waste streams.  The sorting list reflected materials that 
can be diverted in the provincial blue box program (45), and the provincial MHSW 
initiative (9) as well as non-recyclable materials.  During Phase 1, the waste was 
screened to 4 size fractions: +50 mm; 25-50 mm; 6-25 mm; minus 6 mm.  The 25-50 
mm fraction being classified into 8 broad categories.  For Phase 2, the +50 mm fraction 
was split into +100 mm and 50-100 mm size fractions, but the overall number of 
categories was reduced to 32 with 29 being identified in both the larger size fractions.  
Moisture, heating value, and trace metal and chlorine levels were defined as important 
characteristics for laboratory investigation.  The fines fractions were tested for their 
suitability as feed to anaerobic digestion processes.  In each phase the objective was to 
separate sixteen 100 kg samples from the bulk of material arriving from each source.  
In Phase 1, fall, only 28 samples were completed and sorted into 43 parts; in Phase 2, 
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winter, 31 samples were sorted into 62 parts.  An additional sample was sort but into a 
reduced number of parts, so it was not considered for the initial analyses. 
 
2 Methods 
With four distinct data sets, the high-dimensional structure limited the ability to define 
outliers and perform regression analysis with robust techniques.  To compare the source 
differences by phase another approach was necessary.  Moreover, if the seasonal 
differences were to be examined, the parts had to be aligned for both phases.   
 
Some parts contained zero quantities for some sorts.  The missing data were classified 
as Rounded Zeros, assuming they would have been found in larger samples.  Before 
applying imputation methods though, it was necessary to recognize that, for quality 
imputation of replacement values, 50% zeros should the maximum used, Martin-
Fernandez (2019).  To address this, two parts with more than 80% zeros were removed 
from the compositions.  The remaining part with greater than 50% zeros were 
combined with similar materials to create 32 components for Phase 1.  The result was 
between 6.0% and 7.5% zeros in the data.  Phase 2 required similar aggregating.  Some 
of the 50-100 mm parts were combined with their larger counterparts to reduce zeros.  
In addition, parts with similar characteristics were combined to reduce the list to 43 
parts.  The 31 tests contained 4.2 to 6.4% zeros before imputation.         
 
The list of parts for Phase 1 and Phase 2 was not identical, and direct comparisons to 
identify seasonal effects in waste from the two sources required more adjustments.  The 
raw data was processed as second time.  The two larger size fractions in Phase 2 were 
combined to replicate the +50 mm size range of Phase 1.  Plastics, metals, textiles and 
other parts were combined so both phases had the same categories.  Furthermore, three 
parts: Yard; MHSW; and Ceramics, were dropped from consideration due to high zero 
counts.  The resulting 19 parts could be compared for seasonal effects.  Reducing the 
list of parts to 19 resulted in limited missing data: 6-7% for Phase 1 and 2.5-3% for 
Phase 2.   
 
Consolidation of the data sets was completed using the original data, and then each 
data set had the zeros replaced using an imputation technique.  With more parts than 
observations, the lrEM procedure did not work and Martin-Fernandez suggested that 
the multKM algorithm be applied. The threshold used was the smallest measured value 
for each part of each source regardless of D.  Imputation for the phase data was also 
conducted using the minimum value from either source.  After imputation, the data 
sets were closed.  
 
Cluster analysis provides a visual illustration of potential similarities and differences 
between data, and is not limited by the relationship between D and n.  Cluster 
analyses used a hierarchical agglomeration procedure, hclust, on the clr-transformed 
data.  A second clustering, Q-mode, utilizes the variation matrix converted to a 
distance matrix was used to detect patterns of variation between parts.  For the initial 
pass, the high dimension data were used to create dendrograms for each source and 
each season as well as for each phase to allow the combined source data to be 
examined.  A similar exercise was completed for the reduced dimensional data, D=19.    
 
Since the dendrograms suggested that there could be outliers in the data, an outlier 
identification process was initiated.  Unfortunately, the outCoDa function in 
robCompositions did not work for the initial high-dimensional data sets for the sources, 
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even when the samples from each phase were examined together.  When performed on 
the D=19 data sets, it was still necessary to examine larger data sets: all CS and the all 
MR samples regardless of season; and, the combined seasonal sort data. The results still 
indicated caution would be necessary in interpretation due to limited sample numbers.  
Another reduction in the number of parts will be completed to enable more definition 
of outliers.      
 
Filzmoser et al. (2019) discuss the difficulties that arise when trying to analyse high-
dimensional compositions and recommend Partial Least Squares [PLS] for regression 
and classification of such data.  Since the objective of this study was to determine if 
there were differences between sources and seasons, the two-group classification system 
suggested by these authors was applied.  To find a model that can classify the parts 
into either of the source groups and identify which parts are “significantly” different in 
the two groups, the PLS procedure computes values using the clr coefficients and that 
the variance of the regression coefficients is estimated by a jackknife procedure.  The 
procedure allows the “optimal” number of PLS components to determined.  From that 
point, it is possible to infer the regression coefficients for the model based upon single 
clr coefficients and determine which parts are significant in the model. 
 
Pairwise logratios can be used to identify parts to distinguish between the 2 source 
groups.  This method, Walach et al. (2017), employs the variation matrix elements of 
all observations jointly and compares them to those computed for the single groups.  
Large differences, expressed as the statistic Vj

*, indicate potential marker variables.  
Filzmoser et al. note that calculating the variance in robCompositions can be 
completed using classical empirical variance techniques but it can also be completed 
using the robust 𝜏𝜏 estimator to establish the variance of the variation matrix taking 
into consideration outliers in the data.  PLS techniques were applied to the initial high 
dimensional data to compare the results of source specific sorting data for each phase, 
and to the reduced dimensional data to compare both the source specific data and the 
seasonal differences between the results. 
 
The outCoDa procedure was employed on the D=19 compositions.  It is limited to 
considering outliers of data sets which contained at least as many samples as 
dimensions and will not work with the high dimensional data sets.  The procedure 
produces a warning message along with the results unless n>2D.  Filzmoser et al. 
caution that the procedure is more likely to identify outliers that are associated with 
parts that have low concentrations than dominating components.  This suggests that 
even though the method identifies outlying samples, care should be taken in 
interpreting their significance. 
 
3 Discussion 
Imputation for each source and phase was based upon the lowest recorded weight for 
each component for the group.  The approach created 6 thresholds, but it could also 
introduce more variability.  To examine this potential cluster analyses of the phase 
data was used.  Before discussing those differences, a quick review of the source 
clustering by phases.  Clustering of the individual source samples in each phase showed 
that same day sorts were seldom combined.  The sampling effort aimed to collect 
different samples from the material arriving at the site, and the clustering suggests that 
was the case.  The plots contain sorts that join late in the process indicating that they 
might be different.  When the parts are clustered Pet Waste and WEEE appear to be 
outliers in 3 of the 4 source related clusters.  Construction waste and metal components 
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appeared to be outliers in Phase 1 CS and Phase 2 MR.  Phase 2 resulted in Other 
Textiles being identified as a potential outlier for both sources.  The other components 
that suggest outliers were: Containers with liquid; Paper fibres in large fines in Phase 
1; MHSW in CS2 and  
Diapers in MR2.  The latter reflects some very large masses of diapers found sorts from 
the last day of sorting which suggests that the same care might not have been taken in 
sampling that day.    
 
The dendrograms for the two phases were compared to see if there were differences 
that might be attributed to the threshold used.  The number of groups at a given 
height is an indication that there may be differences.  For Phase 1 at 11 there were 3 
groups with the source specific threshold and 4 when the phase threshold was used; 
however, there were 8 sorts that were late in joining various groups in the source 
specific clustering and only 4 with the phase specific clustering.  The pattern observed 
in the Phase 2 sort clustering is that there appear to be more groups with the phase 
specific threshold.  That approach produced 6 isolated sorts while the source specific 
approach had only 4 isolated sorts.  Generally, the groups contain the same members 
regardless of the threshold approach.  As with the Phase 1 parts clustering, Phase 2 
showed WEEE, Pet Waste, MHSW, Construction waste, synthetic textiles and yard 
waste as separated parts regardless of the threshold approach.  Overall the parts 
clustering appears to be similar with only slightly different positioning that could be 
attributed to the threshold approach.          
 
The objective of the PLS procedure was to classify the data into two groups, (sources), 
thus only the phase results were used.  The analyses were run for both threshold 
options for the D=32 or 43 data sets, Table 1.  Also included in the table is similar 
data for the D=19 data for the sets of combined data as labelled.   
 

Table 1 Summary of PLS Analyses of Initial Sort Data 
 
PHASE GROUP NCOMP SIGNIFICANT HIGH SIGNIFICANCE V* V*TAU 
1 D=32 Source  1 4, 8, 9, 12, 15, 22, 

23, 24, 30  
1, 3, 20, 26, 27 26, 

27 
26 

Phase   6 3, 9, 20 8 8, 27 8, 27 
2 D=43 Source  4 2, 5, 6, 7, 27, 30, 38 17, 19, 33, 34, 39 38 32 

Phase Th. 4 2, 5, 6, 16, 27, 35 7, 17, 19, 33, 34, 38, 
39 

38, 
32 

32 

1 D=19 Curbside 6  5, 16 16 16 
2 D=19 Multi-Res 4 5, 6 1, 13, 16 16 16 
Both  D=19 Combined 2 1, 5 3, 13, 16, 17 16 16 
 
The procedure identifies the number of components, ncomp, that provide the best 
classification of the data.  Also identified were the parts that were significant and those 
that were highly significant. The marker variables were identified, V*, and the effect on 
the markers of potential outliers in the data, V*

tau.  
 
For Phase 1 the phase minimum threshold data suggested 2 markers, and outliers had 
no influence.  For the source minimum threshold, there were 2 markers but outliers 
reduced this to a single markers. There are differences between the markers that can be 
attributed to the threshold approach.  For Phase 2 both alternatives resulted in 4 
components that produced the best identification.  The markers were similar parts but 
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the outliers appear to have changed them, substituting a different marker for the 
source threshold and reducing the markers for the other alternative. 
   
The results of both the cluster analysis and the PLS regression suggest that the 
threshold and its application may influence the data.  Since waste streams are likely to 
be different from the sources, a threshold based upon the source minimum by phase 
was used for the balance of the analyses.  
 
The second step of the analysis employed the reduced compositional data set, 19 parts 
for both Phase 1 and Phase 2.  Cluster analyses were completed for both phases.  For 
both phase the sorts clustered in the same manner as the larger dimensional data, no 
specific connections by sorting day.  The isolated sorts were more limited for both the 
CS and MR sorts; however, when combined CS and MR was clustered, Phase 1 had 
fewer isolated sorts (2) than Phase 2 (7).  The parts clusters for CS isolated WEEE, 
Pet Waste, Construction, and diapers.  MR clusters had WEEE, Construction, Diapers 
in Phase 2 and WEEE, Pet Waste, Containers with Liquid, and Personal Care 
products in Phase 1.  Not surprisingly, the combined CS and MR for each phase 
isolated Construction, WEEE, and Pet Waste.  These results are like those found for 
the larger dimensional data.      
 
Rerun the PLS for the reduced component list provides the result shown in the bottom 
of Table 1.  The marker component in all cases was 16, the large fines.  Fewer 
components were identified as significant or highly significant.  Again, the caution that 
the number of samples was less than twice the number of parts should be noted. 
 
The outlier tests for the combined data from both phases for Curbside and Multi-Res 
sources.  The CS data had 6 out of 30 values identified as outliers: 4, 8, 11, 17, 19, 21.  
These were split equally between the two tests.  The MR test produced 5 outliers: 2, 6, 
14, 19, 28.  The first two from Phase 1 the others from Phase 2. 
 
Biplots of the D=19 results were produced for both the CS and MR sampling, Figure 1.  
These include all the data collected from each source.  The components that showed 
high variability in the cluster analyses produce long vectors in these plots.  The bulk of 
the components have relatively short vector, but large fines are noticeable in each plot. 
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The final figures available currently are boxplots of the isometric log-ratio coordinates 
for each source and each season, Figure 2.  Typically, when comparing values on 
boxplots, if the interquartile ranges overlap between different parameters there is little 
difference between them; however, should the boxes not overlap it would suggest that 
significant differences exist between the groups.  Consider irl15 in the upper plot, none 
of the boxes overlap suggesting that there were differences between the sources in both 
seasons, and moreover even the source related boxes do not overlap suggesting that 
there are differences in this component between the two seasons. 
 
Conclusions    
Analyses are on-going on these data.  Before the conference the author hopes to have 
completed the analysis using MANOVA to distinguish between the groups and quantify 
the significance of the observations presented in this paper.    
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Figure 1  Biplots for Different Sources 
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Figure 2  Boxplots of ilr coordinates [boxes left to right CS1, CS2, MR1, MR2]                                 

(top shows components that exhibit differences, bottom shows                                              
components with similar coordinates for sources or season

ilr1        ilr4      ilr5      ilr10      ilr11    ilr12     ilr15     ilr16     ilr17     ilr18       
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Summary

Partial correlations quantify linear association between two variables adjusting for the influence
of the remaining variables. They form the backbone for graphical models and are readily obtained
from the inverse of the covariance matrix. For compositional data, the covariance structure is
specified from log ratios of variables, so unless we try to “open” the data via a normalization,
this implies changes in the definition and interpretation of partial correlations. In the present
work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial
correlation that has a number of advantages over current measures of association. For this, we
show that the residuals of log-ratios between a variable with a reference, when adjusting for
all remaining variables including the reference, are reference-independent. Since the reference
itself can be controlled for, correlations between residuals are defined for the variables directly
without the necessity to recur to ratios except when specifying which variables are partialled
out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found
with measures of pairwise association on compositional data. They are well-defined between two
variables, are properly scaled, and allow for negative association. By design, they are subcompo-
sitionally incoherent, but they share this property with conventional partial correlations (where
results change when adjusting for the influence of fewer variables). We discuss the equivalence
with normalization-based approaches whenever the normalizing variables are controlled for. We
also discuss the partial variances and correlations we obtain from a previously studied data set
of Roman glass cups.

Key words: Compositional covariance structure, inverse log-ratio covariance, residual log-ratio
variance, compositional pairwise association, partial proportionality.

1 Introduction

1.1 Background and outline

Since the publication of Aitchison’s book on compositional analysis (Aitchison, 1986), awareness has in-
creased about the fact that correlations between variables are problematic when these variables are parts of
compositional data. To remedy the problems, a number of alternatives to correlation have been suggested.
The most prominent is log-ratio variance (Aitchison, 1986), but there are also bounded (Aitchison, 2003)
or scaled (Lovell et al., 2015) versions of it. All of these measures have their own problems: one would like
to judge the value of log-ratio variance according to the intrinsic variability of its constituents, not only
bound it between zero and one. Scalings however can lead to spurious results that become apparent when
the underlying absolute data are known (Erb and Notredame, 2016). Apart from this, negative associations
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remain beyond the scope of all these measures of proportionality. Interestingly, the correlations between log-
ratios that use the geometric mean as a reference, i.e., in clr-transformed data, have found little acceptance
although they are perhaps the solution coming closest to a genuine correlation for compositional data. Its
main drawback is subcompositional incoherence. However, the insistence on subcompositional coherence,
and perhaps a certain reluctance to the use of correlation in the community, seem to have blocked the way
towards embracing partial correlations as a valid way of analyzing pairwise association between variables
summing to a constant. Clearly, here the coherence of results obtained on subsets of variables is neither
required nor possible: all partial correlations change when removing variables we control for. To the best of
our knowledge, this fact has not been exploited in compositional analysis, and work on partial correlation
is lacking. This is especially surprising as the necessary mathematical results were derived by Aitchison in
the 1980s already.
Indeed, when considering pairwise association between variables while adjusting for dependence on all other
variables including the reference, the correlation that remains seems the best we can expect from a linear
pairwise association measure of compositional parts. In this paper, we use some results from Aitchison
(1986) to derive that correlating log-ratios when their reference variables are controlled for makes the cor-
relations reference-independent in the sense that any reference from the variables we control for can be
used interchangeably without altering the result. For a simple example, take the case of four compositional
random variables X1, . . . , X4. Let us denote by

r1,2|3,4(X1, . . . , X4) = corr

(
log

X1

X4
, log

X2

X4

∣∣∣∣log
X3

X4

)
(1)

the partial correlation between the logarithms of the first two variables referenced by X4 adjusting for the
influence of the log-ratio X3 with the reference. The notation on the left-hand side seems ambiguous but it
turns out that

r1,2|3,4(X1, . . . , X4) = corr

(
log

X1

X3
, log

X2

X3

∣∣∣∣log
X3

X4

)
= corr

(
log

X1√
X3X4

, log
X2√
X3X4

∣∣∣∣log
X3

X4

)
= corr

(
log

X1

X3
, log

X2

X4

∣∣∣∣log
X3

X4

)
. (2)

Although partial correlations of the form (1) are standard (in the sense that the theory of partial correlations
applies directly to log ratios), it takes some results from the statistics of compositional data analysis to show
that there is no dependence on the reference variable as long as it is included in the variables we control
for. Thus partial correlations of log ratios are simpler than they appear at first sight, with some interesting
implications. First, the number of correlations to interrogate is restricted to pairs and is thus drastically
reduced with respect to the case where references have to be taken into account. Second, attempts to
“open” the data, i.e. to analyze them in absolute terms after normalization with an unchanged reference
appear of little use if for most cases the same results can be derived without normalization. Third, the
covariance matrix of the geometric-mean-referenced parts (i.e., of the clr-transformed data) can be used via
its pseudoinverse to obtain all necessary results.

1.2 Prerequisites

1.2.1 Data matrices as instances of compositional random vectors

We start with a hypothetical, real-valued but positive N ×D data matrix with elements aij , where samples
are indexed in the rows and variables in the columns. The N rows of this matrix can be considered instances
of a D-dimensional random vector A = (A1, . . . , AD). In order to avoid problems with zeros when dealing
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with log ratios, we also assume Aj > 0 throughout. Let us now consider the closure of these instances, i.e.
the data matrix (xij) resulting when we divide each element aij by its row sum. The corresponding random
vector X = A/

∑
(Aj) we call a compositional random vector. Compositional analysis concerns data where

the total sum over a sample has no relevance to the analyst. This sum can vary between samples. The closure
operation is just a convenient way of incorporating the fact that the total sum over the constituent random
variables is arbitrary. The “absolute” data aij are considered unavailable here and were only mentioned to
clarify that they can underlie xij . Data other than aij can of course lead to the same xij . Put another way,
we use the random vector X as our representative for the equivalence class of random vectors with the same
relative relationships between their random variables.
Let us now introduce yet another kind of random vector, Z, which we call the log-ratio transformed random
vector. It is defined by Z = log(X/g(X)), where g denotes the geometric mean over the variables in the
random vector. We can restrict the variables to an index set A and write this projection as XA. The resulting
denominator g(XA) is called the reference. In the case of A containing all indices of the composition under
consideration, the transformation is called the centered log-ratio transformation (clr), and the resulting
random vectors we denote by Z, or ZA, whatever subset is considered. Throughout the manuscript, we
let the set indexing Z also indicate the variables over which the geometric mean is taken (unless a single
variable is indicated, like for Zj). In the case of the reference containing a single variable, usually XD, the
log-ratio transformation is called additive (alr). Note that the use of the index D is a matter of convenience,
and a variable of interest can just be moved to this last position. In general, results will depend on this
choice. We will denote these alr-transformed random vectors by Y , and their restrictions to a subset A as
YA.
The two types of log-ratio transformed random vectors can be transformed into each other using a matrix
designed for this purpose (Aitchison, 1986). Let us denote by Id the d-dimensional identity matrix and by jd
the d-dimensional vector with entries 1. Let us define the matrix F = [ID−1,−jD−1], i.e. F is the (D−1)×D
matrix resulting from writing ID−1 and −jD−1 side by side. It is then easy to verify that we have

Y = FZ. (3)

1.2.2 Compositional covariance specifications and inverse variance

Aitchison (1986) introduced three different matrices, each (equivalently) specifying the full covariance struc-
ture of a compositional data set. The first matrix has the log-ratio variances var(log(Xi/Xj)) as elements and
will not concern us further. The other two specifications are covariance matrices of the log-ratio transformed
random vectors. With the notation from the previous section, the (D−1)×(D−1) matrix of alr-transformed
random vectors is Σ = (σij) = (cov(Yi, Yj)) = var(Y ). Finally, the third matrix is the covariance of clr-
transformed random vectors Γ = (γij) = (cov(Zi, Zj)) = var(Z). The change in log-ratio transformation
results in a singular D ×D matrix, with the singularity resulting from the constraint

∑
j Zj = 0. Similarly

to (3), we can also transform the covariance matrices into each other:

Σ = FΓFT . (4)

With partial correlations in mind, an important result derived by Aitchison (1986) concerns the relationship
between the pseudoinverse Γ− of Γ and the inverse variance Σ−1. We have

Γ− = FTΣ−1F (5)

(see Property 5.6 (a) in Aitchison, 1986). In this article, we will essentially elucidate the implications of this
relationship.
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1.2.3 Partial correlation: The standard setting

Due to its unconstrained nature, the covariance matrix Σ can be used to obtain partial correlations (between
log ratios having XD as a reference) in the standard way. Let us quickly review this procedure (see, e.g.,
Whittaker, 1990). In the following, to achieve more economical expressions, we assume that all log-ratio
transformed random variables are centered, i.e. their averages are zero (in case they are not, we just have to
subtract their average from them). Let the random vector YC be composed of the set of random variables
having indices in C, i.e. (Yi)i∈C . The linear least squares predictor (LLSP) of Yj given YC is then defined by

Ŷj(YC) = cov(Yj , YC)var(YC)
−1YC . (6)

Here, cov(Yj , YC) is the row vector containing the covariances of Yj with the scalar random variables in YC ,
and var(YC)

−1 is the inverse covariance matrix of these random variables. Note that, as a consequence of
this definition, Ŷj lies in the space spanned by YC and the residual Yj − Ŷj(YC) is orthogonal to that space.1

The residual variance
var(Yj |YC) = var

(
Yj − Ŷj(YC)

)
(7)

is a useful summary statistic that tells us how well Yj can be predicted from the variables YC . It is also
known as partial variance. More generally, the partial covariance between two scalar random variables is
defined as the covariance between their residuals:

cov(Yi, Yj |YC) = cov
(
Yi − Ŷi(YC), Yj − Ŷj(YC)

)
. (8)

Partial correlations are obtained scaling by the corresponding residual variances in the standard way. There
is, however, a shortcut to this. An important result states that partial variances and correlations adjusting
for all the remaining variables can be obtained from the inverse covariance matrix. We have

var(Yj |Y{1,...,D−1}\j) = 1/σ
(−1)
jj , (9)

corr(Yi, Yj |Y{1,...,D−1}\{i,j}) =
−σ(−1)ij√
σ
(−1)
ii σ

(−1)
jj

, (10)

where σ
(−1)
ij denote the elements of Σ−1.

2 Partial correlation on compositional data

2.1 The residual is independent of the choice of alr transformation

While Σ is a standard covariance matrix, in a compositional context its usefulness may not be apparent
as it depends on the reference chosen. Rather surprisingly, it turns out that the inverse Σ−1 is essentially
independent of the choice of reference. This is implied by (5), but although the equation may seem unsur-
prising given (4), the fact that a matrix containing all the parts can be obtained from one where a part
is sacrificed as reference appears somewhat mysterious. This can be understood better when looking from
another angle. Remember that inverse covariance matrices have diagonal elements related to the variance
of the residuals, see (9). The fact that for Σ−1 the choice of reference has little importance can be made
sense of if the residuals themselves are independent of this choice.

1More precisely, the predictor and the residual generate N -sample vectors that lie in/are orthogonal to the space spanned
by the N -sample vectors generated from the random variables in YC .
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Remember that Yj is an alr-transformed random variable with reference XD and that we have Σ = var(Y )
with Y having D−1 components. For removing Yj form Y , let us define the index set Cj = {1, . . . , D−1}\j.
We now show that the residual

Yj − Ŷj
(
YCj
)

(11)

remains the same irrespective of which reference is chosen from the set {Xk|k = 1, . . . , D, k 6= j} for
constructing its constituent random variables logXi/Xk, i 6= j, k. For this, we first have to clarify that
the space generated from the explanatory log ratios (the random vector YCj we are adjusting for) remains
unchanged when choosing another variable for reference. Intuitively, a change of reference in the variables we
adjust for corresponds to an overall subtraction of one of these variables (the one that has the new reference
in the numerator) and neither reduces nor moves us outside the space generated by YCj . As prediction
is equivalent with linear projection into this space, the LLSP will remain the same. A formal proof that
permuting the variables in YCj does not change the LLSP is presented in the Appendix.2 Now let us come
back to the residual. A change from reference XD to reference Xk is achieved by subtracting Yk from Yj
(k 6= j,D):

Yj − Yk − (Ŷj − Yk) = Yj − Ŷj − (Yk − Ŷk), (12)

where the equality comes form the linearity of the predictor. With the definition of the LLSP (6) and

denoting the elements of var(YCj )
−1 by c

(−1)
il we have

Ŷk
(
YCj
)

= cov(Yk, YCj )var(YCj )
−1YCj =

∑
i∈Cj

σkic
(−1)
il

T

l∈Cj

YCj = (δkl)
T
l∈CjYCj = Yk. (13)

Here, δ denotes the Kronecker delta. It appears because the elements of Σ and of var(YCj ) coincide for
indices in Cj . Comparing with the right-hand side of (12), we see that the term in brackets vanishes, thus
establishing the independence of the residual from a reference Xk, k 6= j. Figure 1 shows an intuitive
rendering of the argument we provided. For the argument it is crucial that the reference is coming from the
constituent variables of the ratios we adjust for.

2.2 Connection with clr transformation

We have seen that our residuals do not depend on the particular alr transformation chosen (as long as the
reference occurs as a variable in the ratios we are adjusting for). What about the reference coming from a
clr transformation? Note that for an equivalent formulation, we need to consider the clr on the subspace of
variables we are adjusting for. A similar argument as in the previous section (see Appendix) shows that an
equivalent expression of our residual (11) that is symmetric with respect to the reference variables is

Zj − Ẑj

(
ZDj

)
, (14)

where the geometric mean reference of Zj goes over the indices in Dj = {1, . . . , D}\j. Now from (5) we
know that the diagonal elements of the pseudoinverse of Γ are

γ
(−)
jj = σ

(−1)
jj , j = 1, . . . , D − 1. (15)

Due to the symmetry of Γ with respect to reference, this also has to hold after permuting labels when
constructing Σ (see Appendix for a proof). Thus, with (9), we conclude that for all indices j = 1, . . . , D,

2Note that this does not imply that the LLSP is independent of the choice of reference, i.e., in general we have ̂log(Xj/XD) 6=
̂log(Xj/Xk).
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u

x/u

z/u

x̂/u

y/u

Figure 1: The residual of x is independent of its reference. Shown is the D = 4 case with (logged) vectors
x, y, z and u, the latter serving as a reference. To simplify, logs are omitted in the vector annotations. The
linear least squares predictor of log(x/u) with respect to (log(y/u), log(z/u)) is shown as the thin arrow
lying in the yellow plane. The residual vector is shown in red. It can be seen that replacing log(x/u) by
log(x/y) or log(x/z) (dashed lines) results in the same residual.

the residual variance can be calculated from

var
(
Zj

∣∣ZDj

)
= 1/γ

(−)
jj . (16)

Similarly, the off-diagonal elements of Γ− coincide with the ones of Σ−1 when they have indices i, j < D.
Again invoking invariance with respect to label permutations, we conclude that for all i, j = 1, . . . , D, partial
correlations can be calculated from

corr
(
Zi, Zj

∣∣ZDij

)
=

−γ(−)ij√
γ
(−)
ii γ

(−)
jj

, (17)

where we used the notation Dij = {1, . . . , D}\{i, j}. Note that here the Zi, Zj are different from the ones
in (16) because the geometric mean reference is taken over XDij , not XDj .

2.3 A general expression, correlation matrices, R2

To summarize, we have shown that we can use as a reference either variable occurring in the explanatory
ratios or the geometric mean taken over them. For compositional data it is thus unambiguous to define
partial variances and correlations directly for the parts Xi of the composition via

σ2j|Dj
(X) = 1/γ

(−)
jj , (18)

rij|Dij
(X) =

−γ(−)ij√
γ
(−)
ii γ

(−)
jj

, (19)

where we mean the variances and correlations evaluated on residuals of the form (11) or (14) and with any
reference coming from the log ratios we are adjusting for.
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Correlation matrices are easier to interpret than covariance matrices, and the inverses of correlation matrices
are often used in practice. Although Σ−1 and Γ− coincide where they can, their correlation counterparts do
not. Indeed, when scaling Σ and Γ to have unit entries in the diagonal,3 after inverting the scaled version
of Σ and pseudo-inverting the scaled version of Γ, we have to re-scale both to unit diagonal to make them
coincide again. Their multiple correlation coefficients R2, however, remain different. As they quantify the
amount of variance of Yj or Zj explained by their respective predictors (which depend on the reference),
they have to be reference-dependent:

var(Ŷj)/var(Yj) = 1− 1/
(
σjjσ

(−1)
jj

)
, (20)

var(Ẑj)/var(Zj) = 1− 1/
(
γjjγ

(−)
jj

)
. (21)

Although Yj and Zj have the same partial variance σ2j|Dj
(X) = 1/γ

(−)
jj = 1/σ

(−1)
jj , their zero-order variances

are different. When an R2 needs to be reported, (21) would be a likely candidate or otherwise one would
have to have a good reason to choose a more specific reference XD.

2.4 Comparison with normalization-based partial correlations

An approach that is sometimes pursued (e.g., in genomics) consists in trying to recover the underlying
absolute data aij mentioned in section 1.2.1. This is achieved by means of a specific normalization, i.e., by
multiplication of the rows of (xij) with factors si that are proportional to

∑
j aij . These factors are unknown

in principle (they got lost by the closure operation). They can sometimes be inferred from assumptions
concerning the knowledge of (on average) unchanged aij across rows (see the supplement to Quinn et al.,
2018). If the assumptions are fulfilled, the resulting data matrix is no longer relative and there is no need
for analyzing ratios. Note however that we can write the normalized data as a special case of log-ratio
transformed data Z = log(X/g(XU )), where the set U contains only indices of variables for which we have
g(AU ) =const. (We have just transformed to logarithms of the normalized data, a common procedure in
genomics.) When comparing with the partial correlations for log-ratio transformed data with more general
references (19), we see that they coincide (and can be obtained assumption-free, without normalization) as
long as the log ratios we are adjusting for also contain the variables indexed by U .

3 Application to Roman glass-cup data

We evaluate (18) and (19) on a data set of 11 oxides and elements composing the glass of 47 Roman cups
excavated in Colchester (Cool and Price, 1994). We use the version of the data presented in (Baxter et al.,
1990). The few previous analyses have focused on ordination. One of the conclusions of Greenacre’s recent
analysis (Greenacre, 2018) is that the ratio of SiO2/CaO is the significant dimension of variation, followed by
the ratios of SiO2/Sb and Na2O/Sb, which were found to be of lesser influence for the multivariate structure.
In Table 1, beside the average weight percentages of the various oxides and elements, we show the partial
variances and log-ratio variances (with respect to the geometric mean). For better readability, both of them
are divided by total variance as obtained from the trace of Γ. Then, R2 with the mean reference is shown. In
the last two columns we also present log-ratio variance and R2 with respect to SiO2. The oxides occurring in
high weight percentages, with the exception of SiO2, tend to have low variances. The relatively high variance
of SiO2 is however well explained by the other variables (highest R2 with geometric mean reference). This

3Transforming a covariance into a correlation matrix is achieved by multiplying from the left and the right a suitably scaled
diagonal matrix.
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may explain the good properties as a reference reported by Greenacre (2018). The two variables with the
highest residual variance (MnO and Sb) also contribute most variance to the data. The values of R2 with
respect to SiO2 show that Fe2O3 and Al2O3 are best predicted using this reference. In table 2 we show the

Table 1: Single-variable quantities for Roman glass cups. All values are given in percent.

oxide, element av. weight res. var/tot. var/tot. (mean) R2 (mean) var/tot. (SiO2) R2 (SiO2)

SiO2 72 0.86 7.7 89 - -
Al2O3 1.9 0.37 2.5 85 2.0 90
Na2O 18 0.75 3.6 79 1.4 70
Fe2O3 0.30 1.5 5.9 75 11 93
MgO 0.46 3.4 6.4 46 8.3 78
CaO 5.6 1.2 1.9 39 3.5 81
TiO2 0.07 3.5 4.9 29 8.2 77
MnO 0.01 21 29 26 30 61

Sb 0.35 22 28 23 22 45
P2O5 0.05 4.3 5.3 19 8.0 70
K2O 0.49 3.6 4.2 15 5.9 67

five strongest partial correlations as well as a plug-in estimate of their local false discovery rates obtained
under permutations of the samples for each variable in the data matrix (see Appendix). Of note, permuting
the residuals directly leads to a less severe test and much lower q-values, presumably because a natural
dependence among the residuals gets destroyed. While Greenacre’s analysis stresses the importance of SiO2

Table 2: Partial correlations and their q-values of five pairs of variables

variable 1 variable 2 partial correlation q-value

Fe2O3 Al2O3 0.73 0.03
Al2O3 SiO2 0.72 0.03
Fe2O3 SiO2 -0.66 < 10−4

Na2O CaO 0.60 0.18
MgO Fe2O3 0.43 0.46

and the oxides with high weight percentages for the multivariate structure, partial correlations and R2 seem
to point us to the importance of Fe2O3 and Al2O3 for the understanding of mutual dependencies. Of note is
the conspicuous negative correlation between SiO2 and Fe2O3, the only negative association of importance
that we find in this data set. It would remain undetected with current association measures.

4 Discussion

A proposal for partial proportionality by Erb and Notredame (2016) only controls for one ratio and thus
introduces an additional parameter. Already the reference can be considered a nuisance parameter and
needs justification when discussing results. The natural definition of partial correlation elucidated in this
paper treats the reference like just another variable that is controlled for. While we cannot quite get around
discussing its choice for R2, partial variances and partial correlations are defined reference-free and can
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be evaluated as efficiently as in absolute analysis. Application to graphical models is a natural next step.
For applications in genomics, e.g., the equivalence of the compositional approach with the one using a
normalization of the data is interesting. The equivalence holds as long as the normalizing variables are
controlled for in the sense discussed in section 2.4. In genomics it will also be necessary to modify the
analysis for the many-variables setting. Here, the empirical covariance matrix is a poor estimator that can
be improved by regularization, also allowing for the necessary covariance inversion.
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Appendix

Independence of LLSP from permutation of parts in the explanatory ratios

Let P be a D ×D permutation matrix (obtained from permuting the rows of the identity matrix). When
applying P to X, it changes the order of the random variables in X. Together with our definition of F from
section 1.2.2, we define

QP = FPFTH−1, (22)
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where H is defined as the (D − 1)× (D − 1) matrix resulting from adding a matrix of units to the identity
matrix.4 Also, it can be obtained from H = FFT . Note that, when applying QP to Y , it yields a
permutation of parts in the constituent variables, e.g., for a suitable P, Y = (log(X1/X3), log(X2/X3))
becomes (log(X1/X2), log(X3/X2)) = Y P . More formally, Property 5.2 (b) in (Aitchison, 1986) states that

Y P = QPY, (23)

ΣP = QPΣQT
P . (24)

Here, Σ and ΣP denote the covariance matrices of Y and YP , respectively. Let us now use versions of these
matrices to contain only variables with indices from Cj = {1, . . . , D− 1}\j. For ease of notation, we will not
change the notation for QP for the lower-order version, but to use the same notation as in the main text,
let us use the shorthand C = var(YCj ) instead of Σ. (Remember that in YCj , XD occurs in the denominator

of the ratios.) We can now show that Ŷj(Y
P
Cj ) = Ŷj(YCj ):

Ŷj(Y
P
Cj ) = cov

(
Yj , Y

P
Cj

)
var(Y P

Cj )−1Y P
Cj = cov

(
Yj ,QPYCj

)
C−1P QPYCj

= cov
(
Yj , YCj

)
QT

PC−1P QPYCj = cov
(
Yj , YCj

)
QT

P

(
QPCQT

P

)−1
QPYCj

= cov
(
Yj , YCj

)
QT

P

(
QT

P

)−1
C−1Q−1P QPYCj = cov

(
Yj , YCj

)
C−1YCj = Ŷj(YCj ). (25)

Here, the first line uses the definition of the LLSP (6), the identity (23) and the definition of CP . The first
equality of the second line comes from the bilinearity of the covariance, c.f. Proposition 5.1.2 in (Whittaker,
1990). The next equality follows from (24). Some simple matrix identities and again the definition of the
LLSP conclude the proof.

Equivalent formulation of residual using clr transformation

Let us start with the explanatory ratios again i.e. let us show that Ŷj(Y ) = Ŷj(Z). (For simplicity, we
partial on the entire vector Y , but the same argument holds for some YC .)

Ŷj(Y ) = cov(Yj , Y )Σ−1Y = cov(Yj ,FZ)Σ−1FZ = cov(Yj , Z)FTΣ−1FZ = cov(Yj , Z)Γ−Z = Ŷj(Z). (26)

For the first four equalities we were using (6), (3), the bilinearity of covariance (see previous proof) and
(5). The last equality we can consider a definition (as in the original definition of the LLSP the covariance
matrix needs to be invertible and is here replaced by the pseudoinverse). As this argument was independent
of the variable we are predicting, we also conclude that Ẑj(Y ) = Ẑj(Z).
We now want to show that Zj − Ẑj(Y ) = Yj − Ŷj(Y ). Since we have Yj = Zj − ZD and

Yj − Ŷj = Zj − ZD − ̂(Zj − ZD) = Zj − Ẑj − ZD + ẐD, (27)

all we have to show is that ẐD = ZD. We have

ẐD(Y ) = cov

(
log

XD

g(X)
, log

X

XD

)
Σ−1Y = cov

(
− log

g(X)

XD
, log

X

XD

)
Σ−1Y

= cov

(
− 1

D

D−1∑
i=1

Yi, Y

)
Σ−1Y = − 1

D

(
D−1∑
i=1

σil

)T

l=1,...,D−1

Σ−1Y = − 1

D

(
D−1∑
l=1

D−1∑
i=1

σilσ
(−1)
lk

)T

k=1,...,D−1

Y

= − 1

D

(
D−1∑
i=1

δik

)T

k=1,...,D−1

Y = − 1

D

D−1∑
k=1

Yk = − 1

D

D−1∑
k=1

log
Xk

XD
= log

XD

g(X)
= ZD. (28)

4Note that we have Z = FTH−1Y . The matrix FTH−1 is a right inverse of F.
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Note that for the first equality of the third line to be true, the geometric mean has to run over the same
set as the variables we are partialling on. Here, the fact that we include the reference XD in the geometric
mean only plays a role with respect to the size of the prefactor 1/D, as log(XD/XD) = 0. Together with
the independence from the transformation used in the explanatory ratios shown in (26), we conclude that
Yj − Ŷ (Y ) = Zj − Ẑ(Z).

Pseudoinverse of Γ under permutations of parts in Σ

Here we show that a permutation of parts in Y , the variables having covariance Σ, corresponds to a simple
permutation of the rows in the pseudoinverse Γ− of the covariance of the corresponding clr-transformed
random vector Z. Permuting rows in Γ− gives

PΓ−PT = PFTΣ−1FPT = PFT
(
QT

P (QT
P )−1

)
Σ−1

(
Q−1P QP

)
FPT

= PFTQT
P

(
QPΣQT

P

)−1
QPFPT = PFTQT

PΣ−1P QPFPT , (29)

where we applied (5), inserted two identity matrices, and used the identity for permutation of parts in Σ
(24). We now observe that

FTQT
P = FT

(
FPFTH−1

)T
= FT (H−1)T

(
FPFT

)T
= FTH−1FPTFT , (30)

where we used the symmetry of H for the last equality. This expression contains another auxiliary matrix
G described in (Aitchsion, 1986), which is defined as the D × D matrix obtained by subtracting from
the identity matrix the matrix consisting of elements 1/D. By Properties F1 and G3 in the appendix of
Aitchison’s book and Properties 5.4 there, we have

G = FTH−1F, (31)

PGPT = G, (32)

FG = F. (33)

With (30) and these properties, (29) simplifies to

PFTQT
PΣ−1P QPFPT = PGPTFTΣ−1P FPGPT = GFTΣ−1P FG = FTΣ−1P F = Γ−P . (34)

The last identity follows from (5) again. We have shown that PΓ−PT = Γ−P through permutation of parts
in Σ. In Property 5.2 (b) in (Aitchison, 1986) the corresponding identity is stated for ΓP instead of its
pseudoinverse.

Permutation test and local false discovery rates

For the general framework, we follow the procedure outlined in (Hastie et al, 2001). As permuting the
residuals seems to lead to a test that is too lenient, we opted for permuting the samples in each column
of the original data matrix before evaluating and inverting the covariance matrix. A false-discovery rate
(FDR) estimate is obtained for a given cut-off C from dividing the average number of pairs with randomized
partial correlations above the cut-off Nra(C) by the number of pairs with true partial correlations above the
cut-off Nob(C). The number of randomizations was 10,000. All FDRs for cut-offs C in steps of 0.001 were
evaluated and a q-value for a given partial correlation value r was determined by taking the minimum over
the FDRs corresponding to C ≤ r. For negative r, the FDRs were determined separately on the other tail
of the distribution.
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Summary

International monitoring of access to drinking water, sanitation and hygiene (WASH) is essen-
tial to inform policy planning, implementation and delivery of services. The Joint Monitoring
Programme for Water Supply and Sanitation (JMP) is the recognized mechanism for tracking
access and progress, and it is based on household surveys and linear regression modelling over
time. However, the methods employed have two substantial limitations: they do not address the
compositional nature of the data, nor its statistical uncertainty (Ezbakhe & Pérez-Foguet 2018).
While the first issue has been tackled previously in the literature (Pérez-Foguet et al. 2017), the
effect of non-uniform sampling errors on the regressions remains ignored. This article aims to
address these shortcomings in order to produce a more truthful interpretation of JMP data.

The main challenge we try to overcome is how to translate the sampling errors provided in
household surveys to the space of compositional data. A Normal distribution is commonly
assumed for estimates in household surveys, with a mean and its standard deviation. However,
when working with binary data on households – the proportions of households that have access
to WASH services – the errors cannot follow normal distributions due to the domain restrictions
of proportions, limited to the range 0 to 1. Thus, the Beta distributions seems a better option
to characterize the uncertainty around mean access coverage. Yet, as the Beta distribution is
defined on the [0,1] interval, the zero values must be dealt with in order to employ the isometric
log-ratio (ilr) transformation designed for compositional data. In this article, we investigate
the use of two probability distributions (Pearson Type I and Truncated Normal) and Monte
Carlo simulations to reinterpret the error in the JMP data so that compositional data analysis
is possible.

With a specific focus on the WASH sector, our article shows that the importance of including
the survey errors of the data – and its compositional nature – when using this information to
support evidence-based policy-making. Indeed, given the current levels of statistical uncertainty
in WASH, data may lead to misleading results if errors are not acknowledged (or minimized).

Key words: Demographic Data, Statistical Uncertainty, Compositional Data, Joint Monitor-
ing Programme (JMP), WASH

1 Introduction

In 2015, the global community adopted the 2030 Agenda for Sustainable Development, a universal call to
action to end poverty, protect the planet and ensure prosperity to all. The agenda compromises a set of
17 Sustainable Development Goals (SDGs) and 169 targets addressing social, environmental and economic
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Ezbakhe & Pérez-Foguet

aspects of development. To monitor progress towards the SDGs, 232 global indicators are defined and
tracked by mandated agencies (UNGA, 2017). The list includes two indicators related to SDG 6.1 and
6.2 targets related to the use of drinking water, sanitation and hygiene (WASH): (i) indicator 6.1.1, on
the proportion of population using safely managed drinking water services; and (ii) indicator 6.1.2, on the
proportion of population using safely managed sanitation services, including a hand-washing facility with
soap and water.

The task of tracking these two global indicators is undertaken by the WHO/UNICEF’s Joint Monitoring
Programme for Water Supply and Sanitation (JMP). Since 1990, the JMP has produced national, regional
and global estimates of population using improved drinking water sources and sanitation facilities. Specifi-
cally, the JMP uses service “ladders” to benchmark and compare across countries (JMP, 2017). For drinking
water, the ladder reports on the proportion of the population using: (i) drinking water directly from surface
water; (ii) other unimproved water sources; (iii) improved water sources that require more than 30 min-
utes collection time; (iv) improved water sources that require less than 30 minutes collection time; and (v)
improved water sources that are located on premises, available when needed and free from contamination.
Similarly, the ladder for sanitation reports on those with: (i) no sanitation at all (open defecation); (ii)
other unimproved facilities; (iii) improved facilities shared between two or more households; (iv) improved
facilities that are not shared; and (v) improved facilities that are not shared with other households and
where excreta are safely disposed of in situ or transported and treated off-site.

With this service ladder approach, the JMP generates rural, urban and national estimates for each country,
for a total of 26 indicators related to WASH (JMP, 2018). The 8 indicators included in this paper are shown
in Table 1. Simple linear regression using ordinary least squares method (OLS) is employed to estimate
the proportion of the population using each service level. These estimates are used to monitor progress
towards SDG targets, as well as to support informed policy and decision making by national governments,
development partners and civil society.

Table 1: 8 primary indicators used by the JMP for monitoring drinking water and sanitation services.

Water The proportion of the population that uses...

W1 Piped water drinking water sources
W2 Other improved drinking water sources
W3 No drinking water facility (surface water)
W4 Other unimproved drinking water sources

Sanitation The proportion of the population that uses...

S1 Improved sanitation facilities connected to sewers
S2 Other improved sanitation facilities
S3 No sanitation facilities (open defecation)
S4 Other unimproved sanitation facilities

However, the “JMP estimation” method has two substantial limitations. First, the compositional nature of
the data is not taken into account. The JMP models the service ladder proportions separately, which may
derive into untenable results where the sum of the proportions is not equal to 1 (i.e., the whole population).
This issue has been addressed previously by Pérez-Foguet et al. (2017), who revealed the importance of
considering the compositional nature of WASH coverage estimates for statistical data analysis. Second, the
large degree of uncertainty inherent within JMP estimates remains unexplored (Ezbakhe & Pérez-Foguet,
Agust́ı, 2018). This uncertainty stems from sampling errors in the household surveys from which the JMP
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draws data and, as such, should be accounted for when estimating WASH coverage.

In this context, and to further support the JMP in the task of improving the modelling of WASH data,
this paper investigates how to translate sampling errors provided in household surveys to the space of
compositional data.

2 Methodology

In household surveys, a Normal distribution is commonly assumed for estimates, with a mean µ and its
standard deviation σ. When working with proportions, however, a Normal distribution is not appropriate,
since it may yield values that exceed the 0 and 1 bounds. A Beta distribution is more suitable for the
statistical modelling of proportions (Ferrari & Cribari-Neto 2004). Yet, as the Beta distribution is defined
on the [0,1] interval, zero values must be dealt with in order to employ log-ratio transformations designed
for compositional data.

In this paper, we test the use of two probability distributions to reinterpret JMP data: (i) Pearson Type
I distribution, a generalization of the Beta distribution bounded to [λ,1 − λ]; and (ii) Truncated Normal
distribution, a generalization of the Normal distribution bounded to [λ1,λ2] (in this case [λ,1 − λ]). Their
densities are given by Equations 1 and 2, respectively.

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
(x− λ)α−1 (1 − (x− λ))β−1 (1)

f(x) =
1

σ
φ(
x− µ

σ
)

(
Φ(

1 − λ− µ

σ
) − Φ(

λ− µ

σ
)

)−1

(2)

where α and β are the shape parameters of the Pearson Type I distribution, and φ and Φ the probability
density and cumulative distribution functions of the standard Normal distribution.

The shape parameters are derived from the original data by matching the first and second moments of the
“extended Beta” distribution with those of the Normal distribution, as seen in Equations 3 and 4.

µ = λ+ (1 − 2λ)
α

α+ β
(3)

σ2 = (1 − 2λ)2
αβ

(α+ β)2(α+ β + 1)
(4)

As suggested by Mart́ın-Fernández et al. (2011), λ can be defined as the “rounding-off error”, which relates
to the number of significant digits in the database. In this case, we assume λ = 10−4.

With these two distributions, we use Monte Carlo simulations to generate n sets of JMP data (n = 1000).
These simulated datasets are used to quantify the uncertainty of JMP data and report the confidence bounds
of regressions. For each n simulation, we follow the compositional data (CoDa) methodology: (i) we first
use a isometric log-ratio (ilr) transformation to bring the compositions to the real space, (ii) then apply
both ordinary least squares (OLS) linear regression and generalize additive models (GAM) with 4 degrees
of freedom to the transformed data, and (iii) back-transform the interpolated results to the original scale.

The proposed approach is tested the case of sanitation in rural Madagascar (data in Table 2). The com-
ponents of the populations are: y1 sewer, y2 other improved sanitation facilities, y3 open defecation, and y4
other unimproved sanitation facilities. Standard deviations are generated randomly between 0.001 and 0.1,
which is the common sampling error in households surveys.
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Table 2: JMP data for sanitation in rural Madagascar.

Year sd y1 y2 y3 y4

1992 0.0940 0.0000 0.1300 0.7000 0.1700
1993 0.0720 0.0100 0.2300 0.7300 0.0300
1997 0.0540 0.0000 0.1400 0.7000 0.1600
2000 0.0620 0.0010 0.0865 0.4760 0.4365
2001 0.0600 0.0000 0.0800 0.2600 0.6600
2001 0.0960 0.0000 0.0900 0.2800 0.6300
2002 0.0560 0.0027 0.0887 0.3750 0.5336
2004 0.0730 0.0030 0.0962 0.4620 0.4388
2004 0.0110 0.0012 0.0791 0.5250 0.3947
2005 0.0750 0.0000 0.0909 0.4620 0.4471
2009 0.0040 0.0000 0.0998 0.4910 0.4092
2010 0.0630 0.0360 0.0566 0.5850 0.3224
2011 0.0080 0.0004 0.0843 0.6135 0.3018
2013 0.0540 0.0004 0.1055 0.6052 0.2889
2013 0.0070 0.0010 0.1560 0.5640 0.2790
2016 0.0560 0.0046 0.2317 0.4159 0.3477

3 Results and Discussion

In this section, we compare the coverage estimates obtained by: (i) modelling the statistical uncertainty of
JMP data with Pearson Type I (aka extended Beta) and Truncated Normal distributions; and (ii) applying
OLS and GAM regression models.

The importance of translating the sampling errors of JMP data prior to its modelling in the space of
compositional data is evidenced in Figure 1. The Normal distribution (Figure 1.a) yields estimates outside
the [0,1] interval, specially when proportions of populations are close to the extremes (e.g. in y1 and y2).
The Pearson Type I distribution (Figure 1.b) may seem suitable to re-interpret the JMP data, as it is
delimited at 0 and 1. However, in some cases, it may not be possible to find shape parameters (α and
β) that estimate the moments of an Extended Beta distribution. This happens when the mean coverage
reported is significantly lower than its standard deviation (e.g. in y1). Therefore, this approach can only
be useful to model uncertainties when standard deviations are smaller than the means. On the contrary,
the Truncated Normal distribution (Figure 1.c) is more appropriate to construe the data: it does not only
produce estimates between 0 and 1, but also allows for all sets of mean and standard deviation values.
Therefore, we choose this latest approach to reproduce the JMP data and model its statistical uncertainty.

On the other hand, when comparing OLS and GAM regressions models (Figure 2), it becomes palpable the
need to characterize and represent uncertainty around JMP estimates. In both cases, the 95% confidence
interval in the period of JMP data is slightly wide (similar to the errors in the data): (i) with OLS, 0.033,
0.069, 0.097 and 0.105 for y1,y2,y3 and y4, respectively; and (ii) with GAM, 0.044, 0.089, 0.099 and 0.093.
These confidence intervals become much wider in the period beyond the data collected. For instance, in
2020, we can be 95% confident that the expected percentage of the population without access to improved
sanitation facilities (aside from open defecation) will be between 40.3% and 61.5% with OLS, or 14.1% and
40.1% with GAM. That it why it is essential to include the survey errors of the data when performing
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Ezbakhe & Pérez-Foguet

statistical analysis.

Figure 1: Boxplots of simulated JMP data considering: (1.a) Normal, (1.b) Pearson Type I (aka Extended
Beta) and (1.c) Truncated Normal distributions.

Figure 2: OLS (in red) and GAM (in blue) regressions of JMP data, after ilr-transformation (with 95%
confidence intervals using Truncated Normal distributions).
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Finally, when comparing which regression model is more appropriate, it can be seen that GAM fits better
when datasets show nonlinear behaviours. According to the trajectory categorization methodology proposed
by Fuller et al. (2016), these components present the following patterns: y1 “no change” (i.e. the slope
for the entire period is close to zero); y2 and y3 (i.e. negative but plateauing slope); and y4 deceleration
(positive slope but plateauing below 1). As shown in Table 3, significant improvement is observed when GAM
regression is applied to components y2, y3 and y4. Therefore, using GAM results (after ilr transformation)
in JMP can lead to more accurate coverage estimates.

Table 3: Values of root-mean-square error (RMSE) for results of models presented in Figure 2.

Model y1 y2 y3 y4

OLS 0.0391 0.0522 0.1433 0.1699
GAM 0.0238 0.0238 0.0648 0.0701
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Summary 
The quality of atmospheric air in large cities is a matter of great importance because of its 
impact on the environment and on the health of the population. Recently, measures 
restricting access of private vehicles to the centre of large cities and other measures to 
prevent atmospheric air pollution are currently topical (Hervada-Sala et al., 2018). The 
knowledge of air quality acquires special relevance to be able to evaluate the impact of 
those great social and economic measures. 
There are many indices to express air quality. In fact, quite every country has its own, 
depending on the main pollutants, they have as Plaia and Ruggeri (2011) pointed out. In 
general, all indices ignore the compositional nature of the concentrations of air pollutants 
and do not apply methods of Compositional Data Analysis; those indices also have some 
other weak points such as leak of standardized scale. 
A first approach applying Compositional Data Analysis methods has been developed in 
Jarauta-Bragulat et al., 2016. In the present work, we try to go some step further to 
improve the understanding and manageability of air quality. The air quality index 
proposed here takes into account the compositional nature of the data, it has an adequate 
correlation between input (concentrations) and output (air quality index), it distinguishes 
between air pollution and air quality and it has a 0-100 reference scale which makes easier 
interpretation and management of air quality expression. To illustrate the proposed 
method, an application is made to a series of air pollution data (Barcelona, 2001-2015).  

Keywords: Air pollution, Air quality, Air quality index, Health impact, 
Compositional Data Analysis, Log-ratio. 

 
 
 
1. Introduction 
 
Air pollution in cities, mainly in large cities or densely populated areas, is a burning issue 
that concerns citizens because of its impact on daily life and its consequences on people’s 
health. More than a half of the planet's inhabitants live in urban areas. This is the reason 
why in large cities the quality of the environment in general and the air in particular is a 
problem that deserves special attention. Implications of atmospheric air pollution go far 
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beyond the health of people and affect the environment in general, the economy and the 
future of life on our planet (Hawking, 2017). Thus, the increasing demand on air quality 
makes it a point in urban management: cities must take measures to guarantee that air 
quality is at adequate levels to avoid affections on the health of population. It is very 
important, therefore, to have an adequate methodology to quantify the expression of 
atmospheric air quality to help decision makers to control it correctly. 
 
Atmospheric air pollution is usually expressed by a numerical value called "Air Quality 
Index" (AQI). This index is obtained from concentrations of some air pollutants, usually: 
O3, CO, NO2, SO2 and suspended particulate matter of certain size or diameter: lower than 
2.5 microns (PM2.5) and lower than 10 microns (PM10). Presence of pollutants and 
particulate matter is expressed by their concentration in units of mass relative to a total 
volume unit of air usually μg/m3. There are several methodologies to express the quality of 
atmospheric air from the concentrations of air pollutants. The best known is the proposal 
by the USA Environmental Protection Agency (EPA), which is based on a piecewise linear 
function that transforms the concentrations into AQI values in a certain scale. However, all 
the methodologies applied until now, handle concentrations of air pollutants ignoring their 
compositional nature and therefore committing some errors, such as calculating arithmetic 
averages. For more details, see Plaia and Ruggieri 2011 and Jarauta-Bragulat et al. 2016.  
 
The most recent proposal for an Air Quality Index that takes into account the compositional 
nature of the data is, as far as we know, the one developed in Jarauta-Bragulat et al. 2016. 
The proposal is based on the concept of logcontrast and an air quality index is defined 
(AQI*) as a function of the geometric mean of concentrations of six air pollutants (O3, 
NO2, CO, SO2, PM10, PM2.5). The index is scaled from zero to 100 using a proportionality 
factor, according to concentration’s values. 
 
In the present work, an improvement of that model is proposed, keeping as an essential 
element taking into account the compositional nature of the air pollutants concentrations, 
that is, applying Compositional Data Analysis methods. One of the purposes is giving an 
index that makes it clear that air pollution and air quality mean opposite things, which 
seems not so clear in most of the existing AQI. At the same time, this index establishes a 
different slope variation (derivative) in the low pollution zone and the high pollution zone, 
which allows for a better discrimination in low polluted areas. In addition to a global index 
of air quality, the proposal is giving an individual index for each of the pollutants, which 
makes it possible the detection of possible dangerous individual pollutant levels, that 
otherwise could keep unnoticed in a global index. At last, to help decision makers using it 
in a reliable, simple and adequate way, the new index has a natural scale to express the 
values of air quality. 
 
 
2. Proposal of a new definition of Air Quality Index 
 
Air pollution data are given usually as a real coefficient (N, D+1)-matrix M, where D stands 
for the number of pollutants and +1 for the period time. Therefore, its k-row can be expressed 
as:  
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( )1 2( ) ( ) ( ) ( ) , 1, 2,...,k k k D kM k t c t c t c t k N= =  (2.1) 

being tk the k-time period (day, week, month, …), k = 1,2,…,N, N the number of time periods 
and ( )i kc t  the concentration of ith air pollutant at time tk (units are usually µg/m3). The 
most significant air pollutants for their impact on people health in urban surroundings are 
O3, NO2, PM10 and PM2.5 (Arden-Pope and Dockery 2006; Zhang et al. 2016; Van den 
Elshout et al. 2014). Therefore, in this work we will consider four air pollutants (D = 4) and 
other components of air grouped in the so-called "residual component". Then, the k-th row 
we take is 

 
( )3 2 10 2.5( ) ( ) ( ) ( ) ( ) .k O k NO k PM k PM kM k t c t c t c t c t=  (2.2) 

 
A logcontrast (LC) is defined as a linear combination of logarithms of parts with coefficients 
adding up to zero (Aitchison 1986). If a logcontrast is computed considering air pollutants 
and the residual component, for any time tk, k=1,2,…,N, put 1resα = − , then taking into 
account properties of logarithmic function, the equation we have can be written as: 
 

( ) ( )3 2 10 2.5
3 2 10 2.5

3 2 10 2.5

log log

1.

O NO PM PM
O NO PM PM res

O NO PM PM

LC c c c c cα α α α

α α α α

= −

+ + + =
 

(2.3) 

 
The filling-up value of air residual component is almost never reported, its computation is 
very difficult and the second term in the right-hand of Eq(2.3) is almost constant (Jarauta-
Bragulat et al., 2016). Therefore, air pollution can be expressed using the considered air 
pollutants with Eq(2.3) or its approximation 
 

( ) 3 2 10 2.5
3 2 10 2.5 3 2 10 2.5

3 2 10 2.5

, , ,
1.

O NO PM PM
O NO PM PM O NO PM PM

O NO PM PM

f c c c c c c c cα α α α

α α α α
=

+ + + =
 

(2.4) 

 
From Eq(2.4), a function for an Air Pollution Index (API) calculation can be stated as: 
 

( )3 2 10 2.5
3 2 10 2.5

max max max max

3 2 10 2.5

100
( 3 , 2 , 10 , 2.5 )

1.

O NO PM PM
global O NO PM PM

global

O NO PM PM

API K c c c c

K
f O NO PM PM

βα α α α

α α α α

=

=

+ + + =

 

(2.5) 

 
The exponent β allows applying for a nonlinear model and, thus, having a different shape 
of the pollution curve in the low pollution zone with respect to the high pollution zone. The 
value of the exponent used in this work is β = 1.25, as it has shown to be the best 
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discriminant. The multiplicative factor Kglobal is introduced for ranging air pollution index 
values in a scale from zero to 100. The value of the multiplicative factor Kglobal depends on 
the value of β exponent, as well as on the maximum pollutant’ concentrations adopted as 
maximum admissible pollution (Zhang et al. 2016, “air quality now, 2018”). An example is 
shown in Table 1 and the corresponding value of Kglobal is 100/223.8.  
 
Once API has been defined, the definition of the Air Quality Index becomes simple: 
 

* 100AQI API= −  (2.6) 
 
As a complement to the information provided by the global AQI* values, individual 
functions for each air pollutant can be calculated as: 
 

( )
( )
( )
( )
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2

10
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3 3 3 3 3
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2 2 2 2 2

1.25

10 10 10 10 10

1.25

2.5 2.5 2.5 2.5 2.5

; * 100

; * 100

; * 100

; * 100

O

NO

PM

PM

O O O O O

NO NO NO NO NO

PM PM PM PM PM

PM PM PM PM PM

API K c AQI API

API K c AQI API

API K c AQI API
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α
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α
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= = −
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(2.7) 

 
 

 O3 NO2 PM10 PM2.5 f Global AQI* 
Scaling factor 0.0 0.0 0.0 0.0 0.0 100 

0.10 24.0 40.0 20.0 15.0 22.4 94.4 
0.40 96.0 160.0 80.0 60.0 89.5 68.2 
0.65 156.0 260.0 130.0 97.5 145.4 41.6 
0.85 204.0 340.0 170.0 127.5 190.2 18.4 

 240.0 400.0 200.0 150.0 223.8 0.0 
       
ai 0.25 0.20 0.30 0.25   

Table 1. Breakpoints for each considered air pollutants; in bold, maximum values assigned. 
First column indicates the factor to obtain partial breakpoints from corresponding 
maximum. Column f  indicates the result according to Eq(2.4) and exponents are at the last 
row. In last column, global AQI* values and corresponding colour codes.  
 
 
3. Case study: Barcelona 2001-2015 
 
A data series 2001-2015 of air pollution in Barcelona is studied. In Figure 1, AQI* functions 
are plotted for the considered air pollutants. In Figure 2 global AQI* function is plotted. 
For this period, average of global AQI* values is 90.95, a reasonably good value for air 
quality. Average individual AQI* values are 91.36 for O3, 93.80 for NO2, 88.40 for PM10 
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and 86.22 for PM2.5. 
 
 

 
Figure 1. Individual AQI* functions for air pollutants.  

Data series: Barcelona 2001-2015. 
 

 
Figure 2. Global AQI* function.  
Data series: Barcelona 2001-2015. 

 
 
4. Conclusions 
The main conclusions from this work are: 
(1) Definition of an index of atmospheric air quality in cities should be formulated according 
to the compositional nature of the concentrations and, consequently, applying concepts and 
methods of Compositional Data Analysis. 
(2) The function that should be used in the formulation of an index of air quality is the 
logcontrast. 
(3) The methodology presented in this work allows characterizing air quality individually 
for each air pollutant, obtaining a global quality index and presenting an AQI-report that 
illustrates the evolution of global air quality. 
(4) Attending to air quality in Barcelona, 2001-2015: (a) Global air quality is satisfactory 
and has improved in the last ten years. (b) The impact on air quality is mainly due to the 
presence of particles rather than the presence of gases. (c) In relation to particles, a 
significant increasing in both corresponding individual quality in last ten years can be 
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observed. (d) The individual index of ozone has worsened in the last ten years. 
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Summary

A generalization of the Dirichlet and the scaled Dirichlet distributions is given by the simplicial
generalized Beta, SGB (Graf, 2017). In the Dirichlet and the scaled Dirichlet distributions, the
shape parameters are modeled with auxiliary variables (Maier, 2015, R-package DirichletReg)
and Monti et al. (2011), respectively. On the other hand, in the ordinary logistic normal regres-
sion, it is the scale composition that is made dependent on auxiliary variables. The modeling of
scales seems easier to interpret than the modeling of shapes. Thus in the SGB regression:

• The scale compositions are modeled in the same way as for the logistic normal regression,
i.e. each auxiliary variable generates D − 1 parameters, where D is the number of parts.

• The D Dirichlet shape parameters, one for each part in the compositions, are estimated as
well.

• An additional overall shape parameter is introduced in the SGB that proves to have impor-
tant properties in relation with non essential zeros.

• Use of survey weights is an option.

• Imputation of missing parts is possible.

An application to the United Kingdom Time Use Survey (Gershuny and Sullivan, 2017) shows
the power of the method. The R-package SGB (Graf, 2019) makes the method accessible to
users. See the package vignette for more information and examples.

Key words: Dirichlet distribution, simplicial Generalized Beta, maximum likelihood estima-
tion, imputation, R-package, Time Use survey.

1 SGB distribution

The Dirichlet distribution can be viewed as the distribution of U = C(Y), where Y = (Yj)j=1,...,D is a vector

of independent Gamma(pj) components and C(.) is the closure operation (i.e. Uj = Yj/
∑D

i=1 Yi). The
SGB distribution follows the same construction, with the Gamma distribution replaced by the generalized
Gamma, that is the underlying Yi are independent GG(a, c bj , pj), c being an arbitrary positive constant.
The parameters are all positive and b = (b1, ..., bD) is itself a composition, the scale composition. The SGB
can also be generated from the Dirichlet:

Definition Suppose that Z = (Z1, ..., ZD) follows a Dirichlet(p1, ..., pD) distribution. Then the random
composition U = (U1, ..., UD), (D ≥ 2), given by

Uj =
bj Z

1/a
j∑D

i=1 bi Z
1/a
i

, j = 1, ..., D or U = C[b Z1/a]
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follows a SGB(a, {bj , pj , j = 1, ..., D}) distribution.

All parameters are positive; a is an overall shape parameter, b = (b1, ..., bD) a scale composition and
p = (p1, ..., pD) the vector of Dirichlet shape parameters.

Conversely, the random composition Z can be written in function of U,

Zj =
(Uj/bj)

a∑D
i=1(Ui/bi)a

, j = 1, ..., D or Z = C[(U/b)a]. (1)

Because UD = 1 −
∑D−1

j=1 Uj , there are only D − 1 variables in the composition U. The La-norm of the
vector (u/b) is

‖u/b‖a =

D−1∑
k=1

(uk/bk)a +

(1−
D−1∑
j=1

uj)/bD

a1/a

.

The probability density of the SGB(a, {bj , pj , j = 1, ..., D}) distribution is obtained as

fU(u−D) =

Γ(P )aD−1∏D
j=1 Γ(pj)

D−1∏
k=1

{
uk/bk
‖u/b‖a

}apk


(

1−
∑D−1

j=1 uj

)
/bD

‖u/b‖a


apD

1∏D−1
k=1 uk

(
1−

∑D−1
j=1 uj

) ,
uk > 0, k = 1, ..., D − 1, 1−

D−1∑
j=1

uj > 0.

Craiu and Craiu (1969) derived this density. The fitted compositions are defined as the estimated value
of the so called Aitchison’s expectation EA(U) = C[exp(E log(U))], i.e. the image in the simplex of the
expectation at log-scale, that is for the SGB, with ψ(.) the digamma function,

EA(Uk) =
bk exp{ψ(pk)/a}∑D
j=1 bj exp{ψ(pj)/a}

k = 1, ..., D.

In the R-package SGB regression models can be set up for the scale composition b. The shape parameters
a and p are estimated as well, but are supposed constant across compositions.

2 SGB regression model

2.1 Model

The SGB regression models follow the principles of log-ratio analysis advocated by Aitchison (1986). We
define a general D × (D − 1) contrast matrix V, such that

1t
DV = 0t

D−1,

where 1D is a D-vector of ones and 0D−1 is a (D − 1)-vector of zeros. The model for scales is the general
linear model. Let X be a n×p matrix of explanatory variables, where n is the sample size. Let ui, i = 1, ..., n
be the composition associated to xt

i, the i-th row of X. Then the scales are modeled by

log(bt
i)V = xt

iB, (2)
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where
B =

(
β1...βD−1

)
is the p × (D − 1) - matrix of regression parameters for the log-ratio transforms, i.e. the (D − 1) columns
of log(ut

i) V, i = 1, ..., n.

2.2 Fitting procedure

There is the possibility to introduce sampling weights into the procedure. These weights wi, i = 1, ..., n are
scaled to sum to n.

The pseudo-log-likelihood is the weighted version of the log-likelihood and is given by

` (a, (b1, p1), ..., (bD, pD)|ui,−D, i = 1, ..., n)

= n

[
(D − 1) log(a) + log Γ(P )−

D∑
k=1

log Γ(pk)

]
+

n∑
i=1

wi

D∑
k=1

pk log zk(ui)

− terms not depending on parameters.

with z(ui) = (z1(ui), ..., zD(ui)) given at Equation (1) and P =
∑D

j=1 pj .

The model is estimated by maximizing the pseudo-log-likelihood using a constrained optimization method,
the augmented Lagrangian, see e.g. Madsen et al. (2004), and implemented in the R-package alabama as
function auglag (Varadhan, 2015). The gradient is computed analytically and the Hessian numerically. The
default constraints are

a > 0.1 (to avoid numerical problems)

pj > 0, j = 1, ..., D

a pj > bound, by default, bound = 2.1.

Moments of ratios of parts following the SGB distribution only exist up to (a pj). Thus bound = 2.1
guarantees the existence of variances of all ratios of parts. Notice that the most important variables, the
log-ratios of parts, possess moment of all orders.

A very handy feature of alabama::auglag is that the initial values do not need to satisfy the constraints,
and that general (twice derivable) constraints on parameters can be introduced. The price to pay is the
speed.

3 United Kingdom time use survey 2014-2015

3.1 Data-set

The time diary files of the United Kingdom time use survey 2014-2015 (Gershuny and Sullivan, 2017) provide
activities and corresponding level of enjoyment reported over 24 hour period (from 4am to 4am) on business
days and week end days. A household file and a individual file contain data collected during the household
(individual) interviews. Extrapolation weights at the individual and day levels are given.

In the following application, the total time spent doing an activity during a 24 hour period (eptime) was
extracted from the diaries. The activities are recorded by 10 min time span. Only the primary activity is
considered here. In order to avoid too many zeroes, activities were grouped into 8 categories:
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y0 Personal care,
y12 Employment grouped with study,
y34 Household and family care grouped with voluntary work,
y5 Social life and entertainment,
y6 Sports and outdoor activities,
y7 Hobbies, games and computing,
y8 Mass media,
y9 Travel and unspecified time use.

We consider here the 3,393 (out of 13,603) person-days with zero time spent on y12, y6 and y7. For other
activities not done that day, the rounded zero technique was used.

3.2 Analysis of one group

The explanatory variables are a weekend indicator; enjoyment data (levels 1 to 7, zero if missing); indicators
of missing response on enjoyment; an indicator of ”in employment” (dilodefr=1); DVAge age; DMSex=2 an
indicator of ”woman”; indicators of missing y34, y5, y8, y9. 16 cases with missing dilodefr were deleted.
The file with explanatory variables is then dnot1267b. The corresponding compositions are in unot1267b.
The weights are given by wnot1267b. The log-ratio transform is alr with reference part y0 which is never
missing. It is specified by the matrix V = Vmat2 (see Equation 2). The alr transforms are denoted a34, a5,
a8 and a9. The regression model is specified in the Formula Fnot1267b, following the syntax of Zeileis and
Croissant (2010).

Fnot1267b <- Formula(a34 | a5 | a8 | a9 ~

weekend + enjoy0 + enjoy34t + enjoy5t + enjoy8t + enjoy9t +

I(is.na(enjoy34)) + I(is.na(enjoy5)) + I(is.na(enjoy8)) +

I(is.na(enjoy9)) + DVAge + I(DMSex==2) + I(dilodefr==1) +

ymiss34 + ymiss5 + ymiss8 + ymiss9 )

regnot1267b <- regSGB(Fnot1267b, data = list(dnot1267b, unot1267b, Vmat2),

weight = wnot1267b, bound = 1.7, shape10 = 0.15,

control.optim = list(trace = 0, fnscale = -1))

round(table.regSGB (regnot1267b),3)

Table 1 shows that the algorithm converged properly to a true maximum of the likelihood: convergence

equals zero, kkt1 and kkt2 (first and second Karush-Kuhn-Tucker conditions) equal one.
value is the value of the objective function, minus the pseudo-log-likelihood.
The 78 parameters (n.par) are (1+17)*4 regression parameters (intercept and 17 explanatory variables for
each alr), one overall shape parameter and 5 Dirichlet shape parameters.
There is the possibility to fix some parameters, but the option was not used (n.par.fixed = 0).
AIC is Aikaike’s criterion.
Rsquare was defined by Hijazi and Jernigan (2009) as the ratio of the total variance (Aitchison, 1986) of
the fitted compositions to the observed compositions.
counts.function and counts.gradient give the number of times the objective function and the gradient
were evaluated.

More interpretation will be given during the talk.
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Table 1: Overall results, output of table.regSGB

statistics
value -16843.051
n.par 78.000
n.par.fixed 0.000
AIC 33842.101
Rsquare 0.763
convergence 0.000
kkt1 1.000
kkt2 1.000
counts.function 3715.000
counts.gradient 673.000
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Summary

The isometric logratio (ILR) transformation, which is a logratio of geometric means, has been
promoted by several authors as the required way, from a theoretical viewpoint, to contrast groups
of compositional parts and form a set of new coordinates for analysing a compositional data set.
The interpretation of ILRs is made complicated by the fact that each geometric mean depends
on the relative values of all the parts included in it. Thus, the geometric mean should never
be interpreted as an amalgamation of parts, except in some very special cases that hardly ever
occur in practice.

Simple examples can be constructed to show the dangers in using ILRs in statistical modelling.
In fact, ILRs should never be used as univariate statistics because of their unclear interpretation.
Furthermore, the mathematical properties of the ILR transformation, which justify its existence,
are found to be not required for good practice in compositional data analysis.

When groups of parts are required in practical applications, preferably based on substantive
knowledge, it is demonstrated that logratios of amalgamations serve as a simpler, more intuitive
and more interpretable alternative to ILRs. A reduced set of simple logratios of pairs of parts,
possibly involving prescribed amalgamations, is adequate in accounting for the variance in a
compositional data set, and highlights which parts are driving the data structure. The necessity
to address the research question is also stressed, as opposed to the conversion of the data to ILR
coordinates in an automatic way.

Key words: amalgamation, geometric mean, logratio analysis, logratio distance, univariate
statistics

1 Introduction

In an empirical study involving compositional data, there is general agreement that ratios of parts constitute
the key idea and that logratio transformations conveniently take observed compositions out of the bounded
simplex into real space. The simple pairwise logratio is the most easily understood logratio transformation
and is the basic building block of John Aitchison’s approach to compositional data analysis (CoDa) —
Aitchison (1986). For a J-part data set, the set of J − 1 additive logratios (ALRs) is sufficient to generate
every one of the J(J − 1)/2 pairwise logratios by linear combination. In fact, any set of J − 1 linearly
independent logratios has the same property, and the ratios involved form a network of parts in the form
of an acyclic connected graph (Greenacre 2018a, b). The set of J centred logratios (CLRs) is not linearly
independent, but forms a very convenient set for computational purposes, since the principal component
analysis (PCA) of the CLRs, called logratio analysis (LRA), is equivalent to performing the PCA of the
complete set of pairwise logratios — see, for example, Aitchison and Greenacre (2002). Notice that CLRs
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are not intended to be interpreted, nor to be used individually as new variables representing specific parts
— they are designed to be used as a complete set to represent the complete set of J(J − 1)/2 pairwise
logratios.

The isometric logratio (ILR) was defined originally by Egozcue, Pawlowsky-Glahn, Mateu-Figueras and
Barceló-Vidal (2003) and has seen considerable use since then. An ILR contrasts two subsets of parts,
denoted J1 and J2, by defining the logratio of their respective geometric means, with a scaling factor:

ILR(J1, J2) =

√
|J1||J2|

|J1|+ |J2|
log

(
∏

j∈J1 xj)
1/|J1|

(
∏

j∈J2 xj)
1/|J2|

(1)

where | · · · | denotes the number of parts (cardinality), and x1, x2, ..., xJ denote the parts. Certain well-chosen
sets consisting of J − 1 ILRs, called “balances”, have the property that they form a new orthonormal basis
for the compositional data set.

Several authors have adapted the ILR transformation not only as an alternative basis for the logratio space,
but also as the definition of new variables that are used in statistical analysis: for example, using them as
dependent and independent variables in modelling, making scatterplots of two ILRS and coming to certain
conclusions about their relationship, or redefining classical measures involving compositional variables. In
this paper we evaluate the validity of using the ILR transformation in practice, focusing especially on
its interpretation. In the process we compare the ILR with the much simpler logratio of summed (or
amalgamated) parts (SLR):

SLR(J1, J2) = log

∑
j∈J1 xj∑
j∈J2 xj

(2)

Section 2 deals with interpretation issues, showing that ILRs present major problems in practice in un-
derstanding what they actually measure. Section 3 lists the claimed benefits of ILRs and gives reasons
why these are not necessary prequisites for good practice of compositional data analysis (CoDa). Section 4
concludes with some recommendations.

The overall conclusion is that, while a set of linearly independent ILRs does provide an alternative set
of coordinates for a compositional data set, it is a set of uninterpretable coordinates as well as a very
complicated way to generate such a set. CLRs, for example, do not pretend to be interpretable variables,
they represent the logratio space exactly, are easy to compute and their linear interdependence presents
no computational problems. In any case, in almost all studies the research question does not require a
new set of variables made up of contrasting groups of parts, so the routine use of ILRs seems artificial and
unnecessary. We thus find that ILRs have no significant benefit over simpler transformations, and given the
difficulties with their interpretation and the high cost of determining an optimal set of ILRs, their use is
preferably avoided. Finally, there is a widespread tendency for them to be casually interpreted as if they are
ratios of amalgamated parts, which they are not: hence, we especially warn against the use of single ILRs
as summary measures and in modelling.

2 Interpretation of an isometric logratio

The ILR is not a simple transformation and has a complex interpretation. A set of linearly independent
ILRs is called a set of “balances”, implying a type of contrasting of one “weight” in the numerator with
another “weight” in the denominator. The problem is that it is “balancing” geometric means and this is
not easy to assimilate.

For example, consider four parts, A, B, C, D, with the following percentages in a larger composition:
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A: 10% B: 11% C: 3% D: 4%

Ignoring the scalar normalizing constant in (1), the logratio part of the ILR of A&B relative to C &D is
log(

√
10× 11/

√
3× 4) = 1.108, which is positive because the numerator is more than the denominator. The

SLR in (2) has no constant, and is simply log(21/7) = 1.099. The two results are similar in this case where
the values in the numerator are similar, as well as those in the denominator, so that the geometric means
resemble the arithmetic means.

However, suppose now that the values are (with just B changed):

A: 10% B: 1% C: 3% D: 4%

Then log(
√
10× 1/

√
3× 4) = −0.0911, negative because the numerator is less than the denominator,

whereas the SLR is log(11/7) = 0.452, still positive because it has more “weight” in the numerator, which
is intuitively correct.

Finally, leaving the same amount of “weight” in the denominator, but redistributing it slightly:

A: 10% B: 1% C: 2% D: 5%

the SLR remains the same but the logratio in the ILR changes to log(
√
10× 1/

√
2× 5) = 0, which gives the

impression that the numerator and the denominator have equal “weight”, which they do not.

Clearly, there is a serious intuitive problem if such a statistic is to be called a “balance” and be interpreted
as contrasting two groupings of quantities (e.g. percentages of geochemical components, time budgets,
money budgets, market shares...). The tendency to give the ILR an interpretation as a ratio of summed
values is widespread in the literature, although it is not easy to pinpoint anyone making an unambiguous
interpretation of it. The original article on ILRs by Egozcue et al. (2003) makes repeated mention of the
ILR transformation‘facilitating the interpretation of the results’ without giving any clear explanation of
what the interpretation of an ILR is, apart from it being a ‘balancing of groups of parts’.

Exceptionally, the following explicit interpretation of an ILR was given by Pawlowsky-Glahn, Egozcue and
Tolosana-Delgado (2015, page 41):

But the above interpretation is incorrect in general. Even the simplest of examples, x1 = x2 = x5 = x6 =
15% and x3 = x4 = 20% gives the leftwing a clear majority of 60% to 40% but the ILR, which has the logratio
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of log(15/20), is negative. Taking a topical example, at the time of writing the actual election forecasts for
the forthcoming Spanish elections give the leftwing coalition’s parties percentages of parliamentary seats
x1 = 36.9%, x2 = 9.4%, x5 = 3.4%, x6 = 2.3%, and the rightwing parties x3 = 28.0%, x4 = 20.0% (there are
three rightwing parties, so one’s forecast has been distributed proportionally across the two others). Using
these figures, the leftwing has 52.0% of the seats and the rightwing 48.0%. But the ILR is negative, equal to
−1.19 since the geometric mean in the numerator is 7.22 and that of the denominator 23.66. So, if the ‘sign
of the balance points out which group obtained more votes, and the value gives the size of the difference’,
then the rightwing would win by a huge majority! This demonstrates how small frequencies can radically
change the geometric mean.

Buccianti, Nisi and Raco (2015) say that in an ILR the ‘ratio measures the relative weight of each group and
the logarithm provides the appropriate scale, and a positive balance means that, in (geometric) mean, the
group of parts of the numerator has more weight in the composition than the group of the denominator (and
conversely for negative balances).’ The qualification ‘in (geometric) mean’ raises the problem described
above, and the practitioner can easily misinterpret what “weight” in the numerator and denominator ac-
tually means. Similarly, Coenders et al. (2015) deal with how tourist expenditures are distributed and
compute the ILR of the transportation part relative to the geometric mean of accommodation & food (an
amalgamation, no doubt) and activities & shopping (another amalgamation of parts), saying that ‘this ratio
is used to observe the share of transportation compared to at-destination expenses. Larger values show a
higher relative importance of transportation expenses.’ This interpretation is not necessarily valid, based
on the examples given previously. Furthermore, they perform statistical tests on this ILR variable, with its
unclear interpretation (unless the amounts spent on the two amalgamated categories are similar, in which
case the ILR will ressemble the SLR up to a scaling factor).

The book by Pawlowsky-Glahn, Egozcue and Tolosana-Delgado (2015) deals extensively with the theory of
ILRs, but includes only simple applications without any interpretation of any specific ILR transformation
(except the invalid interpretation pointed out earlier). They use ILRs mainly to reduce the D-part data set
to a D− 1-variable one, and it is the set of ILRs that are used in data exploration and modelling (we return
to this aspect in Section 3.1). ILRs are the ‘perfect black box’, as van den Boogaart and Tolosana-Delgado
(2013, page 45) say, adding that ‘the strongest difficulty with the ilr-transformed values or any orthonormal
coordinates [is that] each coordinate might involve many parts (potentially all), which makes it virtually
impossible to interpret them in general’.

There are cases where the ILR transformation is seriously proposed as a univariate statistic, so this is where
one can look at how it is interpreted. Buccianti (2015) revises a well-known scatterplot in water chemistry,
the Gibbs diagram, which usually has the logarithm of total dissolved solids (an amalgamation) on the
vertical axis, substituting this with the logratio that has the geometric mean of the eight dissolved solids as
numerator and the amalgamation of all the other components (not their geometric mean) as denominator,
which is a type of hybrid of an ILR and a SLR. With this “revision” the approach is stated as now being
‘coherent with the nature of compositional data, thus obtaining a simple tool to be used in a statistical
sense, going beyond the descriptive approach’ (Buccianti 2015). In fact, the geometric mean of the 8 TDS
parts, apart from possible problems of the type described above, is minuscule compared to the other water
components, hence the value of this “balance” is, for all practical purposes, almost exactly proportional to
log(TDS) used in the classical diagram. The use of the “balance” implies some benefit over the classical
Gibbs diagram, but it only adds an unnecessary complication to the plot’s interpretation and is not a ‘simple
tool’ at all.

Morton et al. (2017) also define a single ILR, on a sparse 88 × 116 data matrix of counts of 116 microbial
species in 88 soil samples. They compute an ILR contrasting 86 species with the other 30, i.e. the logratio
of two geometric means with 86 and 30 parts respectively. This statistic will be absolutely riddled with the
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problem mentioned above. with rare parts radically affecting the values of the geometric means. A much
simpler statistic, and more intuitive, would be the logratio of the respective amalgamated parts, where the
zeros are no longer problematic. What this ILR of so many parts measures is a mystery, but the authors
do suggest that it is contrasting the amount of “stuff” in the numerator with that of the denominator, by
showing a diagram of a balance with weights on either side. Pawlowsky-Glahn, Monreal-Pawlowsky and
Egozcue (2015, Figure 4) give the same incorrect impression of a balance by drawing it as a physical balance
with parts on the left and on the right and saying that ‘when the mean balance is placed at the left side, as
is the case in Figure 4, it points out that the parts on the left have greater proportions than the parts placed
at the right: it works like a lever in equilibrium i.e. a balance in the plain sense.’ Once again, the use of
‘greater proportions’ suggests amalgamations of proportions, not geometric means of them. We repeat that
the use of an ILR as a univariate statistic is dangerous, because of its unclear substantive interpretation in
any application.

To mention one last paradox of using the geometric mean rather than a simple sum in a logratio, suppose
that in the time budget of a sample of full-time and part-time workers there are two parts A = percentage
of daily time spent at the office working at the desk and B = percentage of daily time at the office drinking
coffee, going to the restroom, etc. Suppose that B is consistently a tenth of A, i.e. B = 0.1A, a property
called distributional equivalence in correspondence analysis. Hence, the total time spent at the office is
1.1A, where A varies across the sample. However, the geometric mean of A and B is

√
0.1A2 = 0.316A — a

researcher studying time budgets of office workers might well be wondering why “time at office” should be
measured as 0.316A rather than 1.1A when used in a logratio contrasting with other daily activities.

3 A set of ILR “balances”

The raison d’être of the ILR transformation appears to be in the form of a complete set of ILR “balances”,
which have the property of being a (D − 1)-dimensional basis, and thus providing an alternative set of
coordinates for the compositional data. The advertised benefits of having this new set of coordinates is that:
(i) this ILR basis is orthonormal; (ii) the covariance matrix of this new set of coordinates is nonsingular
and thus invertible, when computing Mahalanobis distances or performing multivariate regression (this is
often juxtaposed with the centred logratios (CLRs), which are not of full rank); and (iii) they reproduce the
logratio geometry (or “Aitchison geometry”) exactly. However, none of these three properties are necessary
prequisites for good CoDa practice, as we now show.

3.1 Transformation to an orthonormal basis

This supposed benefit is not at all clear. If one wanted an orthonormal basis, the principal components
of the CLR-transformed data are the best ones to use and easily computable. Proponents of ILRs say
that principal components are not easy to interpret, but then neither are the ILRs: the fact that ILRs
have simpler coefficients does not rule out all the paradoxes and complications in their interpretation. In
a compositional biplot, the new variables defined by the principal components serve to define the new
maximum-variance-explaining axes on which the samples are visualized, supplemented with biplot vectors
for the compositional parts (representing the numerators of the CLRs). The coefficients that define the
principal components are usually the coordinates of these biplot vectors, although other scalings are possible.
If one attempts the same type of analysis with ILRs, the result is unnecessarily complicated by the biplotted
vectors now representing the ILRs, with their problematic interpretation.

Trying to emulate a PCA, Mart́ın-Fernández et al. (2018) compute — at considerable expense — a set of
“principal balances”, and then use the first two as the support axes for a plot of the samples. The problem
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here is that they assume the two axes to have some substantive meaning, but their interpretation is unclear
and the relationship of the samples back to the original pairwise logratios is lost. Another point to make is
that in PCA the component with minimum variance might be of interest since it is an indicator of linear
dependence. In the set of “principal balances” the one with minimum variance is inevitably a simple pairwise
logratio, which might not even be the logratio with least variance — if such a minimum-variance logratio
were of interest it could be found directly by a simple search.

3.2 The nonsingularity of the set of ILR “balances”

Again, this is no benefit all, since it is very simple to cope with a set of singular CLRs representing
the data set, inverting it using the generalized inverse. In R, for example, this is achieved by simply
using the ginv function instead of solve in R) if an inverse of the cross-product or covariance matrix is
required in a regression analysis or to compute Mahalanobis distances. The multivariate regression and
dimension-reduction function rda in the vegan package accepts sets of singular explanatory variables as a
matter of course and with no problem at all. Modern computing makes the advertised nonsingularity of
ILR “balances” a redundant property.

3.3 Reproducing the logratio geometry exactly

This is a property that ILR “balances” share with the principal components. However, the insistence on
this geometry as some sort of gold standard is perplexing. We know that any data set has a random
noise component, so there is no practical reason why one would want to insist on data transformations that
represent both the interesting signal and uninteresting noise exactly. This is what makes PCA an interesting
method, since it attempts to separate the signal from the noise.

But there are other ways to identify the signal in the multivariate compositions, as described by Greenacre
(2018a). One can search for pairwise logratios that maximally explain the variance in the data set, and
these logratios can involve amalgamations of parts that are defined by an expert on substantive grounds and
for an intentional reason — see Greenacre (2018b) and Greenacre and Grunsky (2019) for further examples,
where it is shown in practical applications that a small set of simple pairwise logratios can approximate the
logratio geometry very closely, adequate for all practical purposes.

3.4 The substantive value of a set of balances

As a final point, and perhaps the most important of all, if there is any hierarchy or ordering of the com-
positional parts as a consequence of the type of data or the research question, then logically we should use
amalgamations in our logratio modelling, i.e. amalgamation balances (SLRs) of the type (2), not ILRs of
the type (1). This means that replacing a compositional data set by a set of ILR “balances” as a general
approach to CoDa is clearly inappropriate.

4 Conclusion

ILRs have been promoted as being ‘easily interpreted in terms of grouped parts of a composition’ (Pawlowsky-
Glahn, Egozcue and Tolosana-Delgado 2015, p. 38). But, as shown here, the geometric mean is a counter-
intuitive way of grouping parts and highly sensitive to the presence of rare parts. Since compositional data
often have many zeros that have been substituted by small values, these can radically change the geometric
means when combined with parts of higher value.
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The theoretical benefits of ILRs are not a prequisite for good CoDa practice. If one requires a set of logratios
to represent the compositional data set and its logratio geometry exactly, the simply computed CLRs are
perfectly adequate for purposes of modelling and dimension-reduction, and they are not intended to have
substantive meaning in themselves. Additive logratios can also serve this purpose satisfactorily in many
circumstances.

If one requires interpretable logratios that explain a maximum part of variance in the data and closely
approximate the logratio geometry, then carefully chosen and substantively meaningful pairwise logratios
will be sufficient for all practical purposes (Greenacre 2018a, b). Their choice will depend on the research
question: for example, in geochemistry, pairwise logratios that explain differences between sampled regions
might well be different from those that correlate with other phenomena of interest, such as environmental
variables. In addition, several parts can be amalgamated if this makes sense in the context of the objectives
of the research, and these amalgamations can be used in ratios with single parts or other amalgamations
(Greenacre and Grunsky 2019). The number of logratios needed to be investigated is relatively few, so this
approach is feasible in practice, for as many as 100 compositional parts.

By contrast, it is very difficult to identify the ILR that optimally explains a phenomenon of interest, since
there are so many possible groupings of parts, and thus ratios of these groupings. For example, to compute
principal “balances” Mart́ın-Fernández et al. (2018) admit that the computations and disk storage required
are very high and they only consider data sets up to 15 compositional parts, which are smaller than most
data sets in geochemistry and biochemistry. And, even if one identifies the optimal isometric “balance”,
involving groupings of parts, there still remains the question: what is the “balance” measuring and what
does it mean?

Finally, our conclusion here echos what John Aitchison himself said more than 10 years ago: ‘When counter-
ing this insistence on the use of ILR transformations, I said I would look forward to a convincing practical
use of the method. As far as I know there has been no progress in demonstrating its applicability.’ (Aitchison
2008). We have similarly found no convincing demonstration of its applicability, nor any reason why its
theoretical properties are a necessary requirement for good CoDa practice. Rather, we find impediments to
the use of the ILR transformation and prefer simpler approaches that are directly related to and specifically
developed to answer the particular research question.

For a more complete evaluation of the ILR transformation, including empirical examples, see Greenacre and
Grunsky (2019). We also highly recommend John Aitchison’s writings on this topic — see Aitchison (2008).
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Analysis, S. Thió-Henestrosa and J.A. Mart́ın Fernández (eds), chapter 6. URL
https://upcommons.upc.edu/bitstream/handle/2117/81949/ProceedingsBook.pdf (last accessed 16
April 2019)

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C. (2003). Isometric logratio
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Summary

Mechanically treating mixed solid wastes, understanding how to influence particle size distribu-
tions through shredder parameters can be highly beneficial for concentrating certain materials
and improving recovery rates of recyclable materials. Because of the inhomogeneity and vari-
ability of these wastes, multilinear empirical modelling is chosen as a practicable approach for
describing these influences.

In doing so, the compositional nature of particle size distributions needs to be considered, to
obtain valid results when combining the predictions of the models for each dimension. Three
potential methods for doing so were identified and analysed a priori for possible restrictions. The
application of one of them (modelling the percentage of each particle size, subsequently applying
the closure) was further examined with experimental data, using a linear model with two-factor
interactions.

It was empirically found, that distortion of the adaption to the calibration points is very high
when applying model reduction on each dimension separately. Whereas, when using the same
factors and interactions for each dimension, the closure becomes unnecessary, as the summation
constraint is fulfilled automatically. The proof of this, as well as the calculation of confidence
regions and the comparison with the other presented approaches is subject to further research.

Key words: Municipal solid waste, particle size distribution, multilinear modelling

1 Introduction

Mechanically treating mixed solid wastes, shredders (Fig. 1), followed by screens are often the first machines
in the process – generating fractions of liberated particles of defined sizes. Due to differences in the particle
size distributions of different materials (Fig. 2), screening also contributes to the concentration of certain
materials. The inequality of materials’ particle size distributions is present because of differences in original
particle sizes as well as comminution behaviour (e.g. brittle fractioning of glass and passing through or
tearing of plastic foils). Möllnitz, Khodier et al. (2019) show, that even particle size distributions of
different plastic types in the waste are not uniform.

Beyond concentration through screening, particle sizes also influence the process route that the materials
undergo – e.g. whether an eddy current separator, which separates non-ferrous metals, is passed. Thus, it
desirable to ensure that as much of a certain material as possible passes the machines that are capable of
sorting it out.

2 Methods

Considering the described impacts of particle size distributions, understanding how to influence them
through parametrisation of the shredder can be highly beneficial for improving recovery rates of recyclable
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Figure 1: Shredder Komptech Terminator 5000 SD.

Figure 2: Cumulative particle size distributions of some materials according to Khodier, Viczek et al. (2019)

materials. However, the inhomogeneity and the high variability of waste compositions make it infeasible
to do so through detailed physical comminution models. Even if such are found, the necessary information
about the material of interest will usually not be available for their practical application. Therefore, it is
intended to describe the effects of shredder parameters through multilinear empirical models. The variability
of material properties and the resulting comminution behaviour further make it preferable not to stick to
a certain kind of model distribution (e.g. Gates-Gaudin-Schuhmann distribution), but using the empirical
distribution instead.

Applying multilinear modelling on the empirical distribution of the particle sizes, which is a composition
of D particle size classes, the scalar results of the models of each dimension need to be brought together,
taking into account their compositional nature. For doing so, the following approaches were identified a
priori:
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• Modelling the percentage of each particle size, subsequently applying the closure

• Modelling the quantiles of the cumulative distribution at the D − 1 screen cuts

• Modelling the distribution in isometric log-ratio coordinates, as described by Pawlowsky-Glahn, Egozcue
et al. (2015, p. 35)

3 Results

3.1 A priori analysis

Applying these options the following considerations should be kept in mind: Regarding the first approach,
applying the closure after the regression distorts adaption to the calibration points. Further a strategy for
handling negative model values below 0% or above 100% is needed.

For the second approach it needs to be verified that calibration lines of the quantiles do not cross each other
within the model space. Further the model errors for percentages of the finest and coarsest size fractions will
differ from the others, as they have fixed contraints at 0% and 100% resprectively, while the both contraints
of the other fractions are modelled including uncertainities.

The third approach ensures valid compositions, while needing a handling strategy for zero values – as
discussed by Edjabou, Mart́ın-Fernandez et al. (2017) for waste compositions. Furthermore, Khodier and
Sarc (2018) point out that the impacts of using the Aitchison-distance in the regression instead of the
Euclidian shall be considered. This is especially relevant, as absolute amounts of materials that end in a
certain stream are often more relevant for the value added by mechanical waste treatment processes then
their proportions.

To find a conclusion about which approach to chose, the results of applying each of them is currently being
examined with experimental data. First results are described in the following.

3.2 Empirical findings

Hitherto, the first approach was applied on experimental data with three shredder parameters, using a linear
model with two-factor interactions. This model is shown in Equation (1), where f is the resulting mass
share of a certain fraction, f̄ is the mean value for f over all experimental points, ci are model constants
and A, B and C are the shredder parameters chosen as factors.

f = f̄ + cAA + cBB + cCC + cABAB + cACAC + cBCBC (1)

At first, model reduction – eliminating non-significant factors and interactions – was performed for each
particle size class separately. As a result, the sum of all fractions was as low as about 70% for for some
parameter settings. Therefore, applying the closure would have distorted the calibrated models by almost
50%. Consequently this procedure was discarded.

Thereupon it was examined what happens when using the same factors and interactions for all dimensions.
As a result, it turned out, that the closure is unnecessary then, as the fractions automatically sum up to
100%. This is the case, when the sum of the values of f̄ for all dimensions is 100% and the sum of the values
of each coefficient ci for all dimensions is 0. The methodology for joint model reduction for all dimensions
is still in implementation.
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4 Conclusion

Three approaches were identified for handling the compositional nature of particle size distributions when
applying multilinear modelling. The approach of modelling the percentage of each particle size was exam-
ined using experimental data. Applying model reduction on each dimension separately, it was found that
distortion through applying the closure leads to unreliable results, as it gets as high as 50%. Though, when
ensuring the use of the same parameters, and therefore of the same model equations, it was found that
the closure is not needed anymore, as the constraint that the sum of all fractions must be 100% is fulfilled
automatically.

This empirical finding leads to the following hypothesis, that should be proved in the future: Applying
multilinear modelling, calibrated through least squares regression, on each dimension of a compositional
data set, the resulting model predictions automatically fulfil the summation constraint, as long as it is also
fulfilled by all calibration data.

This proof, as well as the examination of confidence regions for the applied approach and the comparison
with the other presented approaches is subject to further research.

Acknowledgements

The Competence Center Recycling and Recovery of Waste 4.0 – ReWaste4.0 – (860 884) is funded by
BMVIT, BMWFW and the federal province of Styria, whithin COMET – Competence Centers for Excellent
Technologies. The COMET programme is administered by FFG.

References

Edjabou, M.E., J.A. Mart́ın-Fernandez, C. Scheutz, and T.F. Astrup (2017). Statistical analysis of solid
waste composition data: Arithmetic mean, standard deviation and correlation coefficients. Waste Man-
agement 69 , pp. 13–23.

Khodier, K and R. Sarc (2018). Beschreibung von Abfallzusammensetzungen für Monte-Carlo-Simulationen:
Ein Überblick über mathematische Möglichkeiten [Description of waste compositions for Monte Carlo sim-
ulations: an overview of mathematical possibilities]. In R. Pomberger (Ed.), Recy & DepoTech 2018, pp.
799–804. Leoben: AVAW Eigenverlag.

Khodier, K., S.A. Viczek, A. Curtis, A. Aldrian, P. O’Leary, M. Lehner and R. Sarc (2019). Sampling
and analysis of coarsely shredded mixed commercial waste; Part I: procedure, particle size analysis and
sorting analysis. International Journal of Environmental Science and Technology (in submission)
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Summary

High-throughput sequencing (HTS) of marker gene libraries has enabled microbiome research
on an unprecedented scale and has become the de facto standard in the field. Although the
method is renowned for high qualitative phylogenetic sensitivity and accessibility, owing to rela-
tive methodological simplicity and low sequencing costs, its quantitative prowess remain an open
question in the face statistical properties of the data it generates, namely their compositional
nature. Several normalisation and calibration methods have been proposed to both augment
marker gene sequencing data with scale and lift compositional constraints, thereby enabling con-
ventional quantitative statistical analysis, though none of them have addressed critical practical
issues, such as multi-template PCR bias. Seeing how PCR biases might hamper qualitative
microbiome research, we have designed and carried out a study to elucidate temporal dynamics
of community compositions undergoing multi-template PCR and, hopefully, provide a prospect
of analytical solution in case the problem proves to be too severe to neglect. Our results prove
that we cannot carry out reliable quantitative microbiome research without accounting for PCR
biases.

Key words: High-throughput sequencing, 16S rRNA, isometric log-ration transform, Bayesian
hierarchical modelling

1 Introduction

High-throughput sequencing (HTS) of marker gene libraries has enabled microbiome research on an unprece-
dented scale and has become the de facto standard in the field. Although the method is renowned for high
qualitative phylogenetic sensitivity and accessibility, owing to relative methodological simplicity and low
sequencing costs, its quantitative prowess remain an open question in the face of poor reproducibility and,
more importantly, statistical properties of the data it generates, namely their compositional nature Gloor
et al. (2017). On an abstract level, we can model high-throughout sequencing as a multinomial sampling
procedure capturing a relatively small finite number (known as the sequencing depth) of available DNA
sequences without altering their distribution in the sample. In microbiome research we map these reads
onto a set of distinct community components producing count vectors that are strictly non-negative and
are bound by the total sum constraint equal to the sequencing depth. It is easy to see that these counts
do not reflect any underlying absolute abundances associated with community components in the sampled
environment. Furthermore, any disturbance in individual counts is bound to affect other counts to satisfy
the total sum constraint, making independent (orthogonal) reasoning about components nigh-impossible
without strong assumptions Gloor et al. (2017). Both properties render conventional statistical tools devel-
oped for unconstrained real vector spaces (including all covariance-based methods) inadequate and require
a complete overhaul of traditional approaches to quantitative microbiome research. Moreover, there is no
way to recover scale (i.e. the information about absolute variations) from the HTS data alone: this problem
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requires additional inputs. Several normalisation and calibration methods based on qPCR and spike-in
standards have been proposed to both augment relative abundances (inferred from HTS data) with scale
and lift compositional constraints, thereby enabling conventional quantitative statistical analysis Stämmler
et al. (2016); Smets et al. (2016). As promising as they sound, none of the papers provide any supporting
mathematical evidence to address theoretical contradictions and practical concerns. First of all, spike-in
calibration, akin to the additive log-ratio transform (ALR), is not isometric and is sensitive to the choice
of component used for calibration. Second of all, HTS itself might not be the only constraining step in
an amplicon library preparation workflow. In addition to these theoretical limitations, we must consider
one crucial practical issue inherent to the marker gene amplification process. Since distinct DNA templates
undergo amplification with a varying degree of efficiency, the process inevitably alters observed component
ratios in the amplified mixture Aird et al. (2011); Kalle et al. (2014). Considering that PCR is an exponential
growth process, even subtle differences in amplification efficiencies can add up to a significant perturbation
of initial unobserved component ratios, undermining not only the spike-in method, but quantitative (and,
to a certain extent, qualitative) microbiome research as a whole. Indeed, multi-template PCR is a well
recognised source of biases in amplicon libraries, and quite a lot of effort has been put into optimising
primers and reaction conditions to minimise distortion Kalle et al. (2014), though we have found no studies
on temporal dynamics of community compositions under amplification and not a single publication based
on statistical tools appropriate for compositional data, meaning that the actual impact can be both more
or less significant than demonstrated in the literature. Seeing how PCR biases might hamper qualitative
microbiome research, we have designed and carried out a study to elucidate temporal dynamics of commu-
nity compositions undergoing multi-template PCR and, hopefully, provide a prospect of analytical solution
in case the problem proves to be too severe to neglect.

2 Materials and methods

2.1 Data

Using a qPCR product accumulation assay, we selected 5 PCR cycles (22-26), restricted to the log-linear
amplification phase, and sequenced 12 replicates per cycle. All replicates originated from the same faecal
matter sample. We also developed a randomisation scheme accounting for possible variance in thermo-
dynamic conditions in our PCR machine. After all data preprocessing steps (including noise elimination)
we were left with a sparse count matrix for around 200 unique amplicon sequence variants (ASVs). We
removed extremely sparse ASVs and applied a Bayesian-multiplicative zero-replacement strategy with a
Dirichlet prior Mart́ın-Fernández et al. (2015).

2.2 Mathematical formulation

We model PCR as a discrete-time process parametrised by initial template counts z = (z1, . . . , zn) and
amplification efficiencies. We distinguish amplification efficiencies associated with original DNA sequences
extracted from the environment, θ = (θ1, . . . , θn), and their amplicons, λ = (λ1, . . . , λn), due to differences
in template lengths, primer-binding site composition and, by extension, primer-template complex stabil-
ity. This formulation yields the following recurrence for the number of amplicons associated with original
template i at cycle t

ci(t) = (λi + 1) · ci(t− 1) + θ · zi
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where ci(0) = 0 ∀i, θi ∈ (0, 1] and λi ∈ (0, 1]. This recurrence relation has a corresponding closed-form
expression

ci(t) =
θi · zi
λi
· (λi + 1)t − θi · zi

λi
We approximate this equation by discarding the constant term, which is asymptotically irrelevant

ĉi(t) =
θi · zi
λi
· (λi + 1)t ∼ ci(t), t� 0 (1)

Since our model is restricted to the log-linear amplification phase, we can assume unlimited resources and
ignore inter-template competition. Consequently, Equation 1 can be trivially extended to a multi-template
case

ĉ(t) = (ĉ1(t), . . . , ĉn(t))

However, we cannot observe these absolute amplicon counts in HTS data. To get around this issue we
use the isometric log-ratio transform (ILR) and model the composition in the space of balances defined by
a bipartition strategy and invariant under closure. Although any bipartition strategy will do (because a
change of strategy is equivalent to the change of basis in the ILR balance space), the phylogenetic bipartition
developed by Silverman et al. Silverman et al. (2017) appears to be a very natural and relatable choice
(figure 1). Given a rooted binary phylogenetic tree of n leaves (DNA templates) and n− 1 internal nodes,

Figure 1: Bipartitions of a rooted binary phylogenetic tree

let’s define a sign-matrix Ψ of n− 1 rows and n columns such that

ψij =


−1 if template j belongs to the left subclade of internal node i

+1 if template j belongs to the right subclade of internal node i

0
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Let’s take a closer look at an individual balance

bi(t) = ki · log
g(ĉi+(t))

g(ĉi−(t))

where g(ĉi+(t)) and g(ĉi−(t)) are geometric means of amplicon counts in the right and left subclades

descending from internal node i, ki =
√

ni−·ni+

ni−+ni+
, ni+ =

∑
(ψij > 0), ni− =

∑
(ψij < 0). We can rearrange

the log-ratio of amplicon counts into a sum of three log-ratios

bi(t) = ki ·
(
t · log

g(λi+ + 1)

g(λi− + 1)
+ log

g(λi−)

g(λi+)
+ log

g(θi+ · zi+)

g(θi− · zi−)

)
The equation is a classical linear model for a continuous generalisation over t with a coefficient and intercept
defined in terms of the amplification efficiencies and initial template counts. It also allows us to see, that
we cannot recover unbiased initial template proportions C [z], unless θ = λ, because there is no free time-
dependent parameter associated with z. To highlight this this fact, we denote α = (α1, . . . , αn), where

αi = log g(θi+·zi+)
g(θi−·zi−) . We used PyMC3 to implement this formulation as a multivariate Gaussian model with a

diagonal covariance to infer parameters λ and α, assuming a Beta prior for the former, a standard Gaussian
prior for the latter and a standard half-Gaussian prior for standard deviations.

3 Results

We used inferred model parameters to predict community composition dynamics from cycle 1 to 30. The
community undergoes dramatic changes that can easily rival environmental factors. We visualise the dy-
namics in terms of phyla proportions (Fig. 3). There are two important conclusions we can draw from our
study:

1. any normalisation method designed to reconstruct absolute abundances from marker-gene sequencing
data must account for multi-template PCR-biases;

2. while it is technically possible to backtrack distortions associated with amplicon amplification efficien-
cies, it is impossible to isolate original template amplification biases and their starting populations
without additional information and/or strong assumptions, i.e. equality of θ and λ;
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Summary 
 

Multiple imputation is a well-established and favored technique for analyzing data containing 
missing values. It consists of analyzing each imputed data set separately and then combining the 
estimates for inference. However, the exploratory analysis options of multiple imputed data sets 
are limited. 
Biplots provide a simultaneous configuration of both samples and variables in a two- or three 
dimensional display. Therefore, a visualization for each of the multiple imputed data sets can be 
constructed and interpreted individually, but in order to formulate an unbiased conclusion, the 
multiple visualizations have to be combined for a unified interpretation. 
We propose the GPAbin technique to address this challenge for multivariate categorical data sets. 
The biplots for the multiple imputations are first aligned to a centroid configuration using 
generalized orthogonal Procrustes analysis (GPA) and then combined by obtaining the mean 
coordinate matrices from the aligned configurations. The combining step is inspired by Rubin’s 
rules (Rubin, 1987) for combining estimates obtained from analyses applied to multiple imputed 
data sets. The name GPAbin is derived from the amalgamation of GPA and Rubin’s rules. 
Simulation studies have confirmed the usefulness of the GPAbin method for categorical data in the 
context of multiple correspondence analysis (MCA) based biplots. The GPAbin methodology is 
extended to compositional data containing missing values. This extension replaces MCA based 
biplots with log-ratio biplots. 
The extended GPAbin method is illustrated by creating artificial missingness in a complete 
compositional example data set. A comparison between the GPAbin- and log-ratio biplots is 
presented to illustrate the usage of the technique. 

Key words: biplots, GPAbin, generalized orthogonal Procrustes analysis, log-ratio biplots, 
multiple imputation 

 
1 Introduction 

 

Exploratory analysis of categorical data sets is focused on the possible associations between samples 
regarding responses to variables. Multiple correspondence analysis (MCA) is especially suitable for the 
simultaneous exploration of multivariate categorical responses in lower dimension. The strength of the 
association between variables can be investigated and the degree to which the variables are related with 
respect to the sample responses becomes apparent (Greenacre, 2007). MCA biplots are then constructed 
to visually explore the results.  
Biplots are considered to be a generalization of a scatterplot (Greenacre, 2010) and present each row 

and column of a matrix as unique vectors, resulting in as many axes as columns. Typically, the rows 
refer to the samples of a data matrix and the columns to the category levels (CLs) of the variables. The 
vectors are obtained such that any element of the matrix will be equal to the inner-product of the 

                            J.J. Egozcue, J. Graffelman, M.I. Ortego (Eds.)

 
                                  ISBN 978-84-947240-2-2

 
-91-

mailto:an.other@hotmail.com


corresponding row and column in the data matrix (Gabriel, 1971). Therefore, biplots can be constructed 
for multidimensional scaling (MDS) techniques, since observations and responses are displayed according 
to the interpoint distances between them (Greenacre, 2010). The CLs of categorical variables are 
illustrated as points referred to as the category level points (CLPs), one point for each CL. The display 
of the variables, whether it is an axis or CLP, is considered to be the ‘framework’ or ‘scaffolding’ of the 
display (Cox and Cox, 2001). Biplots are low-dimensional representations of high-dimensional data sets 
in Euclidean space. The low-dimensional display eases visual interpretation and the properties of the 
Euclidean space enable the use of geometrical properties (Michailidis and De Leeuw, 1998). Since the 
data points are presented in a reduced dimensional space, the display will always be an approximated 
representation (Greenacre, 2010). The goal is to utilize a dimension reduction technique that minimizes 
the amount of information that is lost. 
Biplots are not confined to a specific orientation and can therefore be rotated to ease the comparison of 

multiple displays (Blasius et al., 2009). Orthogonal Procrustes analysis (OPA) allows the comparison of 
two configurations by using one configuration as the target to which the second (testee) configuration is 
matched by performing admissible transformations, such as: translation, dilation, reflection and rotation. 
The optimal configuration is obtained when the sum of squared errors of the distances between the two 
configurations has been minimized (Ten Berge, 1977; Gower and Dijksterhuis, 2004; Borg and Groenen, 
2005). Generalized orthogonal Procrustes analysis (GPA) allows multiple configurations to be matched to 
a target. The target for GPA is commonly set to the average of the coordinate matrices. 
Data containing missing values are a pervasive problem in all data related applications. Multiple 

imputation (MI) is a preferred unbiased approach to handle missing data (Van Buuren, 2012) where 
after estimates from each imputed data set can be combined using Rubin’s rules (Rubin, 1987) to 
conduct final inference. There are however limited approaches for exploratory analysis, especially to 
combine visualizations for multiple imputations. The GPAbin method has been developed to combine 
visualizations of multiple imputed data sets by first aligning the configurations using GPA and then 
constructing a final visualization from the mean coordinates of the aligned configurations. GPAbin refers 
to the use of GPA together with Rubin’s rules (Rubin 1987). However, the MI estimates are now 
regarded as the coordinates of the transformed configurations. 
The usefulness of the GPAbin approach has been tested and investigated in an extensive simulation 

study considering various combinations of percentages of missing values, missing data mechanisms and 
size of the data matrix. In general, the GPAbin approach performs well under different simulation 
scenarios, but results in a slightly biased visual representation when the data are simulated from a 
skewed distribution (e.g. Dirichlet) and the percentage of missing values is high (e.g. 50%). The GPAbin 
approach achieved the best representation of the complete data simulated from a uniform distribution 
and also provided unbiased representation for simulations from a normal distribution considering a 
variety of simulation parameters, as mentioned above. 
The GPAbin approach will be extended to constructing log-ratio biplots for compositional data 

containing missing values. 
Section 2 will highlight the steps of the GPAbin approach and Section 3 will show the application of the 

GPAbin approach to compositional data containing missing values. 
 

2 GPAbin methodology 
 

In general, a MI procedure is applied to the data sets containing missing observations. Configurations of 
the multiple imputed data sets are constructed and a centroid configuration is obtained from the 
coordinates. All multiple imputed configurations are aligned to the centroid configuration with GPA. The 
aligned configurations are then combined into a single configuration using the mean coordinates of the 
aligned configurations. The methodology is summarized in the flow chart in Figure 1. 
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Figure 1: GPAbin methodology. 

 
Considering multivariate categorical data, multiple correspondence analysis (MCA) biplots can be 

constructed for each multiple imputed data set, where 𝐗𝐗�𝑚𝑚 refers to the multiple imputed data sets, with 
sample coordinates (𝐙𝐙�𝑚𝑚) and category level points (𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚). GPA can be performed on either the samples 
or CLPs, since the final optimal biplot display can be obtained by transforming the remaining coordinate 
matrix to align with the optimally rotated coordinate matrix. Here, the target configuration is set as the 
centroid configuration of the imputed CLPs: 𝐂𝐂𝐂𝐂𝐂𝐂������� = ∑ 𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚

𝑀𝑀
 𝑀𝑀

𝑚𝑚=1 . 

The GPA procedure minimizes the following: min∑ �𝑠𝑠𝑚𝑚(𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚)𝐐𝐐𝑚𝑚 − 𝐂𝐂𝐂𝐂𝐏𝐏������� �
𝟐𝟐

𝑀𝑀
𝑚𝑚=1 , where 𝑠𝑠𝑚𝑚 is the 

optimal dilation factor for the 𝑚𝑚th imputation, 𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚 is the coordinate matrix for the CLPs of the 𝑚𝑚th 
imputation, 𝐐𝐐𝑚𝑚 is the optimal orthogonal rotation matrix for the 𝑚𝑚th imputation and 𝐂𝐂𝐂𝐂𝐂𝐂�������  is the 
coordinate matrix for the centroid configuration of the imputed CLPs. The translation of the GPA is 
incorporated by centering the configurations at the origin before comparing the configurations (Gower 
and Dijksterhuis, 2004). The transformed coordinate matrices for each imputation are obtained as 
follows: 𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚

∗ = 𝑠𝑠𝑚𝑚(𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚)𝐐𝐐𝑚𝑚. The transformed biplot of each imputed data configuration can now be 
constructed by applying the same dilation and rotation factors on the samples as is used for the CLPs: 
𝐙𝐙�∗ = 𝑠𝑠𝑚𝑚𝐙𝐙�𝑚𝑚𝐐𝐐𝑚𝑚. 
The final combined configuration is obtained by applying a variation of Rubin’s rules by constructing a 

biplot from the mean coordinates of the samples and CLPs, resulting in a GPAbin biplot with the 
following coordinate matrices: 𝐂𝐂𝐂𝐂𝐂𝐂������� ∗ = ∑ 𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚

∗

𝑀𝑀
 𝑀𝑀

𝑚𝑚=1  and  𝐙𝐙��∗ = ∑ 𝐙𝐙�𝑚𝑚∗

𝑀𝑀
 𝑀𝑀

𝑚𝑚=1 . 
As previously stated, this method is referred to as GPAbin, indicating the use of GPA to optimally 

rotate MI configurations toward a centroid (target) configuration and subsequently applying Rubin’s 
rules to obtain the mean coordinates of the transformed CLPs (𝐂𝐂𝐂𝐂𝐂𝐂� 𝑚𝑚

∗ )and samples (𝐙𝐙�𝑚𝑚∗ ) for a final 
display. Alternatively, the GPAbin procedure can be simplified by using the coordinate matrices of the 
configurations without distinguishing between sample coordinates and CLPs. The steps of the GPAbin 
procedure will be unchanged. 
 

3 Application 
 

The application of the GPAbin method on a compositional data set will be illustrated using the cups data 
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set available in the easyCODA R package (Greenacre, 2018). The data set consists of 47 samples, Roman 
cups, and the compositions of eleven oxides observed in each cup. All biplots will consist of green 
triangular plotting characters which represent the oxides, and grey circular plotting characters which 
represent the samples (cups). The log-ratio biplot of the complete data set is presented in Figure 2. 
 

 

Figure 2: Log-ratio biplot of complete cups data set. 
 
The interpretation of a log-ratio biplot relies on the link vectors between variable coordinates that 
represent pairwise log-ratios and does not focus on the positions of the coordinates in the biplot display 
(Greenacre, 2010). This differs from MCA biplots where the positions of the sample coordinates and CLPs 
express the strength of the associations between samples and certain responses. 
Missing values are inserted with a missing completely at random (MCAR) missing data mechanism 

(MDM), which means that all missing values are independent of the observed and other unobserved 
observations. Different percentages of missing values were explored, but only the 30% missing value 
figures will be presented here. The missing data are imputed five times using the mice R package (Van 
Buuren and Groothuis-oudshoorn, 2011). The imputed data sets are closed before constructing the log-
ratio biplots for each completed data set presented in Figure 3. 
The MI log-ratio biplots are optimally aligned to the GPA centroid configuration, which is the mean 

coordinates of the five log-ratio biplots presented in Figure 3. After the imputed log-ratio biplots are 
aligned, the mean coordinates are calculated and used to construct the GPAbin biplot presented in Figure 
4. 
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 Figure 3: Log-ratio biplots of five multiple imputations of cups data set using mice. 

 

 

Figure 4: GPAbin biplot of five imputations. 
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The GPAbin configuration (Figure 4) is compared to the log-ratio biplot (Figure 2) using OPA which 

enables the calculation of two measures of fit: Procrustes statistic (0.09) and congruence coefficient (0.97). 
Both measures of fit considers the configurations before the application of OPA. The Procrustes statistic 
expresses the magnitude of the admissible transformations (translation, dilation, rotation and reflection) 
to be performed on the testee in order to match the target configuration. A value between zero and one is 
calculated, with a smaller value indicating good fit. The congruence coefficient, also a value between zero 
and one, compares the distances between the coordinates in the target and testee configurations before the 
application of OPA and is interpreted as a measure of determination with a value close to one indicating 
good fit. 
The bias is determined using three measures: absolute mean bias (0.42), root mean squared bias (0.94) 

and mean bias (0.12). All resulting in bias measures close to zero. 
The measures of comparison confirm that the GPAbin biplot (Figure 4) preserves the configurations 

observed in the log-ratio biplot (Figure 2) between the oxides and the cups as were observed from the 
visualizations. 
 

4 Concluding remarks 
 

This paper showed the extension of the GPAbin method, developed for multivariate categorical data, to 
compositional data. The GPAbin method provides a solution for visualization of data containing missing 
values when MI techniques are used to complete the data. The GPAbin method has shown to successfully 
preserve the configurations in the visualizations of multiple imputed data sets when compared to the 
original complete visualization. The GPAbin method also results in unbiased representation of the 
complete visualization approximation obtained in two dimensions. 
Future considerations would be to apply other MI procedures to determine which are suitable for 

compositional data analysis for GPAbin visualization. In this application the mice algorithm performed 
well, as illustrated in the MI biplots (Figure 3) which resulted in similar representation to the complete 
log-ratio biplot in Figure 2. The GPAbin method could also be further extended by considering coordinate 
transformation methods by Pawlowsky-Glahn and Buccianti (2011). 
The GPAbin biplot enables a global visual representation of multiple imputed data sets which unifies 

visual interpretation, which can be further scrutinized for a variety of biplot applications. 
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Summary 

Biplots constructed from principal components of a compositional data set are an 
established means to explore its features. Principal Component Analysis (PCA) is also 
used to transform a set of spatial variables into spatially decorrelated factors. However, 
because no spatial structures are accounted for in the transformation the application of 
PCA is limited. In Geostatistics and Blind Source Separation a variety of different 
matrix diagonalisation methods have been developed with the aim to provide spatially 
or temporally decorrelated factors. Just as PCA, many of these transformations are 
linear and so lend themselves to the construction of biplots. In this contribution we 
consider such biplots for a number of methods (MAF, UWEDGE and RJD 
transformations) and discuss how and if they can contribute to our understanding of 
relationships between the components of regionalised compositions. A comparison of the 
biplots with the PCA biplot commonly used in compositional data analysis for the case 
of data from the Northern Irish geochemical survey shows that the biplots from MAF 
and UWEDGE are comparable while that from RJD does not reveal any associations 
indicating that RJD might not be suitable for exploratory statistical analysis and that 
MAF might suffice to provide an adequate spatial characterisation. 

Key words:  semivariogram matrices, spatial decorrelation, structural analysis. 
 
1 Introduction 
 
Biplots constructed from principal components are an established means for exploring the 
features of a compositional data set. In several contributions (for example McKinley et al, 
2018) we have seen that the method of minimum maximum autocorrelation factors (MAF, 
Switzer and Green, 1984) enhances classification and improves spatial decorrelation of 
factors derived from regionalised compositions. It is therefore often preferred in cases where 
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the regionalisation is important. However, to date biplots for MAF derived factors have 
not been explored, nor have biplots associated with more general joint diagonalisers based 
on the covariance or semivariogram function of the regionalised composition. These include 
Uniformly Weighted Exhaustive Diagonalisation with Gauss iterations (UWEDGE, 
Tichavsky and Yeredor, 2009) and Rotational Joint Diagonalisation (RJD, Cardoso and 
Souloumiac, 1996). 
 
2 Joint diagonalisation 
 
Without loss of generality we will assume that we are given a regionalised composition in 
some study area 𝒜𝒜, {𝒛𝒛(𝑢𝑢𝛼𝛼) = [𝑧𝑧1(𝑢𝑢𝛼𝛼), … , 𝑧𝑧𝐾𝐾(𝑢𝑢𝛼𝛼)]: 𝑧𝑧𝑘𝑘(𝑢𝑢𝛼𝛼) > 0,𝑘𝑘 = 1, … ,𝐾𝐾;∑ 𝑧𝑧𝑘𝑘(𝑢𝑢𝛼𝛼)𝐾𝐾

𝑘𝑘=1 =
100,𝑢𝑢𝛼𝛼 ∈ 𝒜𝒜,𝛼𝛼 = 1, … ,𝑛𝑛}, where 𝑢𝑢𝛼𝛼 ∈ 𝒜𝒜,𝛼𝛼 = 1, … ,𝑛𝑛 denotes a sample location. The 
corresponding clr transformed variables are  {𝜻𝜻(𝑢𝑢𝛼𝛼) = [𝜁𝜁1(𝑢𝑢𝛼𝛼), … , 𝜁𝜁𝐾𝐾(𝑢𝑢𝛼𝛼)]: 𝑘𝑘 = 1, … ,𝐾𝐾,𝑢𝑢𝛼𝛼 ∈
𝒜𝒜, 𝛼𝛼 = 1, … ,𝑛𝑛} with variance covariance matrix Σ𝑐𝑐𝑐𝑐𝑐𝑐  In addition the experimental 
semivariogram at lag ℎ will be denoted by Γ𝑐𝑐𝑐𝑐𝑐𝑐(ℎ) = 𝑐𝑐𝑐𝑐𝑐𝑐�𝜻𝜻(𝑢𝑢),𝜻𝜻(𝑢𝑢 + ℎ))�, estimated from 
the sample locations. Thus associated with the regionalised composition there is a family 
{Γ𝑐𝑐𝑐𝑐𝑐𝑐(ℎℓ),ℓ = 1, … , 𝐿𝐿} of experimental semivariogram matrices calculated at 𝐿𝐿 lag values  
ℎℓ chosen as appropriate to the nearest neighbor separation of the sample data. These 
describe the spatial continuity of the regionalised composition. 
Since the covariance of the clr data is singular by construction, so are the semivariogram 
matrices, as a consequence working with ilr transformed variables is preferred.  If 𝑉𝑉 
denotes the transformation from clr to ilr space, then the corresponding experimental 
semivariograms are given by Γ𝑖𝑖𝑖𝑖𝑖𝑖(ℎℓ) = 𝑉𝑉𝑇𝑇Γ𝑐𝑐𝑐𝑐𝑐𝑐(ℎℓ)𝑉𝑉, ℓ = 1, … , 𝐿𝐿.   
The general problem to be addressed is the following: Given a family of semivariogram 
matrices 𝑀𝑀ℓ = Γ𝑖𝑖𝑖𝑖𝑖𝑖(ℎℓ),ℓ = 1, … , 𝐿𝐿 find a matrix 𝐴𝐴 such that for all ℓ the equation 
𝑀𝑀ℓ = 𝐴𝐴Λℓ𝐴𝐴𝑇𝑇 is valid where 𝛬𝛬ℓ is a diagonal matrix. If such a matrix A exists, then the 
family {𝑀𝑀ℓ:ℓ = 1, … , 𝐿𝐿 } is said to be jointly diagonalizable.  
The matrices are real symmetric by construction and there are two types of joint 
diagonalization that can be considered. One is joint diagonalisation via a similarity 
transformation, that is,  the matrix A is orthogonal, or via a congruence, in which case the 
matrix A is no longer required to be orthogonal. The two types of diagonalization are 
termed orthogonal joint diagonalization (OJD) and non-orthogonal joint diagonalization 
(NOJD) respectively. Unless certain commutativity conditions on the matrices are 
satisfied, these techniques are approximate, when the number of matrices exceeds 1 for 
OJD and 2 for NOJD. 
Given the regionalised composition the biplot for any one of the methods is constructed 
based on the clr-transformed data although the diagonalization matrix is derived from ilr 
variograms, indeed, if 𝒁𝒁𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢) denotes the 𝑛𝑛 × 𝐷𝐷 matrix of centered clr-scores, then 
following Filzmoser et al (2009) the factors are given by  

𝐹𝐹(𝑢𝑢) = 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢)𝑉𝑉𝑉𝑉 
and the first two columns of 𝐹𝐹(𝑢𝑢) represent the scores and the first two rows of 𝑉𝑉𝑉𝑉 the 
loadings with W denoting the matrix derived by the diagonalization method. 
 
2.1 PCA and MAF 
 

The solution proposed by the PCA method consists of determining the eigenvalue 
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decomposition of the variance-covariance matrix 𝑀𝑀 of the ilr transformed data, 
𝑀𝑀 =  𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇. The matrices 𝑊𝑊 and 𝛬𝛬 are derived from an eigenvector eigenvalue 
decomposition and the eigenvalues in the matrix Λ are arranged in descending order. 
They reflect the variability represented by the corresponding factor.  
For MAF, the variance-covariance matrix 𝑀𝑀 and the semivariogram matrix 𝛤𝛤𝑖𝑖𝑖𝑖𝑖𝑖(ℎ) at a 
chosen lag h are diagonalised jointly by congruence:  𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇  =  𝐼𝐼 and 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖(ℎ)𝐴𝐴𝑇𝑇 = Λ1. The 
matrix 𝐴𝐴 is non-singular and is given by 𝐴𝐴 = 𝑊𝑊1

𝑇𝑇Λ−1/2𝑊𝑊A where 𝑊𝑊 and 𝛬𝛬 are the 
orthogonal matrix and diagonal matrix derived from the eigenvalue decomposition of 𝑀𝑀 
and 𝑊𝑊1 is the orthogonal matrix which diagonalises 𝛬𝛬−1/2𝑊𝑊𝑇𝑇𝛤𝛤𝑍𝑍(ℎ)𝑊𝑊𝛬𝛬−1/2. The eigenvalues 
in the matrices Λ and Λ1 are arranged in descending order.  
 

2.3 Joint approximate diagonalization 
 

Diagonalisation via PCA is an OJD method, while MAF is a NOJD method. In the 
context of a family of semivariogram matrices that is sought to be diagonalised, the 
transformation derived from PCA will only diagonalise all semivariogram matrices if they 
commute pairwise. This condition is typically not satisfied, as the data on which 
calculation of the semivariogram matrices is based are noisy and there are different 
spatial scales that impact on the continuity of the data.  
To account for phenomena of this type, Blind Source Separation attempts to derive the 
best diagonaliser based on the entire family of matrices available. Typically some kind of 
fixed point iteration is used to determine the matrix A that best jointly diagonalises the 
given family of symmetric matrices according to some cost criterion. In the case of OJD 
the cost function is set to be 

𝐶𝐶1(𝐴𝐴) = �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡((𝐴𝐴𝑇𝑇Mℓ𝐴𝐴 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴𝑇𝑇Mℓ𝐴𝐴)𝑇𝑇
𝐿𝐿

ℓ=1

(𝐴𝐴𝑇𝑇Mℓ𝐴𝐴 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴𝑇𝑇Mℓ𝐴𝐴)) 

where one seeks to minimize the sum of squares of the off-diagonal entries in 𝐴𝐴𝑇𝑇Λℓ𝐴𝐴. In 
the RJD algorithm the matrix A is constructed iteratively from Jacobi rotation matrices. 
The criterion used for NOJD is not very different from it, in the case of the UWEDGE 
method a matrix A is sought that minimises 

𝐶𝐶3(𝐴𝐴,𝑊𝑊) = �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡((𝑊𝑊𝑇𝑇Mℓ𝑊𝑊 − 𝐴𝐴Λℓ,𝑉𝑉𝐴𝐴𝑇𝑇)𝑇𝑇
𝐿𝐿

ℓ=1

(𝑊𝑊𝑇𝑇Mℓ𝑊𝑊 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐴𝐴Λℓ,𝑉𝑉𝐴𝐴𝑇𝑇�) 

Here  Λℓ,𝑊𝑊 = diag(𝑊𝑊𝑇𝑇Mℓ𝑊𝑊)) and the matrices A and W are called the mixing matrix and 
demixing matrix respectively. The resulting loading matrices are summarized in Table 1. 
 

Table 1: Loading matrices for diagonalisation methods 
 

Method clr-loading matrix 
PCA 𝑉𝑉𝑉𝑉 
MAF 𝑉𝑉𝑉𝑉𝛬𝛬−1/2𝑊𝑊1 
RJD 𝑉𝑉𝑉𝑉 
UWEDGE 𝑉𝑉𝑊𝑊𝑇𝑇 
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3 Data 
 

The Northern Irish Tellus Survey (GSNI, 2007; Young and Donald, 2013) consists of 6862 
rural soil samples (X-ray fluorescence (XRF) analyses). Geochemical samples presented in 
this study were collected at 20-cm depth, with average spatial coverage of one sample site 
every 2 km2. Each soil sample site was assigned one of six broad lithological classes (acid 
volcanics, felsic magmatics, basic volcanics, mafic magmatics, carbonatic, silicic clastics) 
and at each location 50 continuous geochemical variables were retained for analysis (Ag, 
Al2O3, As, Ba, Bi, Br, CaO, Cd, Ce, Cl, Co, Cr, Cs, Cu, Fe2O3, Ga, Ge, Hf, I, K2O, La, 
LOI, MgO, MnO, Mo, Na2O, Nb, Nd, Ni, P2O5, Pb, Rb, SO3, Sb, Sc, Se, SiO2, Sm, Sn, 
Sr, Th, TiO2, Tl, U, V, W, Y, Yb, Zn, Zr and Loss on Ignition (LOI). More information on 
Tellus Survey field methods and analytical methodology are available in Smyth (2007) and 
Young and Donald (2013).  
To illustrate the methods, biplots constructed from 2 subcompositions were considered. 
The first is the subcomposition comprised of the oxides Al2O3, CaO, Fe2O3, K2O, MgO, 
MnO, Na2O, P2O5, SiO2, TiO2, and LOI and the second is that consisting of oxides and 
selected trace elements as described in Tolosana-Delgado and McKinley (2016). 
For each of the two sets a default ilr transform was performed and experimental direct and 
cross variograms were computed for 30 lags at a nominal spacing of 1 km. The MAF 
transform was based on an estimate of the covariance matrix and the semivariogram 
matrix for the first lag, for the RJD and UWEDGE methods the semivariogram matrices 
for all lags up to distance 20 km were used. 
 
4 Results 

The experimental semivariograms of the factors and biplots of the first two components for 
the subcomposition of major oxides are shown in Figure 1. The experimental 
semivariograms for the two methods show strong similarities with only minor differences 
between the variograms of the same index. For PCA and RJD no ordering by spatial 
continuity results as a consequence of the transformation. For PCA, the experimental 
semivariogram of the second factor is similar in shape to the one of the first factor of MAF 
or UWEDGE. The loadings of these factors (maf1, uwedge1, pca2) show a similar 
interpretation as a broad balance between mafic elements and felsic elements, which is 
related to the contrast of the Antrim basalts against virtually the rest of Northern Ireland, 
as can be seen in maps of the corresponding scores (not shown for brevity). For higher 
order factors of MAF and UWEDGE, variograms show a progressive destructuralization, 
with decreasing range and increasing nugget to sill ratio. This is reflected in their score 
maps, where decreasing scales of high and low value regions and increasing noise are 
evident. Neither PCA nor RJD share this behavior. In fact, all but the PCA variograms 
show the same structure, while RJD variograms have two basic shapes, one associated 
with the large scale continuity, the other with shorter scale, and no natural ordering. 
Biplots for MAF and UWEDGE are almost identical, showing a ternary system of mafics, 
felsics, and silicic clastic materials. So UWEDGE is not necessary here. Comp1 for PCA is 
related to peat building (Tolosana-Delgado and McKinley, 2016). All three show a 
separation of lithologies, which is absent in RJD biplot. This may be related to the lack of  
natural order in the RJD structures, making RJD  unsuitable for exploratory analysis. 
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Figure 1: Experimental semivariograms of factors (left)  and biplots coloured by lithology 

(right) by method (order from top to bottom: PCA, RJD, MAF, UWEDGE) 

                            J.J. Egozcue, J. Graffelman, M.I. Ortego (Eds.)

 
                                  ISBN 978-84-947240-2-2

 
-109-



 
Figure 2: Biplots coloured by lithology for the extended set of variables by method: PCA 

(left) and MAF (right)  

The second subcomposition shows a similar structure in the PCA biplot, while in the MAF 
biplot the scores do not change very much but the loadings are dominated by different 
variables, mostly trace elements. Variograms show similar behavior as for the first 
subcomposition.  
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Summary

In a multiparty election, the vote shares form a composition vector (mathematically, a vector
belonging to a simplex). Political economists are interested by the impact of the characteristics
of the geographical units on the outcome of the elections. Because vote shares data often exhibit
heavy tail behavior, we decide to use a Student error distribution. We describe how to adapt the
CODA regression model to the multivariate Student error distribution. For a Gaussian errors
vector, the assumption of independent coordinates is equivalent to the assumption of correlated
coordinates. However, this equivalence is no longer true when considering a multivariate Student
distribution. In this paper, we recall these two types of multivariate Student distribution for the
error term, and concentrate on building a CODA regression model using the multivariate inde-
pendent Student error vectors. We compare this model to a model which uses the multivariate
Gaussian distribution. The models are fitted on French electoral data of the 2015 departmental
elections. We illustrate on this data set a method for selecting between the Gaussian and the
Student models based on the Mahalanobis distance.

Key words: Independent multivariate Student distribution, Uncorrelated multivariate Student
distribution, compositional regression models, Maximum Likelihood Estimator, heavy tail, R ..

1 Introduction

Recently, a lot of authors in policital economy concentrate on building models and understanding the
drivers of the outcome of a two-party electoral system (Beauguitte and Colange (2013), Ansolabehere and
Leblanc (2008)). The outcome of an election can be influenced by the campaign strategies of candidates,
demographic factors such as age, domain of activity, rate of unemployment, and so on. In an interview with
Time magazine, a group of Obama senior campaign advisers revealed an enormous data effort to support
fundraising, micro-targeting TV ads and modeling of swing-state voters. In this work, we are interested
in exploring the impact of the characteristics of the demographics and social factors on the outcome of
the 2015 French departmental election. The outcomes of the election in this multiparty system consist
of vectors whose components are the percentages of proportions of votes per party. In what follow, my
attention focuses on the relation between votes shares and socio-economics factors such as age, education
levels, domain of activities, unemployment rate and so on by using a CODA (COmpositional Data Analysis)
regression models.

Among papers concentrating on the relationship between socio-economic variables and election outcomes,
Beauguitte and Colange (2013) carry out a linear regression model at three levels of aggregation (polling
stations, cities, and electoral districts) and show that the socio-economic variables are significant. Kavanagh
et al. (2006) use a geographically weighted regression, which produces parameters estimates for each data
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point, i.e. for each electoral division. In the statistical literature, there are regression models adapted to
share vectors including CODA models, but also Dirichlet models, Student model and others. These models,
where the dependent and independent variables may be compositional variables (see Mert et al. (2018)).
Honaker et al. (2002), Katz and King (1999) use a statistical model for multiparty electoral data assuming
that the territorial units yield independent observations. Morais et al. (2017) studies the impact of media
investments on brand’s market shares with a CODA regression model. Nguyen et al. (2018) study a CODA
multivariate regression model which uses the normal distribution to illustrate the impacts of socio-economic
factor on French departmental election. However, this election data often exhibit heavy tail behavior (see
Katz and King (1999)). In order to eliminate the heavy tail problem, a proposal found in the literature is
to replace the Gaussian distribution by the Student distribution in this paper.

In one dimension, the generalized Student distribution encompasses the gaussian distribution as a limit
when the degrees of freedom tends to infinity, allowing for heavier tails when the shape parameter is small.
However in higher dimensions, there are several kinds of multivariate Student models (see Johnson and Kotz
(1972) and Kotz and Nadarajah (2004) for overview). There are two versions of Student distribution: the
independent Student (IT) and the uncorrelated Student (UT) (see Kelejian and Prucha (1985)). There are
some authors who concentrate on the univariate Student while others pay attention in multivariate Student.
Nguyen et al. (2019) perform a full summary of these versions and consider a multivariate dependent vector
and a linear regression model with three different assumptions on the error term distribution: the Gaussian
distribution (εεεN ), the Uncorrelated Student distribution (εεεUT ), the Independent Student distribution (εεεIT ).
Nguyen et al (2019) derive some theoretical properties of the UT model and propose a simple iterative
reweighted algorithm to compute the maximum likelihood estimators in the IT model. However, Nguyen
et al. (2019) show that the UT model is simpler to fit than the IT model, but it has limitation of assumption
of the single realization. This restricts the properties of the maximum likelihood estimators and prevent the
use of tests against the other two models. Thus, we will concentrate in multivariate IT case and compare it
to multivariate Gaussian case in this paper.

Section 2 decribes the departmental election data. Section 3 presents the multivariate regression models
(includes multivariate Normal error vector and multivariate Independent Student (IT) error vector). In
section 4, we recall the CODA principles then build a CODA regression model that could be considered
to explain the outcome of an election and to clarify its relations with the socio-economic factors by using
the independent multivariate Student distribution (IT) with known degree of freedom. As in Nguyen et al.
(2019), we perform a test based on the Mahalanobis distance to select between the multivariate Gaussian
and the multivariate Student models in Section 5.

2 Data

Vote share data of the 2015 French departmental election for 95 departments in France are collected from
the Cartelec website 1 and corresponding socio-economic data (for 2014) have been downloaded from the
INSEE website 2. Table 1 summarizes our data set.

Employment has five categories: AZ (agriculture, fisheries), BE (manufacturing industry, mining industry
and others), FZ (construction), GU (business, transport and services) and OQ (public administration, teach-
ing, human health). Diploma has three levels: <BAC for people with at most some secondary education,
BAC for people with at least some secondary education and at most a high school diploma, and SUP for
people with a university diploma. The Age variable has three levels: Age 1840 for people from 18 to 40 years
old, Age 4064 for people from 40 to 64 years old, and Age 65 for elderly. For the vote share variable, the

1https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-vote/
2https://www.insee.fr/fr/statistiques
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Table 1: Data description.

Variable name Description Averages

Vote share Left(L), Right(R), Extreme Right(XR) 0.37, 0.388, 0.242
Age Age 1840, Age 4064, Age 65. 0.313, 0.432, 0.255
Diploma <BAC, BAC, SUP. 0.591, 0.16, 0.239
Employment AZ, BE, FZ, GU, OQ 0.031, 0.099, 0.049,

0.439, 0.382

unemp The unemployment rate 0.117
employ evol Mean annual growth rate of employment -0.145

(2009-2014)
owner The proportion of people who own assets 0.616
income tax The proportion of people who pay income tax 0.552
foreign The proportion of foreigners 0.050

Cartelec website provides a very detailed information. The list of political parties which present candidates
at that election is higher than 15. In France, the Ministry of the Interior is in charge of publishing the elec-
toral results. Despite the dissatisfaction of some political parties, the Ministry of the Interior summarized
the results by grouping the political parties into three main components : Left, Right and Extreme-Right3.
Note that the averages in the last column of Table 1 are geometric means by component in the 324 case of
compositional variables.

From the CODA point of view, when compositional data have three components, they can be represented
in a ternary diagram. For instance, the vote shares of the 95 departments for the Left and Right wings
and the Extreme Right party are the black points in Figure 4. The red triangle corresponding to the Aube
department on Figure 4 shows that its vote shares of the Left wing, the Right wing and the Extreme Right
party are respectively 17.4%, 54.6%, and 28% . Figure 2 illustrates the positions of the French departments
on the ternary diagram whose components correspond to the three levels of the diploma variable, and the
red triangle figures the geometric mean (adapted mean for compositional data) of all departments.

3 The multivariate regression models

Let us consider a model

Yi = Xiβββ + εεεi (1)

where Y is a n×L matrix of L dimensional dependent variable, X is a n×(K+1) matrix of K explanatory
variables, βββ is the parameter matrix of size (K + 1)× L and εεε is the error matrix of size n× L.

3.1 Multivariate Normal error vector

Let us first consider model (??) with independent and identically distributed error vectors εεεi, i = 1, . . . , n,
following a multivariate normal distribution NL(0,ΣΣΣ) with an L-vector of means equal to zero and an L×L

3for more details, see https://fr.wikipedia.org/wiki/Elections départementales francaises de 2015
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Figure 1: Vote shares in the 95 departments (blue points) with the Aube department (red triangle).

covariance matrix ΣΣΣ. This model is denoted by N and the subscript N is used to denote the error terms
εεεNi, i = 1, . . . , n and the parameters βββN and ΣΣΣN of the model. The maximum likelihood estimators of βββN
and ΣΣΣN are

β̂̂β̂βN = (XTX)−1XTY, (2)

Σ̂̂Σ̂ΣN =

∑n
i=1 ε̂̂ε̂εNiε̂̂ε̂ε

T
Ni

n
, (3)

where ε̂̂ε̂εNi = Yi −Xiβ̂̂β̂βN (see e.g. Theorem 8.4 from Seber (2009)).

The estimator β̂̂β̂βN is an unbiased estimator of βββN while the bias of Σ̂̂Σ̂ΣN is equal to −((K + 1)/n)ΣΣΣN and
tends to zero when n tends to infinity (see e.g. Theorems 8.1 and 8.2 from Seber (2009)).

3.2 Multivariate Independent Student error vector

According to Nguyen et al. (2019), let us denote the L dimensional dependent vector by:

Y i = (yi1, . . . , yiL)T .

For K explanatory variables, the design matrix is of size L× (K + 1)L and is given by:

X i = IL ⊗ xTi

for i = 1, . . . , n, with the (K + 1)-vector xi = (1, xi1, . . . , xiK)T , IL the identity matrix with dimension L
and ⊗ the usual Kronecker product. The parameter of interest is a (K + 1)L vector given by:

βββ = (βββT1 , . . . ,βββ
T
L)T ,

where βββj = (β0j , . . . , βKj)
T , for j = 1, . . . , L and the L-vector of errors is denoted by:

εεεi = (εi1, . . . , εiL)T
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Figure 2: Ternary diagram of Age in the 95 departments

for i = 1, . . . , n. Given these notations, model (??) can be rewritten as

Y i = X iβββ + εεεi (4)

with E(εεεi) = 0 and i = 1, . . . , n. Note that Y = (YT
1 , . . . ,YT

n )T and εεε = (εεεT1 , . . . , εεε
T
n )T are nL vectors,

X = (X T
1 , . . . ,X T

n )T is the nL× (K + 1)L matrix.

Let us consider model (4) with i.i.d. εεεi, i = 1, . . . , n, following a independent multivariate Student (IT)
distribution with L dimensions and known degrees of freedom ν > 2. In most of the literature on multivariate
Student, the density is rather parametrized as a function of the scatter matrix ((ν − 2)/ν)ΣΣΣ.

The probability density function for a L-vector εεε

p(εεε|µµµ,ΣΣΣ, ν) =
f(ν)

det(ΣΣΣ)1/2

[
1 +

1

ν − 2
(εεε−µµµ)TΣΣΣ−1(εεε−µµµ)

]−(ν+p)/2
, (5)

where T denotes the transpose operator, f(ν) =
Γ[(ν + p)/2]

Γ(ν/2)(ν − 2)p/2πp/2
and Γ is the usual Gamma function.

Following Prucha and Kelejian (1984), Nguyen et al. (2019) derive the maximum likelihood estimators for
the IT model. The maximum likelihood estimators of βββ and ΣΣΣ in the IT regression model satisfy the following
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implicit equations:

β̂ββIT =

(
n∑
i=1

ŵIT iX T
i Σ̂ΣΣ
−1
ITX i

)−1 n∑
i=1

ŵIT iX T
i Σ̂ΣΣ
−1
ITY i

Σ̂ΣΣIT =
1

n

n∑
i=1

ŵIT iε̂εεIT iε̂εε
T
IT i

(6)

with ε̂̂ε̂εIT i = Yi −X iβ̂ββIT and ŵIT i =
ν + L

ν − 2 + ε̂εεTIT iΣ̂ΣΣ
−1
IT ε̂εεIT i

.

We use the iterative reweighted algorithm as in Nguyen et al (2019) to estimate the coefficient and variance-
covariance matrix.

4 Compositional regression models

4.1 Principles of compositional data analysis

4.1.1 Definition and operations

A composition x is a vector of D parts of some whole which carries relative information. A D-composition
x lies in the so-called simplex space SD defined by:

SD = {x = (x1, ..., xD)′ : xj > 0, j = 1, ..., D;
D∑
j=1

xj = 1}

Let C(x) =

(
x1∑D
j=1 xj

, · · · , xD∑D
j=1 xj

)
is the closure operation, the vector space structure of the simplex SD is

defined by the perturbation and powering operations:

x⊕ y = C(x1y1, . . . , xDyD), x, y ∈ SD

λ� x = C(xλ1 , . . . , xλD), λ is a scalar,x ∈ SD.

The compositional matrix product, corresponding to the matrix product in the simplex, is defined by

B � x = C

 D∏
j=1

x
b1j
j , · · · ,

D∏
j=1

x
bLj

j

T

where B = (blj), l = 1, . . . , L, j = 1, . . . , D, is a parameter matrix such that the column vectors belong to
SD, jTLB = 0D, BjD = 0L, where jL is a L× 1 column vector of ones, and jTL is the transposed of jL.
The simplex SD can be equipped with the Aitchison inner product (see Aitchison (1982) and Pawlowsky et
al (2015)) in order to define distances. The expected value E⊕Y are also defined in Pawlowsky et al (2015).
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4.1.2 Log-ratio transformation

Classical regression models cannot be used directly in the simplex because the constraints that the com-
ponents are positive and sum up to 1 are not compatible with their usual distributional assumptions. To
overcome this difficulty, one way out is to use a log-ratio transformation from the simplex space SD to
the Euclidean space RD−1. The classical transformations are alr (additive log-ratio transformation), clr
(centered log-ratio transformation), and ilr (isometric log-ratio transformation). The coordinates in the
clr transformed vector are linearly dependent, and the coordinates in the alr transformed vector are not
compatible with the geometry (distance between the components in the simplex space is different from dis-
tance between the coordinates in the Euclidean space). For these reasons people generally use one of the ilr
transformation for compositional regression models.
An isometric log-ratio transformation ilr is defined by:

ilr(x) = VT
Dln(x)

where the logarithm of x is understood componentwise, VT
D is a transposed contrast matrix Pawlowsky et

al (2015) associated to a given orthonormal basis (e1, · · · , eD−1) of SD by

VD = clr(e1, · · · , eD−1).

As in Pawlowsky et al (2015) in our application, we use the following contrast matrix for D = 3

V3 =

 2/
√

6 0

−1/
√

6 1/
√

2

−1/
√

6 −1/
√

2


This particular matrix defines the following ilr coordinates

ilr1(x) =
1√
6

(2 log x1 − lnx2 − log x3) =
2√
6

log
x1√
x2x3

ilr2(x) =
1√
2

(log x2 − log x3) =
1√
2

log
x2
x3

The first ilr coordinate contains information about the relative importance of the first component x1 with
respect to the geometric mean of the second and the third components g =

√
x2x3. The second ilr coordinate

contains information about the relative importance of the second component x2 with respect to the third
component x3. In our case, the first ilr coordinate opposes the Left wing to the group of the Right wing and
the Extreme Right party and the second opposes the Right wing to the Extreme Right party. The inverse
ilr transformation is given by:

x = ilr−1(x∗) = C(exp(VDx∗)) for x∗ ∈ RD−1

where the exponential of vector x is understood componentwise.

4.2 CODA regression models

In this paper, we use the notations in Table 2. Let Yi denotes the compositional response value of the ith

observation, Yi ∈ SL, and X
(q)
i , q = 1, . . . , Q, denotes the value of the qth compositional covariate for the

ith observation, X
(q)
i ∈ SDq , q = 1, . . . , Q, Zki, k = 1, . . . ,K, denotes the kth classical covariate of the ith

observation. Let us first introduce the CODA regression model in the ilr coordinate space as follows:

ilr(Yi) = b0
∗ +

Q∑
q=1

ilr(X
(q)
i )B∗q +

K∑
k=1

Zkic
∗
k + ilr(εεεi) (7)
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Table 2: Notations

Variable Notation Coordinates

Dependent Yi = (Yi1, . . . , YiL) ilr(Yi) = Y∗i
Compositional explanatory X

(q)
i = (X

(q)
i1 , . . . , X

(q)
iDq

) ilr(X
(q)
ip ) = X

(q)∗
ip

Classical explanatory Zki
General notations

L Number of components of the
dependent variable

i = 1, . . . , n Index of observations (n = 95 )
q = 1, . . . , Q Index of compositional explanatory

variables (Q = 3)
p = 1, . . . , Dq Index of the coordinates for the

compositional explanatory variables
k = 1, . . . ,K Index of classical explanatory

variables (K = 5)

where ilr(Yi), ilr(X
(q)
i ) are the ilr coordinates of Yi, X

(q)
i (q = 1, . . . , Q) respectively, ilr(Yi) ∈ RL−1, ilr(X

(q)
i ) ∈

RDq−1; b0
∗, B∗q , c∗k are the parameters in the coordinate space, and ilr(εεεi) are the residuals in the coordinate

space, ilr(εεεi) ∈ RL−1. The distributional assumption is ilr(εεε) follows either the multivariate gaussian (N)
distribution with with zero mean and covariance matrix ΣΣΣN either the independent multivariate Student
(IT) distribution with zero mean and covariance matrix ΣΣΣIT .
Let

⊕
denotes the summation, this regression model (7) can be written in the simplex as

Yi = b0

Q⊕
q=1

Bq � X
(q)
i

K⊕
k=1

Zki � ck ⊕ εεεi, i = 1, . . . , n (8)

where b0,B1, . . . ,BQ, c1, . . . , cK are the parameters satisfying b0 ∈ SL, Bq ∈ SDq , q = 1, . . . , Q, ck ∈
SL, k = 1, . . . ,K, jTLBq = 0Dq , BqjDq = 0L. The distributional assumption is that εεεi ∈ SL follows either
the multivariate gaussian (N) distribution (see Aitchison (1985)) either the independent multivariate Student
(IT) distribution on the simplex .

We estimate the parameters of model (7) as in Section 3. Table 3 shows the estimated parameter for both
case : Gaussian and Independent Student.

Table 3: Multivariate Gaussian and Student regression models with compositional and classical variables

Gaussian model Student model, ν = 4

y ilr[, 1] y ilr[, 2] y ilr[, 1] y ilr[, 2]

Constant +1.01(0.91) −2.35(0.89)∗∗ +1.34(7.90)∗∗∗ −1.48(6.60)∗∗∗

Age ilr1 +0.05(0.78) −0.53(0.76) +0.17(6.76)∗∗∗ +0.44(5.64)∗∗∗

Age ilr2 −0.35(0.45) −0.75(0.44)∗ −0.44(3.96)∗∗∗ −0.94(3.31)∗∗∗

unemp rate −7.31(2.77)∗∗ +13.1(2.71)∗∗∗ −7.94(24.1)∗∗∗ +10.6(20.1)∗

income tax rate −0.42(1.00) +0.19(0.98) −1.02(8.69)∗∗∗ −0.82(7.26)∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Model selections

Nguyen et al (2019) propose a a methodology to select a model between the Gaussian and independent
Student models based on the Mahalanobis distance.

For an L-dimensional random vector Y, with mean µµµ, and covariance matrix ΣΣΣ, the squared Mahalanobis
distance is defined by:

d2 = (Y −µµµ)TΣΣΣ−1(Y −µµµ)

If Y1, . . .Yn is a sample of size n from the L-dimensional Gaussian distribution NL(µµµN ,ΣΣΣN ), the squared
Mahalanobis distance of observation i, denoted by d2Ni, follows a χ2

L distribution. If µµµN and ΣΣΣN are unknown,
then the squared Mahalanobis distance of observation i can be estimated by:

d̂2Ni = (Yi − µ̂µµN )T Σ̂ΣΣ
−1
N (Yi − µ̂µµN )

where µ̂µµN = Ȳ =
1

n

n∑
i=1

Yi and Σ̂ΣΣN is the sample covariance matrix. This square distance follows a Beta

distribution, up to a multiplicative constant:

n

(n− 1)2
(Yi − µ̂µµN )T Σ̂ΣΣ

−1
N (Yi − µ̂µµN ) ∼ Beta

(
L

2
,
n− L− 1

2

)
where L is the dimension of Y. For large n, this Beta distribution can be approximated by the chi-square
distribution d2Ni ∼ χ2

L. According to Gnanadesikan (2011) (p. 172), n = 25 already provides a sufficiently
large sample for this approximation, which is the case in all our examples below.

If we now assume that Y1, . . . ,Yn is a sample of size n from the L-dimensional Student distribution Yi ∼
T(µµµIT ,ΣΣΣIT , ν), then the squared Mahalanobis distance of observation i, denoted by d2IT i and properly scaled,
follows a Fisher distribution (see Roth (2012)):

1

L

ν

ν − 2
d2IT i ∼ F(L, ν)

If µµµIT and ΣΣΣIT are unknown, then the squared Mahalanobis distance of observation i can be estimated by:

d̂2IT i = (Yi − µ̂µµIT )T Σ̂ΣΣ
−1
IT (Yi − µ̂µµIT ),

where µ̂µµIT and Σ̂ΣΣIT are the MLE of µµµIT and ΣΣΣIT . Nguyen (2019) note that in the IT model, µ̂µµIT is no
longer equal to Ȳ and there is no result about the distribution of d̂2IT i.

In the elliptical distribution family, the distribution of Mahalanobis distances characterizes the distribution
of the observations. The merit of this approach is that the Mahalanobis distance is a one-dimensional
variable. According to Nguyen et al (2019), we can test whether the Mahalanobis distances follow a chi-
square distribution for testing the normality of the data. Similarly, we test whether the Mahalanobis
distances follow the Fisher distribution for testing the Student distribution. As in Nguyen et al (2019), we
perform some Kolmogorov−Smirnov tests in order to test different null hypothesis: Gaussian, Independent
Student with three and four degrees of freedom.

Table 4 shows the p-values of these tests. At level 5%, we do reject the Gaussian distribution and we do
not reject the Student distribution with three and four degrees of freedom.
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Figure 3: Scatterplots of residuals for the normal, IT (νMLE = 3), and IT (νMLE = 4) estimators
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Figure 4: Q-Q plots of the Mahalanobis distances for the normal, IT (νMLE = 3), and IT (νMLE = 4)
estimators

Figure 4 illustrate the Q-Q plots comparing the empirical quantiles of the Mahalanobis distances for the
normal (respectively, the IT (νMLE = 3), the IT (νMLE = 4)) estimators on the horizontal axis to the
theoretical quantiles of the Mahalanobis distances for the normal (respectively, the IT (νMLE = 3), the IT
(νMLE = 4)) on the vertical axis. These Q-Q plots are coherent with the results of the tests in Table 4. The
IT model with three degrees of freedom fits our data well.

6 Vote shares predictions

The interpretation of coefficients in regression model on the simplex is quite complex. Thus, in this section,
we predict the vote share to understand how the socio-economics factors impact on the outcome of the
election in France.
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Table 4: The p-values of the Mahalanobis distances tests with the null hypothesis and the corresponding
estimators.

Hypothesis H0 P-values
Method

N 0.00

IT, νMLE = 3 0.49

IT, νMLE = 4 0.65

7 Conclusion

We have presented a CODA regression models on the simplex and compared two different models (multi-
variate Gaussian distribution and multivariate independent Student distribution). The results shows that
the Student distribution is useful in the context of political economy. We have also predicted the vote shares
to understand the impact of socio-economics factors on the departmental election in France.
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Summary

Contingency tables can be decomposed in independence and interaction tables. Given a sample
of compositional tables, the need for a test arises to answer the question whether the mean table
is an independent table, or, on the contrary, there are significant interactions. With this purpose
we develop a bootstrap test to check the hypothesis that the interaction table is the neutral
element, that is, that all entries of the interaction table are equal. It is based on the idea (a)
to generate via bootstrap a sample of independent tables, (b) to compute for each independent
table its Aitchison norm, (c) to build the empirical distribution of the norms, and (d) to compare
the norm of the original table with the obtained distribution. Survey data, corresponding to 145
undergraduate students (76% females, 24% males) asked to evaluate three protective measures
in 10 different situations, and annual mortality rates in some European countries are used for
illustration.

Key words: compositional tables, interaction and independence tables, bootstrap test.

1 Introduction

Compositional tables (Fačevicová and Hron, 2015; Fačevicová et al., 2016) can be uniquely decomposed into
orthogonal independent and interaction tables (Egozcue et al., 2015). Let X be a composition arranged in
a (D1, D2)-matrix, then

X = Xind ⊕Xint , 〈Xind, Xint〉a = 0 , (1)

where both Xind and Xint are (D1, D2)-matrices; ⊕ is the perturbation of compositions shaped as matrices;
and 〈·, ·〉a stands for the Aitchison inner product of compositions also shaped as a matrix (Pawlowsky-Glahn
and Egozcue, 2001; Egozcue et al., 2015; Ortego and Egozcue, 2016). The independent part Xind is obtained
as the perturbation of the geometric marginals of X. They are tables of equal rows, respectively columns,
obtained as the geometric mean by rows, respectively by columns. The table Xind is then the closest
independent table to X in the Aitchison distance sense. The interaction table is obtained by perturbation
subtraction Xint = X 	 Xind. Note that the removal of the independent table from X is equivalent to a
double compositional centring of X.

When an n-sample of compositional tables is available, the study of the sample compositional mean, also
known as sample center,

X̄ =
1

n
�

n⊕
i=1

Xi ,

can be of interest (Pawlowsky-Glahn et al., 2017, 2019). The orthogonal decomposition (1) allows to analyse
the mean compositional table of a sample of compositional tables and poses the question whether the
empirical mean table can be considered independent or, on the contrary, this hypothesis has to be rejected.
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Consequently, a test on the mentioned hypothesis is needed. Up to our knowledge, no such test is available.
In the present contribution we propose a bootstrap test, which is described in Section 2. The test is
illustrated with data from a survey sample in Section 3 and, in Section 4, using mortality rates in some
countries of the European Union.

2 Independence test

Given a sample of (D1, D2) compositional tables, Xi, i = 1, 2, ...n, the null hypothesis of interest to be tested
is that the mean table, X̄, is independent or, equivalently, that the mean interaction table is the neutral
element, X̄int = N , against the alternative hypothesis that the mean interaction table is not negligible, i.e.,
X̄int 6= N . Formally,

H0 : X̄ = X̄ind , H1 : X̄ 6= X̄ind ,

or, equivalently,
H0 : X̄int = N , H1 : X̄int 6= N .

To perform this test, m bootstrap samples are generated from the original sample Xi, i = 1, 2, ...n. For each
re-sample the compositional mean table, X̄`, ` = 1, 2, ...,m, is computed. The m tables X̄` are decomposed
into their independent and interaction parts. Then, for each of the independent tables, X̄`,ind = [xij`], the
square Aitchison norm

‖X̄`,ind‖2a =
1

2D

D1∑
i=1

D2∑
j=1

D1∑
i′=1

D2∑
j′=1

(
ln

xij`
xi′j′`

)2

, D = D1 ×D2 ,

is computed. The square norm of the sample mean table ‖X̄‖2a is then compared to the empirical distribution
of the norms ‖X̄`,ind‖2a, ` = 1, 2, . . . ,m. This empirical cumulative distribution is denoted F ∗, where the
asterisk recalls its empirical character. The corresponding p-value is αp = 1 − F ∗(‖X̄‖2a), and, for a given
significance level α such that αp ≤ α, the hypothesis H0 must be rejected.

3 A survey on contraceptive measures

In a survey n = 145 undergraduate students (76% females, 24% males) were asked to evaluate three protec-
tive measures (P preservative, C contraceptive pill, M morning after pill) during sexual intercourse. Ten
different situations (called items) were considered (Pawlowsky-Glahn et al., 2017, 2019), and the students
were asked to evaluate the three protective measures in each of the situations. The scores for (P ,C,M)
in each item had to be positive and such that they added up to 100. Therefore, the minimum score, for
an item and for a measure, was 1 and the maximum 98. Incorrect scores were modified to fit the stan-
dards; for instance, a score equal to 0 was changed to 1. This survey generated a sample, with n = 145, of
D1 × D2 = 3 × 10 compositional tables (described in Table 1) in a closed form. The mean table and its
decomposition, is



P C M

1 0.1047 0.0054 0.0032
2 0.0513 0.0420 0.0109
3 0.0487 0.0454 0.0066
4 0.0561 0.0277 0.0134
5 0.1105 0.0040 0.0024
6 0.0882 0.0107 0.0038
7 0.0077 0.0674 0.0192
8 0.0100 0.0663 0.0168
9 0.0405 0.0347 0.0151
10 0.0744 0.0077 0.0053


=



0.0366 0.0169 0.0063
0.0860 0.0396 0.0147
0.0732 0.0338 0.0126
0.0825 0.0380 0.0141
0.0304 0.0140 0.0052
0.0460 0.0212 0.0079
0.0645 0.0297 0.0111
0.0671 0.0309 0.0115
0.0830 0.0383 0.0142
0.0433 0.0199 0.0074


⊕



0.0910 0.0101 0.0164
0.0190 0.0338 0.0236
0.0212 0.0428 0.0167
0.0216 0.0232 0.0301
0.1156 0.0090 0.0146
0.0611 0.0161 0.0154
0.0038 0.0722 0.0553
0.0048 0.0683 0.0466
0.0155 0.0289 0.0338
0.0548 0.0123 0.0226


, (2)
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Table 1: Survey data as a compositional table. P = preservative; C = contraceptive pills; M = morning
after pill.

item protective measure P C M

1 protect from sexually transmitted infections (STI) P1 C1 M1
2 protect from pregnancy P2 C2 M2
3 provide peace during and after intercourse P3 C3 M3
4 economically accessible P4 C4 M4
5 protect from the transmission of the AIDS virus P5 C5 M5
6 evidence interest in protecting the health of the couple P6 C6 M6
7 increase feelings of pleasure in man P7 C7 M7
8 increase feelings of pleasure in woman P8 C8 M8
9 are easy to use correctly P9 C9 M9
10 do not cause side effects P10 C10 M10

where the first table in the right hand member is X̄ind and the second is X̄int. The main goal of interest in
a survey like the one presented, is the interaction table, X̄int, provided that it is non-neutral. If X̄int = N ,
it would mean that the preventive measures are evaluated independently of the items, and no relevant
information is then obtained.

The interpretation of interactions in X̄int is easier when based on clr(Cen(Xint)) (see Figure 1). The squares
clrTmeanInt

1.3 −0.89 −0.41
−0.26 0.31 −0.05
−0.16 0.55 −0.39
−0.13 −0.06 0.2
1.54 −1.01 −0.53
0.9 −0.43 −0.48

−1.87 1.07 0.8
−1.65 1.02 0.63
−0.47 0.15 0.31
0.79 −0.7 −0.09

P C M
10
9
8
7
6
5
4
3
2
1

Figure 1: Overall interaction table (clr). Colors enhance importance of interaction (I). Red: strong positive I. Ocre:
medium positive I. Grey: low positive I. White: no I. Pale blue: low negative I. Aquamarine: medium negative I.
Dark blue: strong negative I.

of the entries add up to the mean simplicial deviance (Egozcue et al., 2015), which is a measure of cross
information between methods and items. The simplicial deviance is the square Aitchison distance to the
neutral element N which represents the independence. Positive (negative) entries point at cells in which
the score is larger (less) than that predicted by the independent table. Note that the sum of entries of
the matrix clr(X̄int) is zero by rows and columns; therefore, any positive entry should be compensated by
negative entries in the same row and column. For a more detailed interpretation of Table 1 see Pawlowsky-
Glahn et al. (2019).

To answer the question whether the mean table is an independent table, or if, on the contrary, there are
significant interactions, the above described bootstrap test was conducted. Figure 2 shows the bootstrap
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distribution of ‖X̄ind‖2a compared with the observed ‖X̄‖2a. The obtained p-value is less than 10−4. The
simplicial deviance of X̄ is equal to ‖X̄int‖2a = 19.29, and its relative value is ‖X̄int‖2a/‖X̄‖2a = 0.498, this is,
the square Aitchison norm of the interaction X̄int is similar to that of X̄ind, thus confirming the importance
of the interaction and the lack of independence.

0 10 20 30 40
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00
15
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20
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eq
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nc
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s

Figure 2: Histogram of the square Aitchison norm of independent mean tables obtained in a bootstrap m-sample
(m = 10000), centered on 19.29. The red line is placed at the square Aitchison norm of the observed X̄, which is
38.70, quite apart from independence (p-value less than 10−4).

4 Mortality rates

Annual mortality rates of European countries estimated by causes of death are available in Eurostats (2019).
From this data base a small group of data were selected: only females; age under 65; some large countries
in Europe (Germany -DE-, Spain -ES-, France -FR-, Italy -IT-, United Kingdom -UK-); only some causes
of death (cancer -Can-, circulatory causes -Cir-, digestive causes -Dig-, HIV related, respiratory causes -
Res-, skin deseases -Ski-). The tables country/cause of death were available for 5 years 2011-2015; they are
considered as table samples (n = 5).

The question to be examined is whether the causes of death depend on the country or not. The test
explained in Section 2 was conducted in this case with only m = 500 re-samples. This reduced number of
bootstrap re-samples is adapted to the fact that the original number of samples (years) is only 5. The results
are shown in Figure 3. In the left panel, the histogram of ‖X̄`,ind‖2a is compared with the sample value of
‖X̄‖2a = 138.4 which is out of the range of the histogram (p-value less than 0.01). The relative simplicial
deviance is 0.031, a very small value indicating that the interaction square norm is a small fraction of the
total square norm, although independence is significantly rejected. The right panel of Figure 3 shows the
clr-interaction matrix. In the clr-interaction table the HIV column shows the highest values of interactions;
also the row corresponding to UK is showing considerable interactions. Paying attention to HIV we realize
that the mortality rates in ES and IT are large in contrast with DE, FR, and specially with UK, where there
is a relevant relative deficit of mortality rate in HIV. In turn, other causes of mortality in UK are higher
than the predicted by the independent table, specially those of Res and Ski. These last interactions may be
due to climate characteristics of the countries.

In order to show a case where independence of the mean table is not rejected in the test, a subtable o the
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clrTmeanInt females
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Figure 3: Left panel: histogram of 500 bootstrap re-samples of ‖X̄`,ind‖2a compared with the sample value of ‖X̄‖2a.
The plot suggests a cautious rejection of the independence of X̄ reflected in the small relative simplicial deviance
0.031. Right panel: clr-interaction matrix X̄int. Stronger colors point out the cells with larger interaction.

previous one has been selected. The columns HIV and Skin, and the row corresponding to UK, where strong
interactions are concentrated (Figure 3) have been suppressed. Note that clr-interaction values change when
taking a subcomposition (a subtable in this case). In this reduced case, the analysis results in a large p-value
equal to 0.145, which does not suggest a rejection of independence (Fig. 4, left panel). Also ‖X̄‖2a = 18.88
(red line) is placed within the histogram of ‖X̄`,ind‖2a as a confirmation of the obtained p-value. The right
panel of Figure 4 shows a moderate uniform spread of interactions, not far from the neutral element N ,
reflected in a low relative simplicial deviance (0.015).
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Figure 4: Left panel: histogram of 500 bootstrap re-samples of ‖X̄`,ind‖2a compared with the sample value of ‖X̄‖2a.
The plot suggests a cautious rejection of the independence of X̄ reflected in the small relative simplicial deviance
0.031. Right panel: clr-interaction matrix X̄int. Stronger colors point out the cells with larger interaction.

5 Conclusions

A bootstrap test of hypothesis on the independence of the mean compositional table from a sample has
been designed. It is based on the orthogonal decomposition of a compositional table into its independent
and interaction parts. The presented examples demonstrate its performance.
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Fačevicová, K. and K. Hron (2015). Covariance structure of compositional tables. Austrian Journal of Statistics 44 (3), 31–44.
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Summary 
 

In the international water and sanitation sector, it is usual to use multivariate statistical 
methods to monitor and report the overall progress of access to water and sanitation. 
However, the methods used do not take into account the compositional characteristics of 
the data. Recently, to overcome this problem, the application of multivariate temporal 
interpolation models that include this characteristic has been proposed.  

On the other hand, it is usual to carry out analyzes separately between the urban and 
rural sectors (WHO/UNICEF, 2015), even though both parties form a whole (the general 
population of the country). The disaggregated work does not allow to see the crossed 
influence between the population evolution and the levels of service. In addition, according 
to (Cohen, 2004), the question arises whether disaggregated work is a good option or not, 
given that the definition of both categories is not homogeneous, which makes international 
comparisons difficult. 

Therefore, this work focuses on the comparative analysis between the joint and 
disaggregated treatment of indicators of access to water, in urban and rural contexts, 
considering that the level of service is divided into four categories. Different temporal 
interpolation models are applied to the balances defined between the parties through the 
isometric logratio (ilr) transformation (Egozcue et al. 2003). The identification of outliers 
is included through Mahalanobis distance. 

The preliminary results obtained with the data from the countries of South America show 
that the adjusted models may depend on the joint or disaggregated approach. The quality 
metrics Nash-Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE) confirm 
that the best adjustments are obtained in one way or another depending on the case. The 
outliers are different in each situation.  

Key words:  CoDa aggregate and disaggregate, models, water, outliers. 
 
 
 
 

                            J.J. Egozcue, J. Graffelman, M.I. Ortego (Eds.)

 
                                  ISBN 978-84-947240-2-2

 
-130-

mailto:filimon.alejandro.quispec@upc.edu
mailto:agusti.perez@upc.edu
mailto:agusti.perez@upc.edu


Quispe-Coica and Pérez-Foguet 

 
 

 
1 Introduction 

In the period (Year: 2000-2015) of the Millennium Development Goals (MDGs), the global 
monitoring and reporting of access to water and sanitation has been in charge of the Joint Monitoring 
Program (JMP), between the World Health Organization (WHO) and United Nations International 
Children's Emergency Fund (UNICEF). After 2015, in the context of the Sustainable Development 
Goals (SDG) (Year: 2015-2030), the JMP continues to make the global reports (WHO/UNICEF, 
2017).  
For the preparation of the report, the main sources of information are the household survey, the 
census, and the administrative data compiled by governmental and non-governmental entities (JMP, 
2018). With this information, estimates are made separately for the urban and rural sector, while 
national estimates are generated as the weighted average of the two using population data (JMP, 
2018). Due to this, the joint evolution in the time series is not visualized, nor the cross-influence 
between the evolution of the population and the levels of service. 
On the other hand, the definitions of the urban and rural are in question, when they differ in many 
countries of Latin America and the Caribbean (Dirven et al., 2011). Therefore, the JMP is forced to 
rely on the existing definitions of the member countries of the SDGs. A clear example of this is Peru, 
in which rural population is considered to be one that does not exceed 2,000 thousand inhabitants 
(DS. N°031-2008-VIVIENDA, 2008); Meanwhile, in Chile it is considered rural, a human settlement 
with a population less than or equal to 1,000 inhabitants, or between 1,001 and 2,000 inhabitants 
where more than 50% of the population that declares to have worked is dedicated to primary activities 
(INE, 2018). It is in this scenario that the question arises whether disaggregated work is a good 
option or not, given that the definition of both categories is not homogeneous, which makes 
international comparisons difficult(Cohen, 2004).  
Another situation is presented in the data used for national, regional and global estimates; when it is 
appreciated that water and sanitation service levels have been disaggregated into four parts for the 
urban and rural sector. Being these, the services improved (Piped on premises, Other improved) and 
unimproved (Surface water, Other unimproved), for the case of water. While for sanitation they are: 
Improved, Shared, Open defecation, Unimproved. Also called water and sanitation ladders 
(WHO/UNICEF, 2015). What shows that these data have compositional characteristics, because they 
are part of a whole, and the sum is a constant (Aitchison, 1986). Post-2015, they remain 
compositional, but in five water and sanitation ladders (WHO/UNICEF, 2017). Therefore, they have 
to be addressed as such. For this, there are already antecedents in the sector that show the 
importance of taking into account the compositional nature of the population data, when the 
estimates of access to water sanitation and hygiene (WASH) are modeled (Pérez-Foguet et al., 2017). 
In addition, the statistical analysis in the world of compositional data (CoDa) is a good alternative to 
evaluate and visualize the aggregate information of the urban and rural sector, in the time series. 
This new method in the sector follows statistical procedures of compositional data, for which, certain 
disadvantages must be overcome, one of them being the presence of zero values; because the 
transformations carry proportions in which this is not possible. To address this, in literature there are 
different methods of work (Josep Antoni Martín-Fernández et al., 2011; Palarea-Albaladejo et al., 
2008; J. A. Martín-Fernández et al., 2003; Templ et al., 2016).  
Therefore, the purpose of this study is to assess the cross-influence between the evolution of the 
population and service levels; value whether disaggregated work is a good option or not. For which, 
statistical methods for compositional data will be used. In addition, the presence of outliers in the 
models will be analyzed, with the purpose of assessing in which of them are generated mostly. The 
hypothesis that estimates can vary in certain situations if they have different SBPs will be tested. 
The generalized additive model (GAM) will be used to generate and compare the data. 
The article will be organized as follows: The following section presents the work methodology in 
aggregate and disaggregated data of the sector. In section 3, the results are analyzed and discussed. 
In section 4, the conclusions of this work and the future challenges in the WASH sector are described. 
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2 Materials and Method 

The information used for the study is available on the JMP platform (JMP, 2017). In this there are 
data on access to water, sanitation and hygiene (WASH), ordered by sector (Urban and Rural). 

2.1 Selection of countries and indicators. 

The countries in the analysis are: Bolivia, Colombia, Ecuador, Paraguay, Peru and Uruguay. They 
respond to water access indicators with compositional characteristics, with a minimum data quantity 
of twelve (Uruguay) and a maximum of twenty-six (Peru). Other countries are not considered for 
lack of one or more variables that prevent the formation of compositions. In addition, they do not 
comply with the minimum amount of data to use GAM (Fuller et al., 2016). As for the population, 
they are the same ones with which the JMP makes the estimates of each country. In this is the 
population divided into urban and rural.  
The indicators of analysis in the period of the MDGs have been related to the monitoring of the 
population that accesses improved and unimproved water, made up of water and sanitation ladders. 
In this study, we followed the same classification and used the same population data from JMP for 
estimates of access to services, according to the indicator. 
The services of access to improved and unimproved water are classified as follows: 
Access to improved water: They are supplied by networks and other improved forms. 

• Piped water (Xu,r1): They are considered like this, the access of the water by public 
network inside the house, public network outside the house but inside the building, public tap 
and others. 

• Other improved sources (Xu,r2): Tank truck, and other forms of access to improved water 
that is not piped. 

Access to unimproved water: They are supplied from surface sources and other unimproved 
sources.   

• Surface water (Xu,r3): According to the country they can be, river, spring, irrigation 
channel, and other. 

• Other unimproved sources (Xu,r4): Other non-surface water sources 
The disaggregated analysis has a composition of four parts for the urban sector and four for the rural 
sector. While the aggregate analysis between urban and rural, they carry compositions of eight parts. 
These are represented as follows: 

_1 _ 2 _ 3 _ 4 1r r r rx x x x+ + + =                                        Eq. (1) 

_1 _ 2 _ 3 _ 4 1u u u ux x x x+ + + =                                        Eq. (2) 

_1 _ 2 _ 3 _ 4 _ 5 _ 6 _ 7 _8 1r r r r u u u ux x x x x x x x+ + + + + + + =                        Eq. (3) 

Where: Xu,r1= Piped water; Xu,r2=Other improved sources; Xu,r3 =Surface water; Xu,r4 = Other 
unimproved sources.  
*Xu,r: Urban or rural value. 

To make CoDa in eight parts, the population of the urban and rural sector has been multiplied with 
the proportions in CoDa of four parts (Eq. (1) y Eq. (2)), as appropriate. Then, the population 
expressed in eight parts was divided among the total population. Thus forming the compositions 
shown in Eq. (3). 

2.2 Balances and transforms 

Balances are defined in a group of parties that have access to improved and unimproved services. 
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Given this premise, there is a need to divide the aggregate analysis (eight-part CoDa) into two 
scenarios (Figure 1-V3 y Figure 2-V4). The first will be when the main proportion is defined by 
sectors (proportion of people who have access to water in the rural sector among people who access 
water in the urban sector (see V3)). After this, the proportion criterion between improved and 
unimproved services is applied internally. In the second scenario, balances are made between access to 
improved and unimproved services, in the total (see V4); unlike the previous one, the group of parts 
is not separated by sector. Regarding CoDa of four parts, in both scenarios the same balance is 
maintained (V1 and V2) 
Next, balance “V” is made according to Egozcue and Pawlowsky-Glahn, (2005). 
Scenario 1: Balance of eight parts, is carried out by sectors (Rural and Urban). 

• Rural: Group of parts between the improved (Xr1, Xr2) and the unimproved (Xr3, Xr4). 
Balance V1, shows the partitions. 

• Urban: Group of parts between the improved (Xu1, Xu2) and the unimproved (Xu3, Xu4). 
Balance V2, shows the partitions. 

• Aggregate data urban and rural: Group of parts between rural (Xr1, Xr2, Xr3, Xr4) and 
urban (Xu5, Xu6, Xu7, Xu8). Internally, they will be classified as a group of access to 
improved and unimproved water. Balance V3, shows the partitions. 
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Figure 1: Balance of Colombia – Scenario 1. 

 
Scenario 2: Balance of eight parts is made between access to improved water and not improved, in 
the total of variables. 

• Rural: Group of parts between the improved (Xr1, Xr2) and the unimproved (Xr3, Xr4). 
Balance V1, shows the partitions. 

• Urban: Group of parts between the improved (Xu1, Xu2) and the unimproved (Xu3, Xu4). 
Balance V2, shows the partitions. 

• Aggregate data urban and rural: Group of parts between rural (Xr1, Xr2, Xu5, Xu6) and 
urban (Xr3, Xr4, Xr7, Xr8). Internally, they will be classified as a group of access to improved 
and unimproved water. Balance V4, shows the partitions. 
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Figure 2: Balance of Colombia – Scenario 2. 

After balances, isometric log-ratio transformations are performed (J. J. Egozcue et al., 2003). For this, 
the following equation is used. 
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                                                    Eq. (4)                     

r = Number of positive variables in the balance V. 
s = Number of negative variables in the balance V. 

gm(-) = It is the geometric mean of the variables. 
 
2.3 Metrics of analysis 

The existence of outliers is detected using the robust Mahalanobis distance (Filzmoser et al., 2008). 
Subsequently, it is compared according to the amount of data that are considered outliers in four-part 
CoDa and eight-part CoDa. Preliminary analysis removing outliers, show variation in estimates with 
aggregate and disaggregated data. Therefore, the comparison between eight-part CoDa and four-part 
CoDa is made without removing these values. This in order that you are comparatives are carried out 
under similar conditions. 
For time series estimates, GAM (k = 4) is used. This is supported by the presence of non-linear data 
(Fuller et al., 2016). In addition, the flexibility of GAM helps to better adapt to the data in the time 
series. 

 

Estimation results are compared between four-part CoDa (urban and rural) and eight-part CoDa. For 
this, the values estimated in eight-part CoDa are multiplied by the total population (the same 
population used to make eight-part CoDa in item 2.1) and then disaggregated into four-part CoDa 
for urban and rural. The result of these is compared with the estimates made in a disaggregated 
manner. This comparison is made with RMSE metric. If the value is zero, then the values estimated 
in eight-part CoDa generate same values when working independently in rural and urban areas (four-
part CoDa). Otherwise, estimated values differ between the two. For the latter, the predictive 
capacity between CoDa 8 and CoDa 4 is evaluated and compared. For this, the NSE indicators are 
used and comparisons are made with the observed values in the rural and urban sectors (Table 3). 
All this has been carried out and implemented in R Core Team (2018), using the following statistical 
packages: nlme, compositions and mgcv, by Pinheiro et al., (2018); Boogaart et al., (2014) & 
Wood, (2017), respectively. To treat data with outliers in CoDa, the robCompositions statistical 
package was used (Templ et al., 2011). 
 
3 Results and discussions 

3.1 ILR transformations and outlier 

Scenario 1 and scenario 2, presented the same number of outliers. According to SBP raised in Scenario 
1, it shows that metrics of R-adj and the ilr of Figure 3A, and 3B are similar to six transforms of Figure 
3C (ilr2, ilr3, ilr4, ilr5, ilr6 y ilr7). This occurs because they maintain proportions of CoDa 4. The only 
one that changes is the ilr1 of Figure 3C, because it is represented with proportions between rural and 
urban water (V3). This can be a factor so that estimates in aggregated and disaggregated data do not 
have significant variation, as shown in Figure 4G, 4H. On the other hand, this does not occur when the 
balance (V4) varies (Figure 4J, 4K). For this, a more exhaustive analysis will be needed.  
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Figure 3: Outliers Colombia: (A), (D) Rural; (B), (E) Urban; (C), (F) Aggregate Urban/Rural.  

The number of outliers detected has been variable. Figure 3D, 3E, and 3F show that this variation has 
not been punctual but in the time series. On the other hand, we expected less presence of outliers in 
aggregate data, due to the transforms; and a marked difference in the amount detected, between CoDa 
4 and CoDa8, but this did not happen (See Table 1).    

 

Table 1: Number of outliers detected in the countries. 
Country/ 
N° Outlier 

Rural 
(CoDa4) 

Urban 
(CoDa 4) 

Rural and Urban 
(CoDa 8) 

Bolivia 4 0 5 
Colombia 6 5 6 
Ecuador 5 4 4 
Paraguay 6 5 4 
Peru 5 8 7 
Uruguay 1 4 ND 

A vertical analysis of table 1 shows that in the rural sector there is a greater presence of outliers in 
Colombia and Paraguay; being this six. While Uruguay presents a single outlier. In the urban sector, a 
greater number of outliers have been detected in Peru, while Bolivia has no value. 

he horizontal analysis of table 1 shows the low quantity of outliers in disaggregated data (Urban and 
Rural) of Bolivia, then in aggregate data (CoDa 8). In Colombia, less is seen in the urban sector. In 
Ecuador, it could be assessed with less presence in aggregate data. In Paraguay there is less in aggregate 
data. 

In summary, there has been no significant difference in the amount of data with outliers that allows us 
to assess whether four-part CoDa or eight-part CoDa is better. 

(A) (C) (B) 

(D) (F) (E) 
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3.2 Aggregated data vs. disaggregated data 

The aggregate data analysis (Figure 4I) for scenario 1 shows the predominance in the proportion of the 
urban population that access piped water services. In addition, it can be seen that the proportion of 
people with access to unimproved water is low compared to the total. 

In Figure 4G and 4H, it can be seen that the estimated values in CoDa 4 and CoDa 8 show the same 
trends in all indicators (solid line equal to the dashed line). The same analysis was carried out for the 
countries under evaluation, observing that in all of them the RMSE is equal to zero (See table 2). 
Which leads us to conclude that under the partition performed (Figure V1, V2 and V3) in scenario 1, it 
does not matter if we do the analysis in CoDa of four or eight parts, the result will always be the same. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CoDa8 Disaggregate 

CoDa8 Disaggregate 
CoDa4 Urban 

CoDa8 Disaggregate 
CoDa4 Rural 

CoDa8 Disaggregate 
CoDa4 Rural 

(J) (K) (L) 
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Figure 4: Comparison of models in aggregate and disaggregated data - Colombia. Scenario 1: (G) 
Rural disaggregate; (H) Urban disaggregate; (I) Rural and Urban aggregate. Scenario 2: (J) Rural 
disaggregate; (K) Urban disaggregate; (L) Rural and Urban aggregate. 
 

Opposite case it happens when the partition changes (Scenario 2, V4). This shows that there is 
variation when making estimates with aggregate data (Figure 4L) and individual estimates of four parts 
(Figure 4J and 4K). The comparison of both gives us RMSE values different from one (Figure 4J and 
4K). This does not happen in all countries or in all indicators (See table 2). In this exception is 
Paraguay, in which the RMSE remains zero in both scenarios (See table 2). 

 
 
 
 
 
 
 

Table 2: Comparative of estimates between four-part CoDa and eight-part CoDa 
País/(RMSE x 10-2) Xr1 Xr2 Xr3 Xr4 Xu1 Xu2 Xu3 Xu4 

Bolivia 
Esc. 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Esc. 2 0.2761 0.1381 0.285 0.1214 0.0507 0.0027 0.0065 0.0471 

Colombia 
Esc. 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Esc. 2 1.4868 0.6074 0.9495 1.1742 0.0549 0.0013 0.0045 0.0524 

Ecuador 
Esc. 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Esc. 2 0.5997 0.1628 0.4873 0.2751 0.154 0.0092 0.016 0.1479 

Paraguay 
Esc. 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Esc. 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Peru 
Esc. 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Esc. 2 0.4504 0.1625 0.3023 0.3054 0.1416 0.0098 0.0135 0.1379 
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Uruguay 
Esc. 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Esc. 2 0.7032 0.1292 0.089 0.7448 0.0479 0.0002 0.0017 0.0464 

In Paraguay the change of SBP has had no effect on the transformations; consequently, the estimates in 
CoDa 4 are the same as when disaggregated estimates of CoDa eight. 

The variation between the two (aggregate, disaggregated data) has not been significant either, due to 
the fact that most of the subcompositions have RMSE values close to zero. After this analysis, we 
compare the efficiency of the prediction models in disaggregated data with the results of estimates in 
scenario 2. 

Table 3: Comparison of the best efficiency of the models in 
aggregate and disaggregated data (Scenario 2). 

País/NSE Xr1 Xr2 Xr3 Xr4 Xu1 Xu2 Xu3 Xu4 

Bolivia 
CoDa4 -0.014 0.508 0.375 0.274 0.207 0.589 0.35 0.639 
CoDa8 -0.008 0.503 0.361 0.278 0.215 0.589 0.358 0.653 

Colombia 
CoDa4 0.15 0.252 0.089 0.512 0.087 0.49 0.078 0.281 
CoDa8 0.169 0.238 0.083 0.528 0.078 0.49 0.074 0.269 

Ecuador 
CoDa4 0.453 0.335 0.607 0.476 0.35 0.287 0.016 -0.008 
CoDa8 0.421 0.343 0.597 0.427 0.392 0.284 0.089 0.002 

Paraguay 
CoDa4 0.915 0.535 0.816 0.918 0.653 0.573 0.158 0.52 
CoDa8 0.915 0.535 0.816 0.918 0.653 0.573 0.158 0.52 

Peru 
CoDa4 0.528 0.398 0.383 0.665 -0.001 -0.036 -0.023 0.674 
CoDa8 0.52 0.408 0.367 0.659 0.005 -0.036 -0.011 0.666 

Uruguay 
CoDa4 0.609 0.366 0.55 0.576 0.138 0.92 -0.112 0.027 
CoDa8 0.594 0.373 0.546 0.548 0.165 0.919 -0.135 0.056 

Horizontal analysis of table 3 shows that the predictive capacity of CoDa 8 in Bolivia is slightly better 
than CoDa 4. NSE values are higher in five out of eight indicators. The opposite situation occurs in 
Colombia, in which CoDa 4 presents better predictive capacity than CoDa 8. In Ecuador, both show 
improvements in four out of eight indicators. Therefore, it would have to be analyzed with other metrics 
that help to clarify whether CoDa 8 or CoDa 4 is better. Paraguay, is not affected by the variation in 
the partitions. In addition, it gives the same result if CoDa 8 or CoDa 4 (Table 2) is used. In Peru, 
CoDa 4 has a better predictive capacity. In Uruguay, CoDa 4 is better than CoDa 8. 

In summary, the comparison of analyzing data in aggregate or disaggregated form, indicates that by 
doing analysis with CoDa 4, better predictive capacity will be presented in Uruguay, Peru, and 
Colombia.  

 

For Paraguay, the use of either of them is indifferent. In Ecuador a more exhaustive analysis must be 
done, a priori NSE values are better in four out of eight indicators in rural and urban areas. Bolivia is 
the only country in which the eight-part CoDa analysis is better because its predictive capacity is better 
in most indicators.  
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Figure 5: Temporal evolution in aggregate data of the population that accesses water services in Bolivia. 

The temporal evolution of the population that accesses different water sources in Bolivia are shown in 
Figure 5 (Results of analysis in CoDa 8). The urban population that accesses piped water is increasing 
(Figure 5M). While the rural population in the same indicator shows a slight decrease. This decrease is 
offset by the increase in the population accessing water through other improved forms (Figure 5N). Of 
these, there was a greater increase in the rural population, reaching 1.451 million people who access this 
service. On the other hand, the urban and rural population that accesses surface water shows significant 
decreases in recent periods. Despite this, there is a large number of people from rural areas who 
continue to drink from these sources (448 thousand – Year 2015). The population that accesses water 
from unimproved sources decreased in the urban sector to 57 thousand people; while in the rural sector 
169 thousand people were reached. Despite these decreases in both indicators (access to water by other 
improved forms, and access to surface water), in the rural sector more efforts are needed to close the 
existing gaps. Moreover, it is the area in which there is a high poverty rate and in the new SDGs they 
are focused on “nobody being left behind” (ONU, 2015). 

In summary, the analysis in aggregate data has allowed us to analyze the temporal evolution of the 
population that accesses different water sources. In addition, with this methodology of work in the 
sector, national estimates are simple to perform, because it is the simple sum of the subcompositions; 
which does not happen at the moment (JMP, 2018).  

Estimated values in this document may differ from the international JMP report, because linear 
regression methods are used, whereas GAM is used in this study. This has already been discussed 
extensively in the literature (Fuller et al., 2016; Bartram et al., 2014; Wolf et al., 2013; Pérez-Foguet et 
al., 2017). 

 
4 Conclusions 

It has been shown that in scenario 1 with an SBP1, using CoDa 4 or CoDa 8, the estimates give the 
same results (Figure 4G and 4H). While in scenario 2 with an SBP2, they present small differences 
(Figure 4J and 4K). This leads us to conclude that the selection of the PBS will influence the 
estimates. As a result, it opens a lot of possibilities to do analysis with different SBP and make the 
selection that best predictive capacity present. It is suggested to do these tests only in case you do 
not look for interpretations in the transforms. Otherwise, the appropriate group of parts should be 
selected to help us interpret better in the transforms. Because these carry proportions that contain 
information. 

(M) (N) 
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Evidence shows that CoDa 4 usually fares better in Uruguay, Peru, and Colombia (Table 3). While, 
in Bolivia, CoDa 8 presents better predictive capacity in five out of eight indicators. In Ecuador, you 
cannot infer, which of them is better. 
The aggregate analysis in the data (CoDa 8), has allowed us to know in full, the temporal evolution 
of the population that accesses different water sources. A particular case is the one addressed in 
Bolivia. In which, there is an increase in the rural and urban population that accesses water by other 
improved forms. This was compensated by the decrease in access to unimproved water. On the other 
hand, it was found mostly in the rural sector, populations that access surface water sources. 
Consequently, Bolivia's agenda should be aimed at closing gaps in water, sanitation and hygiene. 
Taking as criteria, the poorest and most vulnerable populations. 
On the other hand, the use of CoDa in aggregate data has certain disadvantages. The main one is the 
loss of information because it cannot complete the composition if it lacks data in some variables of 
the total. In the disaggregated analysis (urban and rural), the possibility of affecting only one sector 
is presented; what leads to not losing information in the other and consequently do the common 
analysis. 
Regarding outliers, it cannot be inferred whether CoDa 8 or CoDa 4 has a lower quantity (Table 1) 
because there has not been significant variation. In later studies, comparisons of the models will be 
made by removing the outliers in each scenario. 
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Summary 

The application of the theory of compositional data in multivariate spatio-
temporal statistical models is still scarce, even though the results obtained 
are robust. Actually, this kind of models are attractive to pollution model 
developers, due to, its versatility in the spatio-temporal variables; but 
nobody has tried to use it with compositional data yet. The main 
differences between a conventional model and two CoDa models (with two 
sequential binary partition, SBP) were analyzed. The first SBP was 
proposed by pollutants relationship interpretation, and the second one was 
imposed as standard SBP (R studio).  Initially the conventional temporal 
model is used to predicting pollution levels to fill missing data or 
predicting pollution levels on future days. The application of 
compositional data theory in conventional temporal air quality models 
allowed to obtain acceptable quality models, whose results were adjusted 
to the observed values. Nash-Sutcliffe Efficiency Index (NSE) and root-
mean-square error (RMSE), were used to evaluating the model quality 
and fitted values respectively.  

Key words: air quality, compositional data, SBP, multivariate response 
model, precision. 

1 Introduction 
Predictions from numerical models are also used for environmental regulatory 
purposes and improved decision-making strategies (Zannetti, 1990; Mayer 1999; 
Dominici et al. 2002; Cetin et al. 2017; Paci, 2013). Shaddick G. et al. (2002) 
studied the hierarchical Dynamic Linear Model (DLM) applied to four pollutants, 
at eight monitor stations. Gutierrez et al. (2016), proposed to model the 
measurements of particulate matter, by means of a Bayesian nonparametric 
dynamic model. Recently, Shaddick et al. (2018), developed a spatially-varying 
model, within a Bayesian hierarchical modelling framework.  

Most data in the geo-environmental sciences are compositional in character. They 
describe quantitatively the parts of a whole. If concentrations are not considered as 
compositional data, incorrect conclusions could be obtained (Egozcue and 
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Pawlowsky-Glahn, 2011). Due to the advances in the compositional data analysis 
since 2000, the statistical works can be resolved in three steps: data transformations 
to log-ratio coordinates, traditional statistical analysis with the coordinates, and 
finally result analysis (Aitchison et al., 2002; Egozcue et al., 2003; van den Boogaart 
and Tolosana, 2013). 
 
The present work has been structured as: Methodology (section 2), Results (section 
3), and Conclusions (section 4). 
 

2 Methodology 
The methodology will begin with a data description, then it will explain the 
hierarchical Dynamic Linear Model theory, the compositional data concepts used, 
and finally a numerical comparison analysis (models). 

 
2.1 Data 
The data used in the temporal multivariate linear models was collected hourly over 
the period 2009-2013, from three air quality monitoring stations at Quito-Ecuador 
(Environmental Department of Quito, 2017). The main stations characteristics are 
showed in the table 1. 
 

Table 1: Main parameter of three monitor stations. 
Station Name Location High (mals) Station code 

CARAPUNGO 78°26'50'' W, 0°5'54'' S 2660 1 
BELISARIO 78°29'24'' W, 0°10'48'' S 2835 2 
EL CAMAL 78°30'36'' W, 0°15'00'' S 2840 3 

 
This tree station covering the urban Quito territory, and are located in the north 
(CARAPUNGO/Station Nº 1), in the center (BELISARIO/Station Nº 2), and 
south (EL CAMAL/Station Nº 3); as it is showed in the figure 1. 
 

 
 

Figure 1: Monitoring station location 
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The data analyzed as dependent variable were carbon monoxide (CO), nitrogen 
dioxide (NO$), Sulphur dioxide (SO$), and ozone (O&). To obtain the daily mean 
concentration, the presence of 75% hourly data, was imposed. The variable with 
more missing daily values was nitrogen dioxide (2.5%, 1.1%), at station 1 and 2 
respectively. The data description is showed in the table 2, where the units to 
pollutants are given as parts per billion (ppb), and Kelvin units (K) for 
temperature. 

 
Table 2: Summary of variables measured at three monitor stations, 2009-2013. 

Station Nº 01 
Var. Total Missing % Mean Min. 25% Median 75% Max. 

CO 1827 37 2.0 640 106.6 501.1 616.6 749.5 1940.6 
NO2 1827 45 2.5 11.8 0.5 8.6 11.2 14.3 44.9 
SO2 1827 27 1.5 1.6 0.05 0.95 1.5 2.1 6.6 
O3 1827 24 1.3 18.2 0.0 14.8 17.4 20.6 46.3 
T 1827 5 0.3 14.5 11.3 13.8 14.5 15.1 18.4 

Station Nº 02 
Var. Total Missing % Mean Min. 25% Median 75% Max. 

CO 1827 15 0.8 955.7 250.2 749.4 921.4 1111.8 2497.2 
NO2 1827 21 1.1 19.83 5.362 16.32 19.498 23.024 74.880 
SO2 1827 17 0.9 2.604 0.119 1.673 2.468 3.282 10.462 
O3 1827 14 0.7 14.51 0.389 10 13.246 17.057 56.399 
T 1827 5 0.3 14 10.19 13.22 14.06 14.83 17.92 

Station Nº03 
Var. Total Missing % Mean Min. 25% Median 75% Max. 

CO 1827 15 0.8 947.3 157.9 775.1 929.8 1100.4 2254.4 
NO2 1827 17 0.9 21.73 6.952 18.28 21.398 25.073 42.299 
SO2 1827 19 1.0 4.162 0.296 2.124 3.1486 5.0276 28.6855 
O3 1827 14 0.7 16.03 4.25 11.80 14.87 18.36 57.98 
T 1827 6 0.3 14 10.69 13.46 14.19 14.89 17.60 

 

2.2 Dynamic Linear Models/Temporal air quality model 
The most widely known applied subclass is that of normal dynamic linear models, 
referred as dynamic linear models, or DLMs (West and Harrison, 1997). For this 
work, Y() represent the pollutant p concentration, on day t, the observation [Eq. 
(3)] and system [Eq. (4)] equations respectively are 
 

𝑌+, = 	𝜃+, + 𝑣+,	 𝑣+,~𝑁(0, 𝜎8+$ )								 			(3)	
𝜃+, = 	𝜃+,,:; + 𝑤+,   𝑤+,~𝑁(0, 𝜎=+$ ) (4)	

 
The conditional variance 𝜎=$  is not comparable with 𝜎8$. The multiple pollutants at 
any time point were modelled as arising from a multivariate Gaussian random 
field. 𝑣, 	represents the measurement errors which are assumed to be independent 
and identically distributed 𝑁 0, 𝜎8+$ ; 𝑤,	to each pollutant are independent and 
identically distributed multivariate normal random variables with zero mean and 
variance-covariance matrix Σ+. To this work a Bayesian approach was adopted, 
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with prior distribution being assigned to the unknown parameters and missing 
observations. Gamma priors are proposed for the precisions 𝜎8:$~𝐺𝑎 𝑎8, 𝑏8 , in the 
multivariate updating scenario, the variance-covariance matrix 
Σ+:;~𝑊+ 𝐷, 𝑑 ,	where 𝑊+ 𝐷, 𝑑 	denotes a P-dimensional Wishart distribution with 
mean D and precision parameter d. 

 
2.3 Compositional Data 
In mathematical terms, compositional data are represented [Eq. (6)] as pertaining 
to a sample space called the simplex 𝑆F 

 
𝑆F = 𝑥 = 𝑥;, 𝑥$, 𝑥F : 𝑥I > 0 𝑖 = 1,2, 𝐷 , 𝑋I = 𝐾F

IP;  (6) 
 
where K is a given positive constant, defined a priori and depending on how the 
parts are measured (Buccianti, 2013). This work has four gaseous pollutants (ppb), 
and the composition to be analysed would be 𝐶𝑂, 𝑁𝑂$, 𝑆𝑂$, 𝑂&, 𝑅 , in this case the 
residual part was not of interest, for this reason the subcompositional approach is 
used (the subcomposition closure for each day is saved to be used in the model 
evaluation). The subcompositional incoherence, was eliminated through log-ratio 
methods (Buccianti et al., 2006). Aitchison (1982) developed the additive–log-ratio 
(alr) and centred-log-ratio (clr) transformations; Egozcue et al. (2003) introduced 
the isometric-log-ratio (ilr) transformation.  

 
The isometric-log ratio (ilr) transformation, was used. In this framework, the 
procedure of the sequential binary partition (SBP) to identify orthonormal 
coordinates was adopted (Egozcue and Pawlowsky-Glahn, 2005). For this study, 
the standard base (function in R-studio) and SBP method [Eq. (6)] were used. 
Considering the four pollutants as sub composition (𝑋𝐶𝑂, 𝑋𝑁𝑂$, X𝑆𝑂$, X𝑂&), in first 
level, the group was divided as: 𝑆𝑂$, 𝑂& and 𝐶𝑂, 𝑁𝑂$. One group is related by 
patterns that showed air pollutant pairs of O3/SO2 appearing at the same hour of 
the day (Meagher et al., 1827; EPA, 2001). 
 

𝑥;∗ =
$∙$
$W$

𝑙𝑛 (Z[\∙Z]\^)
_
^

Z`\^	∙	Z\a
_
^
	 	  

 

𝑥$∗ =
;∙;
;W;

𝑙𝑛 Z[\
Z]\^

   (7) 

 

𝑥;∗ =
;∙;
;W;

𝑙𝑛 	Z`\^
Z\a	

    

 
2.4 Comparison Models 
To evaluating and comparing the models, Nash-Sutcliffe Efficiency Index (NSE) 
and root-mean-square error (RMSE), were used. NSE is a widely used and 
potentially reliable statistic for assessing the goodness of fit of hydrologic models. 
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The NSE scale is from 0 to 1 [Eq. (8)], NSE = 1 means the model is perfect. NSE 
= 0 means that the model is equal to the average of the observed data, and 
negative values mean that the average is a better predictor (McCuen et al., 2006).  
 

𝑁𝑆𝐸 = 1 − defgh:dgIih
^

defgh:defg ^   (8) 

 
Root Mean Square Error (RMSE) is a measure of quantitative performance 
commonly used to evaluate demand forecasting methods. The lower RMSE, it 
means that the model has no error [Eq. (9)]. 
 

𝑅𝑀𝑆𝐸 = (dgIih:defgh)^k
hl_

m
  (9) 

 

3 Results 
The conventional model for nitrogen dioxide presented adequate fitted values; in 
the station 1, it presented the less variability value, and its behavior for a subset of 
recorded measurements (90% confidence interval band) and estimated q for station 
1 is showed in the figure 2. 

 
Figure 2: Conventional temporal model (year: 2011; 90% confidence interval) 

 
Threshold value suggested to indicate a model of sufficient quality is NSE>0.5 (Ritter 
and Muñoz-Carpena, 2013). In general, the conventional model had low NSE values. If 
threshold value is used, the models to evaluating the behavior of CO at station 1 
(NSE=0.43), and SO2 at station 3 (NSE=0.45) have not sufficient quality. In 
comparison with the compositional models, which had NSE values over the threshold 
for all pollutants (NSE≥0.62). 
 
In general, a lower RMSE is better than a higher one. If RMSE is zero, the model has 
perfect fit to the data. The RMSE values for conventional model were high, except to 
SO2 at stations 1 and 2. The compositional model (RMSE ≤	0.009) presented a better 
fitted data for all pollutants. For this work, two SBP were used, therefore similar 
results were obtained, the littles differences found among them are showed in the figure 
3, where the residuals of CO and NO2 had higher values than SO2 and O3. These 
differences were generated in the error treatment over transformations.  
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The two compositional models presented acceptable fitted values, more than 
conventional model. The NSE and RMSE mean values are showed in the table 8. 
 

  
(a) (b) 

  
(c) (d) 

 
Figure 3: Residuals between compositional models for station 1:  

(a) CO, (b) NO2, (c) SO2, and (d) O3 
 

Table 8: NSE and RMSE mean values for each model. 

	 Model 
Compositional model 

(standard base) 
Compositional model 

(base imposed)   

STATION NSE RMSE NSE RMSE NSE RMSE 

1 0,6867009 39,04213233 0,759960075 0,004501534 0,929408425 0,002467467 

2 0,79693 33,47364475 0,924419225 0,002468459 0,952827725 0,001662221 

3 0,681427375 3,118657 0,981204225 0,001408042 0,84546585 0,004259196 

MEAN 0,721686092 25,21147803 0,888527842 0,002792679 0,909234 0,002796295 

 
4 Conclusions 

 
The compositional data concepts applied to temporal models (Dynamic Linear Models) 
presented good results, like as better-quality models and better fitted values. These results are 
due to use the air pollutants concentrations as compositions. Compositional models had less 
variability than conventional models, over all pollutants at three stations.  
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Summary 
 

Regression for compositional data has so far been largely considered only from a parametric 
point of view. Recently, some work adapted non-parametric regression to nonEuclidean 
manifolds. For example, Di Marzio et al. (2013) pursue the circular case, and Di Marzio et al. 
(2014) the spherical one. In a recent article, Di Marzio, Panzera and Venieri (2015) extended 
this to nonparametric situations, introducing local constant and local linear smoothing for 
regression with compositional data. Also, Barientos et al. (2015) propose a Bayesian 
nonparametric procedure for density estimation for data in a d-dimensional simplex. In our 
analysis, we extend the work of Di Marzio, Panzera and Venieri to locally adaptive 
estimators, in particular discrete and continuous wavelets. We rely on the work of Dey and 
Wang (2004), modeling the priors on triangles by use of wavelets constructed specifically for 
triangles. We transfer their methodology of deriving father and motherwavelets using a 
sequential approach to orthogonalization to derive the motherwavelets. Our new estimator is 
derived for three cases: simplicial-real; simplicial-simplicial; and real-simplicial regression and 
is based on Bayesian approach using wavelet type priors. We present a detailed statistical 
elaboration and analysis, simulation results to compare the performance with some existing 
parametric estimators for compositional data regression, and an application to the results to 
two case studies from economics– inference for inequality indices and international trade. 

Key words: compositional data, regression, nonparametric, wavelets, Bayesian, expectation 
propagation 

 
1 Introduction – regression for compositional data 

 

A composition is defined as a vector of D positive components 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝐷𝐷) summing up to a given 
constant 𝜅𝜅 
It is generally – although not universally - agreed that the appropriate sample space for compositional 
data is the standard simplex (also called the "unit simplex"). It is defined as  

𝑆𝑆𝐷𝐷 = �𝑥𝑥 = [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝐷𝐷] �𝑥𝑥𝑖𝑖 > 0, 𝑖𝑖 = 1,2, … ,𝐷𝐷;�𝑥𝑥𝑖𝑖 = 𝜅𝜅
𝐷𝐷

𝑖𝑖=1

� 
For any vector of 𝐷𝐷 real positive components 

𝒛𝒛 = [𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝐷𝐷] ∈ ℝ+
𝐷𝐷 

(𝑧𝑧𝑖𝑖 > 0 for all 𝑖𝑖 = 1,2, … ,  𝐷𝐷), the closure of 𝒛𝒛 is defined as  
𝒞𝒞(𝒛𝒛) = �

𝜅𝜅 ⋅ 𝑧𝑧1
∑ 𝑧𝑧𝑖𝑖𝐷𝐷
𝑖𝑖=1

,
𝜅𝜅 ⋅ 𝑧𝑧2
∑ 𝑧𝑧𝑖𝑖𝐷𝐷
𝑖𝑖=1

, … ,
𝜅𝜅 ⋅ 𝑧𝑧𝐷𝐷
∑ 𝑧𝑧𝑖𝑖𝐷𝐷
𝑖𝑖=1

� 
Perturbation of a composition 𝑥𝑥 ∈ 𝑆𝑆𝐷𝐷 by a composition 𝑦𝑦 ∈ 𝑆𝑆𝐷𝐷 is defined as 

𝑥𝑥⨁𝑦𝑦 = 𝒞𝒞[𝑥𝑥1𝑦𝑦1,𝑥𝑥2𝑦𝑦2, … ,  𝑥𝑥𝐷𝐷𝑦𝑦𝐷𝐷] 
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Power transformation or powering of a composition 𝑥𝑥 ∈ 𝑆𝑆𝐷𝐷 by a constant 𝛼𝛼 ∈ ℝ is defined as  
𝛼𝛼⨀𝑥𝑥 =  𝒞𝒞[𝑥𝑥1𝛼𝛼 ,𝑥𝑥2𝛼𝛼 , … ,  𝑥𝑥𝐷𝐷𝛼𝛼] 

Regression with compositional data has been studied in multiple directions. Aitchison (2003) used classical 
methods on the log-ratio transformed space. Gueorguieva et al. (2008) applied Dirichlet regression. 
Stephens (1982) and Scealy and Welsh (2011) transformed the data on the surface of the unit hyper-sphere, 
using the square root transformation, and thus treated them as directional data. Tsagris (2015b) proposed 
the 𝛼𝛼-regression which relies upon the 𝛼𝛼-transformation (Tsagris et al., 2011). Compositional data 
regression from the Bayesian perspective was suggested by Shimizu et al. (2015). An important issue in 
compositional data is the presence of zeros, which cause problems for the logarithmic transformation. When 
zero values exist in data, Dirichlet models and the log-ratio transformation suggested by Aitchison (1982, 
2003) and Egozcue et al. (2003) will not work unless a zero value imputation is applied first. Some 
important works on regression with compositional data including zeros, following imputation methods: 
Martin et al. (2003; 2012; 2018); Fry et al. (1996; 2000). As for the classification setting, Tsagris (2014) 
proposed the use of a power transformation applicable to cases with zero values in the data. Most papers 
focus on compositional data being in the response variable side. The case of compositional data in the 
predictor variables side was treated first by Hron et al. (2012) who applied the isometric log-ratio 
transformation to the compositional data and then applied a standard linear regression model. Di Marzio, 
Panzera and Venieri (2015) extended this to nonparametric situations, introducing local constant and local 
linear smoothing for regression with compositional data. 
 
The problem of regression when the response is compositional is stated as follows. A compositional sample 
in 𝑆𝑆𝐷𝐷 is available and it is denoted by 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛. The 𝑖𝑖-th data-point 𝑥𝑥𝑖𝑖 is associated with one or more 
external variables or covariates grouped in the vector 𝒕𝒕𝑖𝑖 = [𝑡𝑡𝑖𝑖0, 𝑡𝑡𝑖𝑖1, … , 𝑡𝑡𝑖𝑖𝑖𝑖], where 𝑡𝑡𝑖𝑖0 = 1. The goal is to 
estimate the coefficients of a curve or surface in 𝑆𝑆𝐷𝐷 whose equation is 

𝒙𝒙�(𝒕𝒕) = 𝛽𝛽0⨁(𝑡𝑡1⨀𝛽𝛽1)⨁ ⋅⋅⋅ ⨁(𝑡𝑡𝑟𝑟⨀𝛽𝛽𝑟𝑟) = ⨁𝑗𝑗=0
𝑟𝑟 �𝑡𝑡𝑗𝑗⨀𝛽𝛽𝑗𝑗� 

Deviation of this model from the data is defined as 𝒙𝒙�(𝒕𝒕𝒊𝒊) ⊖𝑥𝑥𝑖𝑖 and its size by the Aitchison norm 
‖𝒙𝒙�(𝒕𝒕𝒊𝒊) ⊖𝑥𝑥𝑖𝑖‖𝑎𝑎2 = 𝑑𝑑𝑎𝑎2(𝒙𝒙�(𝒕𝒕𝒊𝒊),𝑥𝑥𝑖𝑖). The target function (sum of squared errors, SSE) is  

𝑆𝑆𝑆𝑆𝑆𝑆 = �‖𝒙𝒙�(𝒕𝒕𝒊𝒊) ⊖𝑥𝑥𝑖𝑖‖𝑎𝑎2
𝑛𝑛

𝑖𝑖=1

 

to be minimized as a function of the compositional coefficients 𝛽𝛽𝑗𝑗 which are implicit in 𝒙𝒙�(𝒕𝒕𝒊𝒊). The number 
of coefficients to be estimated in this linear model is (𝑟𝑟 + 1) ⋅ (𝐷𝐷 − 1). 
 
Shimizu, Louzada, Suzuki, Ehlers (2015) derive a Bayesian analysis for compositional regression applying 
additive log-ratio (ALR) transformation and assuming uncorrelated and correlated errors. 
As priors they use: 

𝛽𝛽0𝑗𝑗~𝑁𝑁(𝑎𝑎0𝑗𝑗, 𝑏𝑏0𝑗𝑗
2) 

𝛽𝛽𝑙𝑙𝑙𝑙~𝑁𝑁(𝑎𝑎𝑙𝑙𝑙𝑙, 𝑏𝑏𝑙𝑙𝑙𝑙
2) 

𝜎𝜎𝑗𝑗2~𝐼𝐼𝐼𝐼(𝑐𝑐𝑗𝑗,𝑑𝑑𝑗𝑗) 
Their joint posterior is: 

                            J.J. Egozcue, J. Graffelman, M.I. Ortego (Eds.)
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𝜋𝜋�𝛽𝛽0𝑗𝑗,𝛽𝛽𝑙𝑙𝑙𝑙,𝜎𝜎𝑗𝑗2�𝑦𝑦�

∝� exp �−
1

2𝑏𝑏0𝑗𝑗
2 �𝛽𝛽0𝑗𝑗 − 𝛼𝛼0𝑗𝑗�

2�
𝑔𝑔

𝑗𝑗=1

× ��𝑒𝑒𝑒𝑒𝑒𝑒
𝑝𝑝

𝑙𝑙=1

�−
1

2𝑏𝑏𝑙𝑙𝑙𝑙
2 �𝛽𝛽𝑙𝑙𝑙𝑙 − 𝛼𝛼𝑙𝑙𝑙𝑙�

2� ×
𝑔𝑔

𝑗𝑗=1

��𝜎𝜎𝑗𝑗2�
−�𝑐𝑐𝑗𝑗+1� exp�−𝑑𝑑𝑗𝑗 𝜎𝜎𝑗𝑗2⁄ �

𝑔𝑔

𝑗𝑗=1

× �(𝜎𝜎𝑗𝑗2)−
𝑛𝑛
2exp(−

1
2𝜎𝜎𝑗𝑗2

�𝜀𝜀𝑖𝑖𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

)
𝑔𝑔

𝑗𝑗=1

 

Di Marzio, Panzera and Venieri (2015) derive a nonparametric approach to compositional data regression 
for local constant and local linear estimators. 
Let 𝒦𝒦 be a continuous function with maximum at 0 such that 𝒦𝒦(−𝑢𝑢) =  𝒦𝒦(𝑢𝑢) ≥ 0, 𝑢𝑢 ∈ ℝ, and 
∫ 𝒦𝒦(𝑥𝑥)𝑑𝑑𝑑𝑑ℝ < +∞. A D-variate simplicial kernel can be defined, for each 𝒖𝒖 ∈ 𝑺𝑺𝐷𝐷, as  

𝐾𝐾(𝒖𝒖) ≔
𝒦𝒦(‖𝒖𝒖‖𝑎𝑎)

∫ 𝒦𝒦(‖𝒖𝒖‖𝑎𝑎)𝑑𝑑𝜆𝜆𝑎𝑎(𝒖𝒖)𝑺𝑺𝐷𝐷

 

where 𝜆𝜆𝑎𝑎 stands for the Aitchison measure on 𝑺𝑺𝐷𝐷. 
 
For a general nonparametric model 

𝑌𝑌𝑖𝑖 = 𝑚𝑚(𝑿𝑿𝑖𝑖) + 𝜖𝜖𝑖𝑖 
local constant estimator for 𝑚𝑚(𝐱𝐱) is derived as solution to: 

argmin
𝑏𝑏0

�{𝑌𝑌𝑖𝑖 − 𝑏𝑏0}2𝐾𝐾𝐻𝐻(𝑿𝑿𝑖𝑖 ⊖
𝑛𝑛

𝑖𝑖=1

𝒙𝒙) 

This leads to: 𝑚𝑚�(𝒙𝒙;𝑯𝑯) = ∑ 𝐾𝐾𝐻𝐻(𝑿𝑿𝑖𝑖⊖𝒙𝒙)𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝐾𝐾𝐻𝐻(𝑿𝑿𝑖𝑖⊖𝒙𝒙)𝑛𝑛
𝑖𝑖=1

 

 
For the local linear estimator, assuming C-differentiability of 𝑚𝑚 at 𝑥𝑥, 𝑚𝑚(𝑿𝑿𝑖𝑖) can be expanded according to 
the following first-order Taylor series, 

𝑚𝑚(𝑿𝑿𝑖𝑖) ≈ 𝑚𝑚(𝒙𝒙) + 𝔇𝔇𝑚𝑚(𝒙𝒙)ln(𝑿𝑿𝑖𝑖 ⊖ 𝒙𝒙) 
and the estimator for 𝑚𝑚(𝒙𝒙) is the solution to 

argmin
{𝑏𝑏0,𝑏𝑏1}

�{𝑌𝑌𝑖𝑖 − 𝑏𝑏0 − 𝑏𝑏1ln(𝑿𝑿𝑖𝑖 ⊖ 𝒙𝒙)}2𝐾𝐾(𝑿𝑿𝑖𝑖 ⊖
𝑛𝑛

𝑖𝑖=1

𝒙𝒙) 

 with 𝐾𝐾 the simplicial kernel. 
The solution can be expressed as  

𝑚𝑚�(𝑥𝑥) = 𝑖𝑖𝑇𝑇(𝕏𝕏𝑇𝑇𝕂𝕂𝕂𝕂)−1𝕏𝕏𝑇𝑇𝕂𝕂𝕂𝕂 
 
2 Wavelets for triangles 

 
Our approach to the derivation of wavelets is based on a previous approach of Dey and Wang (2015) – for 
the presentation in Terrassa we will present the results for the generalization to any simplex space. 
 
Let 𝑇𝑇 be a triangle. Consider its succesive refinement {𝑇𝑇𝑗𝑗,𝑘𝑘; 𝑗𝑗 ≥ 1,𝑘𝑘 ∈ ℐ𝑗𝑗}, where ℐ𝑗𝑗 = {1, … , 4𝑗𝑗}, and each 
triangle in a finer scale is constructed from one in a coarser level by midpoint subdivision, denoted the 

                            J.J. Egozcue, J. Graffelman, M.I. Ortego (Eds.)
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resulting three subtriangles by 
𝑇𝑇𝑗𝑗,𝑘𝑘 = 𝑇𝑇𝑗𝑗+1,𝑘𝑘0 ∪ 𝑇𝑇𝑗𝑗+1,𝑘𝑘1 ∪ 𝑇𝑇𝑗𝑗+1,𝑘𝑘2 ∪ 𝑇𝑇𝑗𝑗+1,𝑘𝑘3 

For 𝑑𝑑 > 0, let 
𝑃𝑃𝑑𝑑 = �𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗; 𝑖𝑖 + 𝑗𝑗 ≤ 𝑑𝑑�,   

𝑃𝑃𝑑𝑑(𝑇𝑇) = �𝑓𝑓; 𝑓𝑓|𝑇𝑇 ∈ 𝑃𝑃𝑑𝑑 ,𝑓𝑓|𝑅𝑅2\𝑇𝑇 = 0� 
For 𝑇𝑇 = 𝑇𝑇0 ∪ 𝑇𝑇1 ∪ 𝑇𝑇2 ∪ 𝑇𝑇3 define 𝑉𝑉 = 𝑃𝑃𝑑𝑑(𝑇𝑇0)⨁𝑃𝑃𝑑𝑑(𝑇𝑇1)⨁𝑃𝑃𝑑𝑑(𝑇𝑇2)⨁𝑃𝑃𝑑𝑑(𝑇𝑇3) and 𝑊𝑊 = 𝑉𝑉 ⊖ 𝑃𝑃𝑑𝑑(𝑇𝑇) 
 

We have to construct an orthonormal basis for 𝐿𝐿2(𝑇𝑇), 
{𝜒𝜒𝑇𝑇0 ,ℎ𝑒𝑒𝑗𝑗,𝑘𝑘

𝑖𝑖 ; 𝑖𝑖 = 1,2,3, 𝑗𝑗 ≥ 0,𝑘𝑘 ∈ ℐ𝑗𝑗} 
and any 𝑓𝑓 ∈ 𝐿𝐿2(𝑇𝑇) has a decomposition 

𝑓𝑓 = 𝛼𝛼0𝜒𝜒𝑇𝑇0 + ��� 𝛽𝛽𝑗𝑗,𝑘𝑘
𝑖𝑖 ℎ𝑒𝑒𝑗𝑗,𝑘𝑘

𝑖𝑖

𝑘𝑘∈ℐ𝑗𝑗

∞

𝑗𝑗=0

3

𝑖𝑖=1

 
 
Scaling functions 𝜒𝜒𝑇𝑇0

𝑙𝑙  are orthogonal polynomials supported by 𝑇𝑇0, such that 
�𝜒𝜒𝑇𝑇0

𝑙𝑙 ,𝜒𝜒𝑇𝑇0
𝑙𝑙′ � = 𝛿𝛿𝑙𝑙𝑙𝑙′ 

Constructing the power basis in barycentric coordinates on triangle 𝑇𝑇𝐵𝐵 and applying Gram-Schmidt 
yields a set of Legendre polynomials {𝜋𝜋𝑙𝑙; 𝑙𝑙 ≥ 0} on 𝑇𝑇𝐵𝐵. 
Let 𝜒𝜒𝑇𝑇𝐵𝐵

𝑙𝑙 = 𝜋𝜋𝑙𝑙1𝑇𝑇𝐵𝐵 . The resulting sequence 𝑆𝑆 = {𝜒𝜒𝑇𝑇𝐵𝐵
𝑙𝑙 } will be a triangular sequence of orthogonal 

polynomials. 
Mutilation gives the scaling functions: 

𝜒𝜒𝑇𝑇𝑗𝑗,𝑘𝑘
𝑙𝑙 = �

1
2|𝑇𝑇𝑗𝑗,𝑘𝑘|𝜒𝜒𝑇𝑇𝐵𝐵

𝑙𝑙  

 
Orthonormal basis for 

𝑊𝑊 = {𝑃𝑃𝑑𝑑(𝑇𝑇0)⨁𝑃𝑃𝑑𝑑(𝑇𝑇1)⨁𝑃𝑃𝑑𝑑(𝑇𝑇2)⨁𝑃𝑃𝑑𝑑(𝑇𝑇3)}⊖𝑃𝑃𝑑𝑑(𝑇𝑇) 
Let {𝜋𝜋𝑇𝑇𝑙𝑙 } be the Legendre polynomials mutilated to the triangle 𝑇𝑇. 
Then: 

ℎ𝑖𝑖𝑙𝑙(𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3) = �
𝜋𝜋𝑇𝑇𝑖𝑖
𝑙𝑙 �(𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3)𝑀𝑀𝑇𝑇→𝑇𝑇′�                  𝑜𝑜𝑜𝑜 𝑇𝑇𝑖𝑖

−𝜋𝜋𝑇𝑇𝑖𝑖
𝑙𝑙 �(𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3)𝑀𝑀𝑇𝑇→𝑇𝑇′�         𝑜𝑜𝑜𝑜  𝑇𝑇\𝑇𝑇𝑖𝑖      

0                                          𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
 

Steps to the orthonormal basis: 
1) Orthogonalize {ℎ𝑖𝑖𝑙𝑙} against 𝑃𝑃𝑑𝑑(𝑇𝑇) and replace {ℎ𝑖𝑖𝑙𝑙} by ℎ𝑖𝑖𝑙𝑙 − ∑ �ℎ𝑖𝑖𝑙𝑙 ,𝜒𝜒𝑇𝑇𝑙𝑙 �𝑀𝑀−1

𝑙𝑙=0 𝜒𝜒𝑇𝑇𝑙𝑙  
2) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��ℎ𝑖𝑖𝑙𝑙�� = 𝑃𝑃𝑑𝑑(𝑇𝑇)⊥ ∩ ⨁𝑗𝑗=0

𝑟𝑟 𝑃𝑃𝑑𝑑(𝑇𝑇𝑖𝑖) 
3) Orthogonalizing 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��ℎ𝑖𝑖𝑙𝑙�� by Gram-Schmidt, we get an orthonormal basis for 𝑊𝑊 

Finally, define the motherwavelets as 

ℎ𝑒𝑒𝑗𝑗,𝑘𝑘
𝑖𝑖 = �

1
2|𝑇𝑇𝑗𝑗,𝑘𝑘|ℎ𝑖𝑖

𝑙𝑙 

 
3 Wavelet regression for compositional data 

 
We use the derived wavelet transform to perform the regressions. This allos several possibilities:  

- parametric (MNL, Dirichlet and other regular types of CoDa regressions) 
- nonparametric (local constant or local linear – Di Marzio et al., 2015) 
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- Bayesian (following basic derivations in Shimizu et al., 2015; and van der Merwe, 2018) 
Following Dey and Wang (2015) we follow a Bayesian approach using wavelet priors. 
We use Multivariate Laplace prior, based on symmetric multivariate Laplace distribution, which has a 
characteristic function: 

𝜑𝜑(𝑡𝑡;𝜇𝜇, Σ) =
exp(𝑖𝑖𝜇𝜇′𝑡𝑡)

1 + 1
2 𝑡𝑡′Σt

 

and probability density function:𝑓𝑓𝑥𝑥(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) = 2

(2𝜋𝜋)
𝑘𝑘
2|Σ|0.5

�𝑥𝑥
′Σ−1𝑥𝑥
2

�
𝑣𝑣
2 𝐾𝐾𝑣𝑣(√2𝑥𝑥′Σ−1𝑥𝑥), where: 𝑣𝑣 = (2 − 𝑘𝑘)/2; 

𝐾𝐾𝑣𝑣: modified Bessel function of the second kind. 
For the case of simplicial-real regression we use the following hyperparameter priors: 

𝛽𝛽0𝑗𝑗~𝑁𝑁(𝑎𝑎0𝑗𝑗 ,𝑏𝑏0𝑗𝑗
2) 

𝛃𝛃𝑗𝑗~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐚𝐚𝑗𝑗,𝐛𝐛𝑗𝑗
2) 

𝜎𝜎𝑗𝑗2~𝐼𝐼𝐼𝐼(𝑐𝑐𝑗𝑗,𝑑𝑑𝑗𝑗) 
Another issue when computing the posterior are intractable marginals (van Gerven et al., 2009). As 
solution we try a deterministic approximate inference method, namely expectation propagation (EP), 
see Minka (2004). 
 
The posterior distribution on z given the data y can be written in the factorized form 

𝑝𝑝(𝑧𝑧) ∝ 𝑡𝑡0(𝑧𝑧)�𝑡𝑡𝑖𝑖(𝑧𝑧)
𝑖𝑖

 

where 𝑡𝑡0(𝑧𝑧) ∝ 𝑁𝑁�𝑦𝑦�𝑋𝑋𝑋𝑋,  𝜎𝜎2𝐼𝐼�𝑁𝑁(𝑣𝑣|0, 𝐽𝐽−1 𝜆𝜆2⁄ )𝑁𝑁(𝑢𝑢|0, 𝐽𝐽−1 𝜆𝜆2⁄ ), 𝑡𝑡𝑖𝑖(𝑧𝑧) = 𝑡𝑡𝑖𝑖(𝑠𝑠𝑖𝑖,𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) = 𝑁𝑁(𝑠𝑠𝑖𝑖|0,𝑢𝑢𝑖𝑖2 + 𝑣𝑣𝑖𝑖2). 

Term 𝑡𝑡0(𝑧𝑧) is a Gaussian function, i.e. can be written as exp �𝑧𝑧𝑇𝑇ℎ0 −
𝑧𝑧𝑇𝑇𝐾𝐾0𝑧𝑧
2
�. 

Using EP we approximate 𝑝𝑝(𝑧𝑧) with 𝑞𝑞(𝑧𝑧) ∝  𝑡𝑡0(𝑧𝑧)∏ 𝑡𝑡𝚤𝚤�(𝑧𝑧)𝑖𝑖  where 𝑡𝑡𝚤𝚤�(𝑧𝑧) are Gaussian functions as well. 
 
We provide results of some initial simulations, with coverage probabilities and standard errors of 
parametric and nonparametric methods. Our simulation results are based on 10000 simulated data sets 
and corresponding 1000 resamples. 
 

 
 
 
4 Conclusion 

There are multiple possible ways to extend our work, listed shortly below. 

Data PAR LC LL WAV-ML WAV-MG Data PAR LC LL WAV-ML WAV-MG Data PAR LC LL WAV-ML WAV-MG
Log(normal) 0.8703 0.8730 0.8785 0.9196 0.8398 Log(normal) 0.8790 0.9166 0.8609 0.9472 0.8482 Log(normal) 0.9054 0.9075 0.8437 0.8998 0.8397

100 0.1765 0.1808 0.1783 0.1808 0.1746 100 0.1747 0.1718 0.1801 0.1736 0.1711 100 0.1660 0.1683 0.1765 0.1805 0.1677
0.9066 0.8818 0.8964 0.9289 0.8840 0.9157 0.8906 0.9412 0.9382 0.8840 0.9431 0.8550 0.9600 0.9570 0.8663

200 0.1234 0.1271 0.1281 0.1326 0.1228 200 0.1172 0.1335 0.1294 0.1273 0.1203 200 0.1196 0.1348 0.1281 0.1311 0.1203
0.9315 0.9204 0.9352 0.9468 0.9150 0.8849 0.9480 0.9820 0.9941 0.9333 0.8849 0.9196 0.9816 0.9643 0.8866

500 0.0979 0.0876 0.0909 0.1023 0.0977 500 0.0989 0.0893 0.0945 0.0982 0.0938 500 0.0959 0.0902 0.0955 0.0933 0.0900
0.9438 0.9379 0.9407 0.9538 0.9300 0.9344 0.8910 0.9877 0.9920 0.9486 0.8876 0.9266 0.9779 0.9523 0.9391

1000 0.0823 0.0850 0.0874 0.0930 0.0814 1000 0.0782 0.0893 0.0848 0.0902 0.0806 1000 0.0790 0.0857 0.0882 0.0938 0.0774
Dirichlet 0.8687 0.8376 0.8797 0.9029 0.8550 Dirichlet 0.9121 0.8711 0.9061 0.9029 0.8636 Dirichlet 0.9186 0.8363 0.9424 0.9300 0.8376

100 0.1708 0.1746 0.1725 0.1748 0.1692 100 0.1725 0.1676 0.1639 0.1783 0.1709 100 0.1691 0.1592 0.1704 0.1694 0.1675
0.9049 0.8817 0.8977 0.9213 0.9000 0.9001 0.8905 0.9067 0.9489 0.9270 0.8982 0.8638 0.8613 0.9679 0.8899

200 0.1212 0.1247 0.1254 0.1290 0.1198 200 0.1176 0.1185 0.1204 0.1251 0.1234 200 0.1211 0.1137 0.1264 0.1289 0.1259
0.9396 0.9200 0.9321 0.9482 0.9240 0.8926 0.9384 0.9321 0.9198 0.9240 0.9105 0.9853 0.9694 0.9290 0.9425

500 0.0979 0.0962 0.1022 0.0887 0.0922 500 0.0999 0.0933 0.1012 0.0843 0.0940 500 0.0999 0.0943 0.1032 0.0809 0.0931
0.9465 0.9394 0.9446 0.9551 0.9270 0.9138 0.9119 0.9635 0.9455 0.9734 0.9039 0.9074 0.9250 0.8983 0.9928

1000 0.0823 0.0859 0.0881 0.0814 0.0838 1000 0.0807 0.0902 0.0925 0.0838 0.0838 1000 0.0847 0.0866 0.0916 0.0796 0.0855
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• Extension to other nonparametric methods (e.g. sieves, splines, extensions of local polynomial 
and locally adaptive estimators) 

• Different types of wavelet constructions 
• Different types of wavelet (and other) priors and other types of „second-stage“ modelling 
• Generalization to tetrahedrons and arbitrary dimensions 
• Semiparametric considerations 
• Improved simulation and real application evidence (e.g. geological datasets) 

In general, nonparametric and semiparametric models promise an interesting area for research in 
compositional and complex data analysis in future, both in terms of regression approaches as well as 
more general derivations of statistical tests. 
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Summary

In a number of recent articles Riani, Cerioli, Atkinson and others advocate the technique of
monitoring robust estimates computed over a range of key parameter values (Cerioli et al., 2018;
Riani et al., 2019). Through this approach the diagnostic tools of choice can be tuned in such a
way that highly robust estimators which are as efficient as possible are obtained. This approach
is applicable to different robust multivariate estimates like S- and MM-estimates, MVE and
MCD as well as to the Forward Search in which monitoring is part of the robust method.

Key tool for detection of multivariate outliers and for monitoring of robust estimates are the
scaled Mahalanobis distances and statistics related to these distances. However, the results
obtained with this tool in case of compositional data might be unrealistic since compositional
data contain relative rather than absolute information and need to be transformed to the usual
Euclidean geometry before the standard statistical tools can be applied. Several specific trans-
formations have been introduced, but Filzmoser and Hron (2008) show that the transformation
with the best properties with respect to robust estimates and keeping invariant the Mahalanobis
distances is the ilr (isometric log-ratio) transformation.

To illustrate the problem of monitoring compositional data and to demonstrate the usefulness
of monitoring in this case we start with a simple example and then analyze a real life data set
presenting the technological structure of manufactured exports which, as an indicator of their
quality, is an important criterion for understanding the relative position of countries measured
by their industrial competitiveness. The analysis is conducted with the R package fsdaR, which
makes the analytical and graphical tools provided in the MATLAB FSDA library available for
R users.

Key words: compositional data, forward search, robust estimates, outliers.

1 Introduction

In many cases the data sets are characterized by multivariate observations (vectors) containing relative
contributions of parts to a whole. Examples are geochemical composition of rocks, household budget pat-
terns, time budget, ceramic compositions. A plethora of further examples can be found in Aitchison (1986,
2005) and the hundreds of papers published on this topic. Here I want to point out one of the examples
which were the motivation for this contribution. Since 2002 the United Nations Industrial Development
Organization (UNIDO) publishes the Competitive Industrial Performance (CIP) Index and accompanying
report (Todorov and Pedersen, 2017), see http://stat.unido.org/cip. Through this index monitoring
the industrial competitiveness of countries will to a great extent reflect how well they manage to adapt
to these new challenges and embrace the opportunities. The CIP Index is an essential tool for countries
to view and compare their industrial competitiveness with that of others. The CIP Index is composed of
eight sub-indicators defined within the framework of three key dimensions that capture different aspects of
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Figure 1: Example of a Competitive Industrial Performance (CIP) Index country profile. The bar chart in
the top right corner represents the export structure.

a country’s industrial competitive performance. One of these sub-indicators is the technological structure
of manufactured exports representing their “quality”. There exists an well established decomposition anal-
ysis by technology level of the export structure (Lall, 2000) presenting the manufactured exports in four
categories: Resource-based, Low technology, Medium technology and High technology (about the source of
data and how these categories are defined see Todorov and Pedersen, 2017). Figure 1 is an excerpt from
one country profile based on CIP edition 2018. The bar chart in the top right corner represents the export
structure of the manufacturing exports of the country. The percentages shown sum up to 100%. However,
the country does not export only manufacturing goods, also agricultural, mineral, energy goods or services
can compose the total exports. This is shown by the four circles above the corresponding bars — the per-
centages shown in the circles are the shares of the respective manufacturing category in the total exports.
In Section 4.2 is presented the analysis of the export structure as compositional data.

The rest of the paper is structured as follows. Section 2 discusses the need of robust methods and presents
briefly the forward search method, the monitoring of different methods and the available software for doing
this. In Section 3 the specifics of robust methods in case of compositional data are considered and are
illustrated with a simple example. Section 4 presents the monitoring of compositional data on two examples
and Section 5 concludes.

2 Forward search and monitoring of robust estimates

In statistical modeling and estimation assumptions like normal distribution or independence are used, how-
ever, the practice, is usually different: practical data sets often do not follow these strict assumptions. There
might be several different processes inherent in the data generating process, or other effects that cannot
be controlled. It is then often unclear how reliable the results are, if the model assumptions are violated.
The multivariate aspect of the data used makes the task of outlier identification particularly challenging.
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The outliers can be completely hidden in one or two dimensional views of the data. This underlines that
univariate outlier detection methods are useless, although they are often favored by researchers because of
their simplicity.

Outlier detection and robust estimation are closely related (see Hampel et al., 1986; Hubert et al., 2008)
and the following two problems are essentially equivalent:

• Robust estimation: develop statistical techniques which are inherently insensitive to the presence of
outliers and find an estimate which is not influenced by these outliers, even if their amount is large
(many good robust techniques can tolerate up to 50% contamination). The ability of the estimators
to cope with large amount of outliers is measured by their breakdown point (bdp) which can reach
the maximum of 50%. Estimators which can cope with this maximum amount of contamination in
the sample are known as highbreakdown point estimators (HBDP estimatos) and examples of popular
HBDP estimatos are Minimum Covariance Determinant (MCD) estimator (Hubert et al., 2017), S-and
MM-estimators (Maronna et al., 2006) as well as the Forward Search estimator (Cerioli et al., 2014).

• Outlier detection: find all outliers, which could distort the estimate. A classical approach to detecting
multivariate outliers would be to compute the Mahalanobis distance

MD(xi) =
√

(xi − x̄)tS−1(xi − x̄) (1)

with x̄ and S are the sample mean and covariance matrix of the data set X for each xi. Outliers may
be identified by large values of MD(xi). Unfortunately this approach suffers from two problems: (a)
Masking: multiple outliers can distort the classical estimates of mean x̄ and covariance S in such a
way (attracting x̄ and inflating S) that they do not get necessarily large values of MD(xi) and (b)
Swamping: multiple outliers can distort the classical estimates of mean x̄ and covariance S in such a
way that observations which are consistent with the majority of the data get large values of MD(xi).
To cope with these undesirable effects it is necessary to base the diagnostic tools on high breakdown
point methods and replace the classical Mahalanobis distances by their robust alternative

RD(xi) =
√

(xi −T)tC−1(xi −T) (2)

where (T,C) is a HBDP robust estimator of multivariate location and scatter.

A solution of the first problem allows us to identify the outliers using their robust residuals or distances while
on the other hand, if we know the outliers we could remove or downweight them and then use the classical
estimation methods. In many research areas the first approach is the preferred one but often the second one
is more appropriate. The focus in the present work is on using robust methods to identify the outliers which
can be treated in the traditional way afterwards. In our study we assume that we have a single multivariate
population possibly containing outliers. The straightforward approach is to use a 50% estimator, like MCD
or S-estimator, however, in case of clean data the results will be with very law efficiency. A first remedy for
this is to use reweighting (for MCD) or MM-estimates instead of S-estimates. An alternative approach is
the use of adaptive methods based on monitoring a series of fits to the data that indicate good choices of
efficiency or bdp (Cerioli et al., 2018; Riani et al., 2019).

The forward search for multivariate analysis is an algorithm for avoiding outliers by recursively constructing
subsets of “good” observations, thus providing an automatic form of monitoring. We start by choosing
(by some robust criterion) a small subset of observations and then repeatedly extend it in such a way that
outliers and other influential observations enter only toward the end of the search, arriving to the final fit
that corresponds to the classical statistical estimates. During this process we monitor a suitable diagnostic
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measure and the inclusion of outliers is typically signalled by a sharp increase in this measure. Formal
description of the forward search method can be found in many papers, see for example Riani et al. (2019).
These underlying idea can be extended to many other techniques like S- and MM-estimates. The subsequent
estimations are presented in monitoring plots of all n squared Mahalanobis distances which can be combined
with brushing to relate Mahalanobis distances to data points exhibited in scatterplot matrices. In this way
a straight relationship between statistical results and individual observations is established.

From a practical standpoint in data analysis the availability of such tools and their software implemen-
tation is essential ro make their applicability to an wide range of data analysis problems. All the methods
discussed in a number of papers on forward search and monitoring are implemented in the Flexible Statistics
and Data Analysis (FSDA) toolbox (Riani et al., 2012), freely available (for users with a MATLAB license
at hand) from http://rosa.unipr.it. It features robust and efficient statistical analysis of data sets, not
only in multivariate context but also in regression and cluster analysis problems. A downside of the current
software implementing monitoring (FSDA) is that it is based on the commercial software MATLAB, which
apart from its license costs, is not so appealing to the majority of the statistical community, where R is more
widespread. The heart of the monitoring approach is the ability to present the result in a way revealing
as much information as possible. While R has advanced graphical capabilities, these graphics are static,
do not allow much interactivity and here is the main advantage of using MATLAB for implementing the
monitoring functions. Developing the computational algorithms for R would not be a problem and an R
package (Atkinson et al., 2006) implementing forward search was available on CRAN in the past. However,
the advantages provided by presenting the results visually in interlinked graphs allowing interaction with
the user will be missing. Therefore, a possible solution for making the FSDA toolbox available to the R
community is not to port the toolbox, but to implement an R interface to a MATLAB engine running in
the background. Such a technical solution is made possible by the MATLAB Runtime which allows to run
compiled MATLAB applications on computers that do not have MATLAB installed. An R package interfac-
ing to the FSDA toolbox, fsdaR is available at CRAN (Todorov and Sordini, 2019). The main challenge
in developing this package were the technical issues (creating a Java interface between an R package and a
MATLAB toolbox running on the MATLAB Runtime). Additional technical challenge was how to extend a
CRAN package with binaries, in this case the compiled Java code, but even more serious challenge is the
design and implementation of the interface (the function calls) in a way acceptable for an R user. Formula
interface, optional/default arguments to the functions, object orientation, documentation are just several
topics presenting differences between MATLAB and R. For example an R user will prefer to call a method
plot() on an object returned by a function, instead of passing optional arguments (..., ’plots’, 1,

...) to the function. Similarly, an R user will not be happy to follow strict positioning of the (mandatory)
arguments as this is done in MATLAB and will prefer to use the formula interface where appropriate. Colors
and color names, line types and other graphical parameters is also an area requiring a lot of effort to make
the two languages compatible. Some of these problems still are not solved but an R package implementing
the monitoring functionality combined with advanced dynamic graphics is already available at CRAN.

Almost all robust estimation methods are computationally intensive and the computational effort increases
with increasing number of observations n and number of variables p towards the limits of feasibility. Since
the key idea presented here is to monitor quantities of interest, such as parameter estimates, measures of
discrepancy and test statistics, as the model is fitted to data subsets of increasing size, it is inevitable
that the computational effort grows exponentially and it is obvious that none of these procedures would
be feasible, if special care was not taken in their implementation in FSDA. Riani et al. (2015) describe the
efficient routines for fast updating of the model parameter estimates in forward search and show that the
new algorithms enable a reduction of the computation time by more than 80% and allow the running time
to increase almost linearly with the sample size. In Riani et al. (2014) are given computational advances,
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suggesting efficient procedures for calculation of consistency factors of robust S-estimators of location and
scale. Todorov (2018) presents a brief study of the computational efficiency of the different monitoring
methods and states that it is still an open issue and further work is necessary to make the monitoring of
S-estimation for different consecutive values of bdp efficient for large data sets.

3 Compositional data and robust methods

Compositional data are multivariate data with strictly positive values that sum up to a constant value (1
or 100 per cent or any other constant), see Aitchison (1986). If not all components of the composition have
been analyzed, this constant sum property is not directly visible in the data, but the relation between the
components is still constrained. The sample space of compositional data is thus the simplex

SD = {x = (x1, . . . , xD)T , xi > 0,
D∑
i=1

xi = 1} (3)

where the simplex sample space is a D−1 dimensional subset of RD. Standard statistical methods can lead
to doubtful results if they are directly applied to original closed data.

Key tool for detection of multivariate outliers and for monitoring in the approach described in the pre-
vious Section are the scaled Mahalanobis distances (see Equations 1 and 2) and statistics related to these
distances. However, the results obtained with this tool in case of compositional data might be unrealistic.
This closeness constraint makes it necessary to first transform the data from the so called simplex sample
space to the usual real space. Then standard statistical methods can be applied to the transformed data
and the results are back transformed to the original space. One of the most convenient transformation is
the family of logratio transformations but it is not clear how the different transformations will affect the
Mahalanobis distances used for ranking the data points according to their outlyingness. Filzmoser and
Hron (2008) considered three well known transformations and showed how these transformations, namely
the additive, the centered and the isometric logratio transformations, will affect the Mahalanobis distances
computed by classical and robust methods. They show that in case of classical location and covariance es-
timators all three transformations lead to the same Mahalnobis distances, however, only alr and ilr extend
this property to any affine equivariant estimator.

To illustrate the problem of applying robust methods to compositional data we start with a simple example
based on the data set Vegetables. The source of data is https://ndb.nal.usda.gov/ndb/nutrients/

index and the data set is also available in the R package easyCODA (Greenacre, 2019). The data set
contains the compositions of protein, carbohydrate and fat as a percentage of their respective totals for
ten different vegetables and is shown in Table 1. As pointed out by Filzmoser and Hron (2008) for other
compositional data sets, we cannot apply standard outlier detection based on Mahalanobis distances, neither
classical nor robust, directly to the data set, because, since it is closed, its covariance matrix is singular.
Applying the outlier detection methods from the R package rrcov (Todorov and Filzmoser, 2009) as well
as the methods from the MATLAB toolbox FSDA (Riani et al., 2012) result in an error. After applying
ilr transformation the data will be open and the bivariate structure is revealed as shown in the distance-
distance plot in Figure 2 (robust Mahalanobis distances computed by MCD are plotted against classical
Mahalanobis distances). Four observations, namely mushrooms, carrots, corn and beans, are identified as
potential outliers (using the 0.975 quantil of the χ2 distribution as a cut off). The classical Mahalanobis
distance, computed with the sample mean vector and covariance matrix does not identify any outlier.
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Protein Carbohydrate Fat

Asparagus 35.66 61.07 3.27
Beans(soya) 42.05 35.88 22.07

Broccoli 48.69 43.78 7.53
Carrots 8.65 89.12 2.23

Corn 11.32 85.70 2.98
Mushrooms 16.78 77.25 5.97

Onions 10.44 88.61 0.95
Peas 26.74 71.29 1.97

Potatoes(boiled) 7.84 91.70 0.46
Spinach 41.57 52.76 5.67

Table 1: Vegetables data set from the R package easyCODA: composition of three nutrients in ten
different vegetables.

Since the (closed) data in this example are three-dimensional they can conveniently be presented in a ternary
diagram (right hand panel of Figure 2). To better visualize the multivariate data structure we superimpose
0.975 tolerance ellipses of the Mahalanobis distances computed by the sample mean and covariance (blue)
and by MCD (red) respectively. The ellipses are back-transformed to the original space using the inverse
ilr transformation as proposed in Filzmoser and Hron (2008). The ellipse corresponding to the classical
estimates (blue) covers all data points, while the robust one (red), based on MCD excludes the four points
identified as potential outliers.

4 Monitoring for compositional data

Now we will illustrate the methods and ideas presented in Sections 2 and 3 on two extensive examples. Both
data sets were not analyzed previously in the literature in the context of outlier detection and we do not
have any information about the presence of outliers. Therefore we start by the standard outlier detection
methods in the R package rrcov based on MCD and robust Mahalanobis distances. Of course, these will
work only after suitably transforming the data, which we do with the ilr transformation. Then we continue
with S- and MM-estimation, as well as the Forward search, and the corresponding monitoring functions
from the R package fsdaR. Finally we demonstrate the brushing and linking functionalities for establishing
a straight relationship between statistical results obtained and the individual observations.

4.1 Example 1: FishMorphology data set

For our first example of illustrating the problem of monitoring compositional data we use the FishMorphology
data set from the package easyCODA (Greenacre (2019), see also Greenacre and Primicerio (2010)). The
data set consists of 26 morphometric measurements, in millimeters, on a sample of 75 fish of the species
Arctic charr (Salvelinus alpinus. Additionally, to each observation, sex (male of female), habitat (littoral,
close to the shore and pelagic, in deeper water far from the shore) and the body mass are recorded. For our
example we select only the former habitat (59 observations) and 10 out of the 26 morphometric measures.
Further we remove the observation with ID = 51 which is an obvious outlier and thus remain with a data
set of 58 observations and 10 variables. This data set is not strictly compositional, but can be treated in
the same way as compositional if closed by dividing each observation by the corresponding row sum.
Needless to say that neither the classical nor any robust (MCD, S- or MM-) covariance matrix can be used
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Figure 2: Vegetables data set, ilr transformed. MCD distance-distance plot in the left hand panel. A
ternary diagram with transformed Mahalanobis distances tolerance ellipses, classical and robust

for computing Mahalanobis distances, since they are singular. After applying ilr transformation the data
will be open and the multivariate structure is revealed as shown in the distance-distance plot in Figure 3
(robust Mahalanobis distances computed by MCD are plotted against classical Mahalanobis distances). Ob-
servations 10, 19 and 54 are identified as potential outliers and observation 47 is a border case (using the
0.975 quantil of the χ2 distribution as a cut off). The right hand panel of Figure 3 shows the robust and
classical chi-square plots which present the squared (robust) Mahalanobis distances against the quantiles
of the χ2

D distribution. Since the (closed) data are in more than three dimensions they cannot be conve-
niently presented in a ternary diagram as the Vegetables data set in the right hand panel of Figure 2.
Computing S-estimates with 50% breakdown and Tukey’s biweight function (Fig. 4, left panel) produces
similar result as the reweighted MCD, identifying only the two outliers but missing the two border cases,
however the S-estimates with reduced breakdown point (with the hope to obtain better efficiency) does not
identify any outliers (right panel in Fig. 4). Similarly, computing MM-estimates with 80% efficiency and
Tukey’s biweight function (Fig. 5, left panel) produces similar result as the reweighted MCD, however the
MM-estimates with the default efficiency does not identify any outliers (right panel in Fig. 5). As Cerioli
et al. (2018) point out, the recommended default efficiency of 95% or 99% for the MM-estimates might be
too optimistic, also in our case. Following their approach for data driven balance between robustness and
efficiency in the case of compositional data we present in the following the monitoring of the estimation
parameters (breakdown point and efficiency) resulting in plots of the squared Mahalanobis distances of the
ilr transformed data. Figure 6 presents the monitoring of the MM-estimation. The left-hand panel shows
the Mahalanobis distances for a series of robust MM fits for subsequent values of the efficiency. These
are stable until the efficiency reaches 0.55 when the fit changes abruptly and remains so until 0.85 when
it changes again and becomes similar to the maximum likelihood and remains stable until the efficiency
reaches 1. It reveals why the index plot of the MM-estimates in Figure 5 did not show any outliers—for
efficiency higher than 0.85 the fit is identical to the maximum likelihood. This is also clearly seen from the
correlation monitoring in the right hand panel. It shows the monitoring of the three correlation measures
which summarize the structure of the plot in the left-hand side by the correlation of the ranks between the
squared Mahalanobis distances at adjacent monitoring values. The three standard measures of correlation
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Figure 3: Fish Morphology data set (littoral habitat), ilr transformed. MCD distance-distance plot in the
left hand panel. A χ2 QQ plot, classical and robust, in the right hand panel
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Figure 4: Fish Morphology data set (littoral habitat), ilr transformed. S-estimation with breakdown point
50% in the left-hand panel. In the right-hand panel—S-estimation with 25% breakdown.
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Figure 5: Fish Morphology data set (littoral habitat), ilr transformed. MM estimation with efficiency 80%
in the left hand panel. In the right hand panel - MM-estimation with 95% efficiency.

are:

1. Spreaman This is the correlation between the ranks of the two sets of observations.

2. Kendal The concordance of the pairs of ranks.

3. Pearson The product-moment correlation coefficient.

All three correlations indicate the abrupt change at 55%. As we have already seen in Figure 5, for eff=80%
the analysis is still robust but increasing the efficiency to 95% and more results in a non-robust analysis.
Using the brushing functionality of the package, we can identify the outlying units, as shown in Figure 7: in
the right hand panel the outliers are shown as red circles. A more advanced version of the brushing function
is shown in Figure 8. It is possible to do the brushing in several steps, in each selecting different points.
The points selected at each step are added to the points selected in the previous step but are presented
in different pattern/color. In the first step we select the two outlier which enter the model at around 96%
efficiency and they are shown as red circles. In the second step the two outliers that enter the model at
around 85% efficiency are selected and they are shown as black stars.

Computing S-estimates with 50% (asymptotic) breakdown point and Tukey’s biweight function produces
similar result as the reweighted MCD, however, this is not the case if the breakdown point is reduced to
say 25%. In Figure 9 is presented the monitoring of the S-estimation. As we have already seen in Figure 4,
for bdp=50% the analysis is robust but reducing the breakdown to say 25% (with the hope to increase the
efficiency) results in a non-robust analysis. This is clearly seen in the left hand panel of Figure 9 although
not that clear in the correlation plot on the right side.

4.2 Example 2: Technology intensity of exports

The technological structure of manufactured exports as an indicator of their “quality” is an important cri-
teria for understanding the relative position of countries measured by their industrial competitiveness and
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Figure 6: Fish Morphology data set (littoral habitat), ilr transformed. The left-hand panel shows the
squared Mahalanobis distances from monitoring MM-estimation and the right-hand panel—the correlation
between distances for consecutive values of eff (efficiency)

Figure 7: Fish Morphology data set (littoral habitat), ilr transformed. The left-hand panel shows brushing
of the monitoring plot of MM-estimation and the right-hand panel—the scatter plot matrix of the units,
identifying the four outliers.
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Figure 8: Fish Morphology data set (littoral habitat), ilr transformed. Brushing in several steps: the left-
hand panel shows brushing of the monitoring plot of MM-estimation and the right-hand panel—the scatter
plot matrix of the units, identifying the four outliers. The two which enter the model at around 96% are
shown as red circles and those that enter at around 85% - as black stars
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Figure 9: Fish Morphology data set (littoral habitat), ilr transformed. The left-hand panel shows the
squared Mahalanobis distances from monitoring S-estimation and the right-hand panel—the correlation
between distances for consecutive values of bdp (breakdown)
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Figure 10: Technological structure of manufactured exports, ilr transformed. MCD distance-distance plot in
the left hand panel. A ternary diagram with transformed Mahalanobis distances tolerance ellipses, classical
and robust.

the determinants of the competitive ability, which are particularly reflected in changes to manufacturing
value added and manufactured exports (Todorov and Pedersen, 2017). There exists an well established
decomposition analysis by technology level of the export structure (Lall, 2000) presenting the manufactured
exports in four categories: Resource-based, Low technology, Medium technology and High technology (about
the source of data and how these categories are defined see Todorov and Pedersen, 2017). The data set is
available in the R package rrcov3way (Todorov, 2017).

For our example we select only one year, 2012 and remove any countries with missing data, remaining
with 153 observations. Needles to say that applying the outlier detection methods from the R package rrcov
or the methods from the MATLAB toolbox FSDA to the original data are meaningless: the reweighted MCD,
for example, identifies 79 outliers out of 153 observations. After applying ilr transformation the data will
be open and the structure is revealed as shown in the distance-distance plot in Fig 10. Now 22 observations
are identified as outliers by the reweighted MCD estimator.

This is definitely a compositional data set (the four categories are parts of one whole) but the closure
is not visible when inspecting the row sums. This is due to the fact that we consider only the manufactured
exports while the countries also export agricultural, mining and other products. This demonstrates the
problem of the so called subcompositions (Aitchison, 1986)—we cannot hope that the effect of the closure
will disappear if not all parts are included in the analysis and an appropriate transformation is needed.

We continue by running the automatic outlier detection procedure based on forward search. As visi-
ble in the left hand panel of Fig. 11 the signal is at observation 107, indicating that it and the succeeding
observations might be outliers. Resuperimposition of envelopes leads to the identification of 29 outliers
(which turn out to be identical to the outliers detected by the raw (not reweighted) MCD). Performing the
same analysis on the original data (not shown here) indicates a signal at observation 93 and and identifies
61 observations as outliers.
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Figure 11: Technological structure of manufactured exports, ilr transformed. The left-hand panel shows the
forward search plot of minimum Mahalanobis distance, with a signal for the presence of outliers. The right
hand panel shows the scatter plot of the data with the 29 observations identified as outliers by FS as red
circles.

Fig. 12 shows the monitoring of the Mahalanobis distances of the S- and MM-estimation. The S-estimator
with 0.5 bdp is similar to the maximum likelihood. Not much difference is shown in the monitoring plot of
the MM-estimation.

5 Conclusions

Robust methods are not only useful but also a required tool when analyzing real life data which very often
are plagued by the presence of outliers. It does not matter if the robust methods are used directly to fit
models or indirectly to identify outliers, some arbitrarily chosen parameters can have a destructive effect
on the results. In a number of recent articles Riani, Cerioli, Atkinson and others advocate the technique
of monitoring robust estimates computed over a range of key parameter values. Through this approach the
diagnostic tools of choice can be tuned in such a way that highly robust estimators which are as efficient
as possible are obtained. This approach is applicable to different robust multivariate estimates like S- and
MM-estimates, MVE and MCD as well as to the Forward Search in which monitoring is part of the robust
method. We show that in order to apply these adaptive methods to compositional data which are parts
of some whole and in most cases they are recorded as closed data, i.e. data summing to a constant, such
as 100%, it is necessary to transform the compositional data. Using a suitable transformation, the key
measure for detecting outliers, the Mahalanobis distance, remains invariant and allows to successfully apply
all methods that were initially developed for open data. We demonstrate on several examples how the
monitoring can be conducted, providing highly efficient estimates and demonstrate the role of advanced
dynamic graphics like brushing and linking for establishing a straight relationship between statistical results
and individual observations. All computations were performed with the fsdaR package available at CRAN
which brings almost all the functions of the MATLAB toolbox FSDA to the R user. Since the scope of these
functions cover also robust regression (Riani et al., 2014) and robust clustering (Riani et al., 2019) a natural
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Figure 12: Technological structure of manufactured exports, ilr transformed. The left-hand panel shows the
squared Mahalanobis distances from monitoring S-estimation and the right-hand panel—from monitoring
the MM-estimation.

extension of this study is to consider monitoring for robust regression and clustering for compositional data
in the future.
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Abstract

Predictive methods such as Lasso regression, partition trees and random forests (RF), arti-
ficial neural networks (ANN) and deep learning, or support-vector machines (SVM) and other
kernel methods have become in the last years increasingly popular, also in the compositional
data community. However, most of the contributions using machine learning algorithms on com-
positional data just applied the relevant method to an additive, centered or isometric log-ratio
(alr, clr, ilr) transformed version of the training data, without caring about the properties of the
construct. In this contribution we briefly review the fundamental construction of these methods,
and check in which way can they be tweaked or adapted to account for the compositional scale
of the data.

As an example, a binary partition tree aims at constructing a hierarchy of classification,
where each branch splits the data in two subgroups according to the one single covariable that
provides highest purity of the two resulting subgroups; at the end of the hierarchy, all branches
contain only data from one pure group. Random Forests Breiman (2001) were introduced to
deal with the obvious over-fitting of partition trees, with a double randomisation strategy: first
bootstrapping the number of observations, creating B different trees that form the forest; second,
each branching of each tree is based not on the whole set of variables, but on a different random
subset of them. The fact that at each branching only one variable is actively used makes the
method non-invariant under the choice of possible log-ratio transformations. A way to allow for
this one feature selection while keeping the relative nature of compositional information would be
to build the trees on the set of pairwise log-ratios (pwlr). This applies to all kinds of tree-based
methods with compositional covariables.

Key words: affine equivariance, subcompositional coherence, variable selection.

1 Introduction

Predictive methods such partition trees and random forests (RF), artificial neural networks (ANN) and
deep learning, or support-vector machines (SVM) and other kernel methods have become in the last years
increasingly popular, also in the compositional data community. However, most of the contributions using
machine learning algorithms on compositional data just applied the relevant method to an additive, centered
or isometric log-ratio (alr, clr, ilr) transformed version of the training data, without caring about the
properties of the construct. In this contribution we briefly review the fundamental construction of these
methods, and check in which way can they be tweaked or adapted to account for the compositional scale of
the data.

After summarizing the most relevant ways of representing compositional data, the paper devotes a section
to each family or group of machine learning algorithms. Each of these sections very briefly report what the
method does, and several considerations on how to adapt them to compositional data.
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2 Compositional data: ratios, logratios and isometric representations

A compositional data set is said to contain only relative information, which can be captured in the form of
ratios or log-ratios (Aitchison, 1986). Aitchison (1997) highlighted as well the importance of subcomposi-
tions, as the counterpart of marginals for compositional data. For a D-part composition x = [x1, x2, . . . , xD],
the subcomposition of the set of K parts {s1, s2, . . . sK} ≡ S will be denoted as xS = [xs1 , xs2 , . . . , xsK ].

Several ratios and log-ratios have been used in the literature to extract that relative information. Perhaps
the first and simplest one was the closure, i.e.

C[x] =

[
x1
t(x)

,
x2
t(x)

, · · · , xD
t(x)

]
, with t(x) = x1 + x2 + · · ·+ xD. (1)

Before the work of Aitchison, another common way of treating compositions was through simple ratios (or
logratios), e.g. via expressions such as

x∗ij =
xi
xj
, or ξij = lnx∗ij . (2)

The pairwise logratio transformation pwlr(x) = [ξij ; i < j = 1, 2, . . . , D] was defined by Aitchison (1986), as
well as the centered logratio transformation

clr(x) = ln

[
x1
g(x)

,
x2
g(x)

, · · · , xD
g(x)

]
, with g(x) = D

√
x1x2 · · ·xD, (3)

with the logarithm applied component-wise. Another transformation found in this work is the additive
logratio transformation,

alr(x) = ln

[
x1
xD

,
x2
xD

, · · · , xD−1

xD

]
. (4)

Aitchison (1986) introduced as well a notion of compositional distance between two vectors x and y, as

d2A(x,y) =
1

D2

D∑
i<j

(
ln
xi
xj
− ln

yi
yj

)2

,

also based on ratios. Later, with the establishment of the Aitchison geometry (Billheimer et. al. , 2001;
Pawlowsky-Glahn and Egozcue, 2001), it was realized that the clr transformation represents an isometry,
d2A(x,y) ≡ d2(clr(x), clr(y)), being d(·, ·) the conventional sum-of-squares, Euclidean distance. Finally,
Egozcue et al. (200X) introduced the isometric logratio transformation (ilr) as a Gramm-Schmidt orthogo-
nalisation of the clr coefficients,

ilr(x) = clr(x) ·V, with V ·Vt = 1D −
1

D
1D×D and Vt ·V = ID−1, (5)

being 1D and 1D×D resp. the (D ×D)-identity matrix and (D ×D)-ones matrix.

Closed compositional data pose the problem that the scores obtained for each variable depend on all other
variables available at that observation. So, if different subcompositions are available, closed values would
be not comparable anymore. The same happens with centered logratios. On the other hand, simple ratios,
pairwise logratios, additive logratios and isometric logratios do not depend on which subcomposition was
used, and they simply produce missing values in some of their coefficients if one or more components are
lost. This is a very important issue in machine learning, because the training data fed to the algorithms is
not necessarily complete, and ensuring consistency becomes a need.
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3 Partition trees and random forests

Decision trees involve hierarchical segmentation of the predictor space into several simple regions. At each
segmentation one single predictor that provides the highest purity of the two resulting regions is selected. To
make a prediction for a given observation, we use the mode of the training observations in the region to which
that observation belongs. Ensemble tree-based learners, such as bagging, boosting, and random forests, were
introduced to deal with the high variance (overfitting) of decision trees and to improve prediction accuracy by
generating multiple trees which are then combined to yield a single consensus prediction (Hastie et al, 2009).
In the case of compositional predictors, the fact that at each segmentation only one predictor is actively used
makes the tree-based methods non-invariant under the choice of possible log-ratio transformations. Indeed,
using different log-ratio transformations leads to different predictor spaces and consequently different tree-
based predictive models (potentially with different prediction accuracy).

To illustrate the effects of log-ratio transformations on tree-based learners (Random Forests, Breiman
(2001), in this implementation) the multi-element near-surface geochemical compositions (compositional
predictors) from the National Geochemical Survey of Australia (de Caritat and Cooper, 2011) are used to
predict the exposed to deeply buried major crustal blocks (categorical response) of the Australian continent
(Talebi et al, 2018). Samples of different sizes (10, 20, 30, 40, and 50) were taken randomly (without
replacement) from geochemical components (hundred samples for each size). Each sample was closed (Eq.
1) or transformed via different log-ratio transformations (Eqs. 2-5). For each sample five random Forests
classifiers were trained (using raw components, clrs, ilrs, pwlrs, and a combination of raw components plus
all the log-ratios as input predictors). Figure 1 shows the distribution of Out-of-Bag (OOB) error estimation
for each sample size and log-ratio transformation. As the number of component increases classifiers show
more accuracy; however, pairwise log-ratios outperformed other options. The superiority of pwlr is clearer
when more components are used to build the classifiers. Combining pwlrs with the other log-ratios does
not improve the performance of the classifier and makes the interpretation of the predictor space more
complicated. High-dimensionality of pwlrs is well addressed by tree-based predictive methods since they are
working with subsets of predictors. In the case of compositional predictors, pairwise log-ratio transformation
is recommended as a first choice to train a tree-based predictive model due to their ease of interpretation
and superior performance. A recursive feature elimination with resampling technique may further improve
the accuracy of the tree-based predicative models trained from pwlrs (Talebi et al, 2018).

4 Some remarks

This superior performance of pwlr on random forests (and in general, partition trees) does not apply to
all machine learning methods. Regression methods (linear regression, logistic regression) can be proven
to be affine equivariant, namely to produce the same predictions for every logratio transformation (alr,
ilr, and even clr or pwlr if the appropriate inversion is used). Ridge regression penalizes the regression
goodness of fit (least squares or deviance) by means of the square norm of the regression coefficients, in
which case ilr appears to be necessary. Support vector machines, establishing a classifier based on distances,
may be required to be applied on isometric representations of the data (ilr, clr but also pwlr). Finally,
neural networks require further research, but preliminary results suggest that some implementations of the
estimation algorithms may not be affine equivariant, in which case practitioners should use them carefully.
These considerations apply to methods using compositional data on the role of predictors.
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Figure 1: Out-of-bag error estimation for different logratio representations and sample sizes
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Statistical models for point-counting data
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Abstract

The mineralogical composition of sediment can be estimated by tallying the relative abundances of
randomly selected grains. Similarly, the fossil content of a deep sea sediment core may be characterised
by tabulating the relative abundances of various species among randomly selected specimens. Or palaeo-
biological environments may be reconstructed by tabulating the relative frequency of different types of
pollen in a palaeosol or charcoal. These are all examples of point-counting experiments. Although the ob-
jective of such experiments is to constrain compositions, point-counting data do not exactly fit the mould
of traditional compositional data analysis methods. This contribution makes the case that point-counts
represent a separate data class that combines elements of compositional data with multinomial statistics.

There exist two key differences between point-counts and compositional data sensu stricto. First,
point-counting data are sample size dependent, whereas compositional data are not. Sample size matters
for point-counting data because the precision of such data increases with sample size. This sample size de-
pendence is not captured by conventional compositional data analysis methods. Second, as a consequence
of the sample size dependence, point-counting data frequently include zero values. These are incompatible
with the logratio transformations that are used to ‘free’ compositional data from the constraints of the
simplex. This problem may be circumvented by replacing the zeros with small non-zero values (Mart́ın-
Fernández et al., 2003). But such ‘imputation’ methods are a workaround rather than a real solution, and
do not cope well with datasets that contain lots of zeros.

Vermeesch (2018) proposed a different solution to the point-counting conundrum that is based on
Galbraith (2005)’s solution to a very similar problem in fission track geochronology. The simplest case of
a point-counting experiment involves the relative abundances of two components a and b, say. Suppose
that the true proportions of these two components follow a logistic normal distribution. If f [a, i] is the
fraction of component a in sample i and 1 − f [a, i] = f [b, i] is the fraction of component b in sample i
(1 ≤ i ≤ m), then

β[i] = ln

�
f [a, i]

1− f [a, i]

�
(1)

is drawn from a normal distribution with mean µ and standard deviation σ. For a given value of f [a, i],
the number of counts of component a and b (n[a, i] and n[b, i], respectively) follow a binomial distribution:

p (n[a, i], n[b, i]|f [a, i]) =
�
n[a, i] + n[b, i]

n[a, i]

�
f [a, i]n[a,i](1− f [a, i])n[b,i] (2)

Combining Equations 1 and 2, we obtain a random effects model for µ and σ, whose likelihood function
is given by:

L =
m�

i=1
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

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�
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� ∞�

−∞

exp (βn[a, i])

[exp (β) + 1]
n[a,i]+n[b,i]

exp

�
− 1

2

�
(β−µ

σ

�2
�

σ
√
2π

dβ





(3)

Equation 3 simultaneously captures both the compositional statistics of the true fractions f [a, i] and
f [b, i], and the binomial counting statistics of the point-counting measurements n[a, i] and n[b, i]. Solv-
ing Equation 3 with the method of maximum likelihood allows us to estimate the non-zero population
parameters µ and σ. Let µ̂ and σ̂ be these maximum likelihood estimates. Then exp(µ̂)/[exp(µ̂) + 1] is
known as the ‘central value’ for f [a], and σ̂ as the ‘dispersion’. This calculation works even in the presence
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of zero n[a, i] or n[b, i] values. It therefore solves both problems mentioned at the beginning of this abstract.

If σ = 0, then the random effects model reduces to an ordinary binomial distribution. If n[a, i] → ∞
and n[b, i] → ∞, it converges to a logistic normal distribution. Thus it may be argued that compositional
data are a special case of the random effects model, and that the random effects model is more generally
applicable than compositional data models sensu stricto. Equation 3 can easily be generalised from two
to three or more components.

Graphically, two-component point-counting datasets can be visualised on radial plots (Galbraith,
1988). These are bivariate scatter plots that set out the normalised values of the transformed data against
their precision. Therefore, radial plots are an effective visualisation tool for heteroscedastic datasets
(Figure 1). Three component datasets can be displayed on ternary diagrams, like compositional data.
However, for higher dimensional datasets, point-counting data and compositional data require different
treatment.

Figure 1: Radial plot of a bivariate point-
counting dataset (Vermeesch, 2018). Each
point on this diagram represents a single mea-
surement of components a and b. Two of these
measurements are highlighted in black. The
a/b-ratio of each analysis can be read by pro-
jecting the corresponding point onto the radial
scale. Its precision is obtained by projecting a
2-sigma error bar onto that same scale. Thus,
the radial plot displays both the value and the
precision of heteroscedastic datasets.

Principal Component Analysis (PCA) of compositional data uses Aitchison’s logratio distance, which
is incompatible with point-counting data due to the presence of zeros as explained before. In contrast,
Correspondence Analysis (CA) is a multivariate ordination technique that is similar in purpose to PCA
but uses the chi-square distance instead of the logratio distance. PCA and CA are both special cases of
Multidimensional Scaling (MDS) that can be visualised as biplots.

All the methods discussed in this abstract have been been implemented in the provenance R-package,
which is available from http://provenance.london-geochron.com (Vermeesch et al., 2016).
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Summary

In biomonitoring living organisms, usually plants, are used in assessment of natural environment
condition and in estimation of elements and chemical compounds concentration in an area.
Determination of radioisotope’s activity concentration in a sample can provide valuable informa-
tion. But one of the issues occurring during data interpretation is a result of low radioisotopes
concentration in the material studied. Very often significant number of below MDA (Minimum
Detectable Activity) communicates appear in output of signal analysis. As a result multivariate
analysis of the data becomes impossible. To solve this problem data imputation method can be
utilized.
In our survey samples of moss, Ol soil horizon and shallow mineral layer were collected in Bory
Stobrawskie forest, located in south-western part of Poland. In the samples activity concentra-
tions of Cs-137, K-40, Pb-210, Pb-214, Bi-214, Ac-228, Th-231, and U-235 were determined using
gamma spectrometry method. The data were grouped according to the material investigated.
Activity concentrations of radioisotopes were recalculated to mass fractions. In general about
30The following functions were used for data imputation: multLN, lrDA, lrEM and multRepl.
The functions were used with default parameters. Usually an influence of the imputation method
on the data was limited. But for a variable with numerous MDAs influence of the method on
generated concentrations was significant enough to disable appropriate data imputation.

Key words: biomonitoring, radioisotope, limit of detection, imputation

1 Introduction

Biomonitoring is a method used for assessment of natural environment condition. Concentrations of elements
or chemical compounds under interest are determined in living organisms. An advantage of biomonitoring
over classical methods based on analysis of mineral parts of environment is better evaluation of compounds
migration into trophic chains, and then better estimation of the compounds’ influence on physiological state
of living organisms.
Radioisotopes are common in environment. Majority of them are natural components but starting from the
mid of 20. century the artificial ones also have been occurring in nature.
It seems that currently radioisotopes in environment don’t pose a health risk in global scale. But actual
risk may arise in a local scale, for example as a result of accidents during transport, careless storage of ra-
dioactive materials or failure in industrial installation. However, massive releases of radioactive material to
environment, which have affected whole regions, also occurred. Accidental emission of radioactive materials
to environment can be controlled only in a limited range. Resulting contamination on a polluted area has
to be carefully monitored to apply appropriate safety measures. The key role in selection of a protection or
decontamination method is recognition of transport mechanism of the radioisotopes between components of
the environment, particularly migration to the living organisms.
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Surveys aimed to study such mechanism involve determination of the radioisotopes activity concentration in
samples of different components from the natural environment. The results are analyzed to reveal regularities
in data patterns, leading to formulation of the radioisotope transport description. Activity concentration of
a radioisotope can be recalculated to their mass concentrations, so the methods designed for compositional
data analysis can be applied.
One of the problems occurring during experimental data analysis are observations reported as “Below De-
tection Limit” (BDL) or below “Limit Of Detection” (LOD). In analysis of radioisotopes spectra “Minimum
Detectable Activity” (MDA) can be calculated.
The BDLs in data hinder or even makes impossible studies using methods of multidimensional data analysis.
This problem can be reduced by the BDL data imputation.
Several methods of data imputations are known. The methods applied are based on different assumptions
and produce different results. Particularly, the BDL limit introduces left-censored data type.

2 Results and Disscussion

Activity concentrations of gamma radioactive isotopes were determined in soil and moss Pleurozium schreberi
samples. The material was collected in Bory Stobrawskie forest (south-western part of Poland). Activity
concentration of several natural radioisotopes were determined, but also the artificial Cs-137 was found in
the samples. In Tab. 1 properties of the natural radioisotopes found in samples are shown.

Table 1: The half-life, long-living ancestor and membership in decay series of the radioisotopes determined
in samples

Radioisotope Half-life Long-living ancestor (half-life) Decay series (origin)
K-40 1.25·109a - - (natural)
Bi-214 19.9 min Ra-226 (1600 a) uranium (natural)
Pb-210 22.2 a Ra-226 (1600 a) uranium (natural)
Ac-228 6.15 h Th-232 (1.41·1010a) thorium (natural)
Pb-212 10.6 h Th-232 (1.41·1010a) thorium (natural)
U-235 7.04·108a own actinium (natural)
Th-231 25.5 h U-235 (7.04·108a) actinium (natural)
Cs-137 30.1 a - - (artificial)

Activity concentrations of the radioisotopes in samples were often lower than the MDA. Recalculation from
activity concentration to mass fraction resulted in zero values in the data. The patterns of zero’s distributions
in the calculated data is illustrated in figures generated by zPatterns function from zCompositions library
(Figures 1-3).

The following functions for left-censored data imputation were used: multLN, lrDA, lrEM and multRepl.
To test an influence of the initial functions’ settings on their practical usability in computations result their
default settings remained unchanged.
As it could be expected, an effectiveness of the functions in the data imputation was different in relation to
the data structure. Algorithms implemented in functions required data fulfilling specific requirements. A
summary of function usability for the data imputation in moss and soil is presented in Tab. 2. In this table
a function’s response for a particular data structure is presented.

In relation to patterns of zero’s distributions, application of the imputation functions produce more or less
coherent results. For sparse concentration vectors the imputation results are useless, since they are strictly
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Figure 1: The structure of LODs distribution in radioisotopes concentration determined in moss.

Figure 2: The structure of LODs distribution in radioisotopes concentration determined in Ol soil horizon.
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Figure 3: The structure of LODs distribution in radioisotopes concentration determined in mineral soil
horizon.

Table 2: The usabilty of the functions in data imputation. Label "err" points internal error in the function’s
operation, label "OK" means return of the zero imputed data frame.

moss Ol horizon mineral layer
multLN OK err OK
lrDA err OK OK
lrEM err err OK

multRepl OK OK OK

related to the function used for calculations. The imputation functions can produce artificial data even if
actually no information about a variable distribution is provided. An example of the issue is illustrated in
Fig. 4A. Only one concentration of Th-231 in organic soil layer was bigger than MDA. For lrDA and multRepl
functions this information was enough to compute the desired data. But the results are dissimilar and they
useless in computations. A problem in interpretation of data analysis result arises when one uncritically
applies such data in computations.
In Fig. 4B distribution of Bi-214 concentration in organic soil layers is illustrated. Among 19 results 7 of
them were below MDA. For low Bi-214 concentration, the 37% of imputed data produce an incoherence in
imputation results. It is not clear which function is better for calculations. A solution of the issues may
be related to optimal tuning of the functions’ parameters. In Fig. 4C distribution of Bi-214 in mineral soil
layer is shown. Among 21 concentrations only 1 was imputed. But this single insertion produces somewhat
different distributions of the variable imputed by different functions.
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(A) Th-231 concentration in or-
ganic soil layer

(B) Bi-214 concentration in organic
soil layer

(C) Bi-214 concentration in mineral
soil layer

Figure 4: Examples of concentration distributions (PDF) for various number of zeros in the data

3 Conclusions

The R library zCompositions offers a number of very well developed imputation methods but they should
not be applied in a random style. A method of "by chance" application of imputation functions doesn’t
deliver reliable approach to the data analysis. Selection of imputation function is not obvious, it should
be preceded by analysis of the nature of the phenomenon studied and methods applied in the investigated
system evaluation. Comparison of functions’ outputs is recommended prior to actual data analysis.
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