TESIS DOCTORAL

Razonamiento mecanizado

en algebra homoldgica

Jesus Maria Aransay Azofra

UNIVE!

RS

DAD DE LARIOJA

TESIS DOCTORAL

Razonamiento mecanizado

en algebra homoldgica

Jesus Marita Aransay Azofra

Universidad de La Rioja
Servicio de Publicaciones

2006

Esta tesis doctoral, dirigida por los doctores D. Julio Rubio Garcia y D. Clemens Ballarin, fue leida el 4 de abril de 2006,
y obtuvo la calificacion de Sobresaliente Cum Laude por Unanimidad

© JesUs Maria Aransay Azofra

Edita: Universidad de La Rioja
Servicio de Publicaciones

ISBN 84-689-8743-3

Razonamiento mecanizado en
Algebra Homoldégica

Memoria presentada para la obtencion
del titulo de Doctor

Jesuis Maria Aransay Azofra

Directores: Dr. D. Julio Rubio Garcia
Dr. D. Clemens Ballarin

Universidad de La Rioja

Departamento de Matematicas y Computacion

Logrono, Enero de 2006

Mechanized Reasoning in
Homological Algebra

Dissertation submitted for the degree
of Doctor of Philosophy

Jesus Maria Aransay Azofra

Advisors: Dr. D. Julio Rubio Garcia
Dr. D. Clemens Ballarin

Universidad de La Rioja

Departamento de Matematicas y Computacion

Logrono, January 2006

This work has been partially supported by projects DGES (PB98-1621-C02) and
SEUI-MEC (TIC2002-01626) from the Spanish Government, project CALCULEMUS
(HPRN-CT-2000-00102) from the European Union, project ACPI2002/06 from Co-
munidad de La Rioja, and project API-02/24 and grants ATUR02/03, ATUR03/03,
ATURO04/04 from Universidad de La Rioja.

Acknowledgements

Julio Rubio and Clemens Ballarin made this work possible. Julio, from the nearness.
He gave me the chance to introduce me in the research’s world. Due to his interest I
enjoyed great academic opportunities. In addition to this, his availability to discuss new
ideas, questions or simply comments that emerged along the elaboration of the memoir,
as well as his cordiality, were always remarkable. His enthusiasm helped me to overcome
the difficult moments. Clemens and his attention were always motivating to go ahead.
He permanently showed his accessibility and willingness to collaborate in everything I
required, despite of the distance during much of this work.

In our research’s group at the Universidad de La Rioja, I must acknowledge the work
of Laureano Lambdn. His words were always encouraging and his advice useful. Vico
Pascual and César Dominguez showed me the way I must follow with their great task,
and always tried to help me with their experience. My first research works were joint
with Juan José Olarte. Ana Romero, Mirian Andrés, /fngel Luis Rubio, Francisco José
Garcia and Eloy Mata were there to listen and value each of the ideas introduced here.
I take the chance to acknowledge to all the members of Departamento de Matemdticas y
Computacion at the Universidad de La Rioja for the kindnesses they have always shown
to me. I would also like to thank every friend that came into my office with the intention
of taking a coffee or talk for a while.

Jacques Calmet gave me the chance to work during sixz months in the Institit fiir
Algorithmen und Kognitive Systeme at the Universitit Karlsruhe. This research stay
helped me to both define the problems which are tackled in this memoir, and, personally,
to know how hard and satisfactory research can be.

The research group of Tobias Nipkow at Technische Universitit Minchen welcomed
me for ten weeks really kindly. Working and living together with them was a greatly
enriching experience.

Finally, I must thank my family for belicving in me and in everything I did. My
parents and my brother Oscar always supported me and trusted me. Judith, with her
patience and love, made everything easier and gratifying.

To all of them, thanks.

Contents

Contents
Introduction

1 Preliminaries
1.1 Mathematical Machinery| oo
1.1.1 Basics on Homological Algebray
1.1.2 Algebraic structures
1.2 Computing Machinery| oL
1.2.1 Basics on the Kenzo system|
1.2.2 Data structures in Kenzo
1.3 Deduction Machinery oo o
1.3.1 Basics on Isabelle 00000

1.3.2 Structures in Isabellelo,

2 The Basic Perturbation Lemma
2.1 Statement of the BPLI o0
2.1.1 Topological motivation
2.1.2 Algorithmic interpretation
2.1.3 Application to Computer Algebra in Algebraic Topology|
2.2 A detailed proof of the BPL|
2.2.1 A detailed proof of the BPL: the series
2.2.2 A detailed proof of the BPL: the lemmas

© 9

12
12
12
17
17
18

i Contents
2.3 Ungraded version 57

3 Mechanizing the proof: a case study in Isabelle 59
3.1 Introduction 59

3.2 The theorem prover: Isabelle/. 60
3.3 An introductory exampleo 62
3.4 Encoding mathematics 0oL 67
3.5 The symbolic approach 0o 71
3.5.1 The algebraic structures 71

3.5.2 Representation of the algebraic structures and the homomorphisms 72

3.5.3 Lemmas proved in Isabelle 74
3.5.4 DISCUSSION 76
3.6 The set theoretic approach o oL 78
3.6.1 The algebraic structures 0oL 78
3.6.2 Representation of the algebraic structures 80
3.6.3 Homomorphisms between algebraic structures 81
3.6.4 Lemmas proved 84
3.0.0 Discussiono 91
3.7 The morphism based approach 94
3.7.1 The algebraic structures 0oL 94
3.7.2 Representation of the algebraic structures 95
3.7.3 Homomorphisms between algebraic structures 96
3.74 Lemmas proved 108
..o Discussionl 114
3.8 The interpreting approach| oo 116
3.8.1 Representation of the algebraic structures 117
3.8.2 Homomorphisms between algebraic structures 118
3.8.3 Lemmas proved 119

3.8.4 Discussionl 122

Contents 191

4 Extracting Computer Algebra Programs from Statements 125
4.1 Introductiono 125
4.2 The Kenzo program: some fragments 126
4.3 Elementary examples oo 129
4.4 Application to Computer Algebra 144

5 Conclusions and Further Work 149
o.1 Conclusions 149
5.2 Further Worklo 154

A Isabelle Files 157
A.1 Mechanizing the proof of the BPL 157
A.2 Extracting Computer Algebra Programs from Statements 159
A.3 Detailed list of fileso 159

Bibliography 161

Introduction

Mathematics is not a formal science. Or, at least, it is not formal in the strict sense
of symbolic logic. Working mathematicians have much freedom with respect to foun-
dational or formal aspects. For instance, when applying a previous result, less effort is
devoted to show that every premise holds, except in cases where a condition seems to
be difficult to be checked or interesting in itself. Obviously, notions such as difficulty or
interest are quite elusive from a formal point of view.

Nevertheless, this is neither a completely subjective issue. The level of detail seems
to be rather a social question which depends on several variables, ranging, among others,
from the expected audience (less detail in research notes, more detail in undergraduate
textbooks) to the discipline itself (for instance, it is well known that some theoretical
physics arguments are not considered rigorous enough from a pure mathematical point
of view).

With respect to the logic underlying their reasoning, standard mathematicians are
even more sloppy. When dealing with basics, they usually rely on some kind of naive
set theory, supposed to be based, in a more or less conscious way, on Zermelo-Fraenkel
axiomatic system.

Variables are another source of inaccuracies in standard mathematical texts. Quite
often, the type of variables (that is to say, the kind of values a variable can be replaced
by) is undetermined or based on a typographical convention. Variables are not always
clearly signaled as free or bounded, and in this second case, it is quite unusual to
be absolutely precise with respect to the binding scope or range. In this context, it
is relatively frequent to rename a variable in some places, but not at every suitable
occurrence.

Two consequences of this informal presentation of mathematics, of very different
nature (and importance), can be stressed. On the one hand, a relatively great amount
of published proofs are not such, because they contain (usually very minor) defects from
a formal point of view. On the other hand, this distance from the (boring and tiring)
exigencies of symbolic logic allows Mathematics to be developed in an extremely powerful
and quick way which can be considered as a characteristic of the field as a whole.

The reason for this behaviour of Mathematics is that mathematicians have reached
a high reasoning level, and, even more, they seem to be able to increase in an unlimited

2 Introduction

way the abstraction level of reasoning.

Why can some degree of inaccuracy live together with the firm evolution of Mathe-
matics? The answer depends on the differences among three related concepts:

e the idea underlying a proof;
e the presentation of the proof in a mathematical text;

e the very proof in the sense of symbolic logic.

If an idea is correct, then it is accepted that its presentation can be done in a (more
or less) loose way. Of course, the idea is correct if it can be converted (in a more or less
elaborate manner) into a proof in the formal sense.

It is in the interplay among these three entities that the relevance of Theorem Provers
(TPs, in the sequel) appears. A TP is a computer program aimed at constructing proofs
in a logical sense. From a utopian viewpoint, a TP should be capable of, given an idea
of a proof, obtaining the corresponding formal proof in an automated way.

In fact, historically, the goal of the first Theorem Provers was even more pretentious:
from a claim, the system should automatically refute or prove it, and in this second
case, it should find a formal proof of the claim (which then could be considered as a
theorem). These optimistic hopes were directed by the complete solution of the problem
in the propositional case, and also by Robinson’s resolution algorithm. They gave rise
to the first generation of Automated Theorem Provers (ATPs) (see |[Davis, 2001] for a
historical review on these first systems).

Nevertheless, and despite of the success of systems such as OTTER [McCune, 2003,
it was recognized in early stages that a certain human intervention would be necessary,
both to design the claim (in the precise formalism of the ATP') and to provide guidelines
for the proof. In the most automated systems, such as OTTER or ACL2 (for ACL2, see,
for instance [Kaufmann et al., 2000]), the above-mentioned intervention is organized by
means of devising suitable auxiliary lemmas, or by pruning the search space.

The following generation of Theorem Provers stems from the explicit recognition
of this human intervention: the Tactical Theorem Provers (TTPs). These computer
programs allow users to direct interactively the construction of a formal proof. The
most important TTPs in our context are Isabelle and Coq. Isabelle is a proof assis-
tant for higher-order logic [Nipkow et al., 2002], designed as a theorem prover which is
generic with respect to the logic implemented [Paulson, 1994]. Coq is an interactive
proof assistant [Bertot and Castéran, 2004], based on the calculus of inductive construc-
tions |Coquand and Huet, 1988].

Nowadays, each TP can be interpreted along with a continuous line ranging from
pure ATP (where the input is a claim) to Proof Checkers (where the input is a tentative

IThis task, in non trivial cases, is not negligible.

Introduction 3

formal proof). At intermediate points there are systems allowing users to direct the proof
construction, and, in particular, TTPs. But it is worth noting that the suggestions which
can be given to the existing TPs are much closer to symbolic logic than to high level
mathematical arguments (as found in any mathematical standard text). Even if some
interesting theorems have been proven with these tools (for instance, the Fundamental
Theorem of Algebra proved in Coq |Geuvers et al., 2002]) the size and complexity of
these tasks illustrate convincingly the current state of TPs, with respect to the legacy
mathematical background.

And thus, more research is needed in order to make TPs really usable for the standard
mathematician. This memoir is devoted to such a research. In fact, our initial motivation
was not of a general or philosophical nature. Our interest was based on an emerging
field of application of TPs: proving the correctness of computer programs.

More specifically, our primary object of interest was a computer algebra sys-
tem for Algebraic Topology calculations, called Kenzo. EAT [Rubio et al., 1997] and
Kenzo [Dousson et al., 1999] are software systems written under Sergeraert’s direction
for Symbolic Computation in Algebraic Topology and Homological Algebra. These sys-
tems have produced remarkable results (for instance, some homology groups of iterated
loop spaces) previously unknown. Both are based on the intensive use of functional
programming techniques, which enable in particular to encode and handle at runtime
the infinite data structures appearing in Algebraic Topology algorithms. As pointed out
in [Calmet, 2003], Algebraic Topology is a field where challenging problems remain open
for Computer Algebra Systems and Theorem Provers.

In order to increase the knowledge on the EAT and Kenzo systems, a project to
formally analyze fragments of the programs was undertaken. In the recent years, several
results related to the algebraic specification of data structures have been found, some
of them present in [Lambéan et al., 2003]. Following this process, the algorithms dealing
with these data structures were our next goal, in order to give certified versions of some
crucial fragments of Kenzo using the tactical theorem prover Isabelle. Some previous
work in the area of Group Theory and the expressiveness of higher-order logic were the
reasons to choose Isabelle for this task.

A first result for which we intend to implement a proof is the Basic Perturbation
Lemma (from now on, BPL), since its proof has an associated algorithm used in Kenzo
as one of the core parts of the program.

In fact, in this memoir no complete mechanized proof of the BPL is presented. During
the research process, our focus moved into the study of techniques enabling systems with
a higher reasoning level. Thus, we preferred to explore different approaches on a (small)
fragment of the proof, instead of increasing the number of fragments proved.

Our perspective is that of an end user. That is to say, we have not considered
the possibility of introducing changes in Isabelle (even if our trails could inspire some
new features in the following releases of Isabelle, in particular in the mechanisms to
interprete locales). Our point of view is not that of a systems engineer, but that of a

4 Introduction

(computational) mathematician. We have therefore pursued the introduction of concep-
tual schemes, with the aim of increasing the reasoning level in a system (Isabelle), in
its current state. We think that some of these schemes have been found, as presented in
this text.

The organization of the memoir is as follows. In Chapter [I, we introduce some
preliminaries: for Mathematics (elementary Homological Algebra), TP (Isabelle) and
Computer Algebra (Kenzo). Chapter 2 is devoted to an extremely detailed proof of
the BPL. The level of detail is much finer than in conventional textbooks. This (a
little bit) boring presentation is justified for three reasons. The first one is to make
aware the reader (and, before, the author) of the large number of details that usually
pass unnoticed in a single mathematical argument. The second reason is to serve as a
(medium level) design of a mechanized proof. The third reason is to make clear that,
even with this tedious presentation, the distance to a TP is very big. This fact will be
clear when reading Chapter 3, where the actual Isabelle encoding of (fragments of) the
proof starts.

Chapter 3l contains our main contributions. After introducing a test lemma, we
present four approaches to mechanized reasoning in Homological Algebra. The first ap-
proach is called symbolic and is characterized by its high level of automation and its low
expressive power. The second approach, called set-theoretic, tries to emulate the “theo-
retical” way of reasoning in standard Mathematics (“theoretical” because proofs become
unfeasible very quickly due to its enormous size). The third one, called morphism-based,
tries to use the advantages of the two previous approaches: automation and expressive
power. In the fourth approach, a technical improvement recently incorporated to Isabelle
(namely locales) is used to make our proofs shorter and more readable.

Chapter 4 briefly explores a system to link proofs and programs. The goal is not to
obtain more general or efficient algorithms (that purpose would be out of the possibilities
of the current technology, as it is explained in the sequel). The general aim is rather to
get closer to the initial goal of our research: give certificates of correctness for Computer
Algebra programs. Interestingly enough, it turned out this humble experience led us to
an important foundation problem: namely, the constructive nature of our approaches,
and, more generally, of Algebraic Topology itself.

The approach chosen is code extraction. From a formal text (a proof, a spec-
ification) an executable program is (automatically) extracted. This program is, by
construction, correct with respect to the formal text used as source. In the con-
text of TPs, the most usual approach is to extract code from proofs (see, for in-
stance, [Cruz-Filipe and Spitters, 2003]). However, it turns out that Algebraic Topology
statements contain, in most cases, the definition of the object to be computed, that is
to say: they are constructive statements. Then, code can be extracted from statements
instead of from proofs. These ideas are illustrated in Chapter 4 by means of an ele-
mentary arithmetical example (related to prime numbers). At the end of the chapter, a
simple example of code extraction in the field of Computer Algebra is considered.

The memoir finishes with a chapter of conclusions and open problems and the bib-

Introduction 5

liography. In Appendix Al a detailed enumeration of the Isabelle files that were de-
veloped for this work can be found. The Isabelle files are online available in the web
page http://www.unirioja.es/cu/jearansa/isabellefiles/. The total amount of
Isabelle and ML code lines is ca. 8850, and the number of KB is over 500.

http://www.unirioja.es/cu/jearansa/isabellefiles/�

Chapter 1

Preliminaries

1.1 Mathematical Machinery

1.1.1 Basics on Homological Algebra

In the following definitions, some notions of Homological Algebra are briefly introduced
(for details, see for instance [Mac Lane, 1994]).

Definition 1.1.1. A graded group Cx is a family of abelian groups indexed by the
integer numbers, Cx = {C), } ez, with each C,, an abelian group.

Definition 1.1.2. Given Ax and Bx two graded groups, a graded group homomorphism
f: Ax — Bx of degree k (€ Z) is a family of group homomorphisms, f = { f,}nez, with
fn: Ap — B,y a group homomorphism for all n in Z.

Definition 1.1.3. A differential group is a pair (C,dc) where C' is an abelian group
and d¢ is an endomorphism such that dode = Opng(o); de is called the differential map
or boundary operator of C'.

Definition 1.1.4. Given (A, d,) and (B, dg) two differential groups, a differential group
homomorphism f: (A,d4) — (B,dp) is a group homomorphism f: A — B which also
is coherent with the differentials: fd, = dgf.

Definition 1.1.5. A chain complex is a pair (Cx,d¢,), where Cx is a graded group,
and d¢, (the differential) is a graded group endomorphism d¢, : Cx — Cx of degree —1
such that de,de, = Ogna(cy) (in other words, for all n in Z, d¢,d¢, +1 = OHom(c,, +1,Cn71))-

Definition 1.1.6. A chain complex homomorphism f: (Ax,da,) — (Bx,dp,) between
two chain complexes (Ax,da,) and (Bx,dp,) is a graded group homomorphism
f: Ax — Bx such that fda, = dp,f. The degree of f will be its degree as graded
group homomorphism.

8 Chapter 1~ Preliminaries

Let us note that the same family of group homomorphisms f = {f,}ncz can be
considered, depending on the source and the target, as a graded group homomorphism
or as a chain complex homomorphism (clearly a chain complex homomorphism is also a
graded group homomorphism).

The condition d¢,dc, = Ogna(c,) makes the following definition meaningful, since
imdg,,, Ckerdg, :

Definition 1.1.7. The homology group of a chain complex (Cx,dc,) is the family of
abelian groups

Hn((C*, dc*)) = ker an/ im dc

n+1?

Vn € Z.

The computation of homology groups of chain complexes is one of the central tasks
in algorithmic Homological Algebra and Algebraic Topology. A general computing strat-
egy consists in replacing a given chain complex by another simpler one, but with the
same homological information. This idea can be formally expressed with the following
definition:

Definition 1.1.8. Given two chain complexes (Dx,dp,) and (Cx,dc,), a homotopy
equivalence between them is a tuple of homomorphisms (f, g, hy, he) satisfying:

1. The components f and g are chain complex homomorphisms of degree 0,

f: (D*adD*) - (C*vdc*) and g: (C*adC’*) - (D*vdD*)

2. The component h; is a homotopy operator on Dy, that is to say, a graded group
endomorphism of degree +1.

3. The component hs is a homotopy operator on Ci.
4. The following relations hold:
e gf +dp,h1 + hdp, = idp,;
L fg + dC*h2 + thC* = ldC*
The following result shows that homotopy equivalences preserve homology groups.

Theorem 1.1.9. Given two chain complexes (Dx,dp,) and (Cx,dc,), whenever a ho-
motopy equivalence can be defined between them, the following relation holds:

H,(Cx,dc,) = H,(Dx,dp,), VYne€L.

In our context, the most important type of homotopy equivalence is a particular case
called reduction, introduced in Section 2.1.

Similar definitions and theorem can be applied to the ungraded case, that is to say,
to differential groups.

1.1 Mathematical Machinery 9

1.1.2 Algebraic structures

In the previous section, some algebraic structures in the field of Homological Algebra
have been introduced. The definitions of these algebraic structures are based on some
other well-known algebraic structures. Nevertheless, we considered interesting to intro-
duce them here, in order to maintain the similarity between the mathematical framework
described here with the computer algebra environment (Kenzo) described in Section1.2.2
and also with the theorem proving environment (Isabelle) introduced in Section [1.3.2.
In those frameworks, the implementation of mathematical structures will have great in-
fluence over later developments. Another reason to introduce these definitions here is to
clearly state the syntax that will be used in the sequel.

Definitions, except explicitly stated, have been extracted from [Jacobson, 1995],
which is also the text used to produce the specification of these algebraic structures
in the Isabelle theorem prover. Notations will be modified, trying to keep simplicity but
also the resemblance with the notations introduced later for the symbolic computation
system Kenzo and the theorem prover Isabelle. Definitions of algebraic structures and
also of functions between them are given.

The definition of magma is based on the one by Bourbaki [Bourbaki, 1970]:

Definition 1.1.10. A magma is a pair (M, p) in which M is a set (or carrier) and p is
a binary operation (or product) in M, verifying that it is closed for the elements of M
(in symbols, p: M x M — M).

Definition 1.1.11. A semigroup is a magma (S, p) such that p is associative.

Definition 1.1.12. A monoid is a triple (M,p, 1) such that M is a non empty set,
(M, p) is a semigroup, and 1 is an element (of M) such that p(1,a) = a = p(a, 1) for all
ain M.

Definition 1.1.13. An element u of a monoid (M, p,1) is said to be invertible (or a
unit) if there exists a v in M such that

p(u,v) =1= p(v,u)

Definition 1.1.14. A group (G,p,1) is a monoid all of whose elements are invertible
(or units).

The binary operation is usually preferred in an infix style, and then the product
p(a,b) is denoted like a - b, or even omitted, yielding ab.

Definition 1.1.15. A group (G, p, 1) is said to be a commutative group if all its elements
commute with respect to the binary operation, i.e., ab = ba holds for all a,b in G.

In the following, when we talk about groups, we will refer to the binary operation as
product, and when we talk about abelian groups we will call it addition. In the previous

10 Chapter 1~ Preliminaries

section, the definition of graded group (see Definition [1.1.15) was based on the one of
abelian group.

Based on the definition of abelian group and also on that of monoids, the definition
of ring can be given:

Definition 1.1.16. A ring is a structure (R, +,-,0, 1) consisting of a non-empty set R
together with two binary operations +, -, in R and distinguished elements 0, 1 such that:

1. (R,+,0) is an abelian group.
2. (R,-,1) is a monoid.
3. The distributive laws

a(b+c) = ab+ ac
(b+ c)a = ba + be

hold for all a,b,c in R.

The structure (R, -, 1) is called the multiplicative monoid of (R, +,-,0,1) and (R, +,0)
is called the additive (abelian) group of the ring.

Substructures of algebraic structures will be also relevant for our work. Following
the definitions in [Jacobson, 1995], we will define them in terms of subsets of the carrier
set of the algebraic structure.

Definition 1.1.17. Given a magma (M, p), a subset N is said to be a submagma if for
all a,bin N, ab is also in N (i.e., if it is closed under the binary operation).

Definitions of submonoid and subgroup are then given in terms of submagmas.

Definition 1.1.18. Given a monoid (M, p, 1), a submagma N of (M, p) is said to be a
submonoid if it contains the element 1.

Definition 1.1.19. Given a group (G, p, 1), a submagma M of (G,p, 1) is said to be a
subgroup if it verifies that 1 belongs to M, and for all m in G, the inverse of m is also
an element of G.

Homomorphisms represent transformations between algebraic structures. They are
useful to transfer properties between the algebraic structures, and therefore they are
crucial in the field of Universal Algebra. They will be also relevant for our work. They
have already appeared in Section [1.1.1, in the form of differentials of chain complexes
and homomorphisms between them.

Definition 1.1.20. Given two magmas (M,p) and (M',p’), a map f of (M,p) into
(M',p') is called a homomorphism if

f(p(a,b)) =p'(fa, fb) Va,be M.
In the case where (M,p) = (M',p), f is said to be an endomorphism.

1.1 Mathematical Machinery 11

The set of homomorphisms between two magmas (M, p) and (M’, p’) will be denoted
by Hom (M, M"). Only if confusion can arise, the set will be denoted, in a more verbose
version, as Hom((M, p), (M',p)).

The set of endomorphisms of a magma (M, p) will be denoted by End(M).

The given definition of homomorphism between magmas is also valid for semigroups,
monoids and groups, with the corresponding modifications.

Definition 1.1.21. Let f be an endomorphism of a magma (M, p), and n in N. The
n-th power of f will be denoted as f™, and it is defined, for all z in M, as f*(x) = z if
n =0, and f*(z) = f(f" (z)) if n > 0.

Due to the importance of homomorphisms, some special sets related to them are also
defined:

Definition 1.1.22. Given a homomorphism f between two magmas (M, p) and (M, p'),
the image set of f is defined as the following subset of M:

imf={f(x)|xe M}

Definition 1.1.23. Given a homomorphism f between two monoids (M, p,1) and
(M',p',1"), the kernel of f is defined as

ker f={zr e M| f(z)=1"}

Finally, the ringoid (or preadditive category) algebraic structure, usually found in
Category Theory, is also introduced. We will see that it fits quite precisely to represent
some of the mathematical settings we will deal with in the memoir. The definition is
extracted from [Mac Lane, 1994]:

Definition 1.1.24. A ringoid R is a category whose morphism sets Hom(X,Y") are
abelian groups in such a way that composition is bilinear. The endomorphism set
End(X) = Hom(X, X) of an object X has a ring structure with product given by
composition of morphisms. Conversely any ring R can be identified with the ringoid
with a single object whose endomorphism set is R.

12 Chapter 1~ Preliminaries

1.2 Computing Machinery

1.2.1 Basics on the Kenzo system

The following presentation of the Kenzo system has been essentially extracted
from [Rubio and Sergeraert, 2002, Sections 7 and §|:

Kenzo is a 16000 lines program written in Common Lisp (|Graham, 1996,
Steele, 1990]), www-available and with a rich documentation (see [Dousson et al., 1999]
for documentation and details). It can be used with any Common Lisp system satisfying
the ANSI norm. Its original purpose was the computation of homology and homotopy
groups in Algebraic Topology. The main tool used in Kenzo to solve this problem is
functional programming.

By using functional programming, some techniques in Algebraic Topology are en-
coded in the form of algorithms. Moreover, the possibility to implement in a computer
some infinitely generated objects and to do computations with them is obtained. The
results obtained by Kenzo in the computation of homology groups are relevant, and even
some of them have not been reached by any other means. The predecessor of Kenzo,
called EAT (Effective Algebraic Topology, see [Rubio et al., 1997, Rubio et al., 1998]),
was mainly devoted to the homology of iterated loop spaces. Kenzo, in addition to
this, improves the performance and increases the range of objects which can be dealt
with. Some interesting examples that have been computed with the help of Kenzo
are H5Q3Moore(Zsy,4), the fifth homology group of the three-iterated loop space of
Moore(Zsy,4). Also homotopy groups can be computed; the computation of m5(2.5% U, e?®)
is an example of it (a 3-cell is attached to a loop space 252 by a map of degree 2, and
the fifth homotopy group is then computed).

These processes of computation require a great amount of algebraic structures and
equivalences to be built, and thus a lot of resources. The reliability of this software is
out of question, but nevertheless, the algorithms associated to these computations are
of interest in themselves.

1.2.2 Data structures in Kenzo

As it has been remarked in the previous section, Kenzo is a system for symbolic computa-
tion in Homological Algebra. Therefore, it is able to compute with Homological Algebra
structures such as the ones introduced in Section 1.1.1, and even with more complicated
ones. Here we give an overview of how these structures are represented in the Kenzo
system, using object oriented and functional programming features simultaneously.

Following the bottom-up presentation already used in Sections 1.1.1 and [1.1.2, we
start by introducing the implementation of a very basic algebraic structure in Common
Lisp (this is closer to the style of EAT [Rubio et al., 1997, Rubio et al., 1998], the pre-
decessor of Kenzo, than to that of Kenzo itself). In Definition 1.1.11, a semigroup (S, p)

1.2 Computing Machinery 13

was said to be a set with a binary operation over it, which satisfies associativity. The
Common Lisp implementation of this structure could be as follows:

(defstruct semigroup
carrier
product
equality
)

As it can be seen, a record is defined with three fields which represent the carrier of the
algebraic structure, a comparison test or equality between elements of the carrier,
and also a product. The carrier field refers to a set of Common Lisp data representing
the elements of the set S. “Representing” does not mean to be equal to the elements of
the set S. The reason is that an interpretation of the data is needed (see the definition
of abstraction function in Section [3.4).

In particular, the carrier can denote some representatives of an equivalence rela-
tion, defined by the field equality, which is a boolean function taking two arguments
(defining an equivalence relation). From an operational point of view, the equality
is also necessary in order to compare elements acting as generators of free structures
(the paradigmatic structure is the free chain complex associated to a topological space;
see [May, 1967] for the definition and bellow for details on the Kenzo implementation).
In particular, a carrier could denote the set of the integer numbers Z, and the equal-
ity would allow the system to work modulo 3, thus faithfully representing the finite set
Z7]3Z.

As the example shows, and is frequently mandatory in Algebraic Topology, infinite
sets appear in Kenzo. Three possibilities are then available:

1. The field carrier could contain a list of elements (the set S being then necessarily
finite).

2. The unary predicate (boolean function) could act as a test function over a set (the
finite of infinite nature of S depends then on the equality function; infinite sets
are allowed).

3. A label :1locally-effective could indicate that no information about the finite
or infinite nature of S is known or available.

Therefore, the set .S is more accurately represented by the couple <carrier, equality>.
Starting from this representation of sets, the hierarchy of algebraic structures (magmas,
semigroups, monoids, ...) could be built (by using the Common Lisp extension tool
:include of defstruct, or, more properly, using the object-oriented features available
in Common Lisp), following the representation given in Section [I.1.2. Instead of that,
we have presented the semigroup structure as a whole. The last field to be described is

14 Chapter 1 Preliminaries

product, which contains a binary function closed over the elements of the carrier, and
coherent with respect to the equality.

The most important difference between the mathematical definition and its imple-
mentation is that no axiomatic information appears at all. Kenzo, being a system for
computing, does not need any information about the properties of the operations, only
their behaviour is relevant. As a consequence of this, semigroups can be implemented
in Common Lisp similarly to magmas, even when their mathematical definitions differ.

Making use of the existing tools in Common Lisp for inheritance between classes
(in CLOS, the Common Lisp Object System), more elaborate structures and relations
among them are represented in Kenzo. For instance, the following class definition cor-
responds to the Kenzo definition of chain complex:

(DEFCLASS CHAIN-COMPLEX ()
((cmpr :type cmprf :initarg :cmpr :reader cmprl)
(basis :type basis :initarg :basis :reader basisl)
;; BaSe GeNerator
(bsgn :type gnrt :initarg :bsgn :reader bsgn)
;; DiFFeRential
(dffr :type morphism :initarg :dffr :reader dffril)
;5 GRound MoDule
(grmd :type chain-complex :initarg :grmd :reader grmd)
;5 EFfective HoMology
(efhm :type homotopy-equivalence :initarg :efhm :reader efhm)
;; IDentification NuMber
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
;3 ORiGiN
(orgn :type list :initarg :orgn :reader orgn)))

The relevant fields are cmpr, a function coding the equality between the generators
(recall that a chain complex in Kenzo is free, and so generated by a set); basis, which
stores information about the generators of the chain complex, in the form of a function
or also as the label :locally-effective; dffr represents the differential of the chain
complex, which, as stated in Definition [1.1.5, will be a graded group homomorphism (and
thus, its type in Kenzo is morphism; see below). The field efhm allows the system to
store information about homotopy equivalences, as presented in Definition [1.1.8, making
possible the relationship with a chain complex whose homology is directly computable.
The remaining fields are used to keep record of information about the inner organization
of the system, and will not be relevant for us.

Some facts can be observed from the previous definitions. First, the use of functional
programming, as far as some fields of these structures have functional nature, such as
cmpr or basis, in the form of primitive functions or lexical closures. Second, the very
different nature of the algebraic structures is coded following a similar pattern, allowing
the system to speed up numerous computations. Consequently, the field representing the

1.2 Computing Machinery 15

basis of the chain complex receives quite different values. Its value depends on the nature
of the algebraic structure we are dealing with. In cases where this algebraic structure is
finite, or effective in Sergeraert’s terminology, the field value will be a function assigning
to each dimension a list with the elements of the basis of the chain complex in such
dimension. Not every chain complex is effective, and sometimes infinite basis can appear
in some dimensions. Nevertheless, computations can be carried out also with these
structures. These structures are known as locally effective in Sergeraert’s terminology,
and the value of its basis field is equal to :locally-effective.

Chain complexes are the most simple algebraic structure implemented in Kenzo.
From them, by inheritance, are defined the rest of algebraic structures. From a practical
point of view, the class CHAIN-COMPLEX is extended by inheritance with new fields,
obtaining more elaborate structures. For instance, extending with a cprd field, we
obtain the COALGEBRA class from the CHAIN-COMPLEX class. Multiple inheritance is also
available in CLOS; for instance, the class SIMPLICTIAL-GROUP is obtained by inheritance
from classes KAN and HOPF-ALGEBRA.

Homomorphisms between algebraic structures, as introduced in Definition [1.1.6, are
one of the most used tools in Kenzo, since they allow the system to establish homotopy
equivalences, and thus, to compute the homology of some locally effective algebraic
structures in terms of the homology of some effective algebraic structures. In Kenzo
they are also defined as a class with name MORPHISM, which definition is as follows:

(DEFCLASS MORPHISM ()
;5 SOuRCe
((sorc :type chain-complex :initarg :sorc :reader sorc)
;5 TaRGeT
(trgt :type chain-complex :initarg :trgt :reader trgt)
;; DEGRee
(degr :type fixnum :initarg :degr :reader degr)
;35 INTeRnal
(intr :type intr-mrph :initarg :intr :reader intr)
;5 STRaTegy
(strt :type strt :initarg :strt :reader strt)
;5 CaLl NuMber
(??7-clnm :type fixnum :initform O :accessor ?77-clnm)
(?-clnm :type fixnum :initform O :accessor 7-clnm)
;; ReSuLTS
(rslts :type simple-vector :reader rslts)
;; IDentification NuMber
(idnm :type fixnum :initform (incf *idnm-counterx) :reader idnm)
;35 ORiGiN
(orgn :type list :initarg :orgn :reader orgn)))

The source and target of homomorphisms are explicitly stored in the fields sorc and
trgt. In the field degr, the degree of the homomorphism is stored (for instance, differ-

16 Chapter 1~ Preliminaries

entials have degree —1). The field intr contains the algorithm representing the homo-
morphism behaviour, and works in combination with the field strt, which determines
how the intr field must be applied to its arguments. The other fields are of internal use
for the system. For instance, the field rslts provides information about results already
computed to avoid repeating computations.

Kenzo is designed for computing with algebraic structures (and not for proving facts
with them). This influences the design of classes in the Kenzo system. In Section(1.3.2/we
will introduce the Isabelle representation of algebraic structures, and in Sections [3.5.2,
3.6.3, 3.7.3, and 3.8.2, different representations of homomorphisms will be considered
also in this sytem. There we will comment on the differences and similarities between
their representation in Kenzo and the ones introduced in Isabelle.

1.3 Deduction Machinery 17

1.3 Deduction Machinery

1.3.1 Basics on Isabelle

Information in this section has been mainly extracted from [Paulson, 1989,
Paulson, 1990a, Paulson, 1990b, Paulson, 1992, Nipkow et al., 2000,
Nipkow et al., 2002]. Isabelle is a generic theorem prover which historical origins
are the family of provers LCF (Logic of Computable Functions). These family of
provers sought a compromise between fully automatic theorem proving and simple
step proof checking. The LCF provers are usually developed in a meta-language which
allows the user to give a representation of the logic. The idea behind these provers is
that terms and formulas are computable data; then, proofs can be built in a forward
style, from the premises to the goal, and so inference rules are functions from theorems
to theorems. Proofs can be also built in a backwards style, starting from the goal. An
LCF tactic is then a function that reduces a goal to zero or more subgoals. When all
the subgoals have been solved, LCF can recover the proof in a forward style, yielding
the desired theorem.

Isabelle was developed by L. C. Paulson using the functional programming lan-
guage ML (more concretely, Standard ML) in an attempt to show that it was a prac-
tical alternative to Lisp. At the same time, new ideas and some experimental pro-
cesses (for instance, implementation of higher-order unification) were introduced to
overcome some of the difficulties found in the then existing LCF-style systems, mainly
HOL [Gordon and Melham, 1993], Nuprl [Constable et al., 1986] and the pioneer Edin-
burgh LCF [Gordon et al., 1979].

Even more ambitious, the intention was to build a generic theorem prover. To be
precise, the system should be based on a small set of rules, forming the meta logic of the
system (Isabelle/Pure), and new logics should be implemented on top of it. At present, it
provides implementations of, at least, various first-order logics, Zermelo-Fraenkel set the-
ory, higher-order logic and Scott’s logic of computable functions. The logic implemented
in Pure consists in a fragment of higher-order logic, with typed A-calculus, together with
implication (=), universal quantification (/\) and equality (=). A set of rules are also
provided representing introduction and elimination of the previous connectors.

Now, new object-logics can be implemented making use of the existing rules. The
elements that have to be defined to implement a new logic are types, constants and
axioms. From a syntactical point of view, the elements of the object-logics will be
mapped to elements of the meta-logic.

Our interest will be focused on the implementation of higher-order logic (HOL)
present in the standard distribution of Isabelle. As it is said in the Isabelle web page,
“Isabelle/HOL is currently the best developed object logic, including an extensive library
of (concrete) mathematics, and various packages for advanced definitional concepts like
(co-)inductive sets and types, well-founded recursion, etc”. This implementation is based
on the HOL system by Gordon (see [Gordon and Melham, 1993]), which itself tries to

18 Chapter 1~ Preliminaries

implement the ideas given in Church’s paper [Church, 1940]. More concretely, a simple
type theory is given, where function and product types are defined (as well as a bool
type for formulas). Then, logical connectives are defined; first, implication (—) and
quantification (V) (based on the definitions given in the meta-logic Pure), and then the
rest of logical constants and connectives, such as equality (=), True, False, negation,
conjunction, disjunction, existence, and so on, are defined in terms of the basic ones. A
concise description from the theoretical point of view of the HOL definition is given, for
instance, in [Paulson, 1990a]; details about implementation issues in Isabelle are exposed
in [Nipkow et al., 2000].

Isabelle/HOL has already shown its effectiveness for implementing some (non-
trivial) large proofs in mathematics. One of these examples can be found
in [Kammiller and Paulson, 1999], where a complete proof of the Sylow’s Theorem is
produced, making use of both arithmetic and abstract algebra concepts; another large
development in functional analysis can be found in [Bauer and Wenzel, 2000], where a
proof of the Hahn-Banach Theorem is implemented; one of the last examples of such
developments is a formalization of the prime number theorem (details can be found
in [Avigad, 2004]).

These examples, as well as some others in different theorem proving tools, have pro-
duced two effects. First, they have aroused an increasing interest from mathematicians
in the capabilities of mechanized reasoning. Second, a fast development of these tools
has been produced. In the case of Isabelle, its first versions were designed for backward
proving, starting from a goal and splitting it up into subgoals, that finally are matched
with the premises. Proofs were not very readable and far from the “human style”. The
Isar [Wenzel, 2002] extension to Isabelle eases the implementation of proofs in a readable
way, and not only in a backward style, but also building the goal in a forward direction,
starting from the premises. In addition to this, it provides the user with tools to trans-
late the Isabelle files into IXTEX files, allowing the user to obtain files where the lemmas
and their proofs are nicely displayed. The features offered by Isar, also for obtaining
KTEX versions of lemmas and proofs, are used in this memoir.

1.3.2 Structures in Isabelle

In this section, an introduction to the implementation of algebraic structures in Isabelle
is given. They will be intensively used in Section 3.5 and onwards. Some other necessary
concepts about Isabelle syntax will be also introduced for a better understanding of this
memoir.

In previous Sections [1.1.2 and [1.2.2, the importance of algebraic structures when
trying to define a mathematical setting has been pointed out. Their implementation
in theorem proving environments is a well-known problem. Most of the theorem prov-
ing systems offer an implementation of modules that can be used to this aim. In Is-
abelle/HOL the implementation of algebraic structures can be done in various ways.
Axiomatic classes [Wenzel, 2005] can be the first option considered, due to its simplicity

1.3 Deduction Machinery 19

and the easy way of working with them. Starting from a collection of axioms, proofs
in the created environment can be developed. The main disadvantage is that axiomatic
classes are not first class citizens of the system, and thus, working with them in gen-
eral is limited. A second option, and the one preferred here, is the use of record types
for encoding the operators of the algebraic structure; in addition, one must specify the
rules satisfied by the algebraic structure. Records can be implemented in the type sys-
tem of Isabelle/HOL, and therefore reasoning can be done with the operators of the
record structure, but also in a generic way, allowing the user to state general prop-
erties about the record structures. Two reasons made us choose the second option.
First, axiomatic classes are restricted to a single carrier structure, which means that
we could consider endomorphisms over a given group as an axiomatic class, but not,
for instance, homomorphisms in general between two groups. Our theorems deal with
various algebraic structures, their endomorphisms and homomorphisms among them,
and we considered record types more appropriate. A second reason can be also pointed
out. The implementation of algebraic structures in Kenzo, as exposed in Section [1.2.2,
is done through classes with fields representing the operators of the algebraic structure.
In the Isabelle/HOL type system there are no object-oriented features, but nevertheless,
record types resemble the notion of classes, and instances of the record types the one of
objects, and thus records seem to be the best way to represent algebraic structures in
order to maintain the similarity with Kenzo.

Here we follow the model of implementation of algebraic structures given
in [Kammiiller, 1999], and part of the notation and some conventions have been also
extracted from [Loeckx et al., 1996].

In Isabelle/HOL definition of sets over a generic type is available, and therefore, the
elements of a generic algebraic structure will be represented as elements of a type 'a set.
Here 'a represents a generic type in the Isabelle/HOL type system, that can be later
instantiated to more complex types, resembling the variable types in ML, whereas set
is a type constructor. Sets in Isabelle are simply predicates over types. The definition
of a set involves two steps; first it is declared of a certain type, and then its definition is
given through the collection of properties satisfied by the elements of the set. The main
operation then over sets is “membership”, whose type definition in the Isabelle/HOL
library is:

consts

op: = 'a=>"aset =>bool ((-/: -)[50,51]50) —— membership
syntax (zsymbols)

op: = 'a=>"aset =>bool ((-/€-)][50,51]50)

Let us observe that, in its type definition, the operation is polymorphic (since ‘a is
a generic type), and for any object x and a set A of the same type as z, the expression
x: A will be of type bool (depending on the premises, sometimes it could be proved to
be False or True). A syntactic equivalent for this operator will be the operator €, that
we also use in the sequel. Both operators are defined to be infix, and their precedence

20 Chapter 1~ Preliminaries

is 50 (in the Isabelle range, varying from 0, the highest, to 1000).

The equivalence between sets and predicates in the Isabelle/HOL logic is established
through the following axioms extracted from the Isabelle Set theory (in Isabelle notation,
braces are used to denote sets):

axioms
mem-Collect-eq [iff]: (a : {z. P(z)}) = P(a)
Collect-mem-eq [simp]: {z. mA} = A

The carrier of an algebraic structure is then represented through a term of type
'a set (more complex types can be used if needed; if we are implementing an algebraic
structure product of two algebraic structures, its type would be (‘a X’ b) set). The op-
erations of the algebraic structure will be defined over this set. Here, a first difference
with the Kenzo implementation is observed, due to the different type systems of Is-
abelle/HOL and Common Lisp. There, no type assignment was made for the carrier set
of the algebraic structures. The generic type 'a set plays in Isabelle the role of the pair
<carrier, equality> in Common Lisp, mentioned in Section 1.2.2.

An algebraic structure can be seen as a set of mathematical objects. First, we are
going to specify algebraic structures as abstract data types, and then a possible im-
plementation of these abstract data types in Isabelle will be introduced. Following the
definitions in [Loeckx et al., 1996], a loose specification is a pair (3, ®), where ¥ is a
signature and ® a set of formulas. We can specify an abstract data type through its loose
specification (actually, loose specifications are quite similar to the way algebraic struc-
tures are defined in Isabelle, since both definitions require a signature and a collection
of axioms). The signature ¥ = (.5, 2) will consist in the set of sorts S over which oper-
ations are defined, and 2 will be the set of operations with their arities. A syntactical
description of a data type D by its operations and formulas can be given as

signature D
x| € Al

T, € Ay

P

P
where A; represent the arities of the operations, with ¢ € {1,...,n}. The P; are the
formulas in which the operations x; can appear, with j € {1,...,m}.

Now we can associate to D the set of all models that satisfy both the arities and also
the formulas of the loose specification.

[[D]]E{((L’l,,xn)EAIXXAn|P1/\/\Pm}

1.3 Deduction Machinery 21

where in P; any of {z1,...,x,} can occur. This set of models is an abstract data type.

Data types are divided into simple data types or parameterized data types depending
on whether they are parameterized by other structures or not.

The data types we are dealing with are simple, and therefore we do not present here
the parameterized case (it can be found in [Kammdiller, 1999]). Simple structures will
then be represented as predicates over records. Record types are used as a template for
the set of operations 2 of the signature. They are provided with selectors, which are
projection functions enabling the reference to the constituents of a simple structure.

Records are not a primitive type in the HOL type system, but implemented through
tuples. The main difference to tuples is that the elements of a record are labeled with
the selectors which allow us to directly access to each component. Extensible records
are a generalization of records. They will be relevant for our work because they enhance
record types with parametric polymorphism and structural subtyping; in other words,
they model an inheritance mechanism among record types. They were first introduced
in Isabelle in [Naraschewski and Wenzel, 1998]. A scheme offers a way to refer to a
family of records. For instance, the scheme {x = a,y = b, ...} represents the family of
records with a field named x which value is a, and another field y which value is b. Thus,
both records {x = a,y = b} and {x = a,y = b,z = ¢} are instances of the previous
scheme. The same idea can be applied to types. We can define a type scheme as a record
type which enables to represent a family of types (and thus, providing the type system
with structural subtyping). The record type scheme {x :: A,y :: B,...} represents, for
instance, the record types {z :: A,y :: B} and {z :: A,y :: B,z :: C'}, offering a way to
get polymorphism. From this representation it can be inferred that multiple inheritance
will not be available, pointing out a new difference with the CLOS type system. Now
the use of records to implement signatures of simple data types will be illustrated, and
later the importance of extensible records to implement algebraic structures making use
of inheritance will be shown.

For the tuple of operations par = (z1,...,x,) of a simple data type we define an
Isabelle record type 'a par-sig as

record 'a par-sig =

_A{xyy Ay
Axn) i Ay
The underscore defines the arguments position for the field selectors of this record. For

example, if T" is a term of appropriate record type, i.e., a suitable n—tuple, we can select
the field z; of T' by T'.(x;).

The list of formulas ® characterizing an abstract data type is also given in terms of
axioms expressed in the Isabelle logic, which in our case is the implementation of higher-
order logic, HOL. These axioms will be the ones defining the predicate which distinguish
between the objects of the specified type which satisfy the given specification and the

22 Chapter 1~ Preliminaries

ones which do not satisfy it.

The representation of the models of a simple structure is given in the form of a
predicate over records, which due to the equivalence between predicates and sets, can be
also seen, with minor changes, as a set of records®; the record type defines the pattern
of the elements of the structure. An instance of a class in the Kenzo system would be
then identified with a distinguished element of this set of records.

For instance, the specification of a monoid G can be seen as a carrier set, 'a set,
together with a binary operation, mult, on this set, with the binary operation satisfying
associativity, and with a distinguished element, one, such that it is a unit for the binary
operation. With these requirements, the syntactical description of a monoid can be
defined as follows:

signature monoid
mult € carrier X carrier — carrier
one € carrier
Vx € carrier. rmult one =

Va,y, z € carrier .x mult(y mult z) = (z mult y) mult z

Therefore, the set of models associated to this example is formed by the elements with
the given arity that also satisfy the list of axioms:

[monoid] = {(carrier, mult, one) € (carrier — carrier — carrier) x (carrier) |
(Vx,y, z € carrier .x mult(y mult 2) = (z mult y) mult z)
A (Vx € carrier.onemult z = z)

A (Vz € carrier .x mult one = x)}

The implementation of algebraic structures in Isabelle can be done in a similar way as
it has been done for abstract data types. First, they have to be assigned a type corre-
sponding to the signature . The set of formulas ® will be identified with a collection
of axioms in Isabelle/HOL logic. The similarity between the specification and the Is-
abelle implementation will be observed in the case of monoids, whose specification has
been already given. Not every algebraic structure will be used on every approach (for
instance, in the symbolic approach exposed in Section [3.5, just the ring structure will
be used), but due to the close relationship among their definitions we have considered
more appropriate to present them together. Most of these definitions are extracted from
the Isabelle libraries dealing with Algebra, more concretely, they have been extracted
from theories Group and CRing developed by Clemens Ballarin (see [Isa, 2005]).

Definitions are based on the ones found in [Jacobson, 1995] and here in Section [1.1.2]
showing the similarities between mathematical definitions and the corresponding ones
in Isabelle/HOL.

LActually, in previous releases of Isabelle, algebraic structures were represented through sets of
records.

1.3 Deduction Machinery 23

record ’a partial-object =
carrier :: 'a set

First, a partial object type is declared as a record with one field, a carrier set, of
a generic type 'a. Let us observe that no operation has been declared for this object.
This partial object enables the definition of a membership predicate for the elements
of algebraic structures (see again the analogy with the pair <carrier, equality> in
Common Lisp definitions, presented in Section [1.2.2). Not every term of the specified
type ‘a has to be member of the algebraic structure. Therefore, algebraic structures
can be considered partial over their types. The consequences of this implementation
when dealing with functions between algebraic structures will be explained later in Sec-
tion [3.6.3. From this record type, by adding (making use of extensible records) a binary
operation, a semigroup record type can be defined:

record 'a semigroup = 'a partial-object +
mult :: ['a, 'a] => 'a (infix] @1 70)

The defined type ['a,”a] =>'a is short for ‘'a =>" a =>" a (and will be used indis-
tinctly in the sequel). The right hand side of every field of the record can include
additional information about infix notation, pretty print notation, or precedence related
to other operations, which will be valid inside of the locales environment. In the case of
the mult field of the record, the annotation declares the infix ® operator to be a special
symbol for the mult operator, and nested to the left. Then, if we are inside of a locale
where (G is a fixed term declared to be a semigroup, the expression a ® b ® ¢ stands for
mult G (mult G a b) c. A subindex allows the operator ® to appear indexed when we
are in a locale context where more than one structure has been fixed.

The binary operation can be defined to be closed over the elements of the carrier,
obtaining then a magma?:

locale magma = struct G +
assumes m-closed [intro, simpl:
[| z € carrier G; y € carrier G || ==> = ® y € carrier G

In Isabelle notation, [|Ry;...;R,|] is abbreviate for nested implication. Thanks
to the properties of locales, the semigroup record type scheme is directly inferred for
the parameter G in the magma definition. More information on locales can be found
in [Ballarin, 2004]. Here, we will restrict ourselves to comment only on the features
needed. Locales provide support for modular reasoning in Isabelle. As far as they are
named (e.g, magma in the previous case), they are persistent. Facts proved in a locale
context can be exported and used out of the locale. By now, it is enough to know
that the previous locale definition automatically introduces a couple of lemmas called

2In the sequel, pretty printing symbols as well as infix notation will be used.

2/ Chapter 1~ Preliminaries

magma-def and magma-axioms-def, allowing the user to unfold the list of axioms of
the magma definition. Furthermore, the locale definition provides us with a predicate
(called magma in this case) that allows the system to determine the objects having the
right type and satisfying the collection of axioms (in terms of abstract data types, this
predicate allows us to determine the models of the given specification).

Now, by adding associativity of mult to the already specified magma, we obtain a
semigroup (which is also assigned a semigroup record type, as far as it has, at least, a
mult operation).

locale semigroup = magma +
assumes m-assoc:
[| z € carrier G; y € carrier G; z € carrier G || ==> (zQy) R z=2Q (y ® 2)

Locales also allow us to invoke other locales, or in other words, to import in the
defined local context the conditions established in previous contexts. In the case of
semigroups, this feature is applied to the axioms, which are added to the ones stated for
magmas.

From the semigroup type definition, the monoid record type is defined:

record 'a monoid = 'a semigroup +
one :: 'a (11)

Now the similarities between the record definition with the given signature of the
monoid specification can be observed. Each operation of the signature can be identified
with one field of this record with identical arities. We have taken advantage again of
extensible records. The semigroup record type gives place to a scheme record type, that
can be later extended with new fields. The record type monoid is the same that will be
later used for groups.

The list of axioms given for the Isabelle characterization of monoids can be compared
with the list of formulas ® given in the specification of monoids previously introduced:

locale monoid = semigroup +
assumes one-closed [intro, simp|: 1 € carrier G
and [-one [simp]: x € carrier G==>1Q z =1
and r-one [simp]: x € carrier G ==>2 ® 1 =z

Groups will be also assigned a monoid record type. In order to give an axiomatic
characterization of groups, first the set of Units of a monoid® is defined:

constdefs

3Note the occurrence of the existential quantifier 3, which could place ourselves outside of construc-
tive logic.

1.3 Deduction Machinery 25

Units :: ('a, 'm) monoid-scheme => 'a set
Units G == {y. y € carrier G &
(3 x € carrier G. mult Gz y = one G & mult G y x = one G)}

Then, a group will be a monoid whose elements are all units, or following the defini-
tion of Units, whose elements are all invertible:

locale group = monoid +
assumes Units: carrier G C Units G

Abelian groups are also assigned a monoid record type. An abelian group is defined
as:

locale abelian-group = abelian-monoid +
assumes a-comm-group: comm-group (| carrier = carrier G, mult = add G, one = zero G |)

where the only axiom added to obtain commutative groups from groups is

m-comm: [| ¢ € carrier G; y € carrier G || ==>1Q y=y Q¢

The Isabelle definition of differential group (see Definition 1.1.3) was introduced in
our work. Its type definition is inherited from the one of monoid. A new field is added
representing the differential of the differential group:

record 'a diff-group = 'a monoid +
diff = 'a => 'a (differ1 81)

and it satisfies the following axioms, including the ones of abelian groups:

locale diff-group = abelian-group CC +
assumes diff-hom : diff CC € hom CC CC
and diff-nilpot : Vz. x € carrier CC ==> (diff CC (diff CC'z) = 0)

The differential must be an endomorphism of the abelian group satisfying that com-
posed with itself is null. As in the data structure for chain complexes used in Kenzo
(see Section [1.2.2), the definition of a differential group in Isabelle makes reference to
homomorphisms (since the differential must be such a structure).

The only algebraic structures besides the enumerated ones that will be used are
rings. Rings are not included in Isabelle in the same library as groups. However, their
implementation is based on the algebraic structures appearing there. The record type
declared for rings is obtained by extending the record type for monoids with a new
constant zero and a binary operation add:

26 Chapter 1~ Preliminaries

record 'a ring = 'a monoid +
zero :: 'a (O1)
add :: ['a, 'a] => 'a (infix] &1 65)

From the ring type definition, where an underlying monoid and an abelian group
can be found, the Isabelle type for rings could be thought of as a record inheriting
from the monoid and the abelian group types. This approach is not valid for the ring
type definition, since multiple inheritance is not possible in the Isabelle type system by
using extensible records; nevertheless, it is valid for the axiomatic definition. The ring
satisfies with respect to the multiplicative operation and the constant one the axioms of
a monoid, and with respect to the additive operation and the constant zero the axioms
of an abelian group. In addition to this, distributivity of the multiplicative operation
with respect to the additive one has to be satisfied. The collection of axioms which
defines a ring is given then by:

locale ring = abelian-group R + monoid R +
assumes [-distr: [| © € carrier R; y € carrier R; z € carrier R |]
==> 0y R2z2=2020Y Rz
and r-distr: [| © € carrier R; y € carrier R; z € carrier R |]
=>20@2dy) =202d2Q0y

In the previous code can be observed the advantage of working with parametric
polymorphism, which has permitted us to state the property monoid R, even when R
has a record type ring which is an extension of (but not equal to) the monoid record
type. The predicate monoid is defined for the record type monoid and for every record
type obtained from this one by extension.

A relevant feature of the implementation proposed for algebraic structures, already
pointed out, is that they have a generic type. The Isabelle type ‘a represents a variable
type that can be instantiated with more complex types (such as functional ones, for
instance). Taking advantage of this feature, the previous definition of ring will be used
in Sections 3.7 and [3.8 to implement rings of endomorphisms, with the endomorphisms
defined as objects with a record type, in the first case, and with a functional type in
the second one. In a more simple example, we can define a record with a carrier (for
instance, the generic set of type ‘a can be instantiated with the set of all the integers) and
the required operations (following with the example, 1, and usual product of integers).
The record in the example can be proved to satisfy the monoid axioms (in a quite
straightforward way):

lemma shows monoid (| carrier = UNIV | mult = op % , one = (1::int) |)
by (unfold monoid-def monoid-azioms-def semigroup-axioms-def magma-def) (simp)

Once we have proved this record to satisfy the axioms of some algebraic structure
of the Isabelle library, we will have the chance to apply every proved lemma for this

1.3 Deduction Machinery 27

algebraic structure to the structure we have defined. The set of all integers, with the
suitable operations, can be also proved to be a ring, but even this proof, where several
basic facts about the integers are available in the Isabelle library, requires a greater
proving effort than the previous one about the monoid. This fact could be illustrative
of the complexity of such a proof when we choose as carrier set more complicated terms,
such as functional or record ones.

Some other Isabelle features and properties will be relevant for our work. For in-
stance, representation of functions and the principle of extensionality, as implemented in
Isabelle, will greatly influence on the representation of homomorphisms. We considered
more appropriate to introduce these questions in Chapter 3; first, in order to preserve
the coherence with Sections [1.1.2, [1.2.2) where algebraic structures have been defined
in mathematical terms, implemented in Kenzo and in Isabelle. Second, because some
alternatives to the implementation of functions will be given in Sections 3.7/ and 3.8,
and thus we considered that introducing the details about the implementation found in
Isabelle also in the same chapter would ease readability.

Chapter 2

The Basic Perturbation Lemma

In this chapter a detailed proof of the Basic Perturbation Lemma, which can be seen as
a tool for the computation of homology groups, will be given.

2.1 Statement of the BPL

As announced in Section [1.1.1, a particular case of homotopy equivalence is introduced
here:

Definition 2.1.1. Given two chain complexes (Dx,dp,) and (Cx,d¢,), a reduction
between them is a triple of homomorphisms (f, g, h): (Dx,dp,) = (Cx,dc,) satisfying:

1. The components f and g are chain complex homomorphisms of degree 0,
[+ (Dx,dp,) — (Cx,dc,) and g: (Cx,dc,) — (Dx,dp,).

2. The component h is a homotopy operator on Dy, that is to say, a graded group
endomorphism of degree +1.

3. And the following relations hold:
(a) fg=idcy:

(b) gf -+ dD*h + th* = idD*;

(C) fh’ - OHOm(D*,C*);

(d) h.g - OHom(C*,D*);

(e) hh = OEnd(D*)-

Definition 2.1.2. Let (Dx,dp,) be a chain complex. A perturbation of the differential
dp, is a graded group endomorphism dp, : Dx — Dx (degree -1) such that dp, + dp, is a
differential for the graded group Dx. A perturbation dp, of dp, satisfies the nilpotency
condition with respect to a reduction (f,g,h): (Dx,dp,) = (Cx,d¢,), whenever the

29

30 Chapter 2 The Basic Perturbation Lemma

composition dp,h is pointwise nilpotent, that is, given x an element of Dy, there exists
a natural number n such that (dp,h)"(z) = 0, where n can depend on each = in Dx.
The same property also holds for the composition hdp,.

Now, the definition of the degree of nilpotency is introduced.

Definition 2.1.3. Let f be an endomorphism of a chain complex (Dx,dp,) satisfying
the nilpotency condition, that is, for every x € Dy there is an integer n > 0 verifying
that f"(x) = Op,. Then, the minimum integer n (which depends on z) satisfying that
f*(x) = 0p, is called the degree of nilpotency for f and x, and will be denoted by n(z).

Note that if ny(z) is the degree of nilpotency of x for an endomorphism
f: (Dx,dp,) — (Dx,dp,), obviously f™(x) = 0p, for all m > ny(z).

The following proposition is needed to ensure the soundness of the statement of the
Basic Perturbation Lemma.

Proposition 2.1.4. Let (f,g,h): (Dx,dp,) = (Cx,dc,) be a reduction between two
chain complexes and dp, a perturbation of dp, satisfying the nilpotency condition with
respect to the reduction. Then both Yy ;= (=1)"(0p,h)" and 3 oo (—1)"(hdp,)" denote
endomorphisms of degree 0 of the graded group Dx.

Proof. First, since dp, satisfies the nilpotency condition with respect to (f, g, h), the
series > (=1)(0p,h)" denotes always a finite sum, when applied to a given element x
n D*

Let ¢ be Y2 (=1)"(dp,h)". Let z,y € D;, and let +p, be the additive operation of
the i-th abelian group of the graded group Dx. From the definition of endomorphism,
it must be verified that ¢(x +p, y) = ¢(x) +p, é(y).

In order to do so, it can be observed that the degree of h is +1 and also from
the definition of perturbation, the degree of dp, is —1. Therefore, the degree of the
combinations hdp, and dp,h is the sum of both degrees, which in this case yields 0; now,
the degree of (dp,h)™ and (hdop,)™ with n € N will be also 0. Taking into account that
dp, satisfies the condition of local nilpotency with respect to (f, g, h), there must exist
a natural number n;,, 4(z +p, y) such that (6p,h)’ (z+p, y) = Op,, Vi = ns, n(z +p, y)-

There must be also natural numbers ns,, () and ns, x(y) such that ¢"5D*h(x)(:c) = Op,

and ¢R6D*h(y)(y) = Op,. Let us define k = max{ngD*h(x +p, Y), n(;D*h(x), n(;D*h(y)}, and
then:

k
O(z +p, y)= Z(—l)f'(ég*h)f(a: +,Y)
= (=1 (0p.h)’ (@) +p, Z(—l)ﬂ(ap*ww

=¢(x) +p, 3(y)

2.1 Statement of the BPL 31

From the definition of ¢ is also clear that, for every degree i, ¢(0p,) = Op,. Thus, ¢ is
an endomorphism.

The same ideas can be also applied to > ;= (—1)"(hdp,)’, once we have proved that
the composition hdp, satisfies the nilpotency condition. Let x be in Dx; from the nilpo-
tency condition satisfied by dp,h, there must exist a ¢ such that (6p,h)*(dp, (z)) = Op,.
Now we choose a number j greater than i. The composition (hdp,)’(z) can be seen as
h(6p,h)?’~1(dp, (x)), which, taking into account that j — 1 is greater than or equal to i,
is equal to Op,. The remaining part of the proof is similar to the one given for dp,h.

|

The statement of the BPL is the following:

Theorem 2.1.5. Basic Perturbation Lemma. Let (f,g,h): (Dx,dp,) = (Cx,dc,)
be a chain compler reduction and dp,: Dx — Dx a perturbation of the differential dp,
satisfying the nilpotency condition with respect to the reduction (f,g,h). Then a new
reduction (f',g',h'): (Dk,dp,) = (C, dpy,) can be obtained where the underlying graded
groups Dx and DYy (resp. Cx and Cl) are the same, but the differentials are perturbed:
dp, = dp, +6p,,dc, = de, +0c,, and oc, = fop,bg; ['= [fo; ¢ = g; K = ho, where
¢ =>220(=1)'(0p.h), and o = 377 (—1) (hép,)".

The BPL is a central result in algorithmic homological algebra (in par-
ticular, it has been intensively used in the symbolic computation systems
EAT [Rubio et al., 1997 and Kenzo [Dousson et al., 1999]). It first appears
in [Shih, 1962] and it was rewritten in modern terms in [Brown, 1965]. Since
then, plenty of proofs have been described in the literature (see, for in-
stance, |Gugenheim, 1972], [Barnes and Lambe, 1991], [Rubio and Sergeraert, 1997]).
In the next section we briefly illustrate the importance of the BPL.

2.1.1 Topological motivation

Although the BPL statement is established in purely algebraic terms, the very essence
of the result stems from geometry, and more concretely from simplicial topology. The
algebraic notion of perturbation is the counterpart of the geometric notion of torsion.
To be precise, two spaces F' (for fiber) and B (for base) can be glued together through a
twisting function T, giving rise to a new space, called total space and denoted by F' x, B.
This is the notion of simplicial fibration, combinatorial version of the topological concept
of fibre bundle. (In this section, every notion and result can be found, except if explicitly
stated, in [May, 1967].)

Let us explore first the case of a non-twisted product ' x B, that is to say, the
case of the cartesian product of two spaces. The bridge between Geometry and Algebra
(in other words, the key brick of Algebraic Topology) is the notion of chain complex
associated to a topological space. If X is a space, its associated chain complex is usually
denoted by C(X). A natural question to be asked is which is the relation between the

32 Chapter 2 The Basic Perturbation Lemma

chain complex C'(F' x B) and the complexes C'(F') and C'(B). In the algebraic category
of chain complexes, there exists a notion of product: the tensor product, denoted by the
symbol ®. Then a well-known result due to Eilenberg and Zilber gives explicit formulas
describing a reduction from C'(F x B) to C(F) ® C(B).

Now, the twisting function 7 defining the fibration F' x . B from the cartesian product
F x B, also defines an algebraic perturbation on the chain complex C(F x B). This
perturbation is locally nilpotent with respect to the Eilenberg-Zilber reduction, and
therefore the BPL can be applied. In this way, the twisted Filenberg-Zilber theorem is
proved, giving a reduction from C'(F %, B) to C'(F)®,C(B), that is to say, to a perturbed
tensor product of C'(F') and C'(B). In this simple way, the BPL enables to describe the
homological information of the total space of a fibration in terms of the chain complexes
of the fiber and the base space.

This appealing example of the BPL power can be considered, in fact, as the result
leading to the very discovering of the perturbation machinery. Historically, this technique
seems to be found for the first time, in an unstructured way, by Shih in [Shih, 1962],
just to deal with the twisted version of the Eilenberg-Zilber theorem. Later on, the
BPL has been systematized by R. Brown [Brown, 1965], and independently by Gugen-
heim |Gugenheim, 1972], always to cope with this Eilenberg-Zilber application.

2.1.2 Algorithmic interpretation

The relevant part from the Computer Algebra perspective is the algorithmic interpreta-
tion of the BPL. To explain this issue, certain preliminaries are needed.

A central problem in computational Algebraic Topology is to calculate, by means of
a computer, homology groups of topological spaces. By definition, the homology group
of a space X is the one of its associated chain complex C(X). In the case where X
is presented as a simplicial set and there are finitely many non-degenerate simplexes
at each dimension, C'(X) can be described as a graded free abelian group with finitely
many generators at each degree. In this case, computing each homology group can be
translated to a problem of diagonalizing certain integer matrices. So, we can assert that
homology groups are computable in this finite type case.

Nevertheless, things become more interesting in Algebraic Topology when a space X
is not of finite type (in the previously evoked sense) but it is known that its homology
groups are of finite type. Then, it is natural to study if these homology groups are com-
putable. Sergeraert introduced by 1985 a theory, called effective homology, in order to
establish a framework where this computability question can be systematically studied.

For the sake of simplicity, we consider that a space X has effective homology if a
reduction from C(X) to a finite type chain complex is explicitly known. (This is a
simplified version, since the more general notion of strong homotopy equivalence should
be considered; in addition, very precise computability conditions must be imposed to
each ingredient in the definition; see [Rubio and Sergeraert, 2002].)

2.1 Statement of the BPL 33

Since if there exists a reduction between two chain complexes, the corresponding
homology groups are isomorphic (see Theorem [1.1.9)), several consequences follow from
the definition of X as a space with effective homology. First, the homology groups of X
are of finite type. Second, these homology groups are computable, independently of the
finite or infinite nature of the initial space X.

Thus, the fact of determining that a space is with effective homology provides an
algorithm to compute its homology groups. This is the strategy systematically used in
the Kenzo system.

Now, we can look again at the BPL. It is worth noting that in the chain complex
(Cx,de,) (this chain complex will be usually named the “small” one of the reduction,
being (Dx,dp,) the “big” one) only the differential is changed after the perturbation
process. In particular, if C'x was of finite type in the input, then the corresponding chain
complex will continue to be of finite type in the output. In other words, the BPL can
be interpreted as an algorithm computing a chain complex with effective homology from
another chain complex with effective homology (plus a locally nilpotent perturbation).
The reason for this result is that the statement of the BPL itself describes the manner
of constructing in an algorithmic way (by means of the series ¢ = > (—1)"(dp,h)")
the ingredients of the output reduction. By using the terminology of Chapter |4, we can
say that the BPL has a constructive statement.

2.1.3 Application to Computer Algebra in Algebraic Topology

As applications of this algorithmic interpretation of the BPL, it turns out that the most
usual spectral sequences in Algebraic Topology can be converted (through convenient
BPL instances) into usable algorithms. Indeed, the effective Serre spectral sequence
allows the computer to calculate the effective homology of the total space F' x.,. B of a fi-
bration, in terms of the effective homology of F' and B [Rubio and Sergeraert, 2002].
Just as another example, the effective Filenberg-Moore spectral sequence computes
the effective homology of the fiber F' from the effective homology of F' x, B and
B [Rubio and Sergeraert, 1988]. These effective versions of spectral sequences, as imple-
mented in Kenzo [Dousson et al., 1999], are used to compute the homology of iterated
loop spaces and some homotopy groups.

To conclude, the BPL is the most important algorithm in Kenzo (as the most frequent
in central parts). It allows the programmer to work in a very high conceptual level, quite
close to the standard way of working of topologists. Finally, both the complexity of the
code (see the corresponding Kenzo fragment in Chapter 4, Figure [4.1)) and its relevance
from a practical point of view justify the decision of choosing the BPL as a case study
for our approach to mechanized reasoning in Algebraic Topology.

34 Chapter 2 The Basic Perturbation Lemma

2.2 A detailed proof of the BPL

As it has been just explained, the Basic Perturbation Lemma is a central result in Homo-
logical Algebra and it can be also interpreted as an algorithm which offers a constructive
method to determine homology groups of chain complexes (linking infinite chain com-
plexes with chain complexes of finite type).

At a first sight, it could be thought that, as far as the theorem defines how to
build a new reduction between two chain complexes, the proof could just try to check
that this new reduction satisfies the conditions of reduction stated in Definition 2.1.1.
Nevertheless, as the literature has shown, the direct approach is too complicated.

The proof exposed in this section follows the one in [Rubio and Sergeraert, 1997], and
has two different parts; the first one is devoted to the work with the series (that could be
also named the “analytic” part), and the second one mainly works with structures and
properties from Homological Algebra (and could be defined as the “equational” part).
By introducing the identities obtained in the first part of the proof in the second part,
a complete proof of the BPL is obtained. The second part of the proof is divided into
six lemmas which combined in a suitable way produce the complete proof of the BPL.

Part 1. Let ¢ be the series Y .oy(—1)"(hdp,)". From the BPL hypotheses, the following
equations are proved: ¢h = hiy; ép,¢ = Yop,; ¢ = idp, —hép,¢ = idp, —phdp, =

Part 2. Then, and by only using the previous equations for ¢ and ¢, the BPL conclusion
18 proved.

The reason to divide the proof into two parts is the very different nature of the proofs
that appear in the lemmas of each part. The proofs in Section [2.2.1, corresponding to
Part 1, are based on handling of formal series. On the other hand, the proofs of the
lemmas in Section 2.2.2, corresponding to Part 2, are of algebraic nature, and they
involve Homological Algebra structures, such as chain complexes and reductions, that
can be avoided in the first part. Following these ideas, we will introduce in Section 2.2.1
four lemmas expressing identities between homomorphisms and formal series which will
be needed in Section 2.2.2. In Section 2.2.2, six lemmas related to Homological Algebra
using the identities proved in Section 2.2.1/ will be proved, which will be finally combined
to produce a structured proof of the BPL.

This separation will allow us to deal with different problems in the different stages
of the later implementation of our proof in a theorem prover. Some reasons have led us
to propose a so detailed proof of every lemma, much more detailed than in the usual
style these proofs would have in a standard mathematical text:

1. A proof as close as possible to the one that will be introduced (or implemented) in
the theorem prover is intended. Details about how mathematical objects are im-
plemented in a concrete theorem prover will not be commented on in this chapter,

2.2 A detailed proof of the BPL 35

and we will focus our attention on them later, but every non trivial step of the
proof will have associated a procedure (in the form of a proposition or a previous
result) useful to reach the needed goal (the following step).

2. This semi-formalized style of presenting proofs will be helpful to estimate the
complexity of the formalized proofs in terms of simple steps.

3. The mathematical proofs will give us an approximation of how close we are to the
theorem proving languages based on tactics, offering us valuable information to
determine which language is more suitable for our work.

4. The mathematical proofs and the steps of these mathematical proofs will determine
to some extent the infrastructure needed in the theorem prover, that we will have
to produce in a later stage of our work. Libraries will have to be created (or maybe
adapted from the existing libraries in the theorem prover) depending on what kind
of reasoning we need in our proofs.

at

. These highly detailed proofs will offer information about some steps that usually
are forgotten in the proofs of the BPL in the literature and that are needed when
a mechanized proof is intended.

6. The detailed mathematical proofs are useful to detect the possible problems ap-
pearing later in the implementation in the theorem prover, and also allow us to
take in advance some decisions about the design of the structures involved in the
proofs.

In the following sections of this chapter, we intend to produce a mathematical proof of
the BPL satisfying all these premises; some comments will be added to remark when
these goals have been reached.

2.2.1 A detailed proof of the BPL: the series

The lemmas and proofs appearing in this section are mostly based on formal infinite
series. Two functional series whose terms satisfy a nilpotency condition are introduced;
these two series define two homomorphisms between graded groups and the goal will
be to prove some identities where these homomorphisms appear. The properties of the
homomorphisms, and not the formal series, will be used for the second part of the proof
of the BPL (see Section 2.2.2)) in order to define the output of the algorithm associated
to the BPL, i.e., a reduction between chain complexes?.

The definitions introduced in Sections1.1.1land 2.1 will be used in the following state-
ments and proofs. The complete proof of the BPL will be given later in Lemma 2.2.20
after the introduction of the preliminary lemmas. Now, Lemmas 2.2.1 and 2.2.2 will be
proved; their results will be used for proving Lemmas 2.2.3 and 2.2.4.

LAs it was mentioned before, the BPL can be seen as an algorithm with a reduction and a pertur-
bation as input and a new reduction as output.

36 Chapter 2 The Basic Perturbation Lemma

Lemma 2.2.1. Giwen a reduction (f,g,h): (Dx,dp,) = (Cx,dc,) and a perturbation
Op, of the differential dp, satisfying the nilpotency condition with respect to the reduction
(f,9,h), the degree of nilpotency of every x € Dx for dp,h, ns, n(z), is greater than or
equal to the degree of nilpotency of h(x) for hip,, nusp,, (h(z)).

Proof. Let x be an element of Dx; let us consider h(z), which is also an element of D,
and let ns, n(z) be the degree of nilpotency of = for dp,h and nps, (h(r)) the degree

of nilpotency for hdp, of h(x). We prove that whenever (5D*h)n5D*h(x)(x) = Op,, then
(hp,)"*><"") (h(x)) = Op,:

(h6p,) 2" (h(2)) = h(5p,h)"P=" 7 () (by applying associativity)

= h(0p,) (from the premises)
= Op, (since h is a endomorphism)
And therefore, the coefficient nys,, (h(r)) is smaller than or equal to ns, n(z). [

The hypotheses “let (f,g,h): (Dx,dp,) = (Cx,d¢,) be a reduction between chain
complexes” and “let dp, be a perturbation satisfying the nilpotency condition with
respect to the reduction (f, g, h)”, introduced in Lemma 2.2.1 and in the BPL statement
are also needed in most of the results of this section, and we will abbreviate them by
simply writing “under the BPL hypotheses”.

Lemma 2.2.2. Under the BPL hypotheses, the degree of nilpotency of every x € Dx
for hop,, nnsp, (), is greater than or equal to the degree of nilpotency ns,_n(6p.(z)) for
dp,h.

Proof. Let x be an element of Dx; let us consider dp, (z), which is also an element of
D, and let ns, (dp,(z)) be the degree of nilpotency of dp, (x) for dp,.h and nys, ()

the degree of nilpotency for hdp, of z. We prove that whenever (hép,)P =) (x) = Op,,
then (5p,)"0+ “(8p, () = Op,:

(p,h)"%2+ D (bp, (x)) = dp. (hdp,) ">+ (x) (by applying associativity)

=6p,(0p,) (from the premises)
= Op, (since h is a endomorphism)
Therefore, the coefficient nys,, () is greater than or equal to ns, n(dp.(z)). |

The lemmas we are now introducing will allow us to produce the proofs for the lemmas
in Section 2.2.2 avoiding the presence of formal series. They express some equalities
between graded group homomorphisms; another reason to extract them from the second
part of the proof of the BPL that we will give in Section 2.2.2] is that explicit reference

2.2 A detailed proof of the BPL 37

to concrete structures of Homological Algebra appears neither in their statements, nor
in their proofs.

Let ¢ and ¢ be > > (—1)"(hdp,)" and Y .2 (—1) (dp,h)", respectively, as defined in
the BPL statement.

Lemma 2.2.3. Under the BPL hypotheses, 1h = ho.

Proof. Let x be an element of Dx. We have already proved in Proposition 2.1.4/ that the
formal series defined by both 1 and ¢ are endomorphisms of the graded group Dx, and
h is an endomorphism of Dx too. We prove that, for any x in the graded group Dx, the
two compositions produce the same result:

o0

Phla) = (3_(=1)'(hdp.))h(x) (2.1)
= h(z) — (hdp,)h(x) + ...+ (=1)" 0 B (g ymon D)y (2.2)

) —
= () — h(0p,h) () + ...+ (=1)" 0 PO gy pymon D @y (2.3)
—h¢<x> (2.4)

Identity 2.1 is obtained by unfolding the definition of .
Identity 2.2 is obtained thanks to the condition of local nilpotency applied to h(x).
Identity 2.3 is obtained by associativity.

Identity 2.4/ is obtained from the definition of ¢ and introducing Lemma 2.2.1.]

Lemma 2.2.4. Under the BPL hypotheses, dp, v = ¢dp, .

Proof. We apply the same idea introduced in the previous proof:

[e.9]

0. /(2) = 3. (3_(=1)'(hdn.))() (2:5)
= 5p, () = 8p, (hW6p,) () + ... + 6p, (—1)™ 0 (ng)00,) () (2.6)
= 0p, (2) — (0. h)0p, () + ...+ (=1)0 D (6, h)™ 0 D, () (2.7)

Identity 2.5 is obtained by unfolding the definition of .

Identity 2.6/ is obtained thanks to the condition of local nilpotency applied to x.
Identity 2.7 is obtained by associativity.

Identity 2.8 is obtained from the definition of ¢ and introducing Lemma 2.2.2. |

38 Chapter 2 The Basic Perturbation Lemma

The following lemmas will be also useful for the final proof of the BPL. They estab-
lish equational relations among the different endomorphisms (including the previously
defined series ¥ and ¢) appearing in the statement of the BPL. Previous Lemmas 2.2.3
and 2.2.4' will have to be used in the proofs of the following ones:

Lemma 2.2.5. Under the BPL hypotheses,
¢ =idp, —hép,y = idp, —Yhdp, =idp, —h¢dp,.

Proof. Let x be an element of Dsx, and nps, (v) and ns, n(z), respectively, the
degree of nilpotency for hép, and dp,h of =x. Then we choose an integer

k > max{nnsp,, (), 16, n(2)}:

k
U(x) = Z(—l)i(h(SD*)i(x) (unfolding the definition of 1))
=0
k
=idp,(x) — Z(—l)i(hép*)i(x) (extracting the first term)
i=1
k—1
=idp,(z) — (hép,) Z(—l)i(hég*)i(m) (factorizing the general term)
i=0
=idp,(x) — hép,¥(x (introducing the definition of v
and k > maX{nh(gD* (IL‘),?’L(;D*h(I)})
= idp, (z) — h¢op, () (by Lemma 2.2.4)
= idp,(x) — Yhdp,(x) (by Lemma 2.2.3)

The integer k has to be chosen strictly greater than both nys, () and ns,_n(z) because
otherwise the series representing ¢ or ¢ could be incomplete. We have proved that the
four equations represent the same endomorphism of Dy. [

Lemma 2.2.6. Under the BPL hypotheses,
¢ =idp, —dp,h¢ =idp, —pdp, h = idp, —p,Yh.

Proof. The proof is similar to the previous one; let x be an element of Dy and we choose

2.2 A detailed proof of the BPL 39

an integer k > max{ns,_n(z), npspy, (7)}:

k
() = Z(—l)i((SD*h)i(x) (unfolding the definition of ¢)
=0
=idp,(x) — Z<—1)i(5p*h)i($) (extracting the first term)
i=1
k—1
=idp,(z) — (6p,h) Z(—l)i(éD* h)'(x) (factorizing the general term)
=0
=idp,(z) — dp, ho(x (introducing the definition of ¢
and k > max{n(;D*h(x), Nhsp, (2)})
= idp, (z) — dp,Yh(z) (by Lemma 2.2.3)
=idp, () — ¢dp,h(x) (by Lemma 2.2.4)

Therefore, the four equations represent the same endomorphism of the graded group
Dx. |

The equalities obtained in Lemmas 2.2.3, 2.2.4] 2.2.5 and 2.2.6/ are the only tool
related to the series that will be used for the second part of the proof of the BPL. We
have avoided the use of formal series for the rest of the proof, as will be seen when we
develop the complete proof of the BPL in Lemma 2.2.20. Let us observe, in relation to
the nature of the given proofs of Lemmas 2.2.3, 2.2.4, 2.2.5 and 2.2.6, that no explicit
reference to the properties of the special algebraic structures appearing in the statements,
such as chain complexes or graded groups, is needed. The proofs can be made in a generic
setting, for instance, any ring of endomorphisms, that could be later instantiated to our
concrete ring End(Dx).

2.2.2 A detailed proof of the BPL: the lemmas

In this second part of the proof of the BPL, the homomorphisms ¢ and v, representing
the formal series from Section 2.2.1, will be used, as well as the properties we have
proved in Lemmas 2.2.3, 2.2.4, 2.2.5 and 2.2.6.

The goal in this second part consists in, just with the equalities of the first part,
building the new reduction (f’, ¢, h’): (D%, dp,) = (Ck,dcr) stated in the BPL. This
will complete the proof of the BPL. The proof will be divided now into six different
lemmas. These six lemmas have constructive statements (on this notion, see Chapter 4)),
in the sense that they produce intermediate results, which combined in a suitable way
give a complete proof of the BPL. These “constructive” lemmas recall the algorithmic
nature of the BPL. Three main reasons to divide the proof into the six lemmas can be
mentioned:

1. To obtain a better understanding of the proof.

40 Chapter 2 The Basic Perturbation Lemma

2. To produce lemmas with enough information to be meaningful by themselves,
tackling the different difficulties of the proof separately.

3. To obtain guidelines to translate this part of the proof to a mechanized reasoning
system.

The lemmas have been stated in a generic way (in the sense that they use as many
premises as possible from the BPL) and the proofs have been produced in natural lan-
guage but with a level of detail that tries to be close to the expected one in a theorem
prover. The definitions and propositions needed for each lemma will be stated right
before the lemma.

Definition 2.2.7. Let Cx be a graded group and f € End(Cx) of degree 0; f is said to
be a projector if ff = f.

Proposition 2.2.8. Let Cx be a graded group and let f € End(Cx) be a projector.
Given x € im f, f(x) = x.

Proof. Let x be an element of im f; there exists a y in Cx such that f(y) = x; then

f(z) = ff(y) = f(y), since f is a projector; therefore, f(x) = f(y) and finally, f(z) = x.
|

Proposition 2.2.9. Given two chain complexes (Dx,dp,) and (Cx,d¢,), and a chain
complex homomorphism f: (Dx,dp,) — (Cx,dc,), the set ker f together with the inher-
ited operations from (Dx,dp,) is also a chain complex.

Proof. First, it must be proved that ker f is closed under the operations on Dx. Let k
be the degree of the homomorphism f. Given any x, y € ker f;, let +p, be the binary
operation of the i-th abelian group of the chain complex (Dx,dp,). Then, by using that
;s an abelian group homomorphism, f; (z-+p,y) = fi(2)+c,, fi(y) = 06,ys+ 100ty =
Oc,,,- It is also clear from the definition of homomorphism that f;(0p,) = Oc,,, -

Now, in order to have a chain complex structure, it must be also seen that dp, is a
differential for the set ker f with the operations of Dy, so it must be an endomorphism
of ker f satisfying that Vz € ker f, dp, (dp,(x)) = Op,.

First, dp, is an endomorphism of ker f since given any x € ker f;,
fidp,. () = dc,,, fi(x) and being = € ker f;, this is d¢,,, (0c,,,) = O¢,,, from the prop-
erties of d¢, like endomorphism of the graded group Cl.

The differential condition is satisfied as far as ker f C D,, and then every element in
ker f will be such that dp, (dp,(x)) = Op,. Then (ker f,dp,) is a chain complex. [|

Remark. In the previous proof, dp, denotes both the differential of the graded group
Dy and also the differential for the graded subgroup ker f of Dx. In the second case,
the differential really refers to (dp,)|erp), but this notation is too verbose and could be
miusleading, being too different from usual notation in mathematical texts. Therefore,

2.2 A detailed proof of the BPL 41

we will use the notation displayed in the previous proof. Nevertheless, behind this nota-
tion there is a major question when implementing proofs in a theorem prover. When a
homomorphism is represented in a theorem prover with its domain and codomain, modi-
fying them requires special tools and explicit processes, which are skipped in the standard
mathematical presentations. This will be explicitly treated in our third approach (see
Section 3.7).

Proposition 2.2.10. Given two chain complezes (Dx,dp,) and (Cx,dc,) and a chain
complex homomorphism f: (Dx,dp,) — (Cx,dc,), the set im f together with the inher-
ited operations of (Cx,dc,) is a chain complex.

Proof. First, it must be proved that im f is a closed set under the operations of Cl.
Let k be the degree of the homomorphism f. Given any w, y in im fi g, let +¢,,, be
the inner operation of the underlying abelian group of the chain complex (Cx,d¢,).
From the definition of the set im f, there should exist 2/, ¥’ in D; such that f;(2') =z
and fi(y') = y. Now in order to see that +¢, is closed we have that x 4¢,,, y =
fi(z") +¢,.,, fi(y)) = fi(#' +p, y'). Therefore, v +¢,,, y € im fi .

In order to have a chain complex structure, it must be seen that d¢, is also a differ-
ential for the set im f, so it must be an endomorphism of the graded group im f such
that dD*dD* = OEnd(D*)-

First, it is an endomorphism of im f, since given any element x in im f;, let us
consider an element z’ in D; such that fj(2') = x; then it follows that d¢,,, () =
de,., fi(z') = fidp,(2'), and being dp,(2') in D;, fidp,(z') again is an element of im f;,
and therefore d¢, is an endomorphism for im f.

The differential condition is proved provided that im f C C,, and then for every
element in im f will be satisfied that dp,dp,(z) = Op,. Then (im f,dc,) is a chain
complex (in the following, notation proposed in the previous remark will be used), and
a chain subcomplex of (Cx, d¢,) . |

Lemma 2.2.11. Let (f,g,h): (Dx,dp,) = (Cx,dc,) be a chain complex reduction.
Then, there exists a canonical and explicit chain complex isomorphism between (Dx, dp,)
and the direct sum (ker gf,dp,) ® (Cx,dc,). In particular, w: (Cx,dc,) — (imgf,dp,)
defined by z — g(z) and w=': (imgf,dp,) — (Cx,dc,), defined by x — f(x), are

mverse isomorphisms of chain complezes.

Proof. In the proof m will denote the composition gf; first, it can be observed that 7 is
a projector. From Definition 2.1.1, if (f, g, h) is a reduction from (Dx,dp,) to (Cx,d¢,),
then fg = ide,, and therefore 7m = gfgf = g(fg)f = m; this property will be used later
in the proof.

From Propositions 2.2.9 and 2.2.10], it can be observed that both (kern,dp,) and
(imm,dp,) are chain complexes, since 7: (Dx,dp,) — (Dx,dp,) is a homomorphism
between chain complexes (7 is the composition of two such homomorphisms).

42 Chapter 2 The Basic Perturbation Lemma

Now, there is an isomorphism

0 (D*7dD*) - (kerﬂ-7dD*> © (imﬂ-adl)*)

defined by o: x — ((dp,h + hdp,)(z),7(x)) which has as inverse isomorphism o',

defined as the sum of the two components of a pair, (z,y) — = + y. We will now prove
that both compositions oo~ and o~ 'o are equal to the identity, and therefore they
define a bijection between (Dx,dp,) and (kerm,dp,) & (im7,dp,) considered as sets.
Later it will be proved that ¢ is a chain complex isomorphism.

1. o1

o = id(p,dp,); given x € Dx

o to(z) = o7 ((dp,h + hdp,)(x),gf(x)) (from the definition of o)

= (dp,h + hdp,)(z) + gf (x) (from the definition of o~ ')

= id(py.ap,)(7) (by applying the reduction prop. (b)
stated in Definition 2.1.1))

2. 00" = id@errdp,)a(immdp,): given z € (kerm, dp,) ® (imm,dp,), z = (1, 22),

(oo™)21, 29) = () + 22) (from the definition of o)
= ((dp,h + hdp,)(x1 + x2), (21 + x3)) (from the definition of o)
= ((dp.h + hdp,)(z1 + x2), m(22)) (because x; € ker)
= ((dp,h + hdp,)(x1 + x2), x2) (by applying Proposition 2.2.8)
= (z1 + (dp,h + hdp,)(x2), x2) (from 7(x1) = Op,

and Definition 2.1.1, prop. (b))
= (21, x2) (from Proposition 2.2.8 with
m(22) + (dp,h + hdp,)(x2) = x2)

Thus, the equalities 06" = id(kermdp,)@(mrdp,) and 9 = id(p, 45,) hold and the
bijection has been defined.

Now it should be proved that o is a chain complex isomorphism. From its definition,
it can be seen that it is at least a graded group homomorphism, since it is defined like
a combination of the graded group homomorphisms h and dp,. In order to prove that
o is a chain complex homomorphism from (Dx,dp,) to (ker 7, dp,) ® (im7,dp,), it has

2.2 A detailed proof of the BPL 48

to be proved that it is coherent with the differentials:

odp, = (dp,h + hdp,,m)dp, (from the definition of)
= ((dp,h + hdp,)dp,,mdp,)
= (dp,hdp,,gfdp,) (from the properties of dp,)
= (dp,dp,h + dp,hdp,,gdc,f) (because the differential is coherent with

chain complex homomorphisms)
= (dp,(dp,h + hdp,),dp,gf) (same as before)
= (dp.,dp.)((dp,h + hdp,), gf)
= (dp,,dp.)o

The inverse 0! also is coherent with the differentials making use of the same properties,
and so is also a chain complex homomorphism.

Now, by proving that there exists an isomorphism between the chain complexes
(imm,dp,) and (Cx,dc,), we will be able to finally define the isomorphism between the
chain complexes (Dx,dp,) and (ker,dp,) ® (Cx,dc,), just by composition of the two
isomorphisms. Let us denote this isomorphism as w™!. Then it can be proved that

w: (Cx,de,) — (im7,dp,)

defined by w = ¢ is actually an isomorphism between chain complexes. The homo-
morphism w will be also seen during the proof as w = ¢gfg because from the reduction
properties of (f,g,h): (Dx,dp,) = (Cx,dc,) given in Definition 2.1.1, fg = id¢,. For
instance, due to this property, the previous homomorphism is well defined, since w = g
and then imw C im 7. The inverse of w will be defined as the restriction of f to imm,

wl=f

In the definition of w™!, let us observe the presence of the set im 7, whose definition,
in general terms, is based on existential quantification, which in several cases is far from
constructive mathematics. The selection of an element of the image set and the use
of its preimage will be a common argument along the proofs, and implies that later
will have to be translated into a theorem proving tool in order to formalize the proof.
Thus, working with structures defined in terms of existential quantifiers can influence
the choice of a theorem prover.

imm’

Now the identities ww™! = id(immdD*) and wlw = id(C*,dC*) can be proved, using
that 7 is a projector.

1. First, we prove that ww™" = id(immdp,); given € im

woM (@) = gf|, ()
= gf],,.((y)) (for ayin Dy)

=7, (7y) (from the definition of 7)

= (my) (since y in im 7 and 7 is a projector)

=T

44 Chapter 2 The Basic Perturbation Lemma

2. Now, it can be also proved that w™tw = id(cydc,)- Let us consider x € Cx. (First
we prove that g(z) is an element of im7, and then from the reduction property
(a) the property holds).

() = f],9()
= fl...9(fg(x))
= fl.. (m)(g(x))

)

(from the reduction property (a))

(from the definition of)

(Proposition 2.2.8 applied to 7 and g(z) in im)
(from the reduction property (a))

Therefore, w™! and w define an isomorphism between the graded groups im 7 and C. In
order to prove that w™! is a chain complex isomorphism, it must also be coherent with
respect to the differentials d¢o, and dp, ; from the reduction premises, f is a chain complex
homomorphism from (Dx, dp,) to (Cx,dc,), and therefore it satisfies that de, f = fdp,.
The only condition to be satisfied in order to prove that dg, f |im7r =f ’imﬂ'dD* is that dp,
is closed over the elements of im 7; this can be proved as follows. Let x be an element
of im 7, and y such that z = 7 (y):

dp,(z) = dp.(7(y))
=dp,(g9f(y)) (unfolding the definition of 7)
= gde, f(y) (from the differential properties)
=gfdp,(y) (from the differential properties)
= mdp, (y) (from the definition of 7)
Finally, by composing the obtained chain complex isomorphisms

o: (Dx,dp,) — (kerm,dp,) ® (imm,dp,) and w™': (imm, dp,) — (Cx,dc,), the
isomorphism between chain complexes

(id(ker mdpy)>w™)0 : (Dx,dp,) — (kergf,dp,) ® (Cx, dc,)

is built. |

Some technical results will be needed for the proof of the second lemma.

Proposition 2.2.12. Let (Dx,dp,) be a chain complex, h : Dx — Dx (degree +1) a
homomorphism of graded groups, satisfying hh = Ogna(p,) and hdp,h = h. Let p be
dp,h+ hdp, (degree 0). Then (ker p,dp,) is a chain complex and a chain subcomplez of
(D*a dD*) .

Proof. From the premises it follows that A is a graded group endomorphism of Dx, and so
isp =dp,h+hdp,. In order to satisfy the properties of a chain complex endomorphism,

2.2 A detailed proof of the BPL 45

p must be coherent with the differential dp,:

dp,p = dp,(dp,h + hdp,)
=dp,dp,h + dp,hdp, (by distributivity)

= dp,hdp, (since dp, is a differential)
=dp,hdp, + hdp,dp, (same as before)

= (dp,h + hdp,)dp,

= pdp,

Now that it has been proved that p is a chain complex homomorphism, applying Propo-
sition 2.2.9 we obtain that (kerp,dp,) is a chain complex.

Taking into account that ker p C Dx, it follows that (ker p, dp,) is a chain subcomplex
of (D*, dD*) |

Proposition 2.2.13. Let (Dx,dp,) be a chain complex and let p be an endomor-
phism of this chain complex. Let p (degree 0) be also a projector, i.e., pp = p. Then
im(idp, —p) C kerp.

Proof. Let y be an element of the set im(idp, —p). Then, there exists an element z in
Dy (and here, we use again a non-constructive argument) such that y = (idp, —p)x, and
Now:

(
=p(z) — pp(z) (by distributivity)
=p(x) — p(z) (from definition of projector)
= OD*
Therefore, (idp, —p)(z) € ker p, and the proof is complete. |

Let p (degree 0) be the endomorphism of the chain complex (Dx,dp,) defined by
p = dp,h + hdp, and let us denote by incye, the canonical inclusion homomorphism
INCkerp: kerp — Dy given by x +— x. It is well defined since kerp is a chain subcom-
plex of Dx as we have proved in Proposition 2.2.12. Here it can be noted again the
relevance of the domain and the codomain of homomorphisms, which forces us to de-
note in a distinguished way homomorphisms such as id(p,. a5,): (D%, dp,) — (Dx, dp,),
id(kerp.dp,): (kerp,dp,) — (kerp,dp,) and incyep: (ker p,dp,) — (Dx, dp,).

Lemma 2.2.14. Let (Dx,dp,) be a chain complezx, h an endomorphism of the graded
group Dy with degree +1, satisfying hh = Ogna(p,) and hdp,h = h. Let p be dp,h+hdp,.
Then p is a projector and, moreover, the triple (idp, — p, inCyerp, h) defines a reduction
from (Dx,dp,) to (kerp,dp,).

Proof. First let us see that, for every reduction (fi,g1,h1) from a chain com-
plex (Dx,dp,) to a chain complex (Bx,dp,), the homotopy operator h; satisfies

46 Chapter 2 The Basic Perturbation Lemma

the premises required in the statement about h. From the definition of homo-
topy operator, it follows that h; is an endomorphism with degree 0 such that
hihy = Ogna(py); now, in order to prove that hidp,h; = hi, we recover the prop-
erty g1f1 + hidp, +dp,hu =1d(p, 4p,)- Then, by applying h; in both sides of the
equality, we obtain g fihy + hidp,hy + dp,hihy = hy; simplifying hihy = Ogna(p,) and
fih1 = Ognacs,) (extracted from Definition 2.1.1] of reduction), the property is obtained.
Therefore, this lemma can be also seen as an algorithm defining a reduction from a given
one.

Now we prove that p is a projector. From Definition 2.2.7, we have to prove that p

satisfies two premises:

1. It must be an endomorphism (degree 0) of Dx, which follows from the definition of
p = dp,h+hdp,, since both h (degree +1) and dp, (degree —1) are endomorphisms
of D* .

2. In addition to this, p must be idempotent; thus pp = p has to be proved:

pp = (dp,h + hdp,)(dp,h + hdp,) (from the definition of p)
=dp,hdp,h + dp,hhdp, + hdp,dp,h + hdp,hdp, (unfolding the expressions)
=dp,h + hdp, (because hh = Ogna(py),

dp,dp, = Oknd(Dy)s
and also hdp,h = h)

=P

In order to prove that (idp, — p, inCkerp, h) is a reduction from (Dx, dp,) to (kerp,dp,),
and introducing Definition 2.1.1, the following must be proved. First, (Dx,dp,) is a
chain complex from the premises, and so is (kerp,dp,) from Proposition 2.2.12. In
addition to this, the following must be satisfied:

1. (idp, —p) must be a homomorphism between the chain complexes (Dx,dp,) and
(kerp,dp,) (degree 0), and incke, & homomorphism between the chain complexes
(kerp,dp,) and (Dx,dp,) (degree 0):

(a) From the definition of p and idp, is clear that (idp, —p) is a chain complex
homomorphism of degree 0. In order to prove that it is well defined (i.e., its
image contained in ker p), Proposition 2.2.13 can be applied, once we know
hat p is a projector.

(b) From the definition of incye, it is derived that it is a chain complex homo-
morphism.

2. h must be an endomorphism of the graded group Dx (degree +1), which is among
the premises.

3. The following relations between the chain complexes in the reduction must be
satisfied:

2.2 A detailed proof of the BPL 47

(a) (idp, —p) inCkerp = idykerp; given x € kerp,

(idp, — p) inCyerp(z) = =z — p(x)
=x (applying that = € ker p)

and therefore, the composition is equal to the identity function restricted to
ker p.

(b) inckerp(idp, —p) + dp,h + hdp, = idp,; given © € Dx and using that
P = dD*h + th*,

(increrp(idp, = p)+dp,h + hdp,) () = (inCrerp(idp, — p) + p)(2)
= inCyerp (¢ — p()) + p(z)
=z —p(z)+p(x) (because im(idp, —p) C kerp
from Proposition 2.2.13)

(C) (1dD* _p)h = OHom(D*,kerp);

(idp, —p)h = (idp, —dp,h — hdp,)h (by unfolding the definition of p)
— h—dp, hh — hdp,h

=h-—nh (because hh = Ogna(p,) and
also the premise hdp,h = h)
= OEnd(D*) (since h e End(D*))

In addition to this, it must be proved that im(idp, — p) C ker p, which follows
from Proposition 2.2.13.

(d) hincierp = OHom(kerp,Dy); let & be an element of ker p, then,

hincge p(x) = h(z)

= hdp,h(z) (introducing the premise hdp,h = h)
= hdp,h(z) + hhdp,(z) (since hh = Ogna(py))

= h(dp,h + hdp,)(z)

= h(p(z)) (introducing the definition of p)

= hOp, (since = € ker p)

= Op,

Finally we get that /incierp = OHom (ker p,Ds)-

(€) hh = Ognd(py); this is one of the premises.

48 Chapter 2 The Basic Perturbation Lemma

The previous lemma will be now used to build a new reduction between two chain
complexes, once the perturbation has been introduced in the problem; this corresponds
to the third lemma in our collection.

Lemma 2.2.15. Under the BPL hypotheses, and assuming the definitions and
results given in Section [2.2.1, there exists a canonical and explicit reduc-
tion (Di,dp,) = (kerp',dp,), where p'=dp h'+ hdp,, which is given through
(idp, —p', inCyerpr, 1').

Proof. First we recall the definitions given in the statement of the BPL (see
Lemma 2.1.5) of »' = he¢, dp, = dp, + dp,, where ép, is a perturbation of
the differential dp,, and also the identities vh = h¢ (Lemma 2.2.3), dp,1) = ¢dp,
(Lemma 2.2.4), ¢ =idp, —hdp,» = idp, —vhép, = idp, —hedp, (Lemma 2.2.5), and
¢ = lClD>|< —5D*h¢ = ldD* —¢5D*h = ldD,,< _5D*wh (Lemma 22())

From the BPL hypotheses, there is a reduction (f, g, h) from (Dx, dp,) to (Cx,dc,),
which means that hh = Ogup,) and also that hdp,h = h (see the Proof of
Lemma 2.2.14)).

In the following, we define (D), dp,) as (Dx,dp, + dp,), from which follows that
DY = D (this notation will allow us to distinguish between dp; and dp,).

In order to apply Lemma 2.2.14, three conditions must be satisfied:

1. The differential structure (D, dp,) must be a chain complex. From the premises
it is clear that DY is a graded group. The condition for dp, = dp, + dp, of being
a differential for DY, follows from Definition 2.1.2! of perturbation.

2. The endomorphism A’ of D}, must satisfy the condition h'h’ = Ognq(py), which can
be proved as follows:

h'h' =+hh¢ (from the definition of A" and also Lemma [2.2.3))

= OEnd(D*) (since hh = OEnd(D*))
= Opna(py) (as defined, D = Dx)

The degree of h' is +1, taking into account that the degree of h is +1 and both ¢
and 1 have degree 0 as established in Proposition 2.1.4.

3. The homotopy operator i’ and the differential of the chain complex (DY, dp;) must
satisfy the property h'dp, b’ = h':

Wdp h' =¥h(dp, + p,)he (from definition of dp;, b’ and Lemma 2.2.3)
= Yhdp,h¢ + Yhop,h¢ (by distributivity)
= ho + ph(idp, —¢) (due to Lemma 2.2.6/ and hdp,h = h)
= ¥h (
— K (

simplifying the obtained expression)
from the definition of h')

2.2 A detailed proof of the BPL 49

Now, by introducing Lemma 2.2.14] we conclude that p’ is a projector and the triple
(idp;, —p',inCrery, h') defines a reduction between the chain complexes (D, dp,) and
(kerp’,dp;). [

The following lemma (the fourth one in our collection of six lemmas to obtain the
complete proof of the BPL) explains how to build an isomorphism between the graded
groups ker p and ker p'; some previous properties about k', dp;, h and dp, are proved
before.

Proposition 2.2.16. Under the BPL hypotheses, and with m = idp, —p (as defined in
Lemmal2.2.11) and 7' = idp, —p' (with p" = dp, W' +NWdp, , as defined in Lemma'2.2.15),
the following properties hold:

1. h" = Ogna(py) (of degree +1).
7'h = Opna(py) (of degree +1).
7h' = Opna(py) (of degree +1).

h'm = Ogna(py) (of degree +1).

Proof. We assume the definitions given in the statement of the BPL (see Theorem 2.1.5)
of h' = h¢, dp, = dp,+0p, and also the equalities)h = h¢ (Lemma2.2.3), dp, ¢ = ¢dp,
(Lemma 2.2.4)), ¢ =idp, —hép,y = idp, —¢hdp, = idp, —h¢dp, (Lemma 2.2.5), and
¢ =idp, —dp,h¢ = idp, —ddp,h = idp, —dp,vh (Lemma 2.2.6). Taking into account
that the degree of both h and A’ is +1, and also that the degree of 7 and «’ is 0, it is
clear that the degree of the compositions in the statement is equal to +1.

1. First we prove that A" = Ognq(p,);
hr' = h(idp, —(dp b + h'dp;)) (from the definition of p’)
=h — h(dp, + dp,)ho (because h' = h¢, hh = Ogna(ps).,
and dp, = dp, + 0p.)
— h— hdp, hé — hop, ho
=h — h¢ — h(idp, —9¢) (from hdp,h = h and Lemma 2.2.6))

= Ognd(Dy)

2. Now 7'h = Ognd(Dy);
m'h = (idD* _(dD;h, + h,dD;))h
=h —vh(dp, + 0p,)h (since b = Yh, hh = Opna(py),
and dek =dp, + (SD*)
= h —hdp,h — Yvhdp,h
=h —¢h — (idp, —v¥)h (from hdp,h = h and Lemma 2.2.5)

= Ognd(D+)

50 Chapter 2 The Basic Perturbation Lemma

3. In a similar way it can be proved that mh' = Ognd(py);

mh' = (idp, —(dp,h + hdp,))h¢ (since h' = ho)
= (h — (dp,hh + hdp,h))o
= (h—h)¢ (hh = Ogya(p,) and
from the property hdp,h = h)

= Ognd(Dx)

4. Finally, the fourth case, h'm = Ogna(p,) can be obtained as follows:

h'm = ¢h(idp, —(dp,h + hdp,)) (since h’ = h)
= 1(h — hdp,h — hhdp,)
=¢(h—h) (hh = Ognq(p.) and
from the property hdp,h = h)

= Ognd(Dx)

Lemma 2.2.17. Under the BPL hypotheses, and assuming the definitions and results
given in Section 2.2.1, there exists a canonical and explicit isomorphism between ker p
and ker p' as graded groups, where p = dp,h + hdp, and p’' = dp, h' + h'dp, .

Proof. We use again the definitions 7 = idp, —p and n’ = idp, —p’. In order to define
the isomorphism between ker p and ker p/, we will first prove the equalities between sets
im7 = ker p and im 7’ = ker p’; then we will define a graded group isomorphism

im7 = im7’

which finally will give us the way to build the isomorphism between ker p and ker p/.

First, we prove that im 7 = ker p. We will see that they are mutual subsets.

1. We consider first the case im7 C kerp. Let x be an element of im 7; we have to

2.2 A detailed proof of the BPL 51

verify that x belongs to kerp, that is, p(z) = Op,. This can be proved as follows:

p(x) = pr(y) (with y € D, because x € im)
= p(pr(y) + 7 (y)) (from idp, = 7+ p,
follows that 7(y) = n7(y) + p7(y))
= ppr(y) + pr(y) (since 7 is a projector,
as proved in Lemma 2.2.11))
= pr(y) + pr(y) (since p is a projector,

as proved in Lemma 2.2.14))
= p(idp, —p)(y) + p(idp, —p)(y) (unfolding the definition of)
=®-prp)(y)+ (—pp)(Y) (by distributivity)
= 0p, (since p is a projector,

as proved in Lemma 2.2.14))

In the first step of the proof, one can be observe again a non-constructive argument,
when the preimage of x is selected.

2. Now we give a proof of kerp C im 7. Let x be an element in ker p; x will be in the
set im 7 if there exists an element y € Dx such that x = 7 (y):

x =p(x) 4+ m(z) (unfolding the definition of)

= m(x) (since z is in kerp, p(z) = Op,)

Recalling that im 7 is a graded group, as showed in Proposition 2.2.10, and so is ker p,
proved in Proposition 2.2.9, id: im 7 — ker p can be lifted to an isomorphism between
both graded groups.

Secondly, we prove that im 7’ = ker p/, following a similar approach.
First, let us observe that 7’ satisfies a similar property as 7, being also a projector:
n'n' = (idp, —p')(idp, —p") (unfolding the definition of 7’)
=idp, —p' —p' +p' (since p' is a projector)
= 7'(/
Now, we prove that both sets im«’ and ker p’ are equal by proving that both of them

are mutually contained.

1. In order to prove that im 7’ C kerp/, we consider x € im7’; x will be an element
of kerp' if it satisfies that p'z = Op, :

"(z) +7p'(w)

7' (z) +p' (unfolding the definition 7’ = idp; —p')
=7'7'(y) +p'(x) (from x € im7', z = 7'(y))
T (y) +p (
x (

X

l’
"(y) +p(2)

+p'(x)

since 7’ is a projector)

from = = 7'(y))

52 Chapter 2 The Basic Perturbation Lemma

Therefore, we obtain that p'(x) = Op, and then it is an element of ker p’. In the
second step of the proof, we have used again a non-constructive argument involving
the set im 7’.

2. Now we consider the case ker p’ C im7’. Let x be an element of ker p’; x will be in
im 7’ if there exists an element y € Dx such that x = 7'(y):

p'(z) +n'(z) (unfolding the definition 7" = idp, —p')
T

8
I

'(z) (since x in kerp', p'(z) = Opy)

Recalling that im 7’ is a graded group from Proposition 2.2.10/ and so is kerp’ from
Proposition 2.2.9, id: im7’ — kerp’ can be lifted to an isomorphism between both
graded groups.

Now that we have proved that ker p and im 7 are isomorphic, and so are ker p’ and
im 7', we can complete the proof by defining the homomorphisms 7 and 77! between
im7 and im 7’
Let us consider
7 im7m — im7’

given by = — 7'(z) and also

' imad — im7w

mapping z — m(x).

It can be seen that 7 and 77! are mutually inverse.

1

1. To prove that 777 = idj, v, let & be an element of im 7’:

() = (7 (y)) (since z € im 7', x = 7' (y))
= 7'’ (y) (unfolding the definitions of 7 and 771)
= 7' (idp, —p)7' (y) (unfolding the definition of)
= 7'7'(y) — 7'pr’(y) (by distributivity)
= 7'(y) — ©'pr’(y) (since 7' is a projector)
=z —7'pr'(y) (from = = 7'(y))
=ux —7'(dp,h+ hdp,)7'(y) (unfolding the definition of p)
=ux (from the properties of 7’ obtained in

Proposition 2.2.16))

In the first step of the proof, we do not undertake the task of precisely constructing
y; we just assume its existence from the definition of the image set.

2.2 A detailed proof of the BPL 53

2. To prove that 7717 = idjy », given z € im,

1

T (x) =7 (7 (y)) since x € im)

' (y) unfolding definitions of 7 and 771)
7(idp, —p")m(y) unfolding the definition of 7’)

(
(
(
mr(y) — w(dp b + Wdp,)w(y) (unfolding the definition of p')
(
(

= —m(dp,h' + hdp,)m(y)

=

since 7 is a projector and 7(y) = x)

from the properties of m obtained in
Proposition 2.2.16)

Therefore, there is an isomorphism between the graded groups im7 and im#’, and
considering the already known graded group isomorphisms between ker p and im 7 and
also between ker p’ and im 7/, we can define a graded group isomorphism between ker p
and ker p’ by composition, through 7 and 771 |

The following lemma corresponds to the fifth one in our development of the BPL. In
the previous one we have obtained an isomorphism between one of the graded groups
appearing in the reduction given in the statement of the BPL, kerp, and a graded
group obtained after introducing the perturbation dp,, kerp’. Introducing also the
reduction proposed in Lemma 2.2.14 from (Dx,dp,) to (kerp,dp,), an isomorphism
can be obtained between the graded groups Cx and kerp. In the fifth lemma of the
collection (Lemma 2.2.18) we define a way to transfer differentials from a chain complex
to a graded group, once that an isomorphism between the underlying graded groups is
known, and thus allowing us to establish relationships between chain complexes.

Lemma 2.2.18. Let (Ax,da,) be a chain complex, Bx be a graded group, and
F: Ax — By (degree 0), F™': By — Ay (degree 0) define an isomorphism between
the graded groups Ax and Bx. Then, the graded group homomorphism (degree —1) dp,
defined by Fd, F~! is a differential for the graded group By such that F' and F~! become
nverse isomorphisms between chain complexes.

Proof. First we prove that dp, = Fda,F~! is a differential for the graded group Bx;
following Definition [1.1.5 of chain complex, it must satisfy:

1. The differential dp,: Bx — Bx must be a graded group endomorphism (degree
—1), which holds because F, F~! are homomorphisms between graded groups of
degree 0, and d4, is a graded group homomorphism of degree —1. The degree of
the composition is —1 because F' and F~! have degree 0, and d,, degree —1.

2. The map must satisfy the property dp,dp, = Ogna(By)-

dp.dp. = Fdy F-\Fd, F'
= FdA*dA*F_l

= OEnd(Bx)

54 Chapter 2 The Basic Perturbation Lemma

In the second part it must be proved that F and F~! are chain com-
plex homomorphisms; they are graded group homomorphisms mutually in-
verse from the premises, and they should also be coherent with the differen-
tials, as showed by Fda, = Fda, (F'F)=dg,F, and using the same property
da,F~' = (F7'F)da, F~' = F~ldp,, as required. [

In the sixth lemma of the collection, we prove a property which explicitly builds a
reduction between chain complexes provided that we have a previous reduction between
two chain complexes as well as an isomorphism between one of these chain complexes
and a third one:

Lemma 2.2.19. Let (f,g9,h): (Ax,da,) = (Bx,dp.) be a reduction and
F: (Bx,dp,) — (Cx,dc,) (degree 0) a chain complex isomorphism (being F~1 its in-
verse, with degree 0). Then (Ff,gF~ " h): (Ax,da,) = (Cx,dc,) defines a reduction.

Proof. From Definition 2.1.1 of reduction, the following conditions must be proved:

1. Ffand gF~! must be chain complex homomorphisms (degree 0) between (A, d,)
and (Cx,dc,), which is satisfied since F, F~!, f and g are chain complex homo-
morphisms (of degree 0).

2. h must be a homotopy operator (degree +1) for the chain complex (Ax, d4,), which
follows from the premises.

3. The following relations must be satisfied:
(a) (Ff)(gF™!) =idg,; taking into account that fg = ida, due to the properties
of the reduction (f,g,h): (Ax,da,) = (Bx,dp,) , the equality holds.

(b) (gFY)(Ff) + da,h + hda, = ida,; from the reduction properties of
(f,9,h): (Ax,da,) = (Bx,dp,) follows that (gf) + da,h + hda, = ids, and
therefore the equality is satisfied.

(c) (Ff)h = OHom(as,cy), which holds because f and h verify that

Jh = Onom(44,By), from the reduction properties.

(d) h(gF™") = Omom(cy,As), because h and g verify that hg = Opom(ps,4,), from
the reduction properties.

(e) Finally, hh = Ognq(a,) follows from the reduction properties of (f, g, h).
|

In Section 2.2.1/ some lemmas stating properties about the series appearing in the
statement of the BPL were introduced. In this section, using these properties, we have
avoided the presence of the series. The last part of this section is devoted to produce a
proof of the BPL using, exclusively, the six lemmas introduced in this section.

We recover now the original statement of the BPL:

2.2 A detailed proof of the BPL 55

Theorem 2.2.20. Basic Perturbation Lemma — Let
(f.g,h): (Dx,dp,) = (Cx,dc,) be a chain complex reduction and 0p,: Dx — Dx
a perturbation of the differential dp, satisfying the nilpotency condition with respect
to the reduction (f,g,h). Then a new reduction (f',g',h'): (D, dp,) = (Ck,dpr)
can be obtained where the underlying graded groups Dx and DY (resp. Cx and C%)
are the same, but the differentials are perturbed: dp, = dp, + dp,,dc, = de, + Oc,,

and ¢, = fél?*wg; f’ = fo; ¢ = vg; W = ho, where ¢ =Y oo (—1)"(0p.h)", and
Y= Zi’io(—l)’(h%*)z-

Proof. Both in the statement and in the proof of the lemma, (D, dp;) denotes the
structure defined as (Dx, dp, +0p,). First, it can be observed that it is a chain complex
since (dp, +dp,) is a differential for Dy, as follows from Definition 2.1.2 of perturbation
applied to dp,. Recall that considered as graded groups, both D} and Dsx denote the
same structure.

By applying Lemma 2.2.15/ (the third one of the collection) a reduction:
<1dD;< —p/, ianerp/, h,l) : (Dik, dD;) = (kerp', dD;)
is obtained, where &' = h¢, p’ = dp, ' + h'dp, and ¢ =2 (—=1)"(6p,h)".

Now by introducing Lemma 2.2.17 (the fourth one of the collection), an isomorphism
between graded groups can be defined:

m: kerp’ — kerp

where 7 is the isomorphism gf, whose inverse was denoted by 7' = idp, —p" in Propo-
sition 2.2.16.

A new isomorphism between chain complexes is defined by applying the second part
of Lemma [2.2.11 (the first one of the collection):

f: (HHgf, dD*) - (C*,dc*)

and from the proof of Lemma 2.2.17/ (the fourth one), we already know that
im gf = ker p, and therefore, an isomorphism can be defined:

f: (kerpa dD*) - (C*de*)

whose inverse is ¢g: (Cx,dc,) — (kerp,dp,).

From the reduction (idp; — p', inCxerpr, &'): (D, dp,) = (kerp', dp;) and the isomor-
phism between graded groups 7: kerp’ — ker p, and applying Lemma 2.2.19/ (the sixth
one), a reduction can be defined:

(m(idp, — '), inCkerpy @', 1) 2 (D, dpy) = (kerp, wdp, ')

Finally, by introducing Lemma 2.2.18 (the fifth one) with the chain complex
(ker p, mdp, ') and the graded group Cx and being f and g the isomorphisms between

51 Chapter 2 The Basic Perturbation Lemma

them, we obtain a new chain complex (Cx,mdp,7’), and moreover, that f and g be-
come now isomorphisms between these two chain complexes. Considering the reduction
(m(idp, —p'), inCyerpy 7', B'): (D, dpy) = (Cx, mdp,7'), the conditions of Lemma 2.2.19
(the sixth one) are satisfied, and by applying it we obtain a new reduction:

(f'. g, 0): (D, dp,) = (C dey)

Applying the formulas obtained in its proof, D} = Dx, dp; = dp, + dp,, Ci = Ckx,
['= fr(idp, —p'), ¢ = inCiery 7'g, and the differential is de; = fr(dp,)7'g.

Some computations can be carried out in order to obtain simplified expressions for

f', ¢ and d¢r. The value obtained for A’ is hy), as announced in the statement.

First, ¢’ can be simplified as follows:

g = inCyerpy T'g from the obtained formula)

=g because 7': ker p — kerp)
= (idp, —p')g
= (ldek — dD;(h/ — h/dek)g

(

(

(unfolding the definition of 7')

(
=g —dp,Yhg — hdp,g — hdp,g (from the obtained property h' = 1h)

(

(

(

(

unfolding the definition of p')

=g —Yhdp,g — Yhip,g

= —¢hgdc, + (idp, —¥hdp,)g
= (idp, —¥hdp,)g

=1y

from the reduction property, hg = Otiom(cy,Dy))
using the differentials’ property dp,g = gd¢,)
from the reduction property, hg = Otiom(cy,Dy))
from the properties of Lemma [2.2.5))

Now we simplify f’:

= fr(idp, —p')g (from the obtained formula)

= f(idp, —dp h' + h'dp,) (unfolding the definition of p')

= f— fdp,h' — fop,h¢ — fhodp, (unfolding the definition of A’ = h¢)

= f— fdp, i — fép,ho (from the reduction property fh = Otiom(cy,Ds))

=f—de,fho — fop,ho (using the differentials’ property, fdp, = de, f)

= f(idp, —dp.ho) (
(

=fo

from the reduction property fh = Ouom(cy, D))

from the properties of Lemma [2.2.6])

Finally, the differential dc; can be computed introducing Lemma 2.2.18. This lemma
illustrates how the differential of a chain complex (in this case, (kerp,ndp,7’)) has
to be modified when its underlying graded group (kerp) is transformed through an

2.3 Ungraded version 57

isomorphism (f: kerp — Cx, g: Cx — kerp):

der = fr(dp)7'g (introducing Lemma 2.2.18))

= fgf(dp, + dp,)7'g (unfolding the definition of m = gf)

= f(dp, + 0p,)7'g (from the reduction property
fg=1idp,)

= fdp,m'g+ fop.vg (using the property 7'g = g,
obtained in the simplification of ¢')

= fdp,(idp, —dp,h' — h'dp,)g + fop,vg (unfolding the definition of 7’)

= fdp.g — fdp.dp h'g — fdp,h'dp g+ fop,1bg (by associativity)

= fdp,g+ fop, g (unfolding the definition of /',

the differentials properties and the

reduction property hg = Ogna(p,))
=dc, + fop, g (from the differentials property

dp,g = gdc,, and the

reduction property fg =idp,)

The expressions in the statement of the BPL of f, ¢/, b’ and d¢; have been established.
[|

2.3 Ungraded version

In Chapter 3 we will explore the possibilities of a theorem prover to implement some
fragments of the proof of the lemmas introduced in this chapter. With respect to the
algebraic structures and the homomorphisms used in the previous lemmas, as graded
groups and chain complexes, the information about the degree will not be considered.
Consequently, graded groups will be substituted by abelian groups, and chain complexes
by differential groups. This simplification does not affect to the validity of the lemmas
and proofs, which still hold. Obviously, definitions must be modified in a coherent way
(for instance, it is necessary to give an ungraded version of reduction), but it is a routine
(trivial even) task.

For instance, the statement of the BPL with the modifications introduced would be
as follows:

Theorem 2.3.1. Basic Perturbation Lemma (ungraded version) — Let
(f,g,h): (D,dp) = (C,dc) be a reduction between differential groups and ép: D — D
a perturbation of the differential dp satisfying the nilpotency condition with respect to
the reduction (f,g,h). Then a new reduction (f',¢',h'): (D',dp/) = (C',dp/) can be ob-
tained where the underlying abelian groups D and D' (resp. C and C') are the same, but
the differentials are perturbed: dp = dp +0p,dcr = de + ¢, and 6¢ = fopwyg; [/ = fo;
g =g W = ho, where = Y (~1)/(0ph)’, and & = S (~1)i(hdp)".

58 Chapter 2 The Basic Perturbation Lemma

The statements and proofs of the lemmas can be adapted in a similar way, obtaining
the corresponding ungraded versions.

The reason why we will work without graduation is that the problems of implement-
ing graded sets in Isabelle are completely independent of the central problems posed by
the BPL proof. Thus, we have preferred to study first the essential points, assuming
that the graded case requires only some additional technical resources in Isabelle. Even
if enhancing these resources could be complicated, it is clear that the translation to that
setting of the methods developed in the following chapter would be straightforward.

Chapter 3

Mechanizing the proof: a case study
in Isabelle

3.1 Introduction

The object of formalization now will be the proof of the BPL which has been detailed
in Section 2.2, In this chapter, we compare different approaches in which we have tried
to implement fragments of the proof of the BPL in Isabelle. These approaches will be
presented and also applied to some of the lemmas stated in Section 2.2.2. The question
we are trying to address with these experiments is whether a complete implementation
of the proof of the BPL can be done in Isabelle; the ideas introduced here are helpful
to answer this question, as far as the fragments chosen are representative of the entire
proof.

In Section 2.2, we emphasized that the purpose of giving a so detailed proof of the
BPL, was to have a proof quite similar to the one we pretend to implement in a theorem
prover. Therefore, the implementation of the proof should be also divided into two
parts. In this chapter, we study in depth the problems posed by the lemmas presented
in Section 2.2.2. The treatment of formal series as presented in Section 2.2.1 is left for
future work and only briefly evoked in Chapter 5.

The structure of the chapter is as follows. In Section 3.2 the reasons that led us to
use the theorem prover Isabelle will be presented. Then, in Section 3.3, we introduce
a lemma and an overview of how the four different approaches that we have used in
Isabelle can be applied to implement the proof of this lemma. Then, we briefly introduce
in Section [3.4] a setting to study the representation of abstract (mathematical) objects
and, in particular, of algebraic structures. This framework will be helpful to compare
the different approaches. The four approaches will be described in detail in Sections 3.5,
3.0, 3.7 and 3.8 The differences among the approaches depend on the following aspects:

e Which of the algebraic structures appearing in the mathematical lemmas are im-

59

60 Chapter 8 Mechanizing the proof: a case study in Isabelle

plemented in the theorem prover. When we define in the theorem prover the
context where the proofs are carried out, we can decide the algebraic structures
which will be considered relevant for our task. The properties that we can apply
in our proofs will depend on this decision.

e The implementation of homomorphisms between algebraic structures. Homomor-
phisms can be thought of, among other possibilities, as elements of a generic type
a, but also as elements of a functional type a = (3. The first possibility im-
proves the simplicity of proofs, but the second permits us to prove a wider range
of lemmas.

e The implementation of the algebraic structures appearing in the lemmas. Algebraic
structures can be represented just like a set, or like a set with operators satisfying
some axioms. Depending on this design decision we will dispose of a different
amount of previous knowledge that can be later applied to implement the proofs
(associativity can not be directly applied to the elements of a magma; but if we
prove a set to be a semigroup, then associativity will be ensured).

Each section will present the design decisions on these three aspects; then, the lemmas
that can be proved will be enumerated, as well as the difficulties found, and the main
reasons to introduce a new approach. We will also comment on the advantages and
the drawbacks of each method, as well as the feasibility of applying them into different
problems dealing with algebraic structures.

Part of the material of this chapter has been presented in [Aransay et al., 20024,
Aransay et al., 2002b, |Aransay et al., 2002c, |Aransay et al., 2003),/Aransay et al., 2004].

3.2 The theorem prover: Isabelle

The first decision in the process of implementation of the proof of the BPL in a the-
orem prover is which theorem prover among the existing ones is the most appropriate
for our task. A detailed comparison of the available theorem provers can be found in
[Wiedijk, 2003]. In our case, we will not intend to analyze the features of the different
theorem provers. We will focus our attention on the theorem prover Isabelle, and we
will give an enumeration of the main reasons that led us to use it.

Isabelle/HOL [Nipkow et al., 2002] has some special features that will be useful for
our purposes:

1. It has been written in the functional programming language ML; ML
([Paulson, 1996]) was originally designed to serve as the programming lan-
guage for the theorem prover Edinburgh LCF (although it can be also used
for other proposals; see, for instance http://www.cs.princeton.edu/~appel/
smlnj/projects.html). Kenzo [Dousson et al., 1999] has been written in Com-
mon Lisp [Graham, 1996], which is a functional programming language even if, in

http://www.cs.princeton.edu/~appel/smlnj/projects.html�
http://www.cs.princeton.edu/~appel/smlnj/projects.html�

3.2 The theorem prover: Isabelle 61

addition, it includes also object oriented features. Both tools, Isabelle and Kenzo,
have been developed using functional programming languages. In addition to this,
some Homological Algebra algorithms present in Kenzo have been already imple-
mented in ML (see for instance [Andrés et al., 2003]). Moreover, HOL can be seen
as an ML-like functional language. The main difference is that HOL functions are
total (always terminate), while ML functions need not to terminate.

2. Isabelle contains an implementation of higher-order logic (Isabelle/HOL) in its
standard distribution. Isabelle is a generic theorem prover, which means that it
has a meta-logic, called Isabelle/Pure, and, on the top of it, a wide range of logics
can be implemented (see the paper [Paulson, 1990b] for a detailed description
of the Isabelle meta-logic). In the Isabelle distribution can be found, at least,
implementations of first-order logic (FOL), higher-order logic (HOL) and Zermelo
Fraenkel set theory (ZF). We have chosen higher-order logic for the implementation
of the proofs we have proposed in Section 2.2.2, due to its expressiveness and to
the previous works that have been developed with it in Group Theory.

3. Isabelle/HOL has been used to obtain formalized mathematics in different areas
such as Number Theory, Analysis or Geometry. Therefore, libraries about Algebra
and Group Theory have been already implemented in Isabelle/HOL and are avail-
able in the standard distribution; some of this work can be found in [Ballarin, 1999
and [Kammiiller and Paulson, 1999]. These previous results show the advantages
of using Isabelle/HOL in order to implement proofs in the domain of Abstract
Algebra. Moreover, most of the concepts of Homological Algebra involved in our
work (enumerated in Section [1.1) have been defined in terms of Group Theory
structures, and then the existing libraries can be reused.

4. During the development of this work the Isar proof language was built on the top
of Isabelle; Isar [Wenzel, 2004] is an extension of Isabelle which helps to obtain
structured and human-readable proofs. The tactic style proofs in Isabelle were
substituted for proofs in the Isar language that turned Isabelle/Isar! into a proof
assistant system, as well as a theorem prover. The Isar language has been useful
for the the development of our proofs, and is, undoubtedly, much easier to learn
than the Isabelle tactic style. Moreover, proofs can be done, not only backwards
(from the goals to the premises), as expected in the tactic style proofs, but also
starting from the premises and building up the goal.

5. A program extraction facility is being implemented for Isabelle proofs
(see [Berghofer, 2003al, Berghofer, 2003b, Berghofer, 2004]), which is capable of
working with a constructive fragment of Isabelle/HOL. This tool helps us to ob-
tain certified ML programs from our proofs (the results obtained related to this
part of our work will be presented in Chapter 4).

'For the sake of readability, we will refer to Isabelle/Isar/HOL as Isabelle.

62 Chapter 8 Mechanizing the proof: a case study in Isabelle

3.3 An introductory example

Once a tool for the implementation has been chosen, in a second stage the degree of for-
malization of the proofs is to be considered. This level of formalization will be illustrated
with the following lemma. It can be also seen as an example of the kind of mathemat-
ical theorems we are trying to implement. This lemma corresponds to the ungraded
version of Lemma 2.2.14, where we have substituted the differential groups by abelian
groups, in order to focus our attention on the relevant parts of the proof, avoiding the
technicalities derived of introducing differential structures. The main reason to choose
this lemma is that it contains most of the interesting problems that can be found in the
whole collection of lemmas in Section 2.2.2. It requires reasoning with homomorphisms
and endomorphisms as if they were elements of certain algebraic structures, but also
dealing with their functional definition; in addition to this, the domain conditions of the
source or the target of the homomorphisms also play a role in some steps of the proof.

Lemma 3.3.1. Let G be an abelian group and let h and d be elements of End(G) such
that hh = Ogna(e), d is a differential for G' and hdh = h; let us define p = dh + hd and
consider ker p, abelian subgroup of G. Then, the following equalities hold (i.e., the triple
(idEnd(@) —p, inCkerp, h) defines a reduction from G to kerp):

1. (idEnd(G) _p> inckerp = idEnd(kerp) ;

2. ianerp(idEnd(G) —p) +dh + hd = idEnd(G) N

3. (idEnd(G) _p)h = OHom(G,kerp) ;
4' h inckelrp = OHom(kerp,G);
5

. hh = Opnaq)-
Proof. The proof is divided into the five properties to be checked:

1. Let x be an element of ker p:

(idgnd(e) —p) inCrerp(2) = (idgnae) —p)(z) (from the definition of the inclusion)
=z —p(z)
=z (from the definition of the kernel set)

ThHS, (idEnd(G) _P) inckerp = idEnd(kerp)-

2. First we prove that p is a projector:

pp = (dh + hd)(dh + hd) (unfolding the definition of p)
= dhdh + dhhd + hddh + hdhd
— dh + hd (from hdh = h, hh = Ogua(c).

and dd = OEnd(G))
=D

3.3 An introductory example 63

Now let = be in G; in order the expression incie p(idgna(a) —p)(x) to be well-defined,
it must be checked that (idgnae) —p)(x) € ker p:

p(idenaie) —p) (@) = p(z) — pp(z)
=p(x) —p(x) (since p is a projector)
—0¢

Then, the property can be proved as follows

(incker p(idpna e —p) + dh + hd)(x) = incyerp(x — p(x)) + (dh + hd)(x)
=x —p(x) + (dh + hd)(z) (using that x — p(z) € kerp)
=x —p(x) +p(z) (unfolding the definition of p)
=z
Therefore, we have proved incyerp(idgnda(ey —p) + dh + hd = idgna(e)-
3. First, the following computation is carried out:
(idgna(e) —p)h = h — ph
=h — (dh + hd)h (unfolding the definition of p)
= h — hdh (using that hh = Ognaa))
=h—nh (introducing that hdh = h)
= OHom(G,kerp)
Thus, we obtain that (idgna(q) —P)h = Oiom(G kerp)-

4. Let x be an element in ker p:

hincge p(x) = h(z)

= hdh(z) (from the property hdh = h)

= hdh(x) + hhd(x) (from the property hh = Ogna(a))
= h(dh + hd)(x)

= hp(z) (from the definition of p)

= Okerp

Therefore, hincyerp = Otom (kerp,G)-

5. hh = Ognd(e) was one of the premises.
|

The four different approaches that we will further explain in detail in Sections 3.5, (3.6,
3.7 and 3.8, can be applied to implement the proof of Lemma 3.3.1. The different ap-
proaches will be applied in this example to the mathematical proof of the lemma. In

64 Chapter 8 Mechanizing the proof: a case study in Isabelle

the detailed description of the approaches we will also comment on, first, the implemen-
tation of the objects appearing in each of the different approaches, and second, on the
implementation of the proofs in these approaches, in the theorem prover Isabelle.

The following mathematical structures have been used (explicitly or implicitly) in
the mathematical proof of Lemma 3.3.1:

e The abelian group G and its subgroup ker p.

e The ring of endomorphisms End(G).

e The ring of endomorphisms End(ker p).

e The abelian groups of homomorphisms Hom(ker p, G) and Hom(G, ker p).

e An algebraic structure for homomorphisms allowing to operate, for instance, el-
ements of Hom(ker p, G) with elements of End(G) or elements of Hom(G, ker p)
with elements of End(ker p) through the usual composition, o. This structure can
be formalized as a ringoid (see Definition [1.1.24).

The differences between the four proposed approaches, as we have detailed in Section 3.1,
will depend on three factors; first, the choice of the algebraic structures present in
the lemma that are represented in the mechanized proof of the lemma, second, the
representation of the chosen algebraic structures, and third, the representation of the
homomorphisms between the algebraic structures.

Each of these points will be treated separately in the four given approaches. In this
example, we first describe each of these three points in the different approaches, and
then we implement the parts of the proof of Lemma 3.3.1 that can be carried out in each
approach.

Let us consider the first and the fifth equality in the statement of the lemma. Their
proofs can be implemented in the setting that we will expose in the symbolic approach,
in Section 3.5, In the symbolic approach, the three aspects are as follows:

1. The only algebraic structure from the lemma that is represented is the ring End(G),
through a record type which allows us to group the carrier an the operations of
the algebraic structure together (see Section [1.3.2).

2. The homomorphisms (only endomorphisms in this case) are represented through
elements of a generic type ‘a.

3. The ring of endomorphisms is represented through a generic ring R, whose ele-
ments, of a generic type 'a, are interpreted as endomorphisms of G.

3.3 An introductory example 65

The endomorphisms d, h, p, idga(g) and Opna()® of the abelian group G can be con-
sidered as elements of this generic ring R and then the equalities can be proved as
follows:

e hh = Op is one of the premises.

e (idg —p)h = Og because (idg —p)h = h — ph and from the premises ph = h.

For these two properties, representing End(G) through a generic ring R is enough.
Information about the concrete representation of the endomorphisms has been neither
provided, nor needed. This setting corresponds to our first approach, which was already
presented in [Aransay et al., 2002¢] and will be studied in Section [3.5.

On the contrary, this setting is not enough to prove some other equa-
tions in Lemma [3.3.1. For instance, mno proof of the third property
(idgna() —Pp) inCkerp = idEnd(kerp) can be given inside of this framework; the elements
idgng(e) and p can be represented through idg and also p in R, but no representation
can be given neither for incyep, nor for idgndekerp), in the ring R. Our representation in
[sabelle has omitted information which is needed for the statements to be meaningful.

Thus, a new approach must be proposed. In our first alternative, the three main
features of the framework are:

1. We introduce now two algebraic structures, the abelian group G and also the
abelian subgroup ker p.

2. They will be represented like records of a generic type (we will give a more detailed
explanation in Section [3.6).

3. Homomorphisms will be represented through elements of functional type ‘a = 'b
(taking into account that kerp is a subgroup of G, the type of homomorphisms
between both structures will be a specialization of the previous one, ‘a = 'a);
in contrast with the previous approach, the ring of endomorphisms will not be
represented.

This representation corresponds to the existing one in the Isabelle libraries for Group
Theory. Now, a proof for the third property of Lemma 3.3.1, which was not provable
in the symbolic approach, stating that (idgna(g) —p) inCkerp = idEnd(kerp) can be imple-
mented following this argument. Let x be an element of ker p, then

(idgna(e) —p) inCrerp(x) = (idgnae) —p)(x) (since x € kerp)
=z —p(x)
= (because of the definition of the kernel set)

2 Actually, the homomorphism in the statement is OHom(G,ker p), but, from a functional point of view,
it can be identified, in this context, with the endomorphism Ogpq(q)-

66 Chapter 8 Mechanizing the proof: a case study in Isabelle

We have named this framework set theoretic approach due to two reasons; first, because
it represents the algebraic structures collecting endomorphisms and homomorphisms
through sets, and second, because homomorphisms are assigned a functional type, but
in their axiomatic definition sets over these types will have to be considered. We will
present it in detail in Section [3.6. The representation chosen in this framework seems to
be enough to prove the rest of the properties (the second and the fourth) of reduction, at
least from a theoretical point of view. On the other hand, when we tried to implement
these proofs, some problems were detected slowing down the proofs performance and im-
poverishing the presentation. The main reason is the weak representation through sets
of some important algebraic structures (the rings End(G) and End(ker p) or the abelian
groups Hom(G, ker p) and Hom(ker p, G) among others), instead of providing them with
adequate operations. In addition, some problems derived of implementing homomor-
phisms through total functions over types emulating functions between sets arise. We
will avoid the enumerated problems by improving the representation in Isabelle of some
of these algebraic structures and changing the representation of the homomorphisms,
as will be seen in our third approach, which we name morphism based approach. This
approach was presented in [Aransay et al., 2003].

This third setting is exposed in Section 3.7, and owes its name to the fact that the
representation of homomorphisms has been changed. Now, their representation is quite
similar to the usual representation of morphisms in a Category Theory setting. The
most important features are, accordingly to our list:

1. The algebraic structures present will be the same as in the set theoretic approach,
the abelian groups G and ker p, and, in addition to this, also the ring End(G) of
the endomorphisms of G.

2. The algebraic structures are represented in the same way as in the previous ap-
proach, through extensible records. In order to obtain a ring with the endomor-
phisms of G, some more axioms have to be imposed to homomorphisms. These
axioms ensure, for instance, the uniqueness of the representation of each homo-
morphism and the compatibility with the operators, allowing us then to prove in
Isabelle the ring properties of the data structure representing End(G).

3. The homomorphisms will be modified in two senses with respect to the rep-
resentation given in the previous set theoretic approach: the type and also
the axiomatic characterization. First, they will be represented like records,
which store information about their functional nature (with type ‘a = 'b), and
also about their source and target algebraic structures (in a similar fashion as
morphisms are usually represented in Category Theory; see the works in Is-
abelle [Glimming, 2001, |O’Keefe, 2004]). This information will be used for the
compositions of homomorphisms and endomorphisms, avoiding some partiality is-
sues. In the axiomatic characterization, we will have to enrich the definition in the
Isabelle library with axioms ensuring the uniqueness of the representation (i.e., a
homomorphism in the mathematical setting will be represented just by one homo-
morphism in our Isabelle environment).

3.4 FEncoding mathematics 67

This framework also incorporates some new lemmas about composition of the defined
homomorphisms, and about how to change in a secure way the source and the target of a
homomorphism under determined circumstances. All the introduced tools are enough to
work with the homomorphisms and the endomorphisms equationally, just deriving the
properties from the algebraic structures they belong to, as in the symbolic approach, and
also to dispose of the functional information on them, as in the set theoretic approach.
We will further comment on the details; in a few words, it can be said that the advantages
of the symbolic approach and the set theoretic approach have been gathered in this
morphism based approach.

Finally a fourth approach is introduced in Section [3.8. Using an Isabelle tool, inter-
pretation of locales, which has been recently implemented, we can build the following
framework:

1. The algebraic structures present will be the same as in the morphism based ap-
proach: the abelian groups G and ker p, the ring of endomorphisms of GG, and, in
addition, we also introduce the ring of endomorphisms End(ker p), and the abelian
groups Hom(G, ker p) and Hom(ker p, G).

2. The representation of homomorphisms lies on the ideas given for the morphism
based approach; each homomorphism must have a unique representation, and
therefore the axiomatic part is quite similar. The only difference is that, now,
it will be enough to keep the functional part of homomorphisms, without storing
explicitly their source or target.

3. The representation of the algebraic structures G and kerp is the same as in the
previous approach, through extensible records. The rings End(G) and End(ker p),
as well as the abelian groups Hom(ker p, G) and Hom(G,ker p) will be also rep-
resented through records. The main difference with respect to the morphism ap-
proach is that, now, we have explicitly represented the algebraic structures End(G),
End(ker p), Hom(ker p, G) and Hom(G, ker p), and consequently, we can take ad-
vantage of the properties of these algebraic structures in the proofs.

Locales are helpful to encode all these structures in such a way that we can later recover
(in a neat way) the operations and properties of each of them (even when they do
not increase the reasoning power of Isabelle). We will introduce this framework in
Section 3.8. It has been named interpreting locales approach, because of the technique
we use to create a context where proofs are developed.

3.4 Encoding mathematics

Whenever we represent a mathematical problem in a computer, in a theorem prover or
in a symbolic computation system (and, generally speaking, in any software or hardware
system), a process of abstraction is carried out between the objects we are considering in

68 Chapter 8 Mechanizing the proof: a case study in Isabelle

our computer and the actual mathematical entities. Examples are obvious: in an ASCII
encoding, the symbol “2” is coded through “0011 0010” in its binary form, whereas in a
binary coded decimal (or BCD) system, like the one used in COBOL, the representation
of “2”7 would be just “0010”. In other words, in the machine we can find a representation
of the mathematical entities we are dealing with. When we represent algebraic structures
or functions in a theorem prover, such a process of representation is also present. We
do not pretend to undertake in this memoir an exhaustive study of this process, but we
consider here some ideas about it which can clarify the differences among the approaches
that will be later introduced, as well as the possibilities and limitations of each one of
them.

We have already said that the main constituents of each framework are the algebraic
structures and the homomorphisms connecting them. In this section, we propose a
general framework allowing us to formally define what a representation of a mathematical
entity means. We understand here for mathematical entities, at least, values, sets,
algebraic structures and functions, although the definitions given could be used beyond
these entities (see, for instance, [Pascual, 2002]).

The ideas given in this section are based on [Hoare, 1972, Loeckx et al., 1996], al-
though we adopt here the notation introduced in [Pascual, 2002]. A representation R is
formed by the following elements:

1. A collection Mz containing the mathematical entities whose representation we
pretend to achieve, named model of the representation.

2. A computer domain Dgr, named domain of the representation, and which usually
will be identified with a data type.

3. A collection of elements of Dgr, named carrier of the representation and denoted

4. A process of abstraction defined from the elements of Si into the elements of
Mz, and named Ay, which allows the user to identify the elements implemented
with the mathematical entities they are representing (studying the properties of
the process of abstraction, i.e., if it is a correspondence, a function, an injective
function, a bijection, and so on, will provide us with relevant information about
the representation).

5. An equivalence relation, =g, which identifies objects in the carrier of the repre-
sentation, Sg, in such a way that whenever it is satisfied that x =z y, then the
mathematical elements represented through x and y are equal in M.

We now illustrate the different elements of the process of representation with some
examples in ML:

Example 3.4.1. A representation of the set of boolean values Bool = { True, False} is
R oot = (Bool, 5001, bool, A gy, =), where bool has the values true or false and Apg,yy
is a function which maps true to True and false to False.

3.4 FEncoding mathematics 69

In this example, Ap,,; is a bijective function between the elements of the Bool set and
the ML objects with type bool (in particular, Sp.si = Dpoor). These representations,
characterized by a bijective total function between the model and the carrier, are usually
called literal representations.

Example 3.4.2. A new example appears when we try to represent a set of elements A
in ML. We name this representation R4. In this case the model Mg, will be the set
A. Then, we should choose an ML type to be the domain of the representation. As long
as we are in a generic case, we choose an ML type variable, such as «, to represent this
set. Thus, the domain of representation Dg, will be the type a. The carrier set Sg,
will be determined by the concrete set A, and therefore we now leave it undetermined.
The equality of the abstraction will be based on the boolean data type defined in ML,
as presented in Example 3.4.1. The equality of the representation =5, will have type
a — a — bool, and will be identified with the equality in «.

Now we apply the previous example to some concrete sets.

Example 3.4.3. First, we pretend to achieve a representation of the set of natural
numbers N, that we will name Ry. The model Mg, will be the set of natural numbers,
N. In ML there is a predeclared type int, which represents the set of integer numbers Z,
but there is no predeclared type for the natural numbers. Thus, we define the following
representation. In this approach, we consider as domain Dg,, the ML type int, formed
by the integer numbers, and which is known to be a type with equality. The carrier set
of our representation will be formed just by the positive numbers, or, which is the same,
the set Sg, = {0, 1, 2, ...}. The equality of the representation =g, is defined to be
the usual equality for integers in ML, =, restricted to the carrier. With this definition,
the process of abstraction Az, is a function such that assigns to every positive number
n in ML the natural number n of the model N.

It can be observed how the process of abstraction is a partial injective function from
the domain set Dg, into the model of the representation N. Whenever the abstraction
function is an injective function, we will say that the representation is faithful.

Example 3.4.4. A new representation can be given for the natural numbers. In this
second approach, that we will name Ry, the model and the domain of the represen-
tation will be the same as in Example 3.4.3. Therefore, My, , will be the set N and
Dry.. Will be the ML type int. Now, as carrier set Sg,,, of the representation, we
consider the whole domain of the representation, or, which is the same, all the elements
with type int. The process of abstraction is defined as follows: for every element n with
type int such that n>=0, we define Ag,,,(n) = n, and for every n such that n<0, we
define Az, (n) = —n.

The equality of the abstraction now must be changed, since the standard equality in
ML is not coherent. The equality =g,,, that we consider now is given by m =5, n if
m=norm= - n

It is worth noting some facts on this new representation with respect to the previous
representation given in Example [3.4.3. First, the abstraction process Ag,,, is now a

70 Chapter 8 Mechanizing the proof: a case study in Isabelle

total function from the domain of the representation into the model. Second, it is not
injective, as far as every element n in N, apart from 0, has two preimages {n, -n}.
Finally, the equality of the abstraction = ARy, has been changed for the first time in our
collection of examples, and it is not the standard equality in ML.

Example 3.4.5. We consider again the question of giving a representation for a set
A, where A is now Z/5Z. The representation will be named Rz/s7z. The previous set
can be expressed as {0, 1,2,3,4}, which will be our model of the representation Mz, -
Different representations can be given for this set, although we will consider in all our
cases the domain of the representation as the ML type int:

1. We can consider as carrier set of the representation Sz, - the set of int elements
{0,1,2,3,4}. The abstraction process ARZ/5Z can be defined as the restriction of
AR, (see Example3.4.3) to the elements of the carrier. Therefore, the abstraction
process defines a bijective function from the carrier set into the model of the
representation. The equality of the representation is defined as the ML equality
restricted to the carrier.

2. A second representation can be given if we consider as the carrier set of the rep-
resentation the data type int, and as abstraction function a function assigning to
each term n of type int, the image through Az, of n mod 5. Then, the abstraction
function is no longer injective but it is still surjective, since every element of the
model is represented through more than one element of the carrier. The equality of
the representation would be the standard equality in ML restricted to the elements
of the carrier (i.e.,n = m (mod 5)).

Example 3.4.6. Now we give a representation for functions between mathematical sets.
We consider the functions of the form f: A — B (i.e., the set of functions B4). Two
different problems must be faced. First, the representation of the mathematical sets A
and B, and then, the representation of mathematical functions of the form f: A — B.

The representation of generic sets will be made as exposed in Example [3.4.2. We
consider two ML variable types, a for set A and for set B, and both representations can
be expressed as R4 = (A4, «,Sr,,Ar,,=r,) and Rp = (B, 3,Sry, Ar,, =r,), where
=r, and =g, denote the equality of the representations.

Our representation Rpza of the set of functions from A to B will be as follows. First,
we choose as domain of the representation Dz, the ML type o = 3, where it can be
observed that « is equal to Dr, and 3 is Dg,,; this ML type corresponds to terms which
have an input of type a and return a value of type (5.

The carrier set of the representation Sg_, will be the elements of the set of ML
functions {f | £ € Sg, — OSgr,} such that whenever Ag,(x) = Ax,(y), then
Ar,(f (x)) = Ag,(f (y)). From our perspective, it is enough to define the repre-
sentation in this way. Nevertheless, there are intrinsical problems related to this repre-
sentation that have been studied in depth, for instance, in [Pascual, 2002].

3.5 The symbolic approach 71

The abstraction process ARB , 1s such that, given an ML function f from the carrier
of the representation, Ag_, (f) is a function f verifying that for all x in the carrier set
Sr., such that Ag,(x) = z, with z in A, (Az_,(£))(Ar,(x)) = f(z) (which thanks to
the coherence among representations will be also equal to (Az,)(£(x))).

From the definition of the representation process Az _, it can be seen that several
ML function (or none) could fulfill this condition for each function f € B“, and both
injectivity and surjection of the abstraction function is not ensured.

The equality of the representation =z _, will be such that, given g and h in the
carrier of the representation, it satisfies that g =, h if and only if for all x in Sg,,
BA

g (x) =sz, b (x) (the equality between functions in ML is not computable in general).

Along the following sections, we will expose four different approaches proposed to
produce the implementation of proofs in Homological Algebra. The notion of represen-
tation will allow us to illustrate the differences between them, as well as to explain the
difficulties found in each one of them. First, we will introduce some ideas about the
implementation of algebraic structures in Isabelle.

3.5 The symbolic approach

In order to explain in detail this symbolic approach, we will apply it to Lemma 2.2.14.
First we enumerate the mathematical entities involved in its proof in Section [3.5.1.
Then, we will explain the process of abstraction in Isabelle in Section [3.5.2, following
the guidelines introduced in Section 3.4. Homomorphisms and endomorphisms will be
considered simultaneously. Later, we will give an enumeration of which lemmas we have
proved with these ideas, in Section 3.5.3, and finally we will detail the advantages and
drawbacks of the method in Section 3.5.4.

3.5.1 The algebraic structures

In the statement of Lemma[2.2.14, the following mathematical entities appear explicitly=:
the differential group (D, dp), the differential subgroup (kerp,dp), the abelian group
endomorphisms h and 0p, the abelian group homomorphism (which is also a differential
group homomorphism) dph + hdp, and the graded group homomorphisms idgna(p) and
INCier p-

Some other entities are not mentioned in the statement, but are used in the proof,
and can be considered to appear implicitly; they are the rings of abelian group endomor-
phisms End(D), End(ker p), the ring of differential group endomorphisms End((D, dp)),
the abelian groups of abelian group homomorphisms Hom(D, ker p), Hom(ker p, D),

3As stated at the end of Chapter 2, ungraded structures will be used in the sequel.

72 Chapter 8 Mechanizing the proof: a case study in Isabelle

the abelian groups of differential group homomorphisms Hom((D,dp), (kerp,dp)),
Hom((kerp,dp), (D,dp)), and the ringoid formed by the abelian group and the dif-
ferential group homomorphisms and endomorphisms of these structures.

In the symbolic approach, the model of the representation Mz, will be formed by
the set of endomorphisms End(D). This means that the implementation of the algebraic
structures D and ker p will not be given. Two reasons led us to choose this model:

e The group kerp is a subgroup of D, and this relation will allow us to represent
some elements of Hom(D, ker p), Hom(ker p, D), End(ker p) as elements of End(D);
for instance, Omom(pkerp), Which has a similar behaviour to Ogngq(p) in the sense
that for any « in D, Opom(p kerp) (@) is equal to Ogna(py(x), could have the same
representation in some situations.

e Some of the properties that have to be proved in Lemma 2.2.14/ can be stated and
proved just considering the properties of the ring End(D).

As far as our model considers just the set End(D), the rest of the elements of the
framework will not have an explicit representation.

3.5.2 Representation of the algebraic structures and the ho-
momorphisms

In this section, the process of representation in Isabelle of the mathematical setting
exposed in Section [3.5.1'is described, following the definitions given in Section |3.4.

If we are only considering the properties of endomorphisms as elements of the ring
End(D), the domain of the representation for the endomorphisms, Dg, can be given in
the form of elements of a variable type ‘a in Isabelle, without any functional information.

Now, the carrier of the representation, Sg, will be a set of elements over this type,
'a set. At this stage, this type definition means that we will dispose of a predicate
allowing us to know whether an object of 'a type is contained on this set or not. As we
introduce operations and their properties over this set, it will be clear which elements
belong to the carrier.

The algebraic structure that we use to encode endomorphisms is a ring of elements of
‘a type. It will be implemented as explained in Section [1.3.2, i.e., through a record with
five fields, one of them containing the carrier set, which corresponds to the carrier of the
representation Sgr, together with two constants one and zero and two binary operations
mult and sum. With this implementation, the process of abstraction can be described as
follows: any x in the carrier of the representation is interpreted through the abstraction
Ax as a generic endomorphism of D. The process of abstraction is also such that zero
is interpreted as the null endomorphism and one as the identity map from D to D. In
addition to this, the abstraction process must respect the operations of the ring R, in

3.5 The symbolic approach 73

such a way that for any x, y in R, x @y is interpreted as the addition in End(D) of the
interpretation of z and y; in the case of the mult operation it is interpreted on End(D)
as the composition of maps.

In order to fully describe the process of representation, the equality of the repre-
sentation = must be defined. The equality of the representation corresponds to the
equality in Isabelle/HOL. The equality in Isabelle is defined as an infix function with

type

consts
= i 'a=>"a=> bool (infixl 50)

It is declared to be reflexive, symmetric and transitive. Its definition is valid for
functions and records, as we will see in the rest of approaches, but as far as in this
approach we are dealing with objects of a generic type ‘a, we do not need yet any
further information. The only important fact is that this equality can be augmented
with the properties given for the ring algebraic structure (or for a concrete lemma).
Therefore, if we have declared the ring R to satisfy associativity, we can also derive that
given any x,yand zin R, (z®y) Q2= (y® 2).

Whenever we state more premises in the lemmas, the equality of the representation
will also include these information (for instance, if we define an element p in R to be
idempotent, p ® p and p will be equal through the equality of the representation).

The equality of the representation in this setting gives rise to what we will call from
now on equational reasoning. We will understand by equational reasoning the kind of
properties that can be proved from the premises of the algebraic structure where the
objects are defined to be. Reasoning by rewriting could be another name for the same
idea.

For instance, let us suppose that in our abstraction process the model of represen-
tation M g would be the set of endomorphisms over the integer numbers, End(Z), and
that we consider again the carrier of the representation to be equal to the carrier of a
generic ring R. The endomorphism f(z) = 24+ 1 —1 in Mg could be represented by
a certain y in the carrier of R (without further information on it). Now, we have no
way to prove, by using the representation proposed in this approach, that y, seen as an
element of the ring R, is equal to 1g, a property which is trivial in the model of the
representation. The reason is that this property depends on the functional definition of
f, and not on its properties as an element of the ring R.

In the following section we will describe the properties of Lemma 2.2.14] that can be
proved in Isabelle by using this setting.

74 Chapter 8 Mechanizing the proof: a case study in Isabelle

3.5.3 Lemmas proved in Isabelle

As we have already explained, this setting is quite coarse. As far as we have a repre-
sentation only for the ring End(D) in the form of this generic ring R, we do not have
a representation, first, of the concrete algebraic structures that the homomorphisms are
connecting (in this case, the differential groups (D,dp) and (kerp,dp)), and, second,
about the way the concrete endomorphisms behave over a concrete element of their
domain.

This implies that the lemmas that can be proved inside of this framework can depend
only on the properties of the elements of End(D) interpreted as elements of a generic
ring. In Lemma 2.2.14] a reduction is built starting from some given homomorphisms,
and then it has to be proved that the five properties of reduction are satisfied. In
particular, we are able to prove one of the properties needed in Lemma 2.2.14/ inside of
this framework. The fifth property is trivial, as far as it asserts one of the premises.

We can give a proof of the following equation, (idgna(p) —P)h = Otom(D,kerp), Which
corresponds to the third property of the reduction definition. The representation chosen
for idp is 1 of the ring R. The endomorphisms p, h and dp are represented through
generic elements of R, which we will name p, h and d. Finally, the homomorphism
OHom(D kerp) 18 Tepresented through the constant 0 in R. The representation of the prop-
erties of Lemma 2.2.14 remains as follows: h®@d® h = h, h® h = 0, and p is defined to
be d ® h ® h ® d. Then, the proof of the third property of a reduction in Isabelle is as
shown in Figure 3.1. In Figure 3.2 the mathematical proof of the same result is shown.

3.5 The symbolic approach 75

lemma (in ring) property-three-stepwise:
assumes D: d € carrier R and H: h € carrier Rand H-H: h @ h =0
and H-D-H: h® d®@h=hand P: p=d@h dh®d
shows (Lo p) ® h=0
proof —
from prems have (1 p) @ h= (1@ (©p)) @ h
by (simp add: minus-def)

alsohave ... =1 h® (& p)®h
by (rule l-distr) (simp-all add: prems)

also from prems have ... = h & (& p) @ h
by simp

also from prems have ... = h & S (p ® h)
by (simp add: l-minus)

also from prems have ... = h ® © (h)
proof —

from prems have p @ h=d Qh Qh P h X dh
by (simp add: I-distr)
also from prems have ... =d @ h @ h ® h
by simp
also from prems have ... =0 ® h
by (simp add: m-assoc)
also from prems have ... = h
by simp
finally show ?thesis by simp
qed
also from prems have ... =0
by (intro r-neg, intro H)
finally show ?thesis by simp
qed

Figure 3.1: Proof in Isabelle

(idgnd(py) —P)h = h — ph
=h — (dh + hd)h (unfolding the definition of p)
= h — hdh (using that hh = Ogna(py))
=h—nh (introducing that hdh = h)

= 0Hom(D>,< Jker(p))

Figure 3.2: Mathematical proof

It is worth noting that, even in this extremely simple example, the distance from
the mechanized proof to the (highly) detailed mathematical proof is remarkable. The
proof is written in a calculational reasoning style (see [Bauer and Wenzel, 2001]). The
original expression in the statement is modified at each proof step (the symbol “...”

76 Chapter 8 Mechanizing the proof: a case study in Isabelle

is an abbreviation in Isabelle meaning “the previous expression in the calculation”), in
order to obtain the expression found in the goal of the lemma. When the goal is reached,
the calculation is finished thanks to the use of the command “finally”, by taking the
original expression and the last one, and then, making use of transitivity of the equality,
the property is proved. In the different steps of the Isabelle proof, only what we have
defined as equational reasoning has been applied, (and, in fact, in this approach, this is
the unique available tool).

The lemma can be proved in Isabelle in a much more automated way, simply by
applying one tactic:

lemma (in ring) property-three:
assumes d € carrier Rand h € carrier Rand h@ h=0and h® d ® h=h and p = d
Q@hdh®d
shows (Lo p) ® h=10
proof —
from prems show ?thesis by algebra
qged

The proof is obtained in Isabelle by introducing the premises and then applying the
algebra tactic, defined by C. Ballarin. This tactic is special for algebraic structures,
and tries to apply simplifications derived from the inherent properties of the structure
(in this case, a ring), as well as from the premises, in order to unify both sides of an
equation. In this case, the premises and also the previous knowledge in the Isabelle
library for rings are enough to automatically unify both sides and therefore to prove the
lemma.

3.5.4 Discussion

Our first approach consists in representing the objects in the statement of the lemmas
(the homomorphisms) as generic elements of an algebraic structure where equational
reasoning can be carried out. The idea is to represent the elements of the ring of
endomorphisms as elements of a generic ring. Then, calculations in this ring are identified
with proof steps in the reasoning domain of the endomorphisms. We call this a symbolic
approach since endomorphisms are represented by symbols (as elements of a generic
ring) without reference to their functional nature.

The proof of Lemma 2.2.14/illustrates most of the problems that have to be solved in
order to have a framework for the collection of lemmas in Section 2.2.2: the implemen-
tation of complex algebraic structures and the implementation of homomorphisms. In
addition, one must work with homomorphisms at two different abstraction layers simul-
taneously: equationally, like elements of an algebraic structure (in order to increase the
amount of previous knowledge for proofs, by means of the properties of that algebraic
structure), and also like functions over a concrete domain and codomain (in order to be

3.5 The symbolic approach 77

able to reason with elements of the domain, and thus, be able to complete proofs).

In our process of representation, we have defined the abstraction A identifying ele-
ments of a generic ring R with the endomorphisms of (D,dp). Therefore, there is no
representation of the algebraic structures (D, dp) and (kerp,dp). It could be tried to
represent some objects of these structures as elements of the ring R. Actually, this is
what has been done in the case of the third property, whose Isabelle proof was exhibited
in Section 3.5.3; an element of Hom(D, ker p) is represented as an element of the ring
R. More concretely, we have represented the element Otom(p kerp) through the element 0
of the ring R. Two different representation contexts have been used at the same time.
The first one, as explained, identifying the elements of End(D) with the elements of the
carrier of the ring R. The second one, identifying also elements of Hom(D, ker p) with
elements of the ring R. In this case, the combination of both representations is coherent.

On the other hand, if we try to represent other properties in Lemma 2.2.14/ in the
same way, we will observe that identifying several processes of representation with a same
carrier can produce unexpected results. For instance, if we consider the first property,
stating that (idgna(py — p) inCrerp = idEnd(kerp), the elements idgnq(py and p, which belong
to the set End(D), can be represented as elements in the carrier of R; if we try to consider
as our model of representation the set Hom(D, ker p), with carrier again the carrier of
R, a natural representation for incye, would be to consider it as the element 1 of R;
finally, if we try to consider the same carrier of representation for the ring End(ker p),
then idgnd(kerp) Would be represented also as 1 in R. We have used the same carrier of
the representation for objects of three different models of representation. This leads us
to produce a wrong representation of the equation we want to prove. The representation
of the property would look like as (1 — p) ® 1 = 1, which is unprovable in our context
(i.e., with the stated premises).

This symbolic approach has some advantages. First of all, it is quite simple and
direct, which has as a consequence that proofs are readable and quite close to the
mathematical proofs obtained, which we consider must be one of the goals when using
a proof assistant. As will be seen in Section 3.6, where more elaborate approaches
are discussed, it is also possible that the size of the proofs turns them into something
unfeasible and of little help for the working mathematician. Moreover, Isabelle has
among its standard libraries enough theories to produce proofs in the context of the
symbolic approach in a completely automatized way; these tactics are specially efficient
when only equational reasoning is required, arriving in some cases to fully automatize
the proof, as in the example shown with the algebra tactic.

The most appealing idea found in this method was to introduce in the framework
the algebraic structures formed by the homomorphisms (i.e., the ring End(D)). In this
approach the idea was introduced, and it will be further developed in the morphism based
approach in Section 3.7 and also in the interpreting locales approach in Section 3.8l

There are also drawbacks on this method. Firstly, we cannot prove the remaining
properties (the first, second and fourth ones in the reduction definition applied to the
reduction built in Lemma 2.2.14) needed to complete the implementation of the proof.

78 Chapter 8 Mechanizing the proof: a case study in Isabelle

They can be neither proved nor even expressed inside of this framework, since informa-
tion about the domain of the homomorphisms or about the concrete definition of the
homomorphisms in such domains is required. For instance, it is not possible to derive
with the tools of this framework that p‘ (kerp) = Ofnd(kerp)- This is a consequence of the
abstraction process that we have chosen for this framework. The representation is too
generic. The conceptual distance between Isabelle code and the mathematical content
is too large.

To sum up, the representation is interesting, illustrating some important points,
but the domain of the representation was conceptually too far from the mathematical
model, and it was not possible to implement every proof or property. The previous
discussion shows that the computational content of homomorphisms (that is to say, their
interpretation as functions) is lost, which prevents code extraction. These drawbacks
are overcome in the following approaches.

3.6 The set theoretic approach

As we have pointed out, the framework presented in the previous section has mainly two
weak points. First, the representation chosen was correct, but some limitations were
found when dealing with homomorphisms and elements of algebraic structures. Second,
and based on the previous weakness, some properties and proofs could not be expressed
and proved with the given tools.

In this section we detail a framework based on the representation of mathematical
entities given in the Isabelle libraries. We also face the implementation of the complete
proof of both Lemmas 2.2.11/ and 2.2.14. Despite the similarities between their state-
ments, a complete proof of the first one will be shown with the representation given in
this set theoretic approach, whereas some limitations appeared when trying to imple-
ment the proof of Lemma 2.2.14' that will make us propose a new setting. We point out
the differences between both lemmas in Section 3.6.5, paying special attention to the
possible solutions that will lead us to the morphism based approach and the interpreting
locales approach.

3.6.1 The algebraic structures

We first describe which of the mathematical structures appearing (explicitly or implic-
itly) in Lemmas 2.2.11 and 2.2.14' are going to be considered in our model of represen-
tation. In the previous approach, only one model of representation (the set of endo-
morphisms) was considered, and we highlighted the consequences of introducing more
than one model with the same carrier of the representation. Here, various processes of
representation are going to be considered with different models of representation and
their respective carriers sets; all of them will have to interact in an appropriate way.

3.6 The set theoretic approach 79

In the statement of Lemma 2.2.14 the following structures appear explicitly (as
related in Section [3.5.1): the differential group (D,dp), the differential subgroup
(kerp, dp), the abelian group endomorphisms h, Op, the abelian group homomorphism
dph+hdp, and the abelian group homomorphisms idg,q(p) and incyer,. Some properties
of the following algebraic structures are also used: the rings End(D), End(kerp), the
ring End((D, dp)), the abelian groups Hom(D, ker p), Hom(ker p, D), the abelian groups
Hom((D, dp), (ker p,dp)), Hom((ker p,dp), (D,dp)), and the ringoid formed taking the
abelian group endomorphisms and homomorphisms of these structures.

In the statement of Lemma 2.2.11], the differential group (D, dp) with its differential
subgroup (ker gf, dp), as well as (C, d¢) with its differential subgroup (im g f, d¢) appear.
Moreover, the reduction (f,g,h): (D,dp) = (C,d¢) is also explicit in the statement,
and finally, the abelian groups Hom(D, ker g f), Hom(ker g f, D) appear in the proof.

In the implementation of the proofs of Lemma 2.2.14/in the set theoretic approach a
representation of the following mathematical entities will be given:

e The differential groups (D, dp) and (ker p,dp) (whereas in the symbolic approach
no explicit representation of them was given).

e The differential group endomorphisms dp: (D,dp) — (D,dp) and
idgna(py: (D,dp) — (D,dp), the abelian group homomorphism h: D — D,
and combinations of them (for instance, p = dph + hdp) (as in the symbolic
approach, although their representation is different).

e The sets of abelian group homomorphisms Hom(D,kerp) and Hom(ker p, D),
the set of endomorphisms End(D), End((D,dp)), End(ker p) and End(kerp, dp),
and the sets of differential group homomorphisms Hom((D,dp), (kerp,dp)) and
Hom((kerp,dp), (D,dp)) (in the previous approach, only the ring End((D,dp))
was represented by means of a generic ring).

A similar situation is produced when we define a representation for Lemma 2.2.11, where
the chosen items are:

e The differential groups (D, dp), (C,d¢) and (imgf,dc).

e The differential group homomorphisms f: (D,dp) — (C,d¢) and
9: (C,de) — (D, dp).

e The sets of differential group homomorphisms Hom((D,dp),(C,ds)),
HOIIl((C, dC)? (D’ dD))? Hom((lm gfa dC)u (Cv d()’)), and HOIH((C, dC)u (Hn gfu dC))

As it can be observed, the main differences with respect to the symbolic approach is
that the domain and codomain of homomorphisms are included, and also that homo-
morphisms will be considered as elements of sets instead of as elements of some algebraic
structure. These design decisions are based on the encoding proposed in the Isabelle
libraries.

80 Chapter 8 Mechanizing the proof: a case study in Isabelle

3.6.2 Representation of the algebraic structures

We consider first the mathematical entities appearing in the representation of
Lemma 2.2.14. In this section we describe the representation of algebraic structures,
mainly differential groups, and in Section 3.6.3 we will face the problem of the represen-
tation of homomorphisms.

The representation chosen for differential groups is connected to the implementation
proposed in Section [1.3.2] through records, where a carrier field represents the set of
elements of the algebraic structure, and the rest of fields represent the constants and
operations of the algebraic structure. We describe the representation process with an
example, identifying the elements exposed in Section 3.4/ appearing in the representation
process in the case of a generic differential group. Let us consider a differential group
(D,dp). It will be the model of representation D of our example. It can be thought of
as a set of elements with some common operations. We use as domain of the representa-
tion Sg, the sets over a variable type in Isabelle; it can be observed that this data type
corresponds to the data type of the only field of the defined record partial-object (see
Section 1.3.2), which is the basic record type defined for algebraic structures, from which
the rest of algebraic structures are extended (or inherited). The operations and constants
of the differential group are represented with objects of a functional type with the cor-
responding arities. In addition to this, some assumptions ensuring the right properties
of the differential group structure are provided (see Section [1.3.2); these assumptions
must be satisfied by a record in order to satisfy the differential-group predicate. Then,
the carrier of the representation Sg will be an Isabelle object with type ‘a set such that
together with the given operations satisfy the properties of the algebraic structure. With
this carrier, the abstraction can be defined as a function from the Isabelle carrier into
the carrier of our representation model such that 1 in Isabelle is assigned to the unity
object of Mg. Finally, the equality of the representation now corresponds to the Isabelle
equality which has been augmented with the properties derived from the definition given
in Isabelle for the differential group algebraic structure.

Some other algebraic structures appear in the statement of the lemmas, as the kernel
and the image sets of an application. The Isabelle definition of the image set can be
found in the Isabelle library, more concretely in the file theory Set and is as follows:

constdefs
image :: ('a=>"b) => "a set => b set (infixr * 90)
f A =={y. EXxA y=f(2)}

The image set is formed by the elements with a preimage. In a similar way we had
to define the kernel set:

constdefs
Ker :: [('a,’c)monoid-scheme, ('b, 'd)monoid-scheme, 'a => b | => 'a set
Ker G G' f == {z. (z € carrier G) N fz = one G'}

3.6 The set theoretic approach 81

The kernel is defined for objects with type, at least, monoid, which ensures that we
have a one field, making the definition meaningful.

3.6.3 Homomorphisms between algebraic structures

In this setting, we will paid an special attention to the representation of homomorphisms.
First we describe the codification of functions between sets in Isabelle, based on Exam-
ple3.4.6. Then, we will comment on the Isabelle technicalities of the implementation of
homomorphisms.

As far as our representation of algebraic structures is formed by sets with some
operations, the representation of homomorphisms between algebraic structures can be
seen as the problem of representing functions between sets. Let us choose two sets A
and B. The model of representation is the same chosen in Example [3.4.0, i.e., the set
of functions B4. The domain of our representation is defined to be the type of total
functions between the types of the representation of sets A and B*; here we consider
two generic types ‘a and ‘b (in ML they were named « and (3). Then, the domain of the
representation will be the data type ‘a =>’ b. The carrier of the representation contains
the terms of the data type ‘a => b which satisfy the Isabelle axiom h € A—> B. The
meaning of the arrow in the previous expression will be later detailed in this section,
for now it is enough to say that it defines the set of functions such that map every
element of the Isabelle set A to an element of the Isabelle set B. The abstraction
function maps an Isabelle function f between two sets A and B to a similar function
of the model of representation. Here, a problem can be pointed out in the abstraction
function. In general, it is not injective. Sets in Isabelle, as already pointed out, are
partial objects over a type, i.e., if we consider a variable type 'a for representing a set A,
its representation will be a term of type ‘a set. Now, taking into account that equality
between functions in Isabelle is defined to be extensional, two functions f and g will be
equal iff

f=9g < Va.fr=gzx

In Isabelle, and thanks to the extensionality principle, we can say that two functions are
equal if they yield the same values. For instance, the following lemma can be proved in
Isabelle in a simple proof step:

lemma equal—functions: assumes f = (Az:int. x + 1 — 1) and g = (Az. z) shows f= g
by (simp add: prems)

In the lemma, two elements of End(Z) are defined, Az.x + 1 — 1 and A\z.z, and
are proved to be equal. In the symbolic approach, the same example was introduced.
Nevertheless, due to the process of representation chosen there, this equality between

4In HOL, the symbol => represents only total functions.

82 Chapter 8 Mechanizing the proof: a case study in Isabelle

functions was not provable. Therefore, the representation proposed in this approach has
greater expressiveness.

On the contrary, some problems also arise from working with functional objects.
Sets are represented as partial objects over a given type; then, if we define two functions
between sets, they will be equal if they are equal when applied to every element of
their source type, and not of the carrier of their source set. Consequently, the following
statements are not provable in Isabelle®:

assumes f € {0::int, 1} — {0, 1} and f(0) = 0 and f (1) = 1 shows [= id

In this statement, a function is defined from a set representing Zs into this same set,
mapping each element to itself. Then, we try to compare it to the identity function in
Isabelle. Due to the extensionality, these two functions will be equal if they are equal
for every value of the data type int. This cannot be proved in this case.

The same statement can be proposed in a generic setting, being A an B two sets and
f a function between them, with the same result. The equality is not provable:

assumes fe A > Band g€ A —- BandV z € A. fr=gzshows f =g

As a consequence of these facts, injectivity of the abstraction function for functions
between sets has been lost. When we deal with functions between sets, a function
in the model of the representation can have several preimages in the carrier of the
representation. Some solutions for this problem will be commented on in Section 3.6.5,
and one of these solutions will be applied in our next setting, the morphism based
approach, in Section 13.6.

After describing the process of representation for functions between sets in this set-
ting, we now describe in detail how homomorphisms are implemented in Isabelle. A
type declaration and a collection of axioms must be provided to have an implementation
of homomorphisms. The type will be defined depending on two parameters, namely the
algebraic structures representing the domain (or source) and the codomain (or target)
of such a homomorphism. Let us suppose that G and H are two semigroups, defined
through the record types (‘a,’ ¢) semigroup-scheme and ('b, d) semigroup-scheme. The
type of the Isabelle set hom G H (which is the carrier of the representation of the set
Hom(G, H) defined in Section [1.1.2), will be defined to be the set of functions connecting
the types of G and H:

consts
hom :: [("a, 'c) semigroup-scheme, ('b, 'd) semigroup-scheme| => ('a => 'b)set

The type described defines the set of functions such that given an element of the type

5The following statement has not been named with the Isabelle keyword lemma since it is not
provable.

3.6 The set theoretic approach 83

of the carrier set of G return an element of the type of the carrier set of H. A relevant
fact that can be pointed out is the use of schematic record types. The type definition
above is valid for semigroup record types, but also for any record subtype obtained from
this one; for instance, monoid record types and differential group record types, thanks
to extensible records.

Once that the set of homomorphisms has been given a type, its definition (in terms
of HOL logic) must be given. Information has to be provided in order to ensure that
homomorphisms are well-defined for the carrier sets of the algebraic structures. The
axioms allowing us to distinguish which total functions satisfy the homomorphisms’
properties are

defs
{h. h € carrier G —> carrier H &
(Vz € carrier G.Vy € carrier G. h (mult G x y) = mult H (h z) (h y))}

The second part of the definition establish the compatibility of the homomorphism
with the multiplicative operation in the semigroup record. The partiality is contained
in the first axiom stating that h € carrier G —> carrier H.

The arrow —> represents in Isabelle a simplified version of the II-type for dependent
sets. Homomorphisms, interpreted as functions between sets over types, can be seen as
a set of functions such that when we have an element in the source set, its image will
be an element of the image set:

syntax
funcset :: ['a set, 'b set] => ("a => 'b) set (infixr —> 60)

In order to get pretty printing facilities, first a symbol —> is defined to be equivalent
to the operator funcset for two sets. Given two sets A and B, the following lemma
proved in Isabelle shows the equivalence between the funcset function and the set of
functions which image will be an element of a set B whenever their source is an element

of A.

lemma funcset-definition: shows funcset A B={f.Ve. 2 € A ——> fzx € B}
by (auto simp add: funcset-mem, unfold Pi-def, simp)

It can be observed that this definition fits into the prerequisites of partiality between
sets that we asked for the carrier sets of algebraic structures. Nevertheless, with this
definition, the process of abstraction for homomorphisms lacks of injectivity, allowing
several functions from the carrier of the representation to represent the same mathemat-
ical entity. Consequently, the difficulties of defining an algebraic structure with this set
of functions can be observed.

Mainly two operations between homomorphisms and endomorphisms appear in the

84 Chapter 8 Mechanizing the proof: a case study in Isabelle

statements of lemmas in Section 2.2.2. One of them is represented as the product, and
can be identified with the composition of functions. In Isabelle composition of functions
is defined as:

constdefs
comp = ['b=>"c,’'a =>"b,"a] =>'c (infixl o 55)

fog==2Azf(g(x))

Some properties have been already proved about this definition that will result helpful
for improving the mechanization and decrease the size of the Isabelle proofs. However,
and quoting what is said in [Nipkow et al., 2002] referred to function theory in Isabelle,
“unlike with set theory, however, we cannot simply state lemmas and expect them to be
proved using blast”, where blast is the name of one of the tactics in Isabelle, which is
based on tableau methods. The other relevant operation with endomorphisms in Isabelle
is addition. For instance, one of the properties of reduction in Lemma 2.2.14] states that
incyerp(idp —p) + dph + hdp =idp. Addition of endomorphisms will depend on the
binary operation of the underlying algebraic structure. In this case, for instance, the
addition in D. Contrarily to the composition, this operation is not predefined in Isabelle,
and no facts are available in Isabelle libraries. The way to define the endomorphism
formed by the addition of two endomorphisms is by means of a lambda definition. The
following Isabelle function:

(Az. add D (id z) (h z))

denotes in Isabelle, with the existing facilities, the endomorphism idp +h in the set of
endomorphisms End((D, dp))".

From this operation it has to be also defined the difference between endomorphisms.
As we will see in Section 3.6.4, when we try to implement proofs with these tools,
expressions become untidy and goals split up very quickly.

3.6.4 Lemmas proved

With the ideas and the chosen representations explained in Sections 3.6.1, 13.6.2
and 3.6.3, we first faced the implementation of the proof of Lemma 2.2.11, in which
we succeeded, and then we tried, as in the symbolic approach, the complete implemen-
tation of the proof of Lemma 2.2.14, where we did not succeeded. In this section, we first
report on the proof of Lemma 2.2.11 and then on the problems found when implementing
Lemma 2.2.14.

In the statement of Lemma 2.2.11, an isomorphism between the differential groups
(C,de) and (imgf,dp), being (f,g,h) a reduction from (D,dp) to (C,dc) is defined

SNote that the additive operation of the ring End((D, dp)) is defined from the additive operation of
the differential group (D, dp).

3.6 The set theoretic approach 85

by means of f: (imgf,dp) — (C,dc) and g: (C,d¢) — (imgf,dp). The proof, as pre-
sented in Lemma 2.2.11, is divided into two parts. First, it must be checked that
(imgf,dc) is a differential group. Then, it must be proved that f and g define an
isomorphism between the differential groups (C,d¢) and (imgf,dp). From the defini-
tion of reduction applied to (f, g, h), f is defined as a differential group homomorphism
f:(D,dp) — (C,d¢). In order to define the isomorphism between differential groups,
we must also consider it as f: (imgf,dp) — (C,dc).

The proof in Isabelle can be done following the same pattern. We first prove that
(imgf,dp) is a differential subgroup of (D,dp), and then we prove that the proposed
maps define an isomorphism. Actually, in the first part, what we prove is a more
general result, stating that whenever we have a homomorphism between two differential
groups, for instance i: (C,d¢) — (D, dp), the image set of ¢ together with the inherited
operations of (D, dp) form a differential group, which corresponds to Proposition 2.2.10.

We take advantage for this proof from the inheritance between algebraic structures.
We first prove the property for groups and homomorphisms between groups, and then,
adding the required axioms, we extend it also to abelian groups and finally to the case
of differential groups. The statement of the property in Isabelle for groups is as follows:

lemma hom-image-is-subgroup: [group C; group D; f € hom C D |
= subgroup (f* (carrier C)) D

where it is stated that the image set through f of the carrier set of G will be a subgroup
of D.

The definition of subgroup in Isabelle is derived from the one of submagma. A
submagma is a subset of a given structure which also is closed under the multiplicative
operation. Then, a subgroup is defined to be a submagma which, in addition to this,
contains the unit of the structure from which it is a subgroup, and is closed for the
inverse function. There is another characterization of subgroups, which is the one we
use in order to prove the previous statement. It requires that the subgroup must be a
non-empty subset, which is closed under multiplication and inverse operations.

These are the premises that we prove in Isabelle. The Isabelle degree of mechaniza-
tion allows us to combine pieces of code where subgoals can be discarded with a high
degree of automation, for instance, that the image set of f is a non-empty set:

assume D: group D
assume C: group C
assume f f € hom C D
show Not-empty: f ‘ carrier C # {}
proof —
from C have one C € carrier C by (simp add: group-def [of C|] monoid-def)
from this have f (one C) € f ¢ carrier C by (simp add: imagel)
then show ?thesis by force
qed

86 Chapter 8 Mechanizing the proof: a case study in Isabelle

where the subgoal is proved in three proof steps (that involve several tactics). Here it
has been used that the image through f of the unit in C' is an element of the image
set. Thus, the set is non-empty. On the contrary, there are another pieces of code, for
instance calculations, where reasoning has to be done stepwise and mainly guided:

show mult D x y € f ¢ carrier C
proof —
from X obtain z’ where z-image: © = fx' A z’ € carrier C by blast
from Y obtain y’ where y-image: y = fy’' A y' € carrier C by blast
from C and z-image and y-image
have mult-in-C: mult C 2’ y' € carrier C
by (simp add: group-def [of C] magma.m-closed [of C])
have (mult D z y) = f (mult C z’ y’)
proof —
from z-image and F have z-in-D: z € carrier D
by (simp add: hom-closed [of f])
from y-image and F have y-in-D: y € carrier D
by (simp add: hom-closed [of f])
from D and C and z-image and y-image and z-in-D and y-in-D and F
have (mult D z y) = mult D (fz’) (fv)
by simp
also have ... = f (mult C z' y')
by (simp only: F z-image y-image hom-mult [of f C D z’ y'])
finally show ?thesis
by simp
qed
then show ?thesis by (simp add: mult-in-C imagel)
qed

Here, automatized tactics cannot succeed to find directly the matching rules stating
that for any = and y in the image set of f (which are, thus, elements of the carrier of D),
mult D xy € carrier D. It must be proved that z and y are of the form fx’ and fy’ and
then the proof is carried out in the group C with 2’ and 3/, being finally transferred to D
with and y. The prover must be fully guided. Nevertheless, with a careful development
of the proof steps, and using in a restricted way the automatized tactics, the proof can
be completed.

Once we have proved that the image set of a homomorphism is a subgroup, the proof
of Lemma 2.2.11/ can be faced. It must be proved that an isomorphism can be defined be-
tween the given group C' and the subgroup of D, im gf through f: (imgf,dp) — (C,dc)
and g: (C,d¢) — (imgf,dp). Taking advantage of the Isabelle facilities for later intro-
ducing inheritance both in the axiomatic part and also in the record types, we will be
able to re-use this lemma when proving its version for abelian groups and differential
groups.

3.6 The set theoretic approach 87

In the Isabelle2004 libraries cannot be found a definition of isomorphic groups and
therefore we had to introduce it. From the different equivalent definitions, and bearing
in mind the statement of Lemma 2.2.11 we decided to use the following one:

locale isomorph-groups = group G + group G’ +
assumes isomorphGG'.isomorph-semigroups G G’

constdefs
isomorph-semigroups :: [('a,’c)semigroup-scheme, ('b,’d)semigroup-scheme] => bool
isomorph-semigroups S S’ == 3 f& (hom S S’). 3 g € (hom S'S).

(restrict (f o g) (carrier S’) = restrict id (carrier S'))
A (restrict (g o f) (carrier S) = restrict id (carrier S))

The definition is equivalent to the one of isomorphic semigroups, as already happened
with the definition of homomorphism, which also were equivalent (just the algebraic
structures involved in the definition must be modified).

Two semigroups S and S’ will be isomorphic whenever two homomorphisms
f:8— 8 and g: " — S can be found, such that their compositions in both directions
are equal to the corresponding identities, i.e., idg and idg.

In the Isabelle definition of isomorphic semigroups it can be observed some of the
consequences derived from the implementation of homomorphisms through total func-
tions over types. Due to the definition of homomorphisms in Isabelle, we know that they
satisfy some properties inside of their domain set; on the contrary, we do not have any
information about their behavior with respect to the rest of the elements of their source
type. This situation forces us to use the Isabelle predefined function restrict:

constdefs
restrict :: ['a => 'b, 'a set] => ('a =>'b)
restrict f A == (Az. if © € A then f z else arbitrary)

It allows us to study the behavior of the function just for the elements of the source
set, and not in the whole range of elements of the type of the source set. This problem,
as well as some possible solutions, will be studied in detail in Section 3.6.5.

The reserved word arbitrary stands for a polymorphic constant valid for any type
which is fully unspecified, and it represents undefined terms (for instance, the result of
applying a function to an element out of the function domain).

Once that all these technical considerations have been made, the statement of
Lemma 2.2.14/ in its version for groups can be given:

lemma isomorphism-version-groups:
[group C; group D; f € hom D C; g € hom C D
Nz z€ carrier C = (fog) z=1idzx;

(gofo(gof)= (90l

88 Chapter 8 Mechanizing the proof: a case study in Isabelle

= (isomorph-groups C (D (| carrier := image (g o f) (carrier D) |)))

All the premises have been directly extracted from the definition of reduction applied
to the groups C' and D and the tuple (f, g) (here the homotopy operator can be omitted).
The goal of this lemma consists in proving the isomorphisms between C' and the subgroup
of D with carrier set imgf.

Now the proof can be implemented in Isabelle in a nearly mathematical style. First,
both algebraic structures, C' and im gf have to be shown to be groups. Then, two
homomorphisms have to be defined satisfying the isomorphism definition. Then, they
have to be proved to be well defined, and finally, their compositions will have to produce
the identity in both directions.

The algebraic structure C' is known to be a group directly from the premises.
The set im gf with the operations of D is a group from the previous Isabelle lemma
hom-image-is-subgroup, which stated that for any homomorphism f, the subset im f is
a subgroup, applied to the homomorphism (gf) and the group D. The homomorphisms
can be explicitly built thanks to the Isar capacity for fixing schematic variables inside
of a proof by using the let command:

let ?g = restrict g (carrier C)
let ?f = restrict f (image (g o f) (carrier D))

Later, we will be able to instantiate the existentially quantified variables that appear
when unfolding the definition of isomorphic groups with the schematic variables 7f and
?g that we have defined.

Again, in the definition of ¢f and ?g can be observed the necessity of substituting
the homomorphisms f and gf by their restrictions to the carrier sets of the isomorphic
structures. This ensures the correctness of the compositions of ?f and ?g; maybe the
use of the restrict operator is redundant in the case of ?g, which is restricted to its own
source set, since the restrictions already appear in the isomorphism definition. In the
case of 7f the use of the restriction is needed, since ¢ f has as source the group D while
f is the result of the restriction of gf to the set im(gf).

The rest of the proof is quite straightforward. Due to the partiality matters intro-
duced by the definition of the homomorphisms as partial functions over types, goals
usually split into different cases depending if we are inside of the source sets or not.
Therefore, complementary goals appear, that sometimes Isabelle automatically discards
(or proves), but sometimes have to be carefully handle. The whole proof is around 330
lines of Isabelle code.

Once we have proved the lemma for a pair of groups D and C, we change the
statement to the case where D and C' are abelian groups. The type definition and axioms
for the homomorphisms between groups and for homomorphisms between abelian groups
are equal, and then in the statement for abelian groups just the premises about C' and

3.6 The set theoretic approach 89

D are modified”:

lemma isomorphism-version-abelian-groups:
[abelian-group C; abelian-group D; f € hom D C; g € hom C D ;
Nz x€ carrier C = (fog)x=1idz; (gof)o(gof)=_(g0/f)]
= (isomorph-ab-groups C (D (carrier := image (g o f) (carrier D) |)))

Introducing the previous lemma where this property was proved for C' and D groups,
the only condition that remains to be proved is the one stating that the image set im g f
is an abelian subgroup of the abelian group D, which in a more general way can be
stated as:

lemma ab-subgr-is-ab-group: | abelian-group A; subgroup H A |
= abelian-group (A(carrier := H]))

None of these lemmas requires a significant amount of code to be proved, due to the
similarities between abelian groups and groups.

Once we have a version for abelian groups, the following step will consist in substi-
tuting the abelian groups by differential groups:

lemma reduction-implies-isomorph-diff-groups:
assumes diff-group CC and diff-group DD and f € hom-cc DD CC
and g € hom-cc CC DD and A z. z € carrier CC==> (fog)z =idx

and (gof)o(gof)=(g90
shows (isomorph-diff-groups CC (DD(| carrier := image (g o f) (carrier DD) |)))

The proof for this version is based, following the general pattern, on the one for
abelian groups. Nevertheless, some differences between both versions required some
additional lemmas. First, a new definition of homomorphisms between differential groups
had to be provided; as far as homomorphisms between differential groups require an
additional property than homomorphisms between semigroups, this must be considered
in the definition. Consequently, the definition of isomorphic differential groups was also
changed, being defined in terms of homomorphisms between differential groups. Two
auxiliary lemmas were also extracted from the main lemma to simplify the proof. The
first one states that the image set of a differential group homomorphism is a differential
subgroup, with the inherited operations of the source differential group:

lemma hom-cc-image-is-diff-group:
assumes diff-group-CC". diff-group CC and f-hom-cc: f € hom-cc CC CC
shows diff-group (CC (| carrier := image f (carrier CC) |))

7As pointed out in Section [1.3.2, when dealing with abelian structures, the operations mult, one and
m-inv become add, zero and a-inv.

90 Chapter 8 Mechanizing the proof: a case study in Isabelle

In the proof of this lemma, the previous lemmas hom-image-is-subgroup and ab-subgr-
is-ab-group were introduced (by instantiating them with the corresponding values).

An important feature of theorem proving, detection of erroneous statements, showed
its usefulness in our first attempt to prove this lemma. We intended to prove a more gen-
eral result, similar to lemma ab-subgroup-is-ab-group, but applied to differential groups.
The statement would be as follows:

[diff-group A; subgroup H A | = diff-group (A(carrier := H)))

Isabelle can not infer by itself that the result is erroneous; when one tries to give a
mechanized proof for the previous statement, the goal is split up in (simpler) subgoals.
This process, sooner or later, produces a subgoal of the main goal which can be clearly
identified as a false statement (which maybe had not been observed in the original
statement). This process, obviously, must be ruled by a human agent, and is included
in the interactive part of the proving process. The user is responsible for identifying a
false statement. Nevertheless, a lot of the Isabelle tactics do not preserve provability,
just a small subset known as “safe” does, which means that obtaining a non-provable
subgoal not always mean that we have a non-provable (initial) goal.

The second previous lemma proves that the composition of homomorphisms between
differential groups is again a homomorphism between differential groups.

The whole proof, including some previous facts, definitions and lemmas, can
be found in the theory files “lemmal_previous.thy”, “lemmal_isom_groups.thy”,
“lemmal_isom_ab_groups.thy” and “lemmal_isom_cc.thy”; it is about 1700 lines long.

Now we can compare the proved lemma in Isabelle, reduction-implies-isomorph-diff-
groups, and the mathematical version given in Lemma 2.2.11. Two differences can be
observed. First, as we have already explained, the substitution of graded structures
(chain complexes) by ungraded ones (differential groups). The second difference is that,
instead of providing Isabelle with a definition of reduction, we preferred to just include
between the premises the needed properties from the reduction definition. The main
motivation for this was to obtain a more readable statement of the lemma in Isabelle.
Apart from these two points, the version proved in Isabelle can be directly coupled with
the mathematical statement.

The most complicated step of the whole proof was the version for groups, due to the
careful methods that have to be applied to deal with the partial functions. We will insist
on this in Section 13.6.5.

When we tried to implement the proof of Lemma 2.2.14, already explored with
the symbolic approach in Section 3.5, we tried to apply the same methodology. We
introduced the same algebraic structures, with the same representation, and we also
continue using the same implementation of homomorphisms. The statement in Isabelle
of the lemma is:

3.6 The set theoretic approach 91

lemma is-reduction: [diff-group D; h € hom D D; ho h = (Ax. zero D);
hodiff Do h=h]
_—
(Up-cc = D,
Down-cc = (D (| carrier :== Ker D D (Az. add D ((diff D o h) z) ((h o diff D) z)) |)),
hom-down = (Az. add D ((id) z) (a-inv D (add D ((diff D o h) x) ((h o diff D)z))))
hom-up = (Az. id x),
hom-oper = h |) € Reduction

)

As it can be observed, problems already appear when trying to give the statement
in Isabelle, which is hardly readable. In mathematical notation, it can be expressed as
(idp — p, inCkerp, k) Will be a reduction from (D, dp) to (ker p,dp) provided that (D, dp)
is a differential group, h an endomorphism of the abelian group D satisfying hh = Op
and hdph = h and p is dph + hdp.

The main difficulty to express the statement of the lemma in Isabelle in a readable
way is due to the way combinations of homomorphisms must be defined. In the statement
of Lemma [2.2.11 only composition of functions, an operation already defined in Isabelle
libraries, was used. Now, addition of endomorphisms as defined in Section 3.6.3! is also
introduced. From it, also the inverse a-inv is defined. There are no auxiliary lemmas
proved about these operations. Here, two solutions can be proposed. The first would be
to state and prove properties that can ease the proofs about add, a-inv, and composition,
o. Second, we can try to prove a more general result, stating that endomorphisms with
these operations (add and o) satisfy the definition of a ring. Then, all previous knowledge
in the Isabelle library about rings will be available for working with endomorphisms (and
these operations). This second option is based on reusability, and will be shown in the
morphism based approach, in Section 3.7.

When we tried to prove the previous statement, expressions grew very quickly and
goals split into an exponential number of subgoals. Moreover, most of the goals were
related to the definition of the new homomorphisms and endomorphisms through lambda
expressions. These new defined functions had to be proved to be homomorphisms or
endomorphisms in order the reductions to be well defined.

First, in the following section, we will further explain the advantages and drawbacks
of this set theoretic approach, comparing it to the symbolic approach.

3.6.5 Discussion

The symbolic approach exposed in Section 3.5, provided the user with a high level of
abstraction in relation to the concrete implementations in the theorem prover; due to
this degree of abstraction, it was not precise enough to express and prove some lemmas.
With the set theoretic approach, we have presented a framework where the algebraic
structures have been represented by records and homomorphisms have been represented
as functions. The degree of expressiveness has been augmented. Actually, any of the

92 Chapter 8 Mechanizing the proof: a case study in Isabelle

lemmas we proposed in Section 2.2.2 can be expressed (apart from the graded structures)
inside of this setting, this was not possible in the symbolic setting. On the contrary, some
improvements can be obtained by changing the way homomorphisms are represented and
managed.

There are two main components in this set theoretic framework. One is the algebraic
structures involved (groups, abelian groups and differential groups) and the other one
is the homomorphisms between these structures. Algebraic structures have been imple-
mented over extensible record types; this has allowed us to use record subtyping and
parametric polymorphism, and thus algebraic structures have been derived using inheri-
tance. We have taken advantage of this feature in the proofs of the lemmas; first we have
proved a version of Lemma 2.2.11/ for groups, then we have used it for proving the same
lemma for abelian groups, and finally we have proved the lemma for differential groups,
always introducing the existing versions in the new proofs. The model is satisfactory
and can be even compared with the Kenzo model, where algebraic structures are also
implemented as records.

In the definition of homomorphisms, again a type declaration and a list of axioms
satisfied had to be assigned. They were assigned a functional type between generic types
in Isabelle. As far as the carriers of algebraic structures are represented through sets
over these types, some axioms had to be added ensuring that functions would assign to
each element of the source carrier set an element of the target carrier set.

Since in Isabelle equality (=) is total on types, problems arise when comparing homo-
morphisms (or functions between sets, in general). A way of getting out of this situation
is to use the Isabelle constant arbitrary, which denotes (for every type) an arbitrary but
unknown value. Doing so is sound, because types are inhabited. Functions between sets
can be simulated by mapping any element outside of their source set to arbitrary.

This is the solution we adopted in this set theoretic approach to be able to use
Isabelle equality (=) to compare functions between sets. In our Isabelle definition of
isomorphic algebraic structures, we had to use functions which out of their domain of
definition were assigned the arbitrary value, in order to be able to compare them with
the identities. These functions are known in Isabelle as restrict functions, and we made
use of them both for the isomorphism definition and also inside of the proofs, in order
to declare the homomorphisms defining the required isomorphism.

As a consequence of this implementation of function between sets, every func-
tion in our model of representation can have several representations in our carrier
of representation (i.e., in terms of Isabelle functions). For instance, for any set
A, the Isabelle function Az.z represents the identity, but also the Isabelle function
Ax. (if © € A then x else arbitrary) represents it. This second option is the one we used
it in our definition of isomorphism.

From a theoretical point of view, several solutions can be pointed out (for a detailed
enumeration, see, for instance [Miiller and Slind, 1997]). Here we state three of them,
the ones we consider more appropriate to our setting:

3.6 The set theoretic approach 93

1. Equality could be modified to deal with partiality. This solution would imply the
definition of a new concept of equality for partial functions depending on three
elements, which type declaration and definition would be:

=partial_functions:: | aset, a =>"ba =>"b] => bool

=partial_functions A fg =Vz e Af(.%') = g(l’)

Modifying the equality by changing the HOL implementation in a system like
Isabelle is feasible, but it is hard to guess how this would affect to the degree of
mechanization of the system.

2. The one adopted by Isabelle. Isabelle has already defined a concept called ez-
tensional functions, related to the idea of restrict functions, which produces a
representative for each set of functions representing the same partial function.
The extensional functions are defined as:

constdefs
extensional :: 'a set => ('a =>'b) set
extensional A == {f.Vz. v ¢ A ——> f(z) = arbitrary}

An extensional function can be understood as a conditional function
Ax. (if x € A then x else arbitrary); therefore, when several extensional functions
are operated (for instance, combinations of homomorphisms), the number of goals
appearing grows exponentially (2" goals being n the number of homomorphisms,
when the definition of restrict is unfolded).

The feasibility of defining an algebraic structure with the homomorphisms inside
of the extensional functions will be studied in Section 3.7.

3. The use of explicit quotient classes; this solution does not force to change the
Isabelle/HOL equality (=) and it produces a similar result to the one obtained
using the extensional functions. In addition to this, the quotient classes that can be
implemented in Isabelle and functions between algebraic structures in mathematics
can be easily coupled, while this relation turns to be obscure when introducing an
arbitrary element, which has no clear meaning in the mathematical setting.

The ternary relation (defined for every two functions and a set) producing the
equivalence classes is given by R4 where

fRag <= Vx € A.fr =gz

This relation is reflexive, symmetric and transitive and therefore the equiv-
alence classes for every f in a set A are defined by the following sets:
{g9] Vz € A).g(x) = f(x)}. Some hints to define equivalence classes in Isabelle
can be found in [Paulson, 2004]; how far can the equivalence classes be applied for
concrete problems (how to define operations over terms of the equivalence classes)
could be of interest.

9/ Chapter 8 Mechanizing the proof: a case study in Isabelle

Depending on this representation of homomorphisms, some functionalities could be
added also to improve the mechanization of proofs. We have pointed out the diffi-
culties of proving lemmas about functions in Isabelle, and more concretely, the lack
of previous lemmas about functions defined over functions. Here we briefly describe a
possible solution to this problem that will be applied in the morphism based approach.
In the symbolic approach we emphasized the facilities available in Isabelle for working
inside of algebraic structures. Several facts are already proved and even some helpful
tactics, such as the already used algebra tactic, are implemented. Therefore, if we are
able to prove that the set of endomorphisms with the given operations (composition and
addition), satisfy the axioms of some algebraic structure, we will be able to instantiate
the carrier of the algebraic structure with the set of endomorphisms, and the operations
of the algebraic structures with the composition and the addition. Then, we will be able
to apply the existing facts about this algebraic structure to the set of endomorphisms,
recovering the equational reasoning we used in the symbolic approach, and, moreover,
we will be able to also use the properties of the endomorphisms as functions. The same
ideas can be applied to homomorphisms.

We will apply these ideas in the morphism based approach.

3.7 The morphism based approach

In this section some improvements are introduced that will be useful to enhance the
framework given in the set theoretic approach with some of the features obtained in
the symbolic approach. The symbolic approach produced an environment where the
representation of both algebraic structures and homomorphisms was a bit distant from
their mathematical ones, but with great capacity to reason about homomorphisms equa-
tionally. On the other hand, the set theoretic approach improved the representation of
algebraic structures and homomorphisms, and therefore increased the expressiveness,
but showed some limitations when we tried to implement proofs.

In this new approach we join together the characteristics of both previous frame-
works, as well as some other tools improving performance when working with homo-
morphisms. With this setting, we will be able to give a complete implementation of the
proof of Lemma 2.2.14. Moreover, the general ideas proposed can be applied to all six
lemmas in Section 2.2.2, and could be also useful in problems requiring the handle of
endomorphisms, homomorphisms and their properties.

3.7.1 The algebraic structures

Lemma 2.2.14/ has been already exposed and faced in the symbolic approach, and
the algebraic structures present on it enumerated, so here just a brief description is
being done: in the statement of the lemma appear explicitly the differential group
(D,dp), the differential subgroup (ker p,dp), the abelian group endomorphisms h, Op,

3.7 The morphism based approach 95

the abelian group homomorphism dph + hdp, and the abelian group homomorphisms
idgna(py and incyerp, while implicitly appear, at least, the rings End(D), End(ker p), the
ring End((D, dp)), the abelian groups Hom(D, ker p), Hom(ker p, D), the abelian groups
Hom((D, dp), (ker p,dp)), Hom((ker p,dp), (D,dp)), and the ringoid formed taking the
abelian group and differential group endomorphisms and homomorphisms of these struc-
tures.

In the Isabelle proof of Lemma 2.2.14) the following algebraic structures will be
implemented:

e The differential groups (D, dp) and (kerp,dp) (as in the set theoretic approach).

e The endomorphisms of the differential group (D,dp), dp and idgnap)y, and the
endomorphism h of the abelian group D, as well as combinations of them (for
instance, p = dph + hdp) (as in the set theoretic approach, although they will
have a different representation).

e The ring of endomorphisms End((D,dp)) as well as some lemmas that
will allow us to establish equivalences among the elements of the ring
End((D,dp)) with elements of the algebraic structures Hom((ker p, dp), (D, dp)),
Hom((D, dp), (ker p,dp)) and End((kerp,dp)), by modifying the source or target
of combinations of endomorphisms under determined premises (in contrast with
the set theoretic approach, where endomorphisms and homomorphisms were ele-
ments of a set).

Some changes will be also introduced in the representation of endomorphisms and ho-
momorphisms with respect to the set theoretic approach, that will allow us to prove
that the endomorphisms of a differential group, with the adequate operations, satisfy
the axioms of a ring. As a consequence of this, we will be able to apply the previous
knowledge proved in Isabelle for this algebraic structure (in this particular case, rings),
for our set of endomorphisms.

In addition to this, the representation of homomorphisms will store information about
their source and target algebraic structures. This will increase the capabilities to deal
with partiality in a setting where elements of End((D, dp)) have to be expressed, but also
elements of Hom((ker p, dp), (D, dp)), Hom((D, dp), (ker p, dp)) and End((ker p, dp)) ap-

pear.

3.7.2 Representation of the algebraic structures

Implementation of algebraic structures does not suffer modifications in this new ap-
proach. Differential groups are implemented as sets of terms of a generic type over
which the operations of the algebraic structure are defined and some axioms are im-
posed. The function of abstraction for differential groups is the same as in the set
theoretic approach.

96 Chapter 8 Mechanizing the proof: a case study in Isabelle

The representation chosen in the set theoretic approach by extensible records together
with axioms showed to be precise, since it fits in the theoretical concept of signature
of algebraic structures, and moreover, it is adequate from the point of view of code
optimization, thanks to structural subtyping.

In this approach, we will make use again of the Isabelle implementation of the ring
algebraic structure to implement the algebraic structure formed by the set of elements
End((D,dp)). The representation chosen for rings will be the one given in Section [1.3.2
and already used in the symbolic approach exposed in Section [3.5, where it was also
used to describe the algebraic structure formed by endomorphisms. Here it will be
useful in order to obtain the degree of automation reached there, although here the
ring will be instantiated with functional objects representing endomorphisms, instead of
being declared as containing terms of generic type (i.e., the semantical content of the
framework will be increased).

3.7.3 Homomorphisms between algebraic structures

In this section we describe the requirements we had to encode in Isabelle in order to
be able to define a ring on the set of endomorphisms over a differential group (D, dp).
In order to obtain this algebraic structure, first we must define which objects (defined
through a type and a collection of axioms) will be chosen as endomorphisms, then the
operators that form the ring must be selected, and finally the ring axioms must be proved
with the defined operators and endomorphisms. One of the problems pointed out in the
set theoretic approach was that the abstraction function for homomorphisms and endo-
morphisms was not injective. One homomorphism from the model of representation had
several preimages in the Isabelle representation (following the terminology introduced
in Section 3.4, the representation was not faithful).

Here we propose a possible solution in Isabelle, which will be shown to be useful
to implement proofs improving the presentation obtained in the set theoretic approach.
Different solutions can be proposed (some of them have been already mentioned in
Section [3.6.5). The one allowing to maintain the degree of mechanization obtained in
our proofs would be the definition of the restrict operator. The restrict operator, as
previously explained, takes a function f and a set A as arguments, and returns the
function defined Az. (if x € A then x else arbitrary). This is the solution requiring a
smaller number of modifications, since this method neither needs to change the equality
of the system, nor to deal with equivalence classes; moreover, what is obtained by
working with the restrict result of every total function is a kind of representative of the
sets of equivalence classes produced by the relation fR4g <= Va € A.f(z) = g(x).

At first sight, the only drawback of the restrict functions is that they have as result
an arbitrary element when applied to an element out of their source set. This arbitrary
element could be misleading when trying to identify the functions we have defined in
[sabelle with mathematical homomorphisms, i.e., when defining the abstraction function
allowing us to identify the Isabelle terms with mathematical entities.

3.7 The morphism based approach 97

But in addition to this, another fact can be pointed out that made us change our
mind to a slightly different representation of homomorphisms. In the ring of endomor-
phisms we would like to define in order to work with endomorphisms applying equational
reasoning, the multiplicative operation would be the usual composition between func-
tions, represented in Isabelle with the symbol o. This operation is not closed under
functional objects defined using the restrict operator. In order to show it, let us first
recover the concept of extensional functions over a given set. A function f is said to be
extensional for a set A (according to the definition in the Isabelle library Funcset.thy)
if and only if:

f= restrict f A

Therefore, it is equivalent to work with the result of applying restrict to a function
than to do it with extensional ones (i.e., every extensional function over a set can be
expressed as a function in its restrict form, and the restrict result of a function is also
an extensional function). If we pretend to prove that the set of extensional functions is
adequate to represent endomorphisms, one of the first properties that must be proved is
that this set is closed under composition (which would correspond to the mult operation
of our ring). The problem now is that the composition of two extensional functions over
a given set A does not yield an extensional function. Let us consider two such functions
Ax. (if © € A then f(z) else arbitrary) and A\x. (if x € A then g(x) else arbitrary). As
far as we are considering endomorphisms over the set A, it can be assumed that
f(x) will be an element of A for x € A, an so is g(f(x)). Therefore, for z € A,
the composition behaves as expected. The problem appears when we consider an el-
ement = such that x ¢ A (as it has been already mentioned, sets are partial over
types). Then, the result of applying \z. (if x € A then f(z) else arbitrary) (the same
could be done with the other function) to = will be arbitrary. And now, when applying
Ax. (if x € A then g(x) else arbitrary) to arbitrary, as far as arbitrary has no semantical
content, due to the law of the excluded middle, cases arbitrary € A and arbitrary ¢ A
have to be considered. The second case behaves also correctly (elements out of A are
mapped to arbitrary by extensional functions, and then composition in this case would
be closed). On the contrary, in the case where arbitrary is considered in A, the result of
the composition is g(arbitrary), from which no semantical information is available (we
do not even know if it is equal to arbitrary or not). Therefore, composition of extensional
functions is not closed.

A way for getting out of this situation consists in defining a new composition (named
compose). This new definition is also found in the Isabelle library, and satisfies that the
composition of two extensional functions is an extensional function:

constdefs

compose :: ['a set, 'b => "¢, 'a => 'b] => ("a => '¢)
compose A g f == restrict (g o f) A

Applying this solution would have some consequences. First, from the point of view

98 Chapter 8 Mechanizing the proof: a case study in Isabelle

of code optimization, in the Isabelle library very few facts are available about the com-
pose operator, which would decrease the efficiency of the automatized tactics. From the
point of view of the representation of the proofs obtained, this solution implies turning
the composition definition into a ternary function (the set over which composition our
endomorphisms are defined and both functions). Moreover, the restrict operator intro-
duces the arbitrary constant in the definition of the composition. This constant should
be supplied a mathematical meaning through the process of abstraction in the model of
the representation (i.e., the set A over which endomorphisms are defined).

We preferred a second solution, which allows us to use o as the composition in the
ring of endomorphisms we pretend to define, and which also simplifies the abstraction
process. Instead of considering as endomorphisms the extensional result of the total
functions satisfying the Isabelle definition of endomorphisms, where arbitrary was the
constant chosen from the codomain set, we will choose another distinguished element
of the codomain set. The only constant of the codomain set which is bound to exist is
the unity element of the codomain, one, since in our proofs, at least, homomorphisms
between monoids are considered. Then, the function which turns a homomorphism into
its unique representative will be:

constdefs
completion :: [('a, '¢) monoid-scheme, ('b, 'd) monoid-scheme, ('a => 'b)] => (‘a => 'b)
completion G G' f == (A\z. if x € carrier G then f x else one G’

Now, it can be also defined the set of all the completion functions between two
monoids G and G”:

constdefs
completion-fun?2 :: [('a, 'c) monoid-scheme, ('b, 'd) monoid-scheme] => (‘a => 'b) set
completion-fun2 G G' == {f. 3 g. f = completion G G’ g}

The following facts can be remarked about this definition:

e We named it completion, based on the mathematical idea behind this concept of
making complete a representation of some partially defined entity; all the elements
out of the domain are mapped to a distinguished element of the codomain structure
(one in our case).

e Given (G, G’ monoids, every function in the set completion-fun? of the monoids
G and G’ can be identified with a function of the set extensional over the set
carrier G. The correspondence is defined by applying the elements of the form

(Az. if x € carrier G then f(x) else one G')

to the extensional function

3.7 The morphism based approach 99

(Az. if © € carrier G then flz) else arbitrary) .

This characterization of functions has to be added to the implementation of homomor-
phisms that we already had. This is what we get by defining the hom-completion set,
which again will depend on two parameters of type monoid, G and G':

constdefs
hom-completion :: [(‘a, '¢c) monoid-scheme, (b, 'd) monoid-scheme] => ('a => 'b)set

hom-completion G G' == {h. h € completion-fun2 G G' & h € hom G G’}

Now, we can consider again the representation process. Our model of representation
would be the set of functions G'“ (G and G’ denote now the carrier sets of the algebraic
structures G and G’), where G and G’ are known to have a distinguished element, let us
say one G and one G’. The domain of the representation is similar to the one obtained
in the set theoretic approach, i.e., the type of functions from the type of GG into the type
of G'. The carrier of the representation now changes, being formed by the functions such
that every element in GG is mapped to an element in G’, and every element out of G is
mapped to the element one G’. The equality of the representation, which is the equality
in Isabelle and thus is total on types, allows us to identify any two objects equal for
every element of GG, in contrast with the set theoretic approach where this can not be
done (there, different Isabelle functions represented the same homomorphism). Then,
the abstraction function will be now injective (i.e., the representation is faithful), and
each function of the model of the representation will have, at maximum, one preimage
in the carrier of the representation. Now we will be able to, maintaining the Isabelle
definition of equality for our model, and with the obtained uniqueness together with
some suitable operations, define some concrete algebraic structures (for instance, a ring
of endomorphisms, where the unit is uniquely determined).

The two reasons that made us avoiding the use of extensional functions have been
overcome. The first one was that the extensional functions with the arbitrary constant
did not have a clear translation into mathematical terms. The situation is fixed now
by using the constant one of the target structures. The second reason was that the
extensional functions were not even closed under usual composition. On the contrary,
hom-completion functions can be shown to be closed in Isabelle through the following
statement:

lemma hom-completion-comp-is-closed: assumes group G and group G’ and group G
and f € hom-completion G G" and g € hom-completion G’ G"
shows g o f € hom-completion G G

Its proof in Isabelle took us less than 20 lines of code.

The set of functions hom-completion G G can be proved to be a monoid for G a
monoid, with the composition o as multiplication. The set hom-completion G G’ can be

100 Chapter 8 Mechanizing the proof: a case study in Isabelle

proved to be an abelian group considering like addition the inherited operation from G’,
with G and G’ abelian groups; we will face these proofs later. First, we briefly explain the
reasons that led us to introduce the domain and codomain of homomorphisms explicitly
(as fields of a record) in the homomorphisms’ representation of this framework.

In the statement of Lemma 2.2.14, two differential groups appear®. The first one
is (D,dp), and the second one is (kerp,dp), where p is an endomorphism of the dif-
ferential group (D,dp); as it has been proved in Proposition 2.2.12, (kerp,dp) is a
differential subgroup of (D, dp). In order to produce a proof in Isabelle of Lemma 2.2.14
different solutions can be proposed. One of them would be to apply the tools intro-
duced in the set theoretic approach. We already tried it with an unsatisfactory result.
Another one would be to take advantage of the properties of the algebraic structures
End((D,dp)), Hom((kerp,dp), (D,dp)), Hom((D,dp), (ker p,dp)) and End((ker p,dp));
nevertheless, this would require to design a representation in Isabelle of all these alge-
braic structures. A third solution, and the one we explore in this approach, consists in
implementing the proofs using only properties of the ring End((D, dp)), and taking ad-
vantage of the relationship between the differential group and its subgroup, implement
some tools (or lemmas) that allow us to identify equalities between elements of this
ring with equalities between terms of the algebraic structures Hom((ker p, dp), (D, dp)),

Hom((D, dp), (ker p,dp)) and End((ker p,dp)).

The following reasons were considered to choose this solution:

1. This representation allows us to prove equalities where elements of the
sets End((D,dp)), Hom((kerp,dp),(D,dp)), Hom((D,dp), (kerp,dp)) and
End((ker p,dp)) are involved just by using elements of the set End((D,dp)). The
methodology is as follows. First, the expression to be proved is defined in terms
of elements of End((D,dp)), just by changing the source or the target of the
endomorphisms and homomorphisms; then, computations are carried out tak-
ing advantage of the properties of the ring End((D,dp)), in what we called in
Section 3.5 an equational way, making use of the automatized tactics inside of
rings available in Isabelle; finally, under some determined premises, the result ob-
tained in the form of an equality between elements of End((D,dp)) can be used
to derive an equality where elements of End((D, dp)), Hom((ker p,dp), (D, dp)),
Hom((D, dp), (ker p,dp)) and End((ker p,dp)) can be involved.

2. The lemmas that allow us to modify the domain or codomain of endomorphisms,
that we will introduce later, are quite simple to state and also to prove, both in
mathematical terms and also in Isabelle. Actually, they will be exposed in the
form of one single lemma (Lemma [3.7.1), that solves all the possible situations.

The representation for homomorphisms with the given features will be as follows (as
usual in Isabelle definitions, first a type is given, and later the set of rules satisfied is
assigned):

8 As pointed out in Section [1.3.2, when dealing with differential groups, the operations mult, one and
m-inv become add, zero and a-inv.

3.7 The morphism based approach 101

record (‘a, 'b, 'c, 'd) group-mrp-type =

sre ('a, 'c) diff-group-scheme
trg (b, 'd) diff-group-scheme
morph ‘a = b
src-comm-gr ('a, 'c)
trg-comm-gr = (b, 'd) diff-group-scheme

The record type has been named group-mrp-type due to the similarity of the previous
declaration with the representation of morphisms in Category Theory (where the source
and target structures are usually made explicit). The type is defined through a record
with five fields. One of them, morph, contains the functional information, in the form
of a hom-completion object. In the record fields src-comm-gr and trg-comm-gr will be
stored, respectively, information about the greatest differential group that can be the
source of the homomorphism, and the greatest differential group that can be the target
of the homomorphism (in our setting, the differential groups appearing are (D, dp) and
differential subgroups of it). Then, the differential groups where the homomorphism is
precisely defined at each concrete step of a proof are kept in the fields src and trg. This
definition ensures that we can modify the domain and codomain of a homomorphism
(fields src and trg) when some properties are satisfied, maintaining the information about
where it is really well defined (stored in fields src-comm-gr and trg-comm-gr, which are
constant); this definition will allow us to change the src and trg fields in such a way that
the definition of the morphism is always correct.

Following these ideas, the axioms that must be satisfied by a tuple with type
group-mrp-type in order to be considered a homomorphism in our setting are:

locale group-mrp2 = struct MRP +
assumes src-diff-group: diff-group (src MRP)
and src-comm-group: diff-group (src-comm-gr MRP)
and src-subgroup: sub-diff-group?2 (src MRP) (src-comm-gr MRP)
and trg-diff-group: diff-group (trg MRP)
and trg-comm-group: diff-group (trg-comm-gr MRP)
and trg-subgroup: sub-diff-group2 (tr¢ MRP) (trg-comm-gr MRP)
and image-in-trg: (morph MRP) * (carrier (src MRP)) C carrier (trg MRP)
and morph-hom: morph MRP €

hom-completion (src-comm-gr MRP) (trg-comm-gr MRP)

The most relevant ones are src-subgroup, which ensures that the source of a tuple,
sre, will be always a differential subgroup of the fixed differential group src-comm-gr,
where the homomorphism is known to be well-defined, image-in-trg, establishing that the
image of the src differential group will be always contained in the trg differential group,
and morph-hom, establishing that the morph field of a tuple contains a hom-completion
object between the differential groups src-comm-gr and trg-comm-gr.

An Isabelle definition of differential subgroups, sub-diff-group2, will be also supplied
in this setting (it has been already used in definition group-mrp2). The Isabelle defi-
nitions of submagma, subgroup or abelian subgroup are made in the form of a subset

102 Chapter 8 Mechanizing the proof: a case study in Isabelle

satisfying some rules. Algebraic structures are expressed in Isabelle as records, and thus
algebraic substructures do not satisfy the Isabelle definitions of the algebraic structures
by themselves. The intensive use of the substructure relation already expressed in the
Isabelle definition group-mrp2 made us introduce a definition of differential subgroup
such that a differential subgroup is also a differential group by itself (in the sense that
it contains a carrier and also the corresponding operations).

The following Isabelle definition ensures that, given D a differential group and D" a
differential subgroup of it, D’ inherits all its operations of the differential group D, and
moreover, is a differential group by itself:

locale sub-diff-group2 = diff-group D + diff-group D' +

assumes carrier-cont: carrier D C carrier D’
and equal-op: D = (| carrier = carrier D, add = add D', zero = zero D/,
diff = diff D', ... = diff-group.more D"

With the new definition of endomorphisms, now the operations for working with
them have to be defined. The composition (that will be the multiplicative operation in
the ring of endomorphisms) of two group-mrp2 objects f and g is defined in Isabelle as
expected:

constdefs

group-mrp-comp = [('b, ‘e, 'e, 'f) group-mrp-type, ('a, 'b, 'd, 'e) group-mrp-type]
=> (‘a, 'c, 'd, 'f) group-mrp-type

group-mrp-comp g f == (src = src f, trg = trg g, morph = (morph g) o (morph f),

src-comm-gr = src-comm-gr f, trg-comm-gr = trg-comm-gr gJ)

The functional part of the definition is based on the usual composition in Isabelle, o.
As it was previously exposed, the representation of endomorphisms through completion
functions allows us to use the usual composition of functions. This composition will
be denoted, when no confusion arises, as the usual composition (otherwise, we will
refer to it as group-mrp-comp). With this definition of composition, some lemmas are
proved ensuring that the composition of two group-mrp2 objects f and ¢ is again a
group-mrp2 object whenever the trg and the trg-comm-gr of f are equal to the src and
the src-comm-gr of g, and also when the trg of f is equal to the src of g, and the
trg-comm-gr of f is a differential subgroup of the src-comm-gr of g. More situations
where the composition is closed (i.e., produces a group-mrp2) object can be proposed,
but they are not used in the proofs we are facing.

Once that composition has been defined in a natural way for homomorphisms, we
have to prove that the endomorphisms, with the suitable operations, satisfy the axioms
of a ring. The carrier set will be formed by group-mrp2 objects, and the multiplicative
operation, as already shown, will be group-mrp-comp, which is known to be closed.

The definition of the set of homomorphisms between two algebraic structures re-
sembles the one already given in Section 3.6.3; here four differential groups must be
considered, following the definition of group-mrp2:

3.7 The morphism based approach 103

constdefs
group-mrp-set = [("a, 'c) diff-group-scheme, ('b, 'd) diff-group-scheme,
('a, 'c) diff-group-scheme, ('b, 'd) diff-group-scheme]
=> (('a, 'b, 'c, 'd) group-mrp-type) set
group-mrp-set A B G1 G2 == {morph.
src morph = A & trg morph = B &
src-comm-gr morph = G1 &
trg-comm-gr morph = G2 & group-mrp2 morph}

Every tuple belonging to this set must satisfy the definition given of group-mrp2.
Now, the set of endomorphisms of a given differential group D can be seen as a par-
ticular case of the previous definition, when we consider A = B = G1 = G2 = D. The
set group-mrp-set D D D D represents the set of endomorphisms over a generic differ-
ential group D. Now we will focus our attention on the properties verified by the set
group-mrp-set D D D D and later we will see how the src and trg fields can be changed
under some determined premises.

Considering group-mrp-set D D D D like carrier set, the properties of a ring must
be verified. The multiplicative operation will be group-mrp-comp. The definition of a
ring is done in Isabelle like the union of a monoid and an abelian group, proving also
that the multiplicative operation is distributive with respect to the additive one. Fol-
lowing this definition, we first prove that group-mrp-set D D D D with group-mrp-comp
as multiplication defines a monoid. The statement in Isabelle of the lemma would be:

lemma group-mrp-set-monoid:
includes diff-group D
shows monoid
(carrier = group-mrp-set D D D D,
mult = group-mrp-comp,
one = (src = D, trg = D, morph = (Ax. if © € carrier D then id z else zero D),
src-comm-gr = D, trg-comm-gr = D)) |)

Its proof requires over 40 lines of Isabelle code (once we have proved that composition
is closed, which was a bit more complicated). The only condition imposed is that D must
be a differential group. The unit for the multiplication corresponds to the completion
version of the identity function:

(Az. if x € carrier D then id x else zero D)

Now, the additive operation, based on the additive operation of the underlying dif-
ferential group, is given by (for A and B differential groups):

constdefs
group-mrp-mult = [(‘a, 'a, 'b, 'b) group-mrp-type, ('a, 'a, 'b, 'b) group-mrp-type]
=> (a, 'a, 'b, 'b) group-mrp-type

104 Chapter 8 Mechanizing the proof: a case study in Isabelle

group-mrp-mult A B == (| src = src A, trg = trg A,
morph = (Az. if © € carrier (src A)
then (add (trg A) (morph A x)
(morph B 1))
else (zero (trg A))),
src-comm-gr = src-comm-gr A,
trg-comm-gr = trg-comm-gr Al

This definition is more generic than the one we need (where A = B = D, with D a
differential group), being valid for objects of type group-mrp where the src and the trg
are not the same.

Now, we fix again a differential group D, and taking as carrier set
group-mrp-set D D D D, and group-mrp-mult as addition, the axioms of abelian group
have to be proved:

lemma group-mrp-set-comm-group:
includes diff-group D
shows comm-group (carrier = group-mrp-set D D D D, mult = group-mrp-mult,
one = (src = D, trg = D,
morph = (Az. if ¢ € carrier D
then zero D else zero D),
src-comm-gr = D, trg-comm-gr = DY) |

This proof in Isabelle required over 200 lines. As it has been explained, when defining
the ring of endomorphisms, the one field here will be the zero of the ring, and the mult
will become the add operation for the ring.

Making use of the Isabelle lemmas group-mrp-set-monoid and
group-mrp-set-comm-group, and proving also the distributivity of group-mrp-comp with
respect to group-mrp-mult, we finally obtain that the following record satisfies the
axioms of the Isabelle ring definition:

(| carrier = group-mrp-set D D D D,
mult = group-mrp-comp,
one = (src = D, trg = D,

morph = (A\z. if x € carrier D then id z else zero D),
src-comm-gr = D, trg-comm-gr = D)),

2€r0 = (src = D, trg = D,
morph = (Az. if © € carrier D then zero D else zero D),
src-comm-gr = D, trg-comm-gr = D)),

add = group-mrp-mult |)

With this result, now we can apply all the results (or lemmas) already proved in the
Isabelle library for rings to the set of endomorphisms over a differential group with the
given operations. In other words, we have defined a new level of abstraction for our
proofs. Now, working with endomorphisms can be done in an equational way, as in the
symbolic approach. In addition to this, some advantages can be highlighted with respect
to the representation chosen in the symbolic approach:

3.7 The morphism based approach 105

e The representation of endomorphisms is done now through records which keep
a functional field, whereas in the symbolic approach endomorphisms were just
represented as elements of a generic type.

e The algebraic structures D and ker p have now an explicit representation, imple-
mented through records, instead of being just implicitly represented, as they were
in the symbolic approach.

e Representing the endomorphisms with a functional field allows us to prove facts
considering the concrete elements of the endomorphisms’ domain and codomain,
and therefore, to improve the reasoning tools available in the symbolic approach.

With respect to the set theoretic approach, we have obtained the capacity to deal with
endomorphisms as objects of an algebraic structure, a ring, with concrete operators,
while in the set theoretic approach every operation had to be made working with endo-
morphisms as functions, relying strongly in the implementation details, and with a very
low level of abstraction.

Then, the advantages of both approaches have been combined in this approach. We
now illustrate with a very simple lemma the differences, both at the level of notation
and also of proof mechanization, between the set theoretic approach and the morphism
based approach.

Once we have proved that the endomorphisms with the corresponding operations
form a ring, and in order to improve notation, we can define a locale context, where
two variables D and R are fixed, where D is a differential group and R the ring of
endomorphisms (over D). Now, and thanks to the previous lemma group-mrp-set-ring,
we link R to the set of endomorphisms over D with the given operations:

locale group-mrp-set-ring = diff-group D + ring R +

assumes R = (| carrier = group-mrp-set D D D D,
mult = group-mrp-comp,
one = (sr¢c = D, trg = D,

morph = (A\z. if x € carrier D then id z else zero D),
src-comm-gr = D, trg-comm-gr = D)),

zero = (src = D, tr¢g = D,
morph = (Az. if © € carrier D then zero D else zero D),
src-comm-gr = D, trg-comm-gr = D)),

add = group-mrp-mult |)

Now, with the pretty printing symbols defined in Isabelle for rings, and while being
inside of the context created by the locale, syntax can be greatly improved, allowing, for
instance, to invoke the multiplication in R, which is group-mrp-comp, like ®,, and the
addition, group-mrp-mult, like @,.

The following lemma inside of this setting can be proved with one tactic, algebra,
designed to produce simplifications inside of some algebraic structures (as it was done
in the symbolic approach):

106 Chapter 8 Mechanizing the proof: a case study in Isabelle

lemma (in group-mrp-set-ring) example-morphism-approach:
[| f€ carrier R; h € carrier R; f ®2 h=h|] ==> (12 ©2 f) ®2 h = 0y
by algebra

Here 1, represents the one field of the ring R (i.e., the functional object
Ax. (if © € carrier D then id x else zero D)), 0y represents the zero field of R, and also
®9 and ©9 make reference to these operations as defined in R (i.e., group-mrp-comp and
the opposite of group-mrp-mult). Now it can be observed the difference between this
approach and the symbolic one, where 1 was a shortcut of the unity of a generic ring R,
and ® of a multiplication from which no more information was provided.

The subindexes in the operators (®s, @, 1o, ...) refer to the number of structure in
the context locale. Here, subindex 1 would refer to operators in the first structure, i.e. D,
and subindex 2 to the operators in the second structure, the ring R. The correspondence
is in the order that the variables are fixed when the locale is declared.

The same lemma, with its proof, expressed with the available tools in the set theoretic
approach, would be as follows:

lemma ezample-set-theoretic-approach: assumes diff-group D and f € hom-completion D D
and h € hom-completion D D and fo h = h
shows (A z. add D (X z. if x € carrier D then id x else zero D)x) (a-inv D (fx))) o h
= (A z. if x € carrier D then zero D else zero D)
proof
fix z
show ((Az. add D (if © € carrier D then id z else zero D) (a-inv D (fz))) o h) © =
(Az. if x € carrier D then zero D else zero D) x
proof (cases x € carrier D)
case True
from prems show ?thesis
by (auto simp add: expand-fun-eq hom-completion-def hom-closed)
(intro monoid. Units-r-inv, unfold diff-group-def monoid-def group-azioms-def
hom-completion-def, auto simp add: hom-closed)
next
case Fulse
from prems show ?thesis
proof (cases h z € carrier D, auto simp add: expand-fun-eq)
case True
from prems show add D (h x) (a-inv D (h z)) = zero D
by (intro monoid. Units-r-inv, unfold diff-group-def monoid-def group-axioms-def
hom-completion-def, auto simp add: hom-closed)
next
case Fulse
from prems show add D (zero D) (a-inv D (h x)) = zero D
by (unfold diff-group-def hom-completion-def completion-fun2-def completion-def, auto
stmp add: monoid-azioms-def)

3.7 The morphism based approach 107

qed
qed
qed

It cannot be argued that the length of the Isabelle proof of
example-set-theoretic-approach is huge or disappointing, despite the triviality of
the lemma, but both in the statement and also in the proof, it can be observed that the
design decisions directly affect to the statement and the proof steps, making the proof
hard to implement and also to read; these design decisions did not affect directly to the
statement and proof of ezample-morphism-approach.

The benefits obtained to express and also to reason with combinations of homomor-
phisms in this setting, with respect to the set theoretic approach and the default tools
available in Isabelle, as well as the difficulties pointed out in Section 13.6.4, should be
noticed. The more complicated the combinations appearing in the statement are, the
more obscure becomes the statement (and the proof) using the tools provided by the set
theoretic approach.

A new feature can be added to this framework, augmenting its usefulness (in the
sense that it will allow us to represent elements out of the set of endomorphisms of D,
e.g., homomorphisms from D to kerp, or endomorphisms of kerp). By now, we are
able only to express, with elements of R, elements of the ring of endomorphisms of a
differential group D. Making use of the information stored in the group-mrp2 record,
it will be also possible to express homomorphisms of differential subgroups of D (in our
case, the differential subgroup will be ker p). Adding also some special lemmas, equalities
between elements of the ring R will be also equivalent to equalities between elements of
these differential subgroups.

The lemma allowing us such modifications is the following:

Lemma 3.7.1. Let f be a differential group homomorphism between the differen-
tial groups A and B. Let A" be a differential subgroup of A, B’ a differential
group, and im f(A") C B'. Then, we consider the tuple (A", B’ f, A, B). Sim-
ilarly, let g be a differential group homomorphism between the differential groups
C and D, with C" a differential subgroup of C and D' a differential group such
that im g(C") C D', and let us consider (C',D’' g,C,D). Let B be a differential
subgroup of C'. Let (C",D' g,C,D)o (A" B f, A, B) be equal to (A’",D' h, A, D).
Then, if A” is a differential subgroup of A, B" a differential subgroup of C”,
such that im f(A”) C B”, and C" a differential subgroup of C' such that im h(C")
contained on D", with D" a differential subgroup of D', the following equality
(C", D", g,C,D)o (A", B", f,A,B) = (A", D" h, A, D) holds, being o the operation

group-mrp-comp.

Proof. We consider z € A”; from the premises, we know that = € A’. Therefore, f(z) will
be an element of B”, being then the tuple (A", B”, f, A, B) well defined; moreover, B” is a
differential subgroup of C”; and so the composition (C”, D", g,C D)o (A", B", f, A, B)

108 Chapter 8 Mechanizing the proof: a case study in Isabelle

is also well defined, since g(f(z)) will be an element of D”. In addition to this, the
equality (C", D", qg,C,D) o (A", B", f, A, B) = (A", D" h, A, D) holds because for all
in A”, in particular = is in A’, and g(f(x)) = h(z). [

It can be observed that the lemma can be unfolded into various lemmas modifying
each of the components (domains and codomains) of the tuples, but we did not consider
it necessary.

Applied to Lemma 2.2.14, where the only differential groups appearing in the
statement are (D,dp) and (kerp,dp), some equalities between elements of the ring
End((D,dp)) allow to prove equalities where elements of Hom((D,dp), (kerp,dp)),
Hom((kerp,dp), (D,dp)) or also of End((kerp, dp)) appear.

Now, with the possibility of working with endomorphisms in an equational way,
as well as in a natural way (i.e., considering the elements of their domain and their
properties), and also thanks to this lemma which modifies the domain and codomain
of endomorphisms under determined circumstances, we will be able to give a complete
implementation of the proof of Lemma 2.2.14.

3.7.4 Lemmas proved

In this section we will describe the implementation of the proof of Lemma 2.2.14 given in
this framework; we will leave for Section 3.7.5 the analysis of the possibilities of applying
the tools described here to the rest of the lemmas given in Section 2.2.2/ and also to other
different problems.

In Lemma 2.2.14 a reduction is defined between the differential group (D,dp)
and its differential subgroup (kerp,dp), by means of (idgna(p)— P, inCkerp, B) being
p =dph + hdp. According to the definition of reduction, the following properties must
be satisfied:

L. (idgnda(p) —) inCierp = idierp;

2. inCyerp(idgna(py — p) + dph + hdp = idgwa(py;
3. (idgnda(py — P)h = OHom(D kerp);

4. hincyerp = Oom(ker p,D);

5. hh = OEnd(D)'

In the symbolic approach, despite the low level of detail introduced, we were able to give
a proof of two of these five conditions, (idgna(p) —P)h = Otiom(D kerp) and also the trivial
one hh = Ogpq(py- On the other hand, we exposed the problems found even to express,
and consequently to prove, the remaining ones.

3.7 The morphism based approach 109

In the present approach, mainly due to the representation chosen for endomorphisms,
the size of the statements is greater than in the previous approaches, which clearly
goes against readability. On the other hand, the degree of expressiveness and also of
automation has been largely enhanced.

We will continue using the locale group-mrp-set-ring where D was declared to be a
differential group, and R the ring of the endomorphisms (as tuples) with the correspond-
ing operations.

The property hh = Ogyq(py can be proved in a single step, simplifying it with the
premises. The statement of property (idEnd(D) — p)h = OHom(D,kerp) has grown in relation
to the statement of the same property in the set theoretic approach, being now:

lemma (in group-mrp-set-ring) third-condition:
assumes diff-morph: diff-morph = (| src¢ = D, trg = D, morph = differ,
src-comm-gr = D, trg-comm-gr = D |)
and R: h € carrier R
and diff-morph € carrier R
and hh: h ®9 h = 09
and hdh: h ®9 diff-morph ®o h = h
and p: p = (h ®2 diff-morph) @2 (diff-morph &9 h)

shows ((| src = D, trg = D(carrier := Ker D D (morph p)),
morph = morph (13 ©9 p) , src-comm-gr = D, trg-comm-gr = D |))
®2 h
= (src = D, trg = D (| carrier :== Ker D D (morph p) |),
morph = morph Oq, src-comm-gr = D, trg-comm-gr = D)

While working with elements of the ring R, i.e., tuples representing endomorphisms
of D, expressions are manageable; homomorphisms, being represented with every field
of the record, produce a less comprehensible notation.

The first of the premises states the conversion of the differential of D into an element
of the ring of tuples R. The rest of the premises are directly extracted from the statement
of Lemma 2.2.14 as well as the property in the goal.

For instance, the representation of Ogomkerp,ny as a tuple is, as can be observed in
the Isabelle statement:

(src = D(carrier := Ker D D (morph p) |), trg = D, morph = morph 02,
src-comm-gr = D, trg-comm-gr = D |)

The null object is an endomorphism from the differential group D, and therefore the
fields trg-comm-gr and src-comm-gr have D as value. We also must consider that the
homomorphism we are representing is an inclusion from the differential subgroup ker p
into the differential group D. Thus, the src field has value ker p, and the trg field has
value D, which is the codomain of the homomorphism. Finally, the homomorphism we
are representing can be seen as the null object, which in Isabelle notation is the morph

110 Chapter 8 Mechanizing the proof: a case study in Isabelle

field of the endomorphism 05 (i.e., Az. (if © € carrier D then zero D else zero D)).

The method applied to give a proof of the property is as follows: first, computations
are carried out with elements of the ring R of endomorphisms, taking advantage as far
as possible of the Isabelle automation for such an algebraic structure. This equation
must be expressed, consequently, in terms of elements of R; a combination similar to
the one on the goal is required, but stated only with elements of the ring R. Then, by
applying Lemma 3.7.1/ in a suitable way, we convert the combination inside of the ring
R into the linear combination appearing in the goal of the property we are proving.

The Isabelle proof itself, in practice, is not so clear in terms of readability due to
some technical considerations. For instance, the proof of this property, required above
130 lines of Isar code. One of the reasons is that every time a conversion is needed from
an element (or operator) of the ring R into the value this term has been instantiated
with, a proof step is needed. For instance

from prems have mult-def: op ®2 = op o
by (unfold group-mrp-set-ring-axzioms-def group-mrp-set-def) (cases R, simp)

is used to obtain that the concrete value with which op ®, is instantiated is op o (an
abbreviation of group-mrp-comp). Surprisingly, this difference between the syntactic
and semantic meaning serves to illustrate the different reasoning levels we pretended to
achieve. On a first level, we find a generic ring, which elements and operations have no
further definition; on a second level, when the elements inside of this ring are explicitly
interpreted, they become tuples representing the endomorphisms (and they cannot be
used like elements of the ring). This situation, although clarifying how interpretation
really works (i.e.providing different levels of abstraction requiring explicit processes to
translate from one into the other), has as a consequence that numerous interpretations
(and the opposite process) slow down proof performance, impoverish readability and
increase proof size.

In a similar pattern, the rest of the properties can be expressed and proved, although
with some limitations. The first property, stating that (idEnd(D) —p) inCkerp = idierp,
would be expressed as follows:

lemma (in group-mrp-set-ring) first-condition:
assumes diff-morph: diff-morph = (| src = D, trg = D, morph = differ,
src-comm-gr = D, trg-comm-gr = D)
and R: h € carrier R
and diff-morph € carrier R
and hh: h ®9 h = 09
and hdh: h ®2 diff-morph ®o h = h
and p: p = (h ®2 diff-morph) ®o (diff-morph ®2 h)

3.7 The morphism based approach 111

shows (| src = D, trg = D(carrier := Ker D D (morph p)),
morph = morph (12 ©2 p) , src-comm-gr = D, trg-comm-gr = D)
@2
(src = D(carrier := Ker D D (morph p) |), trg = D,
morph = morph 1a, src-comm-gr = D, trg-comm-gr = D)
(sre = D (carrier := Ker D D (morph p) |) ,
trg = D (carrier := Ker D D (morph p)),
morph = morph (1g ©2 p), src-comm-gr = D, trg-comm-gr = D |)

The proof is implemented in Isabelle following the same strategy used for the third
condition previously shown. We carry on computations in the ring R, taking advantage
of the automatized tactics; we start from the following composition (where each term
belongs to the ring R of endomorphisms):

have equality-in-ring:
((src = D, trg = D, morph = morph (12 ©3 p) , src-comm-gr = D, trg-comm-gr = D |)
o (src = D, trg = D, morph = morph 1y, src-comm-gr = D, trg-comm-gr = D |
= (src = D, trg = D, morph = morph (13 &2 p), src-comm-gr = D, trg-comm-gr = D)

Then, with this part already proved, the implementation in Isabelle of Lemma 3.7.1
allows us to use the previous equality to prove a similar one where the sources and the
targets of the endomorphisms match with the ones in the lemma’s goal.

The implementation of Lemma 3.7.1 proved in morph-comp-src-trg in this case is the
one modifying the source and the target of the endomorphism in the right hand side,
and its implementation in Isabelle, together with its proof, is the following:

lemma morph-comp-src-trg:
assumes A1: group-mrp2 (src = A, trg = B, morph =
src-comm-gr = G1, trg-comm-gr = G2)
and A2: group-mrp2 (src = B, trg = C, morph = g,
src-comm-gr = G2, trg-comm-gr = G3)
and A3: (carrier A') C carrier A
and A/: image g (carrier B) C carrier C’
and A5: (group-mrp-comp (| src = B, trg = C, morph = g,
src-comm-gr = G2, trg-comm-gr = G3)
(src = A, trg = B, morph = f,
src-comm-gr = G1, trg-comm-gr = G2)

(| src = A, trg = C, morph = h,
src-comm-gr = G1, trg-comm-gr = G3)

112 Chapter 8 Mechanizing the proof: a case study in Isabelle

shows (group-mrp-comp (| src = B, trg = C’, morph = g,
src-comm-gr = G2, trg-comm-gr = G3 |)
(src = A’, tr¢g = B, morph = f,
src-comm-gr = G1, trg-comm-gr = G2)

(| src = A’ trg = C', morph = h,
src-comm-gr = G1, trg-comm-gr = G3)
proof (unfold group-mrp-comp-def, simp)
from A4 show g o f = h by (unfold group-mrp-comp-def, simp)
ged

As it can be observed, the proof in Isabelle for this lemma is almost direct.

Both parts of the implementation of the proof in Isabelle of the first property took
us above 100 lines; the first part required less effort, since the degree of automation
is higher, and the computation inside of the ring R had a high level of automation.
The application of Lemma [3.7.1] required a more specific work; the conditions needed
made necessary even working with concrete elements of the homomorphisms’ domain
and codomain.

The second condition is a bit more complicated. The main reason is that more homo-
morphisms are involved in its statement: inckerp(idEnd(p) —P) + dph + hdp = idgnap).
Despite of this difficulty, the complete proof can be implemented in Isabelle with a
similar size to the previous ones. The Isabelle statement is expressed as follows:

lemma (in group-mrp-set-ring) second-condition:
assumes diff-morph: diff-morph = (| src = D, trg = D, morph = differ,
src-comm-gr = D, trg-comm-gr = D)
and R: h € carrier R
and diff-morph € carrier R
and hh: h ® h = 0y
and hdh: h ®s diff-morph ®o h = h
and p: p = (h ®2 diff-morph) ®o (diff-morph ®2 h)
shows ((| src = (D (| carrier :== Ker D D (morph p)))), trg = D,
morph = morph 1y, src-comm-gr = D, trg-comm-gr = D |)
@2
(sre = D, trg = (D (| carrier := Ker D D (morph p)))),
morph = morph (12 ©2 p), src-comm-gr = D, trg-comm-gr = D |))
G2 p =12

The proof is done following a similar pattern as in the previous ones. Using autom-
atized tactics, simplifications inside of the ring of endomorphisms R are carried out;
we first operate on the composition of the endomorphisms, and then also on the addi-
tion, obtaining the unit endomorphism on the left hand side of the equation. In a second
step, introducing a particular version of Lemma 3.7.1, it is proved that from the equality
between endomorphisms, the equality between the homomorphisms holds.

The number of Isabelle lines of code was around 130, similar to previous properties,

3.7 The morphism based approach 113

despite of the presence of a greater number of endomorphisms in the statement of the
property. The size of the proofs could be decreased just by extracting some of the repet-
itive steps we have already highlighted, related to the interpretation (and the reverse
process) of the ring elements, which are common to all proofs. A way to greatly improve
the proof performance would consist in internally mechanize these steps, although this
goes beyond our aim.

The fourth property that has to be proved following the definition of reduction was
hincierp = OHom(kerp,p)- In this property, we encountered some expected problems to
give a complete implementation of the proof. Instead of proving the given statement,
the property hincye, = hp kerp had to be proved in Isabelle. The reason is that, when

we are using the tuples, without modifying the meaning of the equality in Isabelle/HOL
(which corresponds to the equality in the meta logic of the system), identities such as
p‘kerp = OHom(kerp,p) Ccannot be proved. The statement in Isabelle of this identity would
be as follows:

(src = (D (carrier :== Ker D D (morph p) |), tr¢g = D, morph = morph p,
src-comm-gr = D, trg-comm-gr = D |) =

(src= (D (carrier := Ker D D (morph p)), trg = D, morph = morph 02,
src-comm-gr = D, trg-comm-gr = D)

Two tuples will be equal whenever the five fields of their records are equal. The
equality in the algebraic structures sre, trg, src-comm-gr and trg-comm-gr can be proved.
When it is applied to the field morph, two functions will be equal when they are equal
for all the elements of their source type. Taking into account that every endomorphism
or homomorphism in this setting is represented through a completion function over the
differential group D, and that ker p is a differential subgroup of it, the homomorphisms
p‘kerp and Opom(kerp,p) in this setting are not equal (they produce the same value when
applied to the elements of the carrier set of ker p, but not for every element of the carrier
set of D). This can be understood as a limitation of representing all the endomorphisms
and homomorphisms of the setting like endomorphisms of D, and then some rules al-
lowing us to change their domain and codomain. On the other hand, we considered only
the endomorphisms of D as necessary in order to keep the framework simple.

Thus, the statement of the fourth property that we have implemented in Isabelle is
slightly different, establishing hp‘ Kerp = hincke p, instead of the original statement and
its proof is as follows:

lemma (in group-mrp-set-ring) fourth-condition:
assumes diff-morph: diff-morph = (| src = D, trg = D, morph = differ,
src-comm-gr = D, trg-comm-gr = D)
and R: h € carrier R
and diff-morph € carrier R
and hh: h ®3 h = 09
and hdh: h ®2 diff-morph ®2 h = h
and p: p = (h ®2 diff-morph) ®o (diff-morph ®9 h)

114 Chapter 8 Mechanizing the proof: a case study in Isabelle

shows h ®-
(src = (D (carrier := Ker D D (morph p) |)), tr¢g = D,
morph = morph p, src-comm-gr = D, trg-comm-gr = D |)
= h ®2
(src = (D (| carrier := Ker D D (morph p) |), tr¢g = D,
morph = morph 1g, src-comm-gr = D, trg-comm-gr = D |)

This proof required an intensive use of what we have defined as equational reasoning
using the ring properties and the premises (this can be also observed in its mathemat-
ical proof in Lemma 2.2.14). The endomorphism h had to be successively converted,
following the premises, into hdh, and then into hdh + hhd, which applying distributivity
was h(dh + hd) and thanks to the premises equal to hp. These computations in the
set theoretic approach would have required a much greater effort. Thanks to the ring
properties, all these steps were made almost automatically, just paying some special
attention to the associativity laws in the Isabelle library.

The proof of the previous property required again around 130 lines of Isabelle code,
and the methodology was similar to the previous properties. First, in the ring R of
endomorphisms, we proved that hidgnqpy = h, and also that hp = h; then, by intro-
ducing Lemma 3.7.1, we obtained the same equalities, but for the homomorphisms in
the statement of the property, namely, hierp = hincierp and Akerp = Apkerp. Finally, by
joining both equalities, the lemma was proved.

With this property, a complete implementation of the properties of reduction is
finished. A complete implementation of the proof of Lemma 2.2.14 has been produced
in Isabelle.

3.7.5 Discussion

The goal we pursued when this framework was proposed consisted in, first, avoiding the
difficulties highlighted in the set theoretic approach for reasoning with homomorphisms
(implemented through functions), and, at the same time, not to loose information about
the homomorphisms and algebraic structures, as happened in the symbolic approach.
The solution proposed here, among the ones already commented on is aimed to fit as far
as possible with the previous works available in Isabelle. We did not want to modify the
existing equality in Isabelle, since the consequences were unpredictable. Nevertheless,
this remains as an open and interesting problem. We neither chose to define equivalence
classes. As far as we know, equivalence classes have not been used yet in Isabelle for
dealing with functions. The possibilities of implementation could be also studied.

Following the idea of the extensional functions defined in Isabelle, and due to their
problems with the usual composition (as has been shown, extensional functions are
not closed under composition), and the lack of a clear mathematical interpretation,
we defined completion functions, functions which out of their domain of definition are
assigned a distinguished element of their codomain. This idea has been already suggested
and its consequences explored (see, for instance, [Harrison, 1996]). The intersection

3.7 The morphism based approach 115

of these special functions with the Isabelle homomorphisms provided us with a set of
functions over which we were able to define a ring of endomorphisms. The additive and
multiplicative operators for this structure were the usual ones.

Once a ring was built, the automation provided by the symbolic approach was also
recovered. In addition to this, information had not been lost related to the mathematical
objects and structures involved in the problem. Thanks to these enhancements to the
available Isabelle tools, endomorphisms can be dealt with like in usual mathematical
proofs, especially when dealing with combinations of them.

In a second stage, and taking a closer look to Lemma 2.2.14) it can be observed that
the two algebraic structures appearing on the statement have a special relationship. One
of the differential groups is a differential subgroup of the other one. From an algebraic
point of view, it can be seen as a closed subset that also satisfies some properties. The
objects we are interested in now are the homomorphisms and endomorphisms between
these two algebraic structures, which are the ones appearing in the proof of the lemma.
Two possible representations can be chosen for this environment. A first one would con-
sist in representing the homomorphisms and endomorphisms as belonging to different
algebraic structures. Nevertheless, this situation does still have a difficulty: which are
the operators allowing to combine endomorphisms and homomorphisms between the dif-
ferent algebraic structures? The operator we are looking for, in this concrete setting, is
composition of functions, but a new question emerges: which one is the algebraic struc-
ture this operator belongs to, when it operates over endomorphisms and homomorphisms
in the same expression?

This algebraic structure has been defined in the literature as ringoid (see Defini-
tion [1.1.24), although it is not very common. Its implementation in Isabelle could be
given; it is not so clear how and to what extent reasoning in this structure could be
automated.

A simplified implementation of the structure, with a fixed number of components
will be presented in Section [3.8. In the morphism based approach, as has been re-
ferred, we took advantage of the relationship between the differential group and its
differential subgroup, which allowed us to decrease the number of tools we had to im-
plement. Then, representing endomorphisms through tuples and making an adequate
use of Lemma 3.7.1, a satisfactory degree of functionality was obtained. A complete
implementation of the proof of Lemma 2.2.14] was obtained.

The following facts can be highlighted from this proposal:

e A higher degree of functionality has been obtained for working with homomor-
phisms and endomorphisms. During the development of the framework we had to
prove that homomorphisms between abelian groups form an abelian group with
the binary operations of the underlying groups, and endomorphisms a monoid with
the usual composition. Up to our knowledge, these proofs had never been done
before in Isabelle. They increase the degree of automation, due to the existing
libraries for algebraic structures in Isabelle.

116 Chapter 8 Mechanizing the proof: a case study in Isabelle

e Some special lemmas, whose proofs in Isabelle were almost direct, helped us to
deal with endomorphisms, and at the same time, with homomorphisms and endo-
morphisms of substructures.

e The degree of mechanization obtained in the proofs and their size was not as
satisfactory as expected. One of the reasons was the necessity of making explicit
the translations between the objects and operators of the algebraic structures,
and the values they were interpreted with (endomorphisms and operators between
them, in our case). A solution to this problem would be desirable, since these proof
steps go against readability of proofs. A possible way out of this situation would
be to introduce equalities between the abstract values of the locales fixed objects
and their concrete meaning when defining the locale. Nevertheless, simplification
processes should be careful with these “interpretation” steps, as far as they could
produce infinite loops if applied automatically.

e The tools provided in this framework can be easily transferred to different problems
in Group Theory. The representation of endomorphisms as a ring can result useful
for both the lemmas we are facing and also other mathematical developments. We
also have obtained the representation of homomorphisms between abelian groups
like an abelian group, which also can be reused. The representation of endomor-
phisms and homomorphisms as tuples, where information about the source and
the target is stored, has been proposed in some Category Theory approaches pre-
tended in Isabelle (see for instance [Glimming, 2001, O’Keefe, 2004], where tuples
were used to represent well defined arrows). Finally, the possibility of using equal-
ities between endomorphisms to prove another equalities between endomorphisms
and homomorphisms, modifying the domain and the codomain of endomorphisms
through Lemma 3.7.1 can be applied, at least, to every environment where the ob-
jects appearing on the lemmas are homomorphisms and endomorphisms between
an algebraic structure and as many substructures of it as needed.

3.8 The interpreting approach

A final method based on the interpretation of locales (see [Ballarin, 2004]), a tool re-
cently implemented in Isabelle that should be helpful for the kind of theorems we are
considering, is also explored. Interpretation of locales is a feature of the Isabelle release
Isabelle2004. It allows us to define objects that fulfill the specification of a locale during
the proofs.

Using this facility, we planned to define locales as close as possible to the mathe-
matical context we have described, instead of proposing new tools, as in the previous
approach (for instance, Lemma [3.7.1)), that showed to be helpful to avoid keeping record
of all the mathematical entities involved. In fact, some limitations were encountered
while developing this environment. The first one is that the interpretation of locales
was an ongoing project when we faced the problem. Therefore, we tried to make a

3.8 The interpreting approach 117

simulation with the then existing tools. In addition to this, a precise description of
the mathematical framework introduced in Lemma [2.2.14] requires algebraic structures
not implemented in Isabelle. Once again, the precise description of the mathematical
environment was not reachable.

Despite of these inconveniences, the approach was helpful, and showed to be more
successful to complete the implementation of the proofs than the previous ones. More-
over, it should be easy to transfer it to other problems, even out of our interest area.

For testing these ideas, we again focused our attention on Lemma 2.2.14, which
would allow us to compare the results obtained with the implementation of the proof
proposed in the morphism based approach, in Section 3.7.4. We will skip in this ap-
proach the enumeration of the algebraic structures present in Lemma 2.2.14, since they
have been already related in Section 3.7.1. In Section [3.8.1/ we give a brief description
of the representation of the mathematical structures involved in our problem; their im-
plementation is based on code already introduced, and therefore details are omitted.
Then in Section 3.8.2 we comment on the ideas that allow us to define a ring from a
set of endomorphisms, and an abelian group from a set of homomorphisms, permitting
us to use interpretation of locales to define an adequate environment. In Section 13.8.3
a complete implementation of the proof of Lemma [2.2.14] will be presented, improving
the one already given in Section 3.7.4, mainly in terms of readability and code optimiza-
tion. Finally, the comparison with the previous approaches, specially with the morphism
based one, will be done in Section 3.8.4.

3.8.1 Representation of the algebraic structures

Two main issues have to be addressed in this section. First, which algebraic struc-
tures are to be considered in Isabelle when we implement our proofs and second, which
implementation for these structures is chosen.

The second issue is solved as in previous approaches. Algebraic structures are repre-
sented through extensible records, which have shown to be appropriate and functional
enough to fulfill our requirements.

On the contrary, with respect to the algebraic structures that are introduced in the
framework, we take advantage of the facilities given by the interpretation of locales to
create a locale object fitting to our problem, which can be interpreted with the algebraic
structures present in the problem. In the locale we are defining in order to give a proof
of Lemma 2.2.14] the following algebraic structures will be explicitly used:

e The differential group (D, dp) (as in the morphism based approach).

e The differential subgroup (ker p, dp), denoted in Isabelle by Ker-p (as in the mor-
phism based approach).

e A ring R, which will be interpreted with End((D,dp)) (as in the morphism based

118 Chapter 8 Mechanizing the proof: a case study in Isabelle

approach).
e A ring R', interpreted with End((kerp,dp)) (introduced in this approach).

e A commutative group A interpreted with Hom((D,dp), (kerp,dp)) (introduced in
this approach).

e A commutative group A’ interpreted with Hom((ker p,dp), (D, dp)) (introduced
in this approach).

In comparison with the previous approaches, the amount of algebraic structures imple-
mented in Isabelle has been increased. Here it is where the locales facilities for importing
the available knowledge about the fixed structures and for referring implicitly to alge-
braic structures through the subindexes will be of great help. Actually, it can be say
that locales do not augment the Isabelle reasoning power, although they ease the task
of managing large proof contexts.

Now, in Section 3.8.2 a description of the implementation chosen for homomorphisms
is given. It is mainly based on the ideas given in Section 3.7.3; the main difference is
that now we do not store the source and the target algebraic structures of the homo-
morphisms, simplifying the Isabelle notation.

3.8.2 Homomorphisms between algebraic structures

Two main features determine the implementation of the homomorphisms we are seeking
in this approach:

1. Homomorphisms, together with the necessary operations, have to be shown to form
a ring or a commutative group (otherwise, interpretation would not be possible).
Therefore, the ideas proposed in the morphism based approach in Section 3.7.3
allowing us to form a ring of endomorphisms are recovered here.

2. Thanks to the interpretation of locales, we have the possibility to automatize proofs
in this setting, not only with the endomorphisms of the differential group (D, dp),
as in the morphism based approach, but also with the rest of homomorphisms
and endomorphisms present in Lemma 2.2.14. Therefore, the implementation of
homomorphisms through tuples proposed in the morphism based approach is no
longer necessary, and only the functional information is relevant.

The proposed definition for homomorphisms, therefore, is similar to the functional part
of the tuples introduced in the morphism based approach, which we know that satisfy
both conditions:

constdefs
hom-completion :: [('a, 'c) monoid-scheme, ('b, 'd) monoid-scheme] => ('a => 'b)set

3.8 The interpreting approach 119

hom-completion G G' == {h. h € completion-fun2 G G' & h € hom G G'}

This Isabelle definition was already proposed in Section 3.7.3. The type assigned
to homomorphisms is a functional one, between the types of the source and the target
structures. The definition can be divided into two parts. The first part, already pro-
posed in the set theoretic approach in Section [3.6.3, stating that every homomorphism
must assign to each element of the source set one element of the target set, and also
that every homomorphism must be coherent with the binary operations of the source
and target algebraic structures. The second part, added in Section [3.7.3 is used again:
every element out of the source set is mapped to the unity of the target algebraic struc-
ture. This definition allowed us to prove that endomorphisms and homomorphisms, with
appropriate operations, define certain algebraic structures. For instance, the following
structure, with the usual composition of functions, forms a monoid:

(| carrier = hom-completion G G, mult = op o,
one = (Az. if x € carrier G then id z else one G)|)

We also proved that an abelian group can be defined making use of the binary
operation of the underlying group G’ as follows. In the case of endomorphisms, it can
be considered G’ = G. Otherwise, the following algebraic structure can be seen as the
set of homomorphisms between two abelian groups G and G:

(| carrier = hom-completion G G’,
add = M. A\g. (A\z. if x € carrier G then fx ®y g x else 03),
zero = (Az. if x € carrier G then zero G' else zero G')|)

By proving also the distributivity of the multiplicative operation with respect to the
additive one, we can prove that the set of endomorphisms of a given commutative group
G defines a ring with the previous operations.

These facts are the ones allowing us to interpret the locale we are trying to define
with the given structures based on homomorphisms. Therefore, once these facts have
been proved, the next step will be to define the concrete locale, as a final step before
developing the proofs.

3.8.3 Lemmas proved

The definition of a locale containing the mathematical entities present in Lemma 2.2.14
can be now done. In the following definition, the locale object is defined, and at the
same time, its variables are interpreted with the objects that reproduce the mathematical
setting in the lemma we are facing:

locale hom-completion-ringoid = abelian-group D + abelian-group Ker-p 4+ ring R
+ ring R" + abelian-group A + abelian-group A’ + var p +

120 Chapter 8 Mechanizing the proof: a case study in Isabelle

assumes R = (| carrier = hom-completion D D,
mult = op o,
one = (Az.if £ € carrier D then id x else zero D),
zero = (Az. if x € carrier D then zero D else zero D),
add = M. Ag. (Az. if z€ carrier D
then fx @ g x else zero D)|)
and R’ = (| carrier = hom-completion Ker-p Ker-p,
mault = op o,
one = (Az. if z € carrier Ker-p then id z else zero Ker-p),
zero = (Az. if x € carrier Ker-p then zero Ker-p else zero Ker-p),
add = M. Ag. Az.if x € carrier Ker-p
then fx @ g x else zero Ker-p)|)
and A = (| carrier = hom-completion D Ker-p,
add = M. Ag. (Az. if x € carrier D then fz @ g x else zero Ker-p),
zero = (Az. if ¢ € carrier D then zero Ker-p else zero Ker-p) |)
and A’ = (| carrier = hom-completion Ker-p D,
add = M. Ag. (\z. if x € carrier Ker-p then fx @ g x else zero D),
zero = (Az. if x € carrier Ker-p then zero D else zero D) |)

and subgroup?2 Ker-p D
and (carrier Ker-p) = {z. p x = 02}

The name of the locale, hom-completion-ringoid, is due to the resemblance of the
context created with the ringoid structure. The locale fixes two abelian groups D and
Ker-p, and then a ring R is also fixed and interpreted with the endomorphisms of D, a
different ring R’ is fixed and interpreted with the endomorphisms of Ker-p, an abelian
group A with the homomorphisms from G into Ker-p, and an abelian group A’ with
the homomorphisms from Ker-p into D. In addition to this, Ker-p is defined to be a
subgroup of D, and with carrier set the elements which image through p is the identity of
D. The previous lemmas proving that for any abelian groups G, G', End(G) form a ring
and Hom(G, G’) an abelian group with the proposed operations, ensure the correctness
of the definition of the given locale. With a working version of the interpreting tool,
these lemmas should be applied in order to prove the correctness of the locale definition.

Once we have defined a setting, the properties in Lemma 2.2.14] have to be proved.
The proof methodology exposed in the morphism based approach can be applied also
here. As far as the endomorphisms and homomorphisms can be understood as belonging
to certain algebraic structures, computations can be carried out in these structures
taking advantage of the automation available. For instance, this has been applied to
the third property, which statement and proof in Isabelle, when we are in the locale
hom-completion-ringoid is as follows:

lemma (in hom-completion-ringoid) reduction-property-three:
assumes p € carrier R and h € carrier Rand p &3 h = h
shows (one R ©3 p) ®3 h = zero A
proof —
from prems have one: ((one R ©3 p) @3 h = zero A) = ((one R ©3 p) ®3 h = zero R)

3.8 The interpreting approach 121

proof —
from prems have zero A = zero R
by (unfold hom-complection-ringoid-azioms-def subgroup2-def)(cases A, cases R, cases
Ker-p, auto)
then show ?thesis by simp
qed
from prems have two: (one R ©3 p) @3 h = zero R
by algebra
from one and two show ?thesis by simp
qged

The proof corresponds to the property (idgna(p) —P) inCierp = idierp. In the proof,
zero A is the zero field in the abelian group A fixed in the locale, i.e.:

zero = (Ax. if x € carrier G then zero Ker-p else zero Ker-p)

It can be proved to be equal to zero R. Once this has been proved, all the objects
in the proof belong to the ring R, and the tactic algebra is able to solve the goal.

A fact that can be also pointed out is the difficulties found in Isabelle to simplify
atomic parts of combinations. For instance, in the expression we are working with now,
despite being able to prove the following equality in a single proof step,

zero A = zero R

the equality between the following combinations requires a stepwise proof:

((one R ©3 p) ®3 h = one A) = ((one R ©3 p) ®3 h = zero R)

First, the previous equality between atomic terms must be supplied, and then the
equality between the expressions can be derived. Simplification tactics, without being
explicitly instantiated, are not enough to deal with the equality between both expres-
sions.

The rest of the properties have more elaborate proofs, at least in number of lines of
[sabelle code, since the automation tactics cannot be applied so directly. The statement
of the first property, which was (idgnq(py — P) inCierp = idEnd(kerp), With the supplied tools,
remains as follows:

lemma (in hom-completion-ringoid) reduction-property-one:
[| p € carrier R || ==> (one R S3 p) o
(Az. if x € carrier Ker-p then id z else zero Ker-p) = one R’

Two reasons can be suggested that prevented us of seeking a fully automatic proof in
Isabelle of this lemma, and therefore, augmented the size of its proof. First, the minus

122 Chapter 8 Mechanizing the proof: a case study in Isabelle

operator does not count with a lot of automated tactics, and requires a very careful
treatment. Secondly, the equality between both expressions cannot be easily transferred
to one of the algebraic structures involved in the proof (rings R and R’, or abelian
groups A and A’). As far as no automation has been given for the implicit ringoid
present in the mathematical environment of the proof, most of the steps had to be done
making use of very basic Isabelle tactics (relative to the properties and definition of o
and extensionality principles). The whole proof required above 90 lines of code.

The same situation appears in the rest of the properties. The statement of the second
property was incyer p(idgna(py — p) + dph + hdp = idgnq(py and its implementation in this
framework is:

lemma (in hom-complection-ringoid) reduction-property-two: [| p € carrier R; p @3 p = p |]
==> ((Az. if z € carrier Ker-p then id z else zero Ker-p) o (one R ©3 p)) @3 p = one R

The size of its proof is 40 lines. The sketch of the proof is similar to the one given
in the morphism based approach for this lemma. We try to reduce the left hand side of
the expression in the goal, first by simplifying the composition, and then by eliminating
the endomorphism p, until we obtain the expression on the right hand.

The same process is applied also to the fourth property, stating that
hincyer p = Otom(ker p,0), Which Isabelle statement is:

lemma (in hom-completion-ringoid) reduction-property-four:
[| p € carrier R; h € carrier R; h @3 p = h |]
==> h o (A\z. if x € carrier Ker-p then id z else zero Ker-p) = one A’

Again the proof is based on very low level Isabelle principles, introducing extensional
equality between functions to produce the proof. The prover is capable of discarding
the non-meaningful cases, remaining only the case where x € carrier Ker-p. The proof
of this case requires less than 30 lines.

The fifth property, stating that the homotopy operator A is nilpotent, is among the
premises. With the five properties gathered together, the proof of Lemma 2.2.14 is
completed.

3.8.4 Discussion

Some remarks can be done dealing with this interpreting approach. In relation to the
previous approaches, the following can be said:

e This approach is based on considering endomorphisms and homomorphisms as al-
gebraic structures, instead of sets. We had already introduced this idea in the
morphism based approach, where we had to develop the tools allowing to define

3.8 The interpreting approach 125

both the representation for homomorphisms and also the operators allowing to
define the algebraic structures (rings and commutative groups). On the contrary,
in this approach, the environment built is less flexible than in the morphism based
approach. There, we provided lemmas allowing us to modify the source and target
of homomorphisms under some weak premises. Here, on the contrary, all the ho-
momorphisms and endomorphisms are defined when the locale object is created,
and afterwards, it is not possible to modify a single homomorphism; just compu-
tations between various homomorphisms can be carried out (taking advantage of
the ringoid we have defined).

e The code obtained in our proofs has been substantially decreased. The number of
code lines in relation to the morphism based approach has been now divided by
4 approximately; one first reason is that representation of homomorphisms is now
simpler. As far as homomorphisms now are represented just by their functional
part, the size of their codification is smaller. A second reason can be also given.
In the morphism based approach, automation was only possible with the oper-
ations inside of the ring; otherwise, the proofs with records had to be managed
carefully by hand. Here, the objects we are dealing with are mainly functions,
and the previous knowledge in the Isabelle library related to basic operations with
functions is directly applied; for instance, properties about the composition, exten-
sional principles expressing the equality between functions, management of lambda
expressions, are already introduced in the simplifier. As far as the combinations
we deal with in these lemmas are not very complicated, goals can be almost fully
simplified without help. Due to this reason, proofs are less elegant than in the
morphism based approach; there, computations were carried out in a ring (based
on equational reasoning or term rewriting) and then transferred to their original
form. Now, expressions are considered in their original form (seen as combinations
of objects belonging to different structures), and proofs are based on powerful
tactics automatically discarding most of the possibilities.

e The abstraction process from the mathematical entities to the objects we have
implemented is now a bit more obscure. In the morphism based approach, every
homomorphism and endomorphism could be understood as an object of a ring,
and the operations where identified with the ring operators, and the identification
between mathematical entities and objects implemented in the theorem prover
was clear. Now, in the interpreting approach, the algebraic structures and their
operations in the theorem prover have a clear identification with the mathematical
entities they represent. On the other hand, the operation allowing to operate
homomorphisms of the different algebraic structures, i.e., o, does not belong to any
algebraic structure. In the mathematical setting, the operation o belongs to the
ringoid which encloses the different algebraic structures. But this ringoid has been
avoided in the translation to the theorem prover. This has a direct consequence. As
far as the ringoid has not been implemented, the only information and properties
about the o operator are the ones available from the Isabelle libraries. On the other
hand, in the morphism based approach, the o operator was identified with the

12/

Chapter 8 Mechanizing the proof: a case study in Isabelle

multiplicative operation inside of the ring of endomorphisms. It seems that when
we try to work with large combinations of endomorphisms and homomorphisms,
the automation obtained in the morphism based approach will be greater than in
this approach.

The ideas exposed and the tools supplied to Isabelle were enough to complete the proof
of the properties in Lemma 2.2.14. Nevertheless, some other ideas have not been fully
explored, and should be further studied:

e Taking into account that interpretation of locales was not available when we tried

these ideas, a new effort should be made to translate these proofs into the recently
implemented tool, even if no substantial changes are expected from what we have
already obtained. Interpretation of locales does not increase the reasoning power
of the system, but it greatly improves the syntax of the proofs as well as their size;
its possibilities go beyond the scope of our problem, and can be applied to every
kind of environment.

Ringoids appear in several abstract algebra problems. Some effort could be made
to obtain an implementation of them in the theorem prover. Even if one is able to
implement them in Isabelle, obtaining some degree of automation in this structure
seems far from trivial.

Chapter 4

Extracting Computer Algebra
Programs from Statements

4.1 Introduction

Kenzo is a Common Lisp program created by Sergeraert (see [Dousson et al., 1999] and
also Sections [1.2.1], 1.2.2 of this memoir), for Computer Algebra computations in the
field of Algebraic Topology. Its main characteristics are its handling of infinite spaces
(by using functional programming), and that Kenzo has found results unreachable by
any other means (see [Rubio and Sergeraert, 1997, Rubio and Sergeraert, 2002]).

In Chapter 3l we have presented various approaches to deal with objects of Algebraic
Topology, such as differential groups and homomorphisms between them, that were
useful to implement fragments of the proof of the BPL in Isabelle. Taking into account
that our long term goal was to increase the reliability of the Kenzo system by giving
certified versions of the crucial algorithms present on it, the next step of our research
consists in obtaining programs from the proposed mechanized proofs. The obtained
programs should be then compared with the original ones present in the Kenzo system
and encoded in CLOS (the Common Lisp object oriented system) and proved to be
equivalent, i.e., they should produce similar results for similar inputs; moreover, they
would be certified to be correct, as far as we rely on the code extraction tool. The
importance of this certification is clear, since some of the results obtained with Kenzo
in Homological Algebra have not been obtained by any other means.

One of the reasons that we claimed for using Isabelle as our theorem prover was the
code extraction tool that has been implemented on top of it (see [Berghofer, 2003a,
Berghofer, 2003b, Berghofer, 2004]). This tool can be applied to a subset of Is-
abelle/HOL satisfying certain constraints.

From the different approaches presented in Chapter 3, the one fitting most exactly to
our purposes was the morphism based approach (see Section [3.7), as far as it provided

125

126 Chapter 4 Extracting Computer Algebra Programs from Statements

us with a high degree of expressiveness and also of automation. There, homomorphisms
were implemented as extensible records encoding the real map, the potential source and
target chain complexes, an also the real domain of definition and the image.

Despite of the success of this approach, our aim was to obtain a formalization (and
proof mechanization) of the theorems, not of the programs appearing in Kenzo. There-
fore, now we try to bridge the gap between (mechanized) theorems and programs using
Berghofer’s tool for extracting ML programs from Isabelle theories. We suspected that
the proving efforts previously done could perhaps be unsuitable, due to the additional
constraints on the constructive nature of the proofs (up to now, we have chosen a clas-
sical way of proving in Isabelle, trying to emulate the proofs-by-hand from Homological
Algebra; see [Rubio, 2004]). Surprisingly enough, we observed that most of our already
formalized theorems had constructive statements (in a sense that will be explained in
Section [4.3)), even if proofs are not necessarily expressed in a constructive manner. This
simple observation allows to apply Berghofer’s tool to some of our Isabelle theories,
extracting ML programs equivalent to some (small) fragments of Kenzo. Even if pre-
liminary (the programs extracted so forth are extremely simple, compared with Kenzo
as a whole), these results invite to explore further this research line.

The chapter is organized as follows. Section 4.2]is devoted to introduce the case study
chosen from Kenzo: the composition of two homomorphisms. A fragment of CLOS code
will be shown where the composition is defined in the Kenzo system. In Section 4.3,
we move to a well-known domain, namely elementary arithmetic, to work out a simple
example related to Euclid’s proof of the existence of infinitely many primes. The aim
of this section is to introduce some key ideas, avoiding the complexities of Homological
Algebra and Algebraic Topology; basics on formalization, automated theorem proving
and program extraction are also introduced, including our notion of constructive state-
ment. Then, this notion is applied to the elementary arithmetic example, showing how
Berghofer’s tool can be used to obtain an ML program (certified correct) computing a
prime number bigger than its input. In Section 4.4, we recover our original framework,
going back to our Homological Algebra proofs, applying the same techniques to obtain
an ML program (certified correct by the Isabelle tool) to compose two homomorphisms.

4.2 The Kenzo program: some fragments

In [Rubio, 2005] a fragment of the implementation in Kenzo of the BPL is presented.
Kenzo is a quite complex Common Lisp program, over 16000 lines of CLOS code with
intensive use of functional programming techniques. In this section, we will focus our
attention on the fragments of Kenzo code that define the composition of homomorphisms.
Even in this case, some explanations are needed in order to understand the code. A piece
of code of the Kenzo implementation of the BPL will be also shown. As far as we would
like to achieve an implementation of the algorithm associated to the proof of this lemma
with a code extraction tool, we considered interesting to introduce a fragment of its
implementation in Kenzo to illustrate the complexity of our task.

4.2 The Kenzo program: some fragments 127

In Kenzo every chain complex is free. Consequently, every graded group in Kenzo
is defined from its set of generators and an equality test among them for each degree.
Generators are used to form combinations (which are linear combinations of generators,
with coefficients ranging over the integer numbers), which are the real elements of the
graded group for each degree. In order to add two combinations, the equality test
between generators has to be used. With this implementation in CLOS, when we define
a homomorphism between two chain complexes, it is enough to provide the image of
each generator, that can be identified with a linear combination of the generators of the
target graded group. In order to extend the map to combinations on the source group,
the equality test n the target group has to be used. This strategy, which is the most
frequently used in Kenzo, is called, according to Sergeraert’s terminology, by generator,
and is denoted in the Kenzo system with the keyword :gnrt.

But there are cases where this method can be wasteful from the performance point of
view: for instance, the identity or the null homomorphisms do not require any equality
checking on the generators. A second strategy can be considered that Sergeraert called by
combination (defined as : cmbn in Kenzo), that solves the previous performance problems.
The strategy followed can be indicated explicitly in the composition, although it is not
necessary. This explains the optional parameter (called strt for strategy) in the following
Kenzo program

(DEFMETHOD CMPS ((mrphl morphism) (mrph2 morphism) &optional strt)
;55 ... lines skipped
(build-mrph :sorc sorc2 :trgt trgtl :degr (+ degrl degr2)
tintr #’ (lambda (cmbn)
(declare (type cmbn cmbn))
(the cmbn
(cmbn-? mrphl (cmbn-? mrph2 cmbn))))
:strt :cmbn :orgn ‘(2mrph-cmps ,mrphl ,mrph2 ,strt))
;35 ... lines skipped

The program is defined to be a method since Kenzo is written in CLOS, which uses object
oriented features, that allowed Sergeraert, by using the common inheritance mechanism,
to give the same name to similar methods which compose two homomorphisms between
coalgebras and another related algebraic structures. The lines skipped correspond to
the cases in which one of the two homomorphisms has (or both have) a strategy by
generator.

The fragment showed here corresponds to the case where at least one of the homo-
morphisms has as strategy by combination, and this is also the strategy in the result
homomorphism: :strt :cmbn. The variables sorc2, trgtl, degrl and degr2, corre-
spond, respectively, to the source of the second homomorphism mrph2, to the target of
the first one, and to the degrees of the homomorphisms, which have been previously
defined from the parameters in the lines skipped. The fragments (declare (type cmbn
cmbn)) and the cmbn, show that we are in a typed context. The keyword :orgn is

128 Chapter 4 Extracting Computer Algebra Programs from Statements

used to store some information about the origin of the new homomorphism (that is to
say, on the method and arguments constructing the new object), for software engineer-
ing purposes. Finally, the Kenzo function cmbn-7 allows the programmer to invoke a
homomorphism on a combination, and it is used here (twice) to accomplish the actual
composition.

Avoiding the technicalities, the essence of the previous method in the particular
case of chain complexes homomorphisms of degree zero, is equivalent to the following
Common Lisp function:

(defun CMPS (g f)
(build-mrph :sorc (sorc f) :trgt (trgt g)
tintr #’(lambda (cmbn)
(cmbn-?7 g (cmbn-? f cmbn)))))

The process of formalization will be illustrated with this simplified version. As it has
been previously explained, the proofs of the theorems in Section 2.2.2/ can be carried
out with ungraded structures. The piece of Common Lisp code shown above defines the
composition of homomorphisms where the degree information is missed. As it could be
expected, for defining f composed with g, the source is given by the source of f, the
target by the target of g, and the functional part is defined like the composition of both
functions.

The complexity of the algorithm implementing the BPL in Kenzo is much greater
than the previous function. Here we have extracted a fragment of it, just in order to
have a look on the difficulties that could be found before arriving to a complete version
of a certified version of it extracted from Isabelle code automatically:

4.3 Elementary examples 129

(DEFUN BPL-*-sigma (homotopy perturbation)
(declare (type morphism homotopy perturbation))
(the morphism
(let ((cmpr (cmpr (sorc perturbation)))
(h-delta (cmps homotopy perturbation)))
(declare
(type cmprf cmpr)
(type morphism h-delta))
(flet
((sigma-* (degr gnrt)
(declare
(fixnum degr)
(type gnrt gnrt))
(do ((rslt (zero-cmbn degr)
(2cmbn-add cmpr rslt iterated))
(iterated (term-cmbn degr 1 gnrt)
(cmbn-opps (cmbn-7 h-delta
iterated))))
((cmbn-zero-p iterated) rslt)
(declare (type cmbn rslt iterated)))))
(build-mrph
:sorc (sorc homotopy) :trgt (sorc homotopy)
:degr O :intr #’sigma-* :strt :gnrt
corgn ¢ (bpl-*-sigma ,homotopy ,perturbation))))))

Figure 4.1: BPL fragment in Kenzo

4.3 Elementary examples

As the previous Common Lisp fragments of Kenzo have shown, dealing with algorithms
in Homological Algebra has an additional difficulty related to the complexity of the
studied structures. In order to illustrate our ideas, the difficulty of the area will be
avoided by moving to simpler problems in well-known settings, such as group theory
or elementary arithmetic. In this section, the question of proving the correctness of a
program is also studied.

The first example will be useful to present the code extraction tool which is being
implemented on top of Isabelle. A basic lemma about monoids is introduced, whose proof
in Isabelle is also given. From the Isabelle statement of this lemma, the code extraction
tool will be capable of extracting an algorithm, certified correct and associated to the
proved lemma.

Lemma 4.3.1. Let G be a monoid and * its binary operation. Let us define the operation
krev = AL Y.y *x, where x and y are elements of G. Then, the carrier set of G together

130 Chapter 4 Extracting Computer Algebra Programs from Statements

with ., and the unit of G form a monoid.

In order to express the statement of this lemma in Isabelle, we first define a function
in Isabelle called rev which, given a monoid G, defines a new monoid where the binary
operation has been modified as proposed:

constdefs
rev :: ('a, 'm) monoid-scheme => 'a monoid
rev G == (| carrier = carrier G, mult = (Az y. mult G y z), one = one G |)

Then, the statement and proof in Isabelle of Lemma4.3.1/ can be expressed as follows:

lemma (in monoid)
shows monoid (rev G)
apply (unfold rev-def)
apply (rule monoidI)
apply (auto simp: m-assoc)
done

The proof is done by unfolding the definition of the rev function, and then also the
one of monoid, and introducing the associativity of the binary operation. Now, it can
be observed that the statement of the lemma fully determines the monoid we are trying
to define. There is no need to explore inside of the proof to know about how the monoid
has been built. Thus, our approach to the code extraction process can take advantage
of this particular circumstance to obtain code from the definition of the rev function.
Thanks to the proved lemma, we know that this function, when applied to a monoid,
will return also a monoid.

The Isabelle code extraction tool produces ML code; when applied to the Isabelle
definition of function rev, the following ML definitions are automatically extracted:

fun one r = fst (snd (snd r));
fun mult r = fst (snd 1);
fun carrier r = fst r;

fun Monoid_rev G = (carrier G, ((fn x => fn y => mult G y x), (one
G, Unity)));

val rev = Monoid_rev;
Functions one, mult and carrier are just projectors of the corresponding components

of a given record. Whenever the components of the record satisfy the requirements of
a monoid, the Monoid_rev function will build a new monoid with the binary operation

4.3 Elementary examples 131

modified in the sense we previously defined. The Unity component resembles the ex-
tensible part of records in Isabelle. As far as the Isabelle definition of monoids we have
provided is generic, with information just about the arities of the operations and the
axiomatic specification, the function extracted is also generic over lists of any type.

Now we face a more concrete example, where types are specified. We define in Isabelle
(through a function) an algebraic structure whose carrier set will be the integers (objects
with nt type in Isabelle), with binary operation the addition (4) and with 0 as unit.
Its Isabelle definition is as follows:

constdefs
intg :: int monoid
intg == (| carrier = UNIV, mult = (Az y. z + y), one = 0])

The carrier set of the structure is the set of all integers, here represented as UNIV,
whereas the operation is usual addition and the unit is 0. It is almost a trivial proof in
Isabelle to show that this algebraic structure is a monoid.

Some considerations have to be done before extracting code from function intg, re-
ferred to the representation of sets in ML. In Isabelle, sets are internally represented as
predicates over their type, and this is also the representation we would like to have in
ML. Representation of sets is relevant because UNIV is an Isabelle set containing all
the objects of int type. In order to achieve this representation, we must specify in our
Isabelle code the following command:

types-code
set ((- —=> bool))

The previous command is a kind of translation for the Isabelle type constructor set.
The unspecified type represented as - will be substituted by the type of the objects of a
concrete set (int in this example).

Once we have specified the definition we have chosen for sets in Isabelle, code can
be extracted from the definition of the intg function. The obtained code is as follows:

datatype unit = Unity;
val UNIV : (int -> bool) = ((fn x => true));

val intg : ((int -> bool) * ((int -> (int -> int)) * (int * unit)))
= (UNIV, ((fn x => fn y => (x + y)), (0, Unity)));

A new data type unit is defined with only one value, Unity. This resembles the ex-
tensible records from Isabelle. A function UNIV is declared and defined (based in the
representation we chose for sets) in the form of a predicate. Finally, the intg function

132 Chapter 4 Extracting Computer Algebra Programs from Statements

is also assigned a record type. In comparison with the previous example, now the ML
types int and bool appear in the definition of the algebraic structure intg, as well as
the ML operation + and the constant 0.

The previous examples were quite straightforward. The definitions introduced were
precise enough to be compatible with the code extraction tool. Now we present a different
example, where we will have to modify standard definitions in order to obtain functions
from which code can be extracted. This example deals with some well-known facts
about prime numbers. We want to obtain a program which, taking any natural number
as parameter, returns a prime number greater than this parameter. This program is
related to the Euclid’s theorem about the infinity of primes. Plenty of proofs have
been given of this theorem, very different among them, with some of them closer to
constructivism and some of them a bit more distant.

The following Common Lisp program computes the next prime to a given positive
integer number z > 1.

(defun nextprime (x) ; x integer > 1
(if (isprime (+ x 1))
+x 1)
(nextprime (+ x 1))))

Here, it is assumed the existence of a Common Lisp program isprime which determines
if its input is a prime number. In addition, we assume that isprime is correct. This
will be used in the following elementary result.

Theorem 4.3.2. The program nextprime is correct with respect to the following speci-
fication:

Input specification: x integer, x > 1.

Output specification: (isprime (nextprime x)) returns true.

Proof. The proof is divided into two parts:

1. Partial correctness. 1If the program returns a value, (nextprime x) = z, with
z= (+y 1) and (isprime (+ y 1)) = true (due to the semantics of if). Then,
the output specification follows.

2. Proof of termination. By contradiction.

Let us assume that there exists x integer, x > 1, such that (nextprime x) does
not terminate. This implies that for all y such that y > x, y is not a prime number.
Let P = {p1,...,pn} be the set of primes smaller than z. By hypothesis, this is
the set of all prime numbers. Let us consider m = p; % ... % p, + 1. Then we
have that p; does not divide m, Vi = 1,...,n. We conclude, by applying Lemma
4.3.3| (see below), that m is prime. It is clear that m > p;, Vi = 1,...,n, and thus
m ¢ P and consequently is not a prime number. Contradiction.

4.3 Elementary examples 138

Lemma 4.3.3. Let m be an integer number, m > 1. Then, m is prime if and only if
for every prime number p < m, p does not divide m.

In the previous proof it can be perceived Euclid’s argument showing that there are
infinitely many primes. Nevertheless, there are several variations on Euclid’s idea. This
one has the property that the computational content is more hidden than in other
variants, which are based on Lemma 4.3.4, instead of on Lemma 4.3.3. In those proofs,
even if presented in a “reductio ad absurdum” manner, the computational content is
quite explicit!.

Lemma 4.3.4. For each integer m > 1, there exists a prime number p < m such that p
divides m.

Such a detailed proof of correctness has been provided since our aim is not only
to give such a proof, but also a certificate of correctness. Even more specifically, we
are looking for Isabelle scripts containing proofs of correctness for our programs. To
this aim, it is necessary to link in some way the running code (or, at least, the source
code) with some formalization of it. In a generic setting this task is far from trivial
(the lack of the sought link has been illustrated graphically in the previous proof, where
the symbols x and x have been used in an undistinguished manner). The following
strategies, based on the use of code extraction tools, can be useful to couple programs
and their formalization.

In order to build correctness certificates for programs, a first necessary task is
to formalize the objects of study in a computer-aided mathematical tool. In the
elementary example in arithmetic we are considering, both Mizar and Isabelle are
known to be adequate (in fact, the arithmetic example has been extracted from
[Wenzel and Wiedijk, 2002], where it is used to compare Mizar and Isabelle). How-
ever, once the objects of study (i.e., the proofs) have been formalized, new efforts are
needed in order to link the formalization with a real program.

A well-known strategy is to establish the formalization in a (mechanized) constructive
logic, and then extract a program from the proof. This is the point of view, for instance,
when the Coq system is used for this task. Nevertheless, it is not the only way to get
certificates for programs. Here we present a second strategy that we first introduced in
[Aransay et al., 2005].

In particular, the Common Lisp program nextprime and the non-constructive proof
of correctness given in Theorem 4.3.2) seem to be far from the first strategy (up to
our knowledge, the program cannot be obtained from its proof of correctness using
one of the mentioned tools). This is true from a strict-constructivist perspective,

!Thanks are due to W. Bosma, who explained in the Map e-list (see http://www.disi.unige.it/
map/)) that the same is not true in the proof presented above.

http://www.disi.unige.it/map/�
http://www.disi.unige.it/map/�

134 Chapter 4 Extracting Computer Algebra Programs from Statements

but it is not in Markov’s constructive recursive mathematics®. In fact, the program
nextprime is a paradigmatic example of a (correct) program generated by Markov’s
principle [Markov, 1971]. Markov’s principle can be stated as =—3z.A(z) — Jz.A(x),
where A is primitive recursive, and is applied for showing the termination of computa-
tions by contradiction: if a computation cannot diverge then it must terminate (which
is the argument we considered for ensuring the termination of function nextprime).
These issues are also discussed in [Kopylov and Nogin, 2001], where Markov’s principle
is integrated with constructive type theory, and by Berghofer in [Berghofer, 2005], in
the concrete context of his extraction tool from Isabelle scripts.

Taking into account this example, it seems that Davenport’s observation in
[Davenport, 1981] (or, even more explicitly, in [Davenport, 1989, page 140]), claim-
ing that Computer Algebra correctness proofs can be done by not necessarily
strict-constructive methods, is quite accurate (up to our knowledge, whether proofs
in Computer Algebra can go further than Markov’s constructivism is an open problem).

In fact, in the field of algorithmic homological algebra it has been observed that the
theorems that we try to formalize have constructive statements. That is to say: a new
object is defined (the composition of two homomorphisms, in our running example) and
some properties of this object are asserted (namely, that it is a homomorphism). Then,
code can be extracted from the definition or specification appearing in the statement.
Thus, this approach seems to indicate that the underlying logic which is used to im-
plement the proof is not forced to be constructive (since the program is extracted from
definitions and not from proofs), in the vein of Davenport’s observation. This strat-
egy will be presented in the case of the composition of homomorphisms in Section 4.4.
First, we reconsider the arithmetic example, to show how in this case definitions can be
rendered constructive, allowing program extraction, in presence of classical proofs.

The idea is that the computational content of a proof (presented in a constructive or
in a non-constructive manner) can be made explicit in order to build a new statement,
which is constructive in the informal sense introduced above. Now we recover again
the idea behind the program nextprime, and show how its statement can be rendered
constructive (transferring to the statement the computational content on the proof),
and then a certified program can be extracted from this statement. In order to make
the statement constructive, several modifications have to be done.

In order to define a prime number bigger than a given natural number, we first define
a primitive recursive function some-prime-divisor-auxr which returns for each integer x,
0 or a prime divisor of x, which is known to return a value different from 0 thanks to
Lemma 4.3.4' above.

primrec

2 We are grateful to F. Sergeraert who attracted our attention to this important variant of construc-
tivism.

4.3 Elementary examples 135

some-prime-divisor-aux x 0 = 0

some-prime-divisor-aux © (Suc n) = (if (prime-cons (Suc n) A dvd-cons (Suc n) x)
then (Suc n)
else (some-prime-divisor-aux n))

Some comments can be made about this definition. First, the function has been
defined in a recursive way. The advantages of using a primitive recursive function is
that Isabelle offers facilities to prove properties of recursive functions, and also that
code extraction is specially straightforward with recursive functions and types defined by
induction. In a mathematical setting, it would have been more appropriate to define the
function from top to down (starting from the pair (z, z) and going down to (z,0), which
never would have been reached for > 0). On the other hand, proving the properties of
this definition would have been much more complicated, as far as induction cannot be
used (at least in its primitive form).

In the definition of some-prime-divisor-auz it is also remarkable the use of both
functions dvd-cons and prime-cons. Their behaviour have to be similar, respectively,
to the usual division predicate in Isabelle, dvd, and to the Isabelle set prime (or to
the predicate associated to it), distinguishing between prime and not prime numbers.
The reason to redefine these functions is related to the strategy we have chosen. The
constructive nature of the proofs can be avoided, relying then the proofs in classical logic,
but on the contrary, the constructive content has to be transferred, to some extent, to
the statements and definitions. As far as Isabelle defined predicates dvd and prime
are based on existential quantifiers without a constructive definition, we cannot extract
programs from these definitions. We explain this process of turning definitions into
constructive definitions, and also the lemmas showing the equivalence between new and
old definitions in the sequel.

First we detail the process for functions dvd and dvd-cons. Function dvd-cons will
be just a redefinition of the Isabelle infix implemented function dvd, which given a pair
of values m and n, of a type for which the product, the times operation, is defined, will
be

consts
dvd :: 'a :: times => 'a => bool
defs
dvd-def: m dvd n == 3k. n = mxk

Extracting code from this definition using Berghofer’s tool is not possible. The
presence of the existential quantifier in the definition makes impossible to extract directly
a program from the predicate dvd. Therefore, we have to introduce a function called
dvd-cons, equivalent to dvd but from which code can be extracted (in an informal sense,
its constructive counterpart). Its definition is based on another recursive function, called
dvd-auzx, with three parameters. It decides whether the second parameter is the result
of multiplying the first and the third ones. If so, then the first parameter divides the
second one.

136 Chapter 4 Extracting Computer Algebra Programs from Statements

consts
dvd-aux:: nat => nat => nat => bool

primrec
dvd-auz a b 0 = False
dvd-auz a b (Suc n) = (if b = a * (Suc n) then True else dvd-auz a b n)

From the previous function, from which a program can be extracted in our setting,
we will derive the definition of dvd-cons. The ML function obtained when we apply the
code extraction tool to the Isabelle function dvd-auz is as follows

datatype nat = id0 | Suc of nat;

fun op__43_def0O idO n =n
| op__43_def0 (Suc m) n = op__43_def0 m (Suc n);

fun op__42_defO id0 n = idO
| op__42_def0 (Suc m) n = op__43_defO n (op__42_defO m n);

fun dvd_aux a b id0 = false
| dvd_aux a b (Suc n) =
(if (b = op__42_def0 a (Suc n)) then true else dvd_aux a b n);

The following facts can be commented on this piece of code. First, as far as in ML there
is no primitive type for natural numbers (there is only a type int representing integers),
the code piece defines a new type based on induction. The base element is named id0,
and the constructor for the rest of elements is denoted as Suc. In order to define our
function dvd-aux some previous functions are required. In this case, op__43_def0 is the
automatically assigned name for a recursive definition of addition over elements of type
nat, as well as op__42_def0 is a recursive definition of multiplication (where addition is
used). Then, the ML definition of dvd-aux can be obtained in terms of op__42_defO0.

We now define the predicate dvd-cons for every two natural numbers a and b to be
true if dvd-aux a b b is true, or which is the same, if there is a natural number k£ smaller
than b and such that b = a * k:

constdefs
dvd-cons:: nat => nat => bool
dvd-cons a b == (dvd-auz a b b)

From the Isabelle definition of dvd, based on the existential quantifier, we have had
to derive a new definition called dvd-cons, with constructive content. The new definition
seeks the natural number which multiplied by the first parameter is equal to the second
one, instead of determining its existence by an existential argument. This definition
allows the extraction of ML code from the Isabelle function dvd-cons.

4.3 Elementary examples 137

fun dvd_cons a b = dvd_aux a b b;

The code is similar to the Isabelle definition, as expected.

It can be proved in Isabelle that our definition of dvd-cons is equivalent to the Isabelle
definition of dvd. This is stated in the following lemma.

lemma dvd-equiv-dvd-cons: assumes 0 < a and 0 < b shows a dvd b = dvd-cons a b
proof —
from prems have one: a dvd b = dvd-cons a b
by (simp only: dvd-impl-dvd-cons)
have two: dvd-cons a b = a dvd b by (simp add: dvd-cons-impl-dvd)
from one and two show ?thesis by fast
qed

If we avoid the special case where a = 0 and b = 0, that we did not consider in the
definition of dvd-auz, both definitions are equivalent. (The case a = 0 and b = 0 could
be considered just introducing a new conditional in the definition of dvd-auz.)

In the definition of some-prime-divisor-aux it also appears a function that we called
prime-cons, because from the Isabelle definition of the prime set code cannot be directly
extracted. The prime set is defined as follows.

constdefs
prime :: nat set
prime =={p. 1<p A VYm. m dod p-->m=1Vm=p}

As far as it includes an instance of the dvd predicate, which it is known to be no
constructive (in the loose sense that no code can be extracted from it), it does not allow
us to extract code from it, and a new definition must be supplied. A first solution that
could be think of would consist in substituting the dvd predicate by its constructive
counterpart dvd-cons; this solution showed to be not enough. Therefore, we decided to
move to a setting we know compatible with the code extraction tool, based on recursive
primitive functions. In the definition of prime-auz, a primitive recursive predicate based
on our definition of dvd-cons is used.

consts
prime-aux :: nat => nat => bool

primrec
prime-auz p 0 = Fulse
prime-auz p (Suc n) = (if (p = 1) then False

else (if (n= 0V n = 1) then True
else (if (dvd-cons n p = True) then False
else prime-auz p n)))

The predicate only returns a True value for n = 1 and n = 0. The predicate has to

138 Chapter 4 Extracting Computer Algebra Programs from Statements

be understood as follows: it should start from the value Suc n = p, and then recursive
calls will be done backwards. If a value n is found such that dvd-cons n p = True
then p is not prime, and the predicate returns a False value, except in the cases where
n = 0 or n = 1; in both cases, the (descendent) recursion has not found any divisor
of p (apart from 1), and then the number is prime. In a similar way as we did with
functions dvd-aux and dvd-cons, we now define a predicate based on prime-auz but with
only one parameter, that later will be shown to be equivalent to the Isabelle prime set
(the relationship between sets and predicates in Isabelle has been already pointed out
in Section 1.3.2)).

consts

prime-cons :: nat => bool

defs

prime-cons-def: prime-cons r == prime-auxr T x

The previous definitions of dvd-auz and dvd-cons allow code extraction. The ML
code obtained for these functions is the following:

val idl_defO : nat = Suc idO;

fun prime_aux p id0 = false
| prime_aux p (Suc n) =
(if (p = id1_def0) then false
else (if ((n = id0) orelse (n = idl1_def0)) then true
else (if (dvd_cons n p = true) then false
else prime_aux p n)));

fun prime_cons x = prime_aux X X;

As far as in our Isabelle definition of function dvd-cons the constant 1 can be found, ML
also supplies a definition of it (id1_def0). Predicates prime_aux and prime_cons can
be compared to their Isabelle definition.

Now it can be clarified why we defined the predicate prime-auz with Suc n in the left
hand side, and then in terms of n. The recursion had to be done backwards (resembling
the definition of prime number as a number which does not have any divisor smaller than
it, apart from 1). When we pretended to prove in Isabelle the equivalence of the definition
of prime-cons with the one of prime, we found problems with the backwards recursion.
Isabelle recursion principles are based on primitive (upwards) recursion. For instance,
when we tried to prove the following property directly, we found several problems and
even we were not able to complete its proof:

prime-aux-suc-impl-prime-auz:
[1<k k<p; prime-auz p p= True] = prime-aux p k = True

4.3 Elementary examples 139

From the definition of prime-aux, whenever the predicate returns the value True
applied to a pair (p,p), it will return True also for every pair (p, k) with k smaller or
equal than p (in other words, if there is no divisor of p smaller than p there will be no
divisor of p smaller than k, with & < p). This property, that seems easy to prove by
hand, becomes more complicated when we try to apply an induction argument inside
of Isabelle. The proof introducing the induction principle is not compatible with our
property, as far as the first one goes upwards and the second one, downwards. If the
property is known to be verified for a value n, we cannot state it for the value Suc n, due
to the nature of the definition. This situation leads us to seek a new property that can
be derived by usual recursion from which we can prove the previous one. The following
corollary showed to be useful in our case.

corollary prime-aux-false-prime-p-false:
[1 <k; prime-auz p k = False; k < p] = prime-auz p p = False

The previous property can be proved applying induction. If a number p has a divisor
equal to or smaller than k, it will have a divisor smaller or equal than p with £ < p.
Applying induction on k, the previous corollary can be proved; from it, the proof of the
result prime-auz-suc-impl-prime-auz is derived by contradiction (but not by induction,
at least applied directly to the statement).

The following step would be to state the relationship between predicates dvd-cons
and prime-auz. From the definition of the predicate prime-auz, if a pair (p, k) satisfies
it, there will not be any number s smaller than k satisfying the predicate dvd-cons when
applied to the pair (s,p). The proof is done in different parts. First, it is shown for the
constructor Suc n, by the following lemma:

lemma prime-aux-true-not-dvd-cons:
[1 <k; prime-auz p (Suc k) = True | = dvd-cons k p = False

Then we extend the previous result, instead of for Suc k, for every k such that 1 < k
and k£ < p. Whenever the predicate prime-auz p p returns True, for every k it will be
satisfied that dvd-cons k p = False, or, in other words, there will be no divisor of p apart
from p and 1 (which is a result quite similar to the Isabelle definition of prime, which is
the one we are secking the equivalence with).

lemma prime-aux-true-not-dvd-cons-generic:
[1<k;k<p;primeauz pp= True] = dvd-cons k p = False

Now, the following corollary shows that our predicate prime-cons is equivalent to the
predicate associated to the Isabelle definition of prime

corollary prime-cons-implies-prime: assumes prime-cons p = True shows p € prime

140 Chapter 4 Extracting Computer Algebra Programs from Statements

Now it has to be shown that numbers belonging to the set prime verify the predicate
prime-aux. Here induction can be applied in the natural way, and the following property
is easy to be obtained:

lemma prime-prime-auz-two: assumes k-g-1: 1 < kand k-l-p: k< p and p € prime
shows prime-auz p (Suc 1) = prime-auz p k

It is based on a previous result which ensures that for any number prime p, the value
of prime-aux p k is equal to the result of prime-auz p (Suc k), with 1 < k < p. Joining
together this result with lemma prime-prime-auz-two, we can conclude the following
corollary.

corollary prime-implies-prime-auz: assumes p € prime shows prime-auz p p = True

Now that we have proved both equivalences between the Isabelle set prime and
predicates prime-cons and prime-auzx, we finally prove in the following corollary that
the (non-constructive) Isabelle definition of the primes set can be identified with our
constructive predicate.

corollary prime-equiv-prime-cons: p € prime = prime-cons p

Corollary prime-equiv-prime-cons and lemma dvd-equiv-dvd-cons allow us to es-
tablish the validity of the definition of function some-prime-divisor-auz. Invoking
some-prime-divisor-auz p p a prime divisor of p will be found.

The ML code of this function is again quite similar to its Isabelle definition:

fun some_prime_divisor_aux x 1d0 = id0O
| some_prime_divisor_aux x (Suc n) =

(if (prime_cons (Suc n) andalso dvd_cons (Suc n) x) then Suc n
else some_prime_divisor_aux x n);

This function can be again converted into a function with a single argument, giving
place to the function some-prime-divisor:

consts

some-prime-divisor :: nat => nat

defs

some-prime-divisor-def: some-prime-divisor x == some-prime-divisor-aur T

Thanks to Lemma 4.3.4, and also to the following Isabelle lemma

lemma some-prime-divisor-properties: assumes z-g-1: 1 < x
shows prime-cons (some-prime-divisor x) A dvd-cons (some-prime-divisor x) x

4.3 Elementary examples 141

function some-prime-divisor is known to return a prime divisor of the given parameter
x. Moreover, this function is defined in such a way that the Isabelle code extraction tool
can be applied to it, producing an ML function that satisfies the requirements we are
looking for.

fun some_prime_divisor x = some_prime_divisor_aux x X;

If we take a closer look to the process that we have followed to obtain this ML function,
it can be observed that, to some extent, we have had to define the program, giving
constructive statements in Isabelle of the definitions of functions prime-cons and dvd-
cons by using recursive functions.

consts

some-big-prime :: nat => nat

defs

some-big-prime-def: some-big-prime x == some-prime-divisor (z! + 1)

The function called some-big-prime uses the Isabelle definition of the factorial and
also the function some-prime-divisor. For any natural number z, it builds a number
such that any prime divisor of it is greater than z, in this case (z! + 1), and returns a
prime divisor of this number. Once again, the code extraction tool can be applied to
this function definition, obtaining the following ML function:

fun fact id0 = id1_defO
| fact (Suc n) = op__42_defO (fact n) (Suc n);

fun some_big_prime x = some_prime_divisor (op__43_def0 (fact x)
id1_def0);

First, a recursive definition of the factorial is extracted, based on the recursive defini-
tion of multiplication previously obtained (function op_-42_def0). Then, the function
some-big-prime is defined in terms of fact and also addition (function op__43_def0) .

Finally, with the following Isabelle theorem, we ensure that the value returned by
this function, some-big-prime x, will be greater than z:

142 Chapter 4 Extracting Computer Algebra Programs from Statements

theorem z < (some-big-prime x)
proof (unfold some-big-prime-def)
let ?p = some-prime-divisor (z! + 1)
from some-prime-divisor-gt-zero
have prime-cons: prime-cons ?p and dvd-cons: dvd-cons ?p (z! + 1)
by (simp-all add: some-prime-divisor-properties)
from prime-cons have prime-p: ?p € prime
by (simp add: prime-equiv-prime-cons)
from dvd-cons have dvd: ?p dvd (z! + 1)
by (simp add: dvd-cons-impl-dvd)
show z < %p
proof —
have - 7p < z
proof
assume 7p <
with prime-g-zero and prime-p have ?p dvd !
by (simp add: dvd-factorial)
with dvd have ?p dvd (z! + 1) — z! by (rule dvd-diff)
then have ?p dvd 1 by simp
with prime-p show Fulse using prime-nd-one by auto
ged
then show ?thesis by simp
qed
qed

This proof, a variant of Euclid’s argument, is an adaption of a proof script presented
in [Wenzel and Wiedijk, 2002]. It has been made using a “reductio ad absurdum” strat-
egy. A constant ?p is fixed, defined to be equal to some-prime-divisor (x! +1). Then,
we try to prove that ¢p is smaller than or equal to x, arriving at a contradiction, since
x would divide to both z! and x!+ 1. The proof has a non-constructive presentation. It
might be considered unsuitable from a constructivist’s point of view, but it is well-known
and easily understood. The relevant fact about it is that, no matter the logic underlying
the proof, the statement, as well as the functions used in the statement, are constructive,
and Berghofer’s tool can be applied to the complete Isabelle theory file to obtain the
following ML program, some of which fragments have been already presented:

3The code extraction tool assigns names to its own functions and constants automatically; here we
have changed some of these names in order to make them more meaningful.

4.3 Elementary examples 143

structure Generated = struct
datatype nat = id0 | Suc of nat;

fun sum idO n = n
| sum (Suc m) n = sum m (Suc n);

fun times id0 n = idO
| times (Suc m) n = sum n (times m n);

fun dvd_aux a b id0 = false
| dvd_aux a b (Suc n) =

(if (b = times a (Suc n)) then true else dvd_aux a b n);

fun dvd_cons a b = dvd_aux a b b;

val idl : nat Suc idO;

fun prime_aux p id0 = false
| prime_aux p (Suc n) =
(if (p = id1l) then false
else (if ((n = id0) orelse (n = idl)) then true
else (if (dvd_cons n p = true) then false else prime_aux p n)));

fun prime_cons x = prime_aux X X;

fun prime_number n = ((fn p => (prime_cons p andalso dvd_cons p

n)));

fun some_prime_divisor_aux x 1d0 = id0O
| some_prime_divisor_aux x (Suc n) =

(if (prime_cons (Suc n) andalso dvd_cons (Suc n) x) then Suc n
else some_prime_divisor_aux x n);

fun some_prime_divisor x = some_prime_divisor_aux X X;

fun fact id0 = idil
| fact (Suc n) = times (fact n) (Suc n);

fun some_big_prime x = some_prime_divisor (sum (fact x) idl);

Figure 4.2: ML extracted program

144 Chapter 4 Extracting Computer Algebra Programs from Statements

Some facts can be pointed out about this code, apart from the ones already men-
tioned. Here we have replaced the automatically assigned names to the recursive func-
tions performing addition and multiplication by sum and times, which clarifies the con-
tent of the operations. This ML code is to be compared with the Common Lisp program
nextprime. Both functions compute a prime number greater than its argument x. Of
course, nextprime is quite more efficient. We made some tests with the ML obtained
program for function some-big-prime, and we got the expected results just for values
below 5 (i.e., Suc (Suc (Suc (Suc (Suc 1d0))))). For values greater than 5, the pro-
gram showed to be too much time consuming. Thanks can be given here to S. Berghofer,
which kindly explained us the process to identify the Isabelle type nat with a restriction
of the integer type of ML, optimizing the programs performance. These changes re-
quired a posterior version of Isabelle than Isabelle2004, the one used for our work, and
we decided not to introduce them here. The improvements suggested by Berghofer would
increase the applicability of the program. In any case, the Isabelle theorem stating that
x < some-big-prime x, together with the program extracted of the Isabelle definition
of function some-big-prime, satisfy the requirements that we have imposed of finding a
certified program that, for every natural number, is capable of building a greater prime
number. This goal has been achieved, as we required, even when the Isabelle proof of the
theorem stating =z < some-big-prime z was made in a non-constructive way (by using a
“reductio ad absurdum” argument).

4.4 Application to Computer Algebra

When applying these ideas to the Kenzo program, the first observation that can be made
is that the elaboration done in the previous section is unnecessary: many of the theorems
to be proved already have a constructive statement (or can be easily transformed into
such a statement), in the sense that the statements contain the computational informa-
tion needed to define the goal. If we now take a closer look at the collection of lemmas
in Section 2.2.2, it can be observed how in the statements, a new object is defined from
which some property has to be stated. As far as the new object is defined, and its
definition is given explicitly, the statement can be considered constructive. Therefore,
the same work already made for the formalization that we have described in Chapter |3,
can be reused for extracting code from statements. For instance, in the statement of
Lemma 2.2.14, a reduction is defined from a chain complex (Dx,dp,) and an endo-
morphism A satisfying certain premises; the reduction goes from (Dx,dp,) to a chain
subcomplex of it, defined as (ker p, dp,), with p = dp,h+hdp, and h such that hh = Op,
and hdp,h = h. Contrarily to the previous example about prime numbers, where we
had to develop the whole process of construction of the candidate to satisfy the lemma’s
requirements (i.e., the new prime number), the statement itself proposes the reduction
between the chain complex and its subcomplex. In Lemma 2.2.14, this reduction is
defined as (idp, — p, inCkerp,). A similar situation can be observed in Lemma 2.2.11.
There, it must be proved that the chain complex (Cx,dc,) and the chain subcomplex
(imgf,dp,) are isomorphic, where the tuple (f,g,h) is a reduction between (Dx,dp,)

4.4 Application to Computer Algebra 145

and (Cx, dc,). Again, the isomorphism is explicit and provided in the statement.

As explained at the end of Section 4.2, we consider a simplified version of the Kenzo
composition. More concretely, algebraic structures are considered ungraded (i.e., the
degree of homomorphisms is 0) and, in addition, groups are considered not to be free
(that is to say, the strategy is always :cmbn, by combination, following Kenzo termi-
nology). From the different approaches we introduced in Chapter [3, we have chosen
here the morphism based one (see Section [3.7)), where homomorphisms were represented
through records. The first reason is that we found it to be the more appropriate among
the different approaches presented from the point of view of accuracy with respect to the
mathematical setting. The second one is the similarities that it keeps with the Kenzo
implementation. In this approach, composition of group homomorphisms was defined
as follows:

constdefs

group-mrp-comp = [('b, ‘e, ‘e, 'f) group-mrp-type, ('a, 'b, 'd, 'e) group-mrp-type]
=> ('a, 'c, 'd, 'f) group-mrp-type

group-mrp-comp g f == (| src = src f, trg = trg g, morph = (morph g) o (morph f),

src-comm-gr = src-comm-gr f, trg-comm-gr = trg-comm-gr g|)

The composition of two homomorphisms f and ¢ represented through records is
defined to be a new record, where the source fields src and src-comm-gr are obtained
from f, the target fields trg and trg-comm-gr are taken from ¢, and the field storing the
functional information is defined as the composition (morph g) o (morph f). Composition
defined through this function has to be proved to be again an object satisfying the axioms
of the set group-mrp (these axioms were already introduced in Section [3.7.3). Here we
introduce one of the lemmas proving that the composition of two objects group-mrp is
again an object group-mrp, under some determined premises over the source and target
algebraic structures:

lemma group-mrp2-composition:
assumes Al: group-mrp2 A
and BI: group-mrp2 B
and C1: trg-comm-gr A = src-comm-gr B
and DI: tr¢ A = src B
shows group-mrp2 (B o A)
proof (unfold group-mrp-comp-def group-mrp2-def, intro conjl, simp-all)
from prems show diff-group (src A) by (simp add: group-mrp2-def)
from prems show diff-group (src-comm-gr A) by (simp add: group-mrp2-def)
from prems show sub-diff-group2 (src A) (src-comm-gr A) by (simp add: group-mrp2-def)
from prems show diff-group (trg B) by (simp add: group-mrp2-def)
from prems show diff-group (trg-comm-gr B) by (simp add: group-mrp2-def)
from prems show sub-diff-group2 (trg B) (trg-comm-gr B) by (simp add: group-mrp2-def)
from prems show (morph B o morph A) ‘(carrier (src A)) C carrier (trg B) by (unfold
group-mrp2-def image-def , auto)
from prems show morph B o morph A € hom-complection (src-comm-gr A) (trg-comm-gr

B)

146 Chapter 4 Extracting Computer Algebra Programs from Statements

proof (unfold hom-complection-def group-mrp-def
complection-fun2-def complection-def, simp, intro conjl)
assume group-mrp2 A and group-mrp2 B and trg-comm-gr A = src-comm-gr B
then show EX g. morph B o morph A = (%x. if x : carrier (src-comm-gr A) then g x else
one (trg-comm-gr B))
proof (intro ezl [of - morph B o morph A, auto simp add: expand-fun-eq group-mrp2-def)
fix z assume z ¢ carrier (src-comm-gr A)
and morph A : hom-complection (src-comm-gr A) (src-comm-gr B)
and morph B : hom-complection (src-comm-gr B) (trg-comm-gr B)
show morph B (morph A x) = one (trg-comm-gr B)
proof—
from prems have morph A © = one (src-comm-gr B) by (intro hom-complection-closed?2)

then have morph B (morph A x) = morph B (one (src-comm-gr B)) by simp
also from prems have ... = one (trg-comm-gr B)
by (intro group-hom.hom-one [of - - morph B,
unfold group-hom-def group-hom-azxioms-def group-mrp2-def diff-group-def
hom-complection-def , simp)
finally show ?thesis by simp
qed
qged
next
from prems show morph B o morph A € hom (src-comm-gr A) (trg-comm-gr B)
by (unfold hom-def, simp, intro conjl, unfold Pi-def group-mrp2-def hom-complection-def
hom-def, simp)
(auto simp add: magma.m-closed)
qed
ged

This Isabelle lemma ensures that composition, as defined, is closed. We can now
apply Berghofer’s extraction tool to the Isabelle definition group-mrp-comp, obtaining
the following ML program (only the most relevant part is shown here):

datatype unit = Unity;
fun comp g £ = (fn x => g (f x));

fun group_mrp_comp g f =
(src £,
(trg g,
(comp (morph g) (morph f),
(src_comm_gr f,
(trg_comm_gr g, Unity)))));

As it can be observed, as far as our definition of composition is constructive in the
sense that it fulfills the definition of the new homomorphism, the extracted ML program

4.4 Application to Computer Algebra 147

resembles the Isabelle definition.

The proof of the previous Isabelle lemma group-mrp2-composition is to be considered
as a certificate of correctness of the ML program (assuming, as usual, the soundness of
Berghofer’s translation). This (certified correct) ML program can be now compared with
the real corresponding Kenzo program or better, to ease the reading, with the simplified
Common Lisp version given at the end of Section 4.2/ and presented here again:

(defun CMPS (g f)
(build-mrph :sorc (sorc f) :trgt (trgt g)
tintr #’ (lambda (cmbn)
(cmbn-7? g (cmbn-7 f cmbn)))))

Both functions group mrp_comp and CMPS are quite similar, as expected. One of the
differences is due to the special implementation that we have used in Isabelle for ho-
momorphisms, keeping record of both their source and also their domain of definition.
Therefore, the composition in ML also must store both structures in different fields. This
is the only difference between the ML and the Common Lisp functions. The composition
of functions in ML has been extracted in the form of a new function (comp), whereas in
the Kenzo implementation was done in a single step, but with a similar definition. The
rest of differences depend just on the special programming languages syntax.

In summary, in this chapter we have applied Berghofer’s extraction tool for Isabelle
scripts to obtain Computer Algebra programs with a certificate of correctness. The main
idea consists in extracting code from statements and not from proofs, as it is usually
done in constructive type theory. From a technical point of view, it would be more
accurate to say that code is extracted from definitions appearing in statements, but
it has been considered more appealing to exploit the couple statement/proof. In fact,
in the arithmetic example in Section [4.3], it is clear that we are programming inside of
Isabelle, by transforming Isabelle defined predicates, functions and sets into recursive
functions, and proving, at the same time, the correctness of these transformations.

Even if it seems that in the elementary examples from Computer Algebra in Al-
gebraic Topology this work of programming in Isabelle is not necessary, as far as the
definitions we have provided are already constructive (composition of homomorphisms,
for instance), important challenges are still open. It would be necessary to bridge the
gap between the ML and Common Lisp programming languages, and even more difficult,
the gap between the ML programs extracted (that could be very inefficient) and the cor-
responding performing programs which are really usable. With respect to this, the toy
example with prime numbers could illustrate the strong difficulties (in terms of proving
efforts within Isabelle) to obtain a reasonably efficient program. Thus, finally it will be
perhaps unavoidable to program in Isabelle in order to get usable programs. From our
point of view, this problem of using proof assistants to synthesize “real-life” programs
is a central one in intelligent information processing (see, for instance, [Schirmer, 2005]
and [Dybjer et al., 2004]).

Chapter 5

Conclusions and Further Work

5.1 Conclusions

This work should be understood as a first step towards mechanized reasoning in Al-
gebraic Topology, with an emphasis on its application to prove the correctness of
Computer Algebra programs. More specifically, our inspiration comes from the sys-
tem Kenzo |[Dousson et al., 1999], and from previous work done to specify this sys-
tem [Lambén et al., 2003].

We have focused on a concrete result, called Basic Perturbation Lemma (or BPL,
in short). After briefly explaining the relevance of the BPL in the field of algorithmic
Algebraic Topology, a very detailed proof of the BPL has been shown. This proof
follows the guidelines of a proof originally presented in [Rubio and Sergeraert, 1997]. It
is interesting to note that in [Rubio and Sergeraert, 1997] around 70 lines were employed
to describe the proof (including the statement and proof of an auxiliary lemma), while
our presentation needs around 20 pages. This observation should be examined to the
light of the three items mentioned in the introduction:

1. the idea underlying a proof;

2. the presentation of the proof in a mathematical text;

3. the very proof in the sense of symbolic logic.

Our proof of the BPL shows how one same idea (point 1) admits very different
presentations (point 2). Chapter 3/ in the memoir illustrates clearly that even in cases

of exaggeratedly detailed proofs, a complete proof in the symbolic logic sense (point 3)
continues to be dramatically distant.

Two main aspects have been detected in our proof (when comparing it with the orig-
inal proof in [Rubio and Sergeraert, 1997]) influencing the length of proof presentation.

149

150 Chapter 5 Conclusions and Further Work

On the one hand, the fact that, when reasoning with chain complexes, several kinds of
morphisms can be considered, depending on how they respect the degrees and if they
are coherent or not with respect to the differentials. In extreme cases, one same map
can be considered as a graded group morphism or as a chain complex morphism in a
small proof fragment. On the other hand, it is quite usual to restrict a morphism to
some subgroup (or to some chain subcomplex) of its source, and to refer to the initial
morphism and to the corresponding restriction in an undistinguished manner.

Both aspects can be considered particular cases of another issue remarked in the
introduction: the great freedom to name entities in standard mathematical texts. A
same variable (even a same letter) can denote different objects (different but intimately
related in a conceptual sense, of course) in a same proof fragment.

This question of variables seems difficult to be tackled as a whole (it is so general that,
in these terms, it is rather an ill-posed problem). Nevertheless, the two aforementioned
particular cases have been treated in our work. The first one in, let us say, an internal
way inside Isabelle; the second one in a manner which could be considered ezxternal to
Isabelle.

The first aspect is alleviated, in part, by using a general resource of Isabelle/HOL:
extensible records. This datatype provides Isabelle with a kind of inheritance. Thus, a
chain complex can be also considered simply as a graded group by the type system, and
then morphisms are more easily treated from and to different structures underlying the
same object.

For the second problem, that of restriction, our solution has been to represent a
morphism as a more complex data structure. That is to say, we have changed our way
of encoding morphisms. This is why we consider this proposal as external to Isabelle: it
does not depend on an Isabelle resource, but in a new conceptual scheme. Morphisms
are represented as triples: in addition to the functional information (which includes its
source and target objects), the actual source and target spaces are also incorporated.
Therefore, a same mapping can be used in many different morphisms, emulating the way
of working of mathematicians with respect to restrictions (and extensions) of functions.

This technique of changing our perspective on a given mathematical object (in the just
evoked example: going from a morphism represented as a map to a morphism as a triple),
is a central point in Chapter 3, where really starts the encoding of the proof of the BPL in
Isabelle. We have developed four different approaches to try to solve the problems for a
very small fragment of the proof. It turns out that the notion of abstraction, introduced
by Hoare to study the implementation of data structures [Hoare, 1972], allows us to
analyze the different approaches, and, even more, to direct our research in some delicate
points.

Even if the discussion is carried out on a small fragment of the proof, we claim that
some of the problems raised (and solved) are of a quite general nature, since related
to the generic reasoning on algebraic structures and algebraic morphisms. (Another
major simplification in Chapter 3| is the adoption of an ungraded version of the BPL;

5.1 Conclusions 151

nevertheless we consider this simplification rather as a technical issue, trying to get a
separation of concerns: the problems of working with graded structures are orthogonal
to the central questions around implementing a proof of the BPL in a theorem prover.)

To understand the several approaches we have tried, it is necessary to note that the
BPL proof (as very detailed in Chapter 2)) deals with morphisms. Then, a morphism
can be viewed in two different ways:

e as element of an algebraic structure (the endomorphisms ring, for instance);

e as a set-theoretic mapping (satisfying certain properties).

It is clear that the first view is incomplete, since our interest is related to the algorithmic
use of morphisms (technically, it can be said this representation of a morphism lacks
computational content). But, it is clear also that forgetting that first perspective avoids
reasoning with morphism in a level of abstraction typical in standard mathematical texts.
Our three first approaches explore this distinction (the fourth one being a rewording of
the third approach, by using a technical tool from Isabelle, namely locales).

In the first approach, named by us symbolic approach, only the first interpretation of
a morphism is considered: it is represented by means of a generic element (a symbol) of
a generic ring. If a property relevant to the BPL can be expressed in this context, a very
efficient way of reasoning is achieved. We have named it as equational reasoning: proofs
are carried out through rewriting of expressions, applying the axioms of generic algebraic
structures (as rings or groups). This allows us a high degree of automation, by using
the Isabelle tactic algebra (built by C. Ballarin). However, the expressiveness of this
approach is low (there are fragments of the BPL proof which are related to morphisms
as mappings; for instance when it is necessary to restrict a morphisms to a distinguished
subset of its source) and, as previously mentioned, it lacks computational content.

Thus, new ideas are needed. In our second approach, we consider a morphism in
the second sense evoked above: a set-theoretic mapping, satisfying certain properties.
This has been called, not surprisingly, set-theoretic approach. This point of view is the
orthodox one, in a naive sense: from set theory, a hierarchy of algebraic structures is
built, as usual in Universal Algebra. We have tried to emulate this way of working in
Isabelle, starting from the most elementary structures (magmas, semigroups, monoids,

..). The main technical tool to this aim has been extensible records, which enable
[sabelle with some inheritance features. This allows us also to deal with the different
kind of morphisms which can be defined on a same algebraic structure, as has been
commented above.

Despite of its soundness and of the Isabelle technical help, it becomes evident early
that proofs become unfeasible in this setting: going down always to reason with the
elements of each algebraic structure (instead of working with the structure itself, and
with its properties as a whole), increases enormously the length of the proofs, and, even
worse, hides the important logical steps among plenty of boring technical details. The

152 Chapter 5 Conclusions and Further Work

conclusion is a confirmation of something well-known: mathematicians refer to the low-
level set-theoretic machinery only to establish the basics; then, they work with higher
reasoning level.

The third approach tries to encompass the advantages of the two previous approaches,
avoiding its drawbacks. In other words, we have tried to recover equational reasoning
(and thus a great level of automation) without loosing expressiveness and computational
content. To this aim, it has been necessary to change in deep the representation of
morphisms, both from an operational and from an structural point of view.

From the first perspective, it has been necessary to deal with partiality, in order to
get a representation where equals in the abstract model (that is to say, equals in Math-
ematics) come from equals in computer memoir (that is, as Isabelle objects). Isabelle
only admits total functions and morphisms in Homological Algebra are also usually total
maps. Then, where partiality appears? Partial maps appears due to the following rea-
son. Isabelle functions are total on types. But morphisms are not defined on types, but
on sets acting as carriers of algebraic structures. Therefore, when representing a mor-
phism in Isabelle only the data of the type belonging to the carrier have a well-defined
image. Each datum in the complement of the carrier must have an image (functions in
Isabelle being total), but Mathematics says nothing about that image, which becomes
arbitrary. Thus, when we want to use in Isabelle an equality between two morphisms
(and it is mandatory if equational reasoning must work), we find that the system is not
capable of deciding, due to the arbitrary values of the Isabelle function in the comple-
ment of the carrier set. Our solution consists in sending each datum in the complement
to a distinguished element (the unit) of the target algebraic structure. This completion
of the function implies that two equal morphisms in the abstract model are represented
in the computer by two objects which are recognized to be equal by Isabelle (putting
it in technical terminology, the representation is faithful: the abstraction function is
injective). So, equational reasoning is, in principle, possible.

But, from a structural point of view, we face the problem of variables mentioned
above: the BPL proof uses intensively that a same mapping can define different mor-
phisms by changing its source or target. These entities are usually denoted by the same
variable, allowing the user shorter and cleaner proofs. To get this higher abstraction
level in Isabelle, we changed one more time our representation for morphisms. Now, a
(completion of a) function is enclosed with a source and a target. These triples allow us
to pass from a morphism to one of its restriction (for instance), without rebuilding the
whole structure: only a simple field replacement is required.

Once these operational and structural issues are enabled, it is necessary to prove
that the set of endomorphisms (represented as triples) in Isabelle is endowed with the
corresponding ring structure. As it is no surprise, it turns out that the number of code
lines to prove that theorem in Isabelle is quite considerable, being larger than in the
proofs developed in the second approach (which were qualified as “unfeasible”!). This is
quite natural: the load work for an infrastructure can be assumed, due to the important
reuse which can be implemented on it. In our case, in particular, equational reasoning

5.1 Conclusions 153

is fully recovered with this approach, including the automation provided by the algebra
tactic.

Finally, the fourth approach, called interpreting approach, is not of the same nature
as the previous ones. The reason is that the quality improvement obtained with it is due
to an internal Isabelle feature, namely locales. Interpretation of locales allows the user
some important notational commodities: several instances of a same algebraic structure
(several rings, for instance) can be used in the same Isabelle fragment, importing every
property already proved on it. Even if expressiveness is not empowered essentially in
our context, the commodities introduced by locales can imply an improvement in the
readability and the construction of proofs which can not be underestimated.

In Chapter 4, our results have a twofold interest. On the one hand, they allow us to
get closer to our initial problem of proving the correctness of the Kenzo system. On the
other hand, they imply a search on the relationship of our work with constructivism.
On the contrary, other approaches related to code extraction are not dealt with. In
particular, the efficiency and generality of the programs extracted are not studied, due,
essentially, to the limitations of the current technology.

The main tool in Chapter 4| is S. Berghofer’s program to extract ML code from Is-
abelle scripts ([Berghofer, 2003a, Berghofer, 2003b, Berghofer, 2004]). Due to the rich-
ness of higher order logic, it is clear that not every fragment from Isabelle can be used to
extract code from it. This poses interesting questions on the limitations of Berghofer’s
tool and also on its comparison with other systems based on constructive mathematics
(Coq [Bertot and Castéran, 2004] is the closer alternative). Instead of tackling these
problems with a theoretic spirit, we were inspired from a pragmatic aim: to study the
application of Berghofer’s program to algorithms from Homological Algebra. It turns
out that most of the interesting theorems (as documented in Chapter 2) have a remark-
able property: in the statement an object (algebraic structure, morphism, reduction and
so on) is defined, and some property of it is asserted. We called this kind of statement
constructive statement. The key observation then is that code can be extracted from
this statement (or, to be more precise, from the definition introduced in the statement),
without any reference to its proof. Since the proof is not relevant for the code extracted
(except from the essential question of ensuring its correctness, of course), the logic used
in that proof is uncoupled from the extraction mechanism. In particular, the proof could
be non-constructive.

In order to reduce the complexity of the code and the proofs, we explore this delicate
problem with a more elementary example, by means of a simple Common Lisp program
which computes the next prime to a natural number given as argument. Even if simple,
this example is not trivial at all: it is the same example Markov’s chose ([Markov, 1971])
to illustrate his generalization of constructive mathematics (known nowadays as recursive
constructive mathematics). Instead of trying to prove the correctness of this program
by means of Isabelle (apart from the theoretical difficulties related to constructivism,
we would be faced to the technical difficulty of linking ML and Common Lisp), we
have reworded the problem to establish it as a constructive statement. Then an ML

154 Chapter 5 Conclusions and Further Work

program equivalent to the initial one is extracted with the help of Berghofer’s tool,
while the proof of the theorem is done by using a “reductio ad absurdum” argument,
giving a non-constructive flavour to it. All these results, quite expensive in number of
Isabelle code lines, amounts to programming in Isabelle (in addition to the usual tasks
of specifying and proving in Isabelle). The previous ideas were then applied to a simple
case in Homological Algebra: the composition of two morphisms.

In summary, the memoir contains several thoughtful proposals both for mechanizing
reasoning in Homological Algebra and for obtaining certified Computer Algebra pro-
grams in this field. In particular, we have stressed the importance of the abstraction
process in mechanized mathematics, and introduced several conceptual schemes which
could be reused in many similar areas of application. Another product of our research is
to make clear the limitations of certain approaches, and to establish the difficult places
in the rest of work to be done. It is clear that the research is not ended: to ensure that
our proposals are really reusable is necessary to advance in the BPL proof, and also to
apply the extraction methods to more complex fragments of the algorithms. We explain
our future projects in the next (and last) section.

5.2 Further Work

First, it would be necessary to compare our contributions with other possibilities.
And this, not with respect to other alternatives on the same problem (our work is,
in this sense, quite new and original, in our humble opinion), but rather to other
concurrent tools. The most convenient seems to be to translate our methods to the
system Coq [Bertot and Castéran, 2004]. To this aim, it could be interesting to use
the system FOCAL [Foc, 2005], which provides an integrated environment for speci-
fying, programming (linked to the programming language OCAML [Leroy et al., 2005,
Boulmé et al., 1999]) and proving (linked to Coq).

But the most evident work to be continued is to finish the second part of the BPL
proof. We think that our proposals will be sufficient to this task. Perhaps the more
important open question is to know if our handling of the equality problem is enough.
Up to now, the equality between morphisms has been treated (by means of the completion
notion) in such a way that it has been unnecessary to overload the equality symbol in
Isabelle. In situations where the equality extends to algebraic structures as a whole,
perhaps this overloading or another technical or conceptual idea could be required.

Then the implementation the first part of the proof should be undertaken. It deals
with a functional series, and it is clear that some kind of inductive process should be
introduced to handle this infinite structure. Although Isabelle supports this kind of
reasoning, some open questions are expected, related both to code extraction and to
foundation aspects.

Effectively, the extraction of ML code from routine proofs in Homological Algebra
(as those appearing in the second part of the BPL proof) seems to be solved by means

5.2 Further Work 155

of Berghofer’s tool and our technique of constructive statements. However, the series
introduces problems on termination, and it is more difficult, without more research, to
foresee if current technology will be enough. Let us explain this point with a little more
detail.

The proofs in Chapter 2 related to the series are based in the fact that the functional
formal series defines a morphism, because when applied over each element it becomes a
finite sum. This depends on the notion of locally nilpotent endomorphism. In the version
presented in this memoir (the usual in the literature) the situation is very similar to the
arithmetical example considered in Chapter 4: it is known that a bound exists, but no
information is explicitly given on the range of that bound. Thus, to prove termination is
problematic and would need Markov’s principle, going beyond strict constructivism (and
thus, perhaps, beyond of Berghofer’s tool capabilities). Nevertheless, from a pragmatic
point of view, the definition can be transformed into a constructive one (giving rise to the
notion of locally constructive nilpotency) by requiring an explicit function computing the
degree of nilpotency for each element. This new definition is applicable to any instance
of the BPL needed in Kenzo (and, to our knowledge, in any application in algorithmic
Homological Algebra or Algebraic Topology), showing a way for code extraction in this
setting (no so different of our treatment in Chapter /4! for the prime numbers example).

This small discussion signals clearly that the problem of the foundation nature of
Algebraic Topology (if it can be rendered strictly constructivist, recursive constructivist
or is simply non-constructive) remains open (this question has been raised in several
editions of the Mathematics, Algorithms, Proofs conferences; see a brief note on these
issues at MAP2005 in [Rubio, 2005]).

Even if any practical or theoretical problem is solved, and ML code is safely extracted
from the BPL modeled in Isabelle, there will be yet the gap from ML to Common Lisp
(the programming language in which Kenzo is written). Several approaches are here
possible. One of them is to extract code from Isabelle to Common Lisp. The other one
is to write a (certified!) transformer from ML into Common Lisp. Both projects seem
to deserve general attention, beyond our particular context of application.

And going one more step ahead, even if Common Lisp code can be extracted, the
problem of generating code similar to Kenzo will remain still open. Putting it in other
words, the problem of extracting efficient code (comparable to Kenzo) does not seem
affordable in the state of current technology. This is the reason why our approach to this
problem is very similar to the one showed in this memoir with respect to the mechanized
proof of the BPL. The interest is not to get a complete automated proof, but to increase
our knowledge (on the very proof of the BPL, on the limits of the current mechanized
reasoning systems, or, in short, on the tight interplay between Mathematics and Com-
puter Science). In this same vein, the real goal is not to prove in an automated way the
correctness of Kenzo (which is a quite secure system, after several years of successful
testing), but to find out methods to increase the reliability of software systems, without
losing efficiency or usability. Automated theorem provers can be instrumental for these
purposes. A small step in this direction can be understood as the main contribution of

156 Chapter 5 Conclusions and Further Work

this memoir.

Appendix A

Isabelle Files

This appendix contains some information referred to the Isabelle files which were devel-
oped to write down Chapters 3/ and 4.

A.1 Mechanizing the proof of the BPL

The Isabelle files employed in Chapter 3 have been divided in four groups, as the
four approaches that are described there. The proofs that were exposed in the sym-
bolic approach in Section 3.5, as well as some other examples can be found in file
“symbolic/symbolic.thy”. The proofs found there are based on equational reasoning,
but just some basic properties can be proved.

The theory files proving Lemma 2.2.11, using the tools introduced in Section 3.6,
can be found in folder “set_theoretic/lemmal”; proofs have been done following the
ideas exposed in what we called the set theoretic approach. Five files are given. In
file “lemmal_previous.thy” abelian groups are introduced, as well as homomorphisms
between them. Then, some introductory lemmas are proved; finally, the composition of
abelian group homomorphisms is proved to be closed. In file “lemmal_isom_sets.thy”, a
version of Lemma 2.2.11/is given in a simplified version: differential groups are substi-
tuted for sets, and isomorphisms for bijections. Then, in file “lemmal_isom_groups.thy”,
sets are enriched to obtain groups, and a definition of isomorphic groups is given.
Then, the same lemma is proved in a version for groups. In a similar way, in the
file “lemmal_isom_ab_groups.thy”, groups are enriched to obtain abelian groups, and
the lemma is proved for abelian groups, making use of the previous version (thanks to
extensible records, presented in Section [1.3.2). In file “lemmal_isom_cc.thy”, differen-
tial groups are defined, as well as homomorphisms between differential groups. Two
main lemmas are introduced in this file. The first one states that under the premises
of Lemma 2.2.11, an isomorphism between the underlying abelian groups can be explic-
itly defined; its proof is based on the previous version, and is almost direct. Then, the
same lemma is proved, stating that the isomorphism can be seen also as an isomorphism

157

158 Appendix A Isabelle Files

between differential groups, which corresponds to Lemma 2.2.11.

The files in folder “set_theoretic/lemma2” present an unsuccessful attempt of proving
Lemma 2.2.14] again with the tools introduced in the set theoretic approach. Neverthe-
less, some of the definitions and lemmas proved there are relevant by themselves. In
file “Kernel.thy” the definition of kernel of a homomorphism is introduced. In addi-
tion to this, a lemma stating that the kernel of a homomorphism with the inherited
operations from the source algebraic structure, satisfies also the axioms of such an al-
gebraic structure is proved (for instance, the kernel of a group, with these operations,
is a subgroup). The same lemma is proved for groups, abelian subgroups and differen-
tial subgroups. The version for differential subgroups corresponds to Proposition 2.2.9.
In file “Reduction.thy” the definition of reduction is introduced. With the tools avail-
able, the definition of reduction is not very easy to be used. Two main lemmas are
then proved. One stating that a combination of the differential and the homotopy op-
erator is again a chain complex isomorphism. Such a simple fact, which corresponds
to the first part of the proof of Proposition 2.2.12, required a great number of lines.
The second one corresponds exactly to Proposition 2.2.12] which thanks to the previ-
ous lemmas already proved in Isabelle was proved in quite an easy way. Finally, in file
“lemma2_is_reduct.thy”, some basic facts about reductions are proved; Lemma 2.2.14! is
also stated, but we were unable to produce a proof of it in a comfortable way. Thus, we
decided to introduce new tools, in what we called the morphism based approach.

The files related to the morphism based approach exposed in Section 3.7 can be found
in folder “triples”. File “basic_def-2.thy” is devoted mainly to the introduction of new
concepts. First, completions are defined and proved to be closed under composition.
Then we also introduce the definition of homomorphisms as tuples storing information
about their source and target. With this new definition we prove that composition is
closed under diverse circumstances; for instance, when the target of one of the homomor-
phisms is included in the source of the second one. In file “MRP_equiv.thy” a relation
is defined between triples. This relation is proved to be an equivalence relation. As
stated in Section [3.6.5, trying to define the equivalence classes and dealing with them
could be an interesting problem. Also some of the different versions of Lemma [3.7.1] are
proved, in order to be used in later proofs. File “group_mrp_ring.thy” is mainly devoted
to proofs. First it is proved that tuples including completion homomorphisms form a
ring. Then some proofs are implemented with tuples in an equational way. Finally, and
applying some of the versions of Lemma 3.7.1, together with equational reasoning, the
properties in the statement of Lemma 2.2.14] are proved (avoiding some of the problems
previously found in the former approaches).

The files where the ideas in Section 3.8 are implemented, can be found in folder
“inst_locales”. Files “HomGroup.thy” and “HomGroupRestrict2.thy” reveal the limita-
tions of the Isabelle definitions of homomorphisms and restricted functions to work with
them in an equational way, and moreover, to implement with them algebraic structures
with the usual operations. Then, in file “HomGroupComplection.thy” we introduce the
definition of completion functions and some facts that allow us to prove that the set
of endomorphisms of a commutative group, with the suitable operations, form a ring.

A.2 Extracting Computer Algebra Programs from Statements 159

Then, in file “HomGroupsComplection.thy” we prove that the set of homomorphisms
between two commutative groups form also a commutative group. With these previous
lemmas, in file “lemma2_properties_1_to_4.thy” we can define a locale representing the
mathematical setting of Lemma 2.2.14, and we can also implement its complete proof.

A.2 Extracting Computer Algebra Programs from
Statements

The files where we have implemented the ideas and examples exposed in Chapter 4/ can
be found in folder “ProgramExtraction/Primes”. In file “Monoid.thy” it can be found
the first examples in Chapter 4.3. In first place, we define an operation constructing
a monoid and we give an Isabelle proof of Lemma 4.3.1. Then we also define a record
with the set of integers, usual addition as mult field and 0 as unit. We prove this
record to satisfy the monoid axioms. Finally, by using the code extraction tool over
these definitions, we obtain an ML program which can be found in file “Monoid. ML”.
In file “Prime_number_theorem.thy” it can be found a complete proof of the Euclid’s
lemma using the Isabelle definitions of division and prime number. These definitions
are showed to be incompatible with the code extraction tool, due to the presence of
existential quantifiers. Then, new definitions are proposed for both functions; these
definitions are proved to be equivalent to the Isabelle ones. Then, a new proof of Euclid’s
Lemma is given with these definitions. Finally, an ML program is extracted from them
(see file “Prime_number_theorem.ML”), which returns a prime number greater than the
argument it receives. In file “composition_with_lemmas.thy” it can be found the result
exposed in Section 4.4. We use the code extraction tool with a piece of code that
we produced in the morphism based approach. The definition of morphisms as tuples
already used in the morphism based approach (see Section 13.7) is given, as well as the
composition of such tuples. Code is extracted from the definition of the composition of
morphisms, showing the compatibility of the definition with the code extraction tool.
The result can be found in file “Composition. ML”.

A.3 Detailed list of files

The files presented in this memoir can be found at the web page http://www.unirioja.
es/cu/jearansa/isabellefiles/. They are presented in html format. In addition to
this, and changing the “html” extension of the files by a “thy” extension in their URL,
the Isabelle source files are also available. All files have been developed with an Intel
Pentium M processor, 1.60 GHz. The operating system was MandrakeLinux 10.1 with
the 2.6.8.1-12mdk kernel. The following programs were needed to compile the “thy”
files:

e xecmacs 21.1.14

http://www.unirioja.es/cu/jearansa/isabellefiles/�
http://www.unirioja.es/cu/jearansa/isabellefiles/�

160 Appendix A Isabelle Files

e Isabelle2004
e Proof General 3.5
e Poly/ML 4.1.3

The files that can be found in the web page (in html format) are the following:

File Name Number of lines
symbolic/symbolic.html ca. 150
set_theoretic/lemmal/lemmal_previous.html ca. 160
set_theoretic/lemmal/lemmal_isom_sets.html ca. 250
set_theoretic/lemmal/lemmal_isom groups.html ca. 480
set_theoretic/lemmal/lemmal_isom_ab_groups.html ca. 180
set_theoretic/lemmal/lemmal_isom cc.html ca. 700
set_theoretic/lemma2/Kernel.html ca. 290
set_theoretic/lemma2/Reduction.html ca. 540
set_theoretic/lemma2/lemma2_is_reduct.html ca. 180
triples/basic_def_2.html ca. 750
triples/MRP_equiv.html ca. 140
triples/group mrp_ring.html ca. 1540
inst_locales/HomGroup.html ca. 90
inst_locales/HomGroupRestrict2.html ca. 520
inst_locales/HomGroupComplection.html ca. 640
inst_locales/HomGroupsComplection.html ca. 90
inst_locales/lemma2 properties_1_to_4.html ca. 380
ProgramExtraction/Primes/Monoid.html ca. 40
ProgramExtraction/Primes/Monoid.ML.html ca. 25
ProgramExtraction/Primes/Prime number_theorem.html ca. 1470
ProgramExtraction/Primes/Prime number theorem.ML.html ca. 60
ProgramExtraction/Primes/composition with lemmas.html ca. 145
ProgramExtraction/Primes/Composition.ML.html ca. 30

Table A.1: List of files

Bibliography

[Foc, 2005] (2005). FoCalL Reference Manual. The Foc Development team. http:
//focal.inria.fr/.

[Isa, 2005] (2005). Isabelle Theory Library. http://isabelle.in.tum.de/library/.

[Andrés et al., 2003] Andrés, M., Garcia, F. J., Pascual, V., and Rubio, J. (2003).
XML-Based interoperability among symbolic computation systems. In ICWI 2003,
IADIS International Conference WWW /Internet 2003, Algarve, Portugal, November
2003, pages 925-928. TADIS Press.

[Aransay et al., 2002a] Aransay, J., Ballarin, C., and Rubio, J. (2002a). Deduction and
Computation in Algebraic Topology. In IDEIA 2002, IBERAMIA 2002, I Taller

Iberoamericano sobre Deduccion Automdtica e Inteligencia Artificial, Sevilla, Spain,
October 2002, pages 47-54. Universidad de Sevilla.

[Aransay et al., 2002b] Aransay, J., Ballarin, C., and Rubio, J. (2002b). Mechanizing
proofs in Homological Algebra. In Zimmer, J. and Benzmiiller, C., editors, Calculemus
Autumn School 2002: Poster Abstracts, volume SR-02-06, pages 13—-19. Universitat
des Saarlandes.

[Aransay et al., 2002¢| Aransay, J., Ballarin, C., and Rubio, J. (2002c). Towards an
automated proof of the Basic Perturbation Lemma. In Giménez, P., editor, FACA
2002, Octavo Encuentro de Algebm Computacional y Aplicaciones, Penaranda de
Duero, Spain, September 2002, pages 91-95. Universidad de Valladolid.

[Aransay et al., 2003] Aransay, J., Ballarin, C., and Rubio, J. (2003). Towards a higher
reasoning level in formalized Homological Algebra. In Hardin, T. and Rioboo, R.,
editors, Calculemus 2003, 11th Symposium on the Integration of Symbolic Computa-

tion and Mechanized Reasoning, Rome, Italy, September 2003, pages 84-88. Aracne
Editrice S.R.L.

[Aransay et al., 2004] Aransay, J., Ballarin, C., and Rubio, J. (2004). Four approaches
to automated reasoning with differential algebraic structures. In Buchberger, B. and
Campbell, J. A., editors, AISC 2004, 7th International Conference on Artificial In-
telligence and Symbolic Computation, Linz, Austria, September 2004, volume 3249 of
Lecture Notes in Artificial Intelligence, pages 222—-235. Springer.

161

http://focal.inria.fr/�
http://focal.inria.fr/�
http://isabelle.in.tum.de/library/�

162 Bibliography

[Aransay et al., 2005] Aransay, J., Ballarin, C., and Rubio, J. (2005). Extracting com-
puter algebra programs from statements. In Moreno-Diaz, R., Pichler, F., and
Quesada-Arencibia, A., editors, EUROCAST 2005, 10th International Conference
on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February
2005, volume 3643 of Lecture Notes in Computer Science, pages 159-168. Springer.

[Avigad, 2004] Avigad, J. (2004). notes on a formalization of the prime number theorem.
Technical Report CMU-PHIL-163, Carnegie Mellon.

[Ballarin, 1999] Ballarin, C. (1999). Computer Algebra and Theorem Proving. PhD
thesis, University of Cambridge.

[Ballarin, 2004] Ballarin, C. (2004). Locales and locale expressions in Isabelle/Isar. In
Berardi, S., Coppo, M., and Damiani, F., editors, TYPES 2003, 3rd International
Workshop on Types for Proofs and Programs, Torino, Italy, May 2003, volume 3085
of Lecture Notes in Computer Science, pages 34-50. Springer.

[Barnes and Lambe, 1991] Barnes, D. and Lambe, L. (1991). Fixed point approach to
Homological Perturbation Theory. Proceedings of the American Mathematical Society,
112(3):881-892.

[Bauer and Wenzel, 2000] Bauer, G. and Wenzel, M. (2000). Computer-assisted mathe-
matics at work (the Hahn-Banach Theorem in Isabelle/Isar). In Coquand, T., Dybjer,
P., Nordstrom, B., and Smith, J., editors, TYPES’99, Types for Proofs and Programs
International Workshop, Lokeberg, Sweden, June 1999, volume 1956 of Lecture Notes
i Computer Science, pages 61-76. Springer.

[Bauer and Wenzel, 2001] Bauer, G. and Wenzel, M. (2001). Calculational reasoning
revisited - an Isabelle/Isar experience. In Boulton, R. J. and Jackson, P. B., edi-
tors, TPHOLs’2001, 14th International Conference on Theorem Proving in Higher
Order Logics, Edinburgh, Scotland, September 2001, volume 2152 of Lecture Notes in
Computer Science, pages 75-91. Springer.

[Berghofer, 2003a] Berghofer, S. (2003a). Program extraction in simply-typed higher
order logic. In Geuvers, H. and Wiedijk, F., editors, TYPES 2002, 2nd International
Workshop on Types for Proofs and Programs, Berg en Dal, The Netherlands, April
2002, volume 2646 of Lecture Notes in Computer Science, pages 21-38. Springer.

[Berghofer, 2003b] Berghofer, S. (2003b). Proofs, Programs and Ezecutable Specifica-
tions in Higher Order Logic. PhD thesis, Technische Universitat Miinchen.

[Berghofer, 2004] Berghofer, S. (2004). A constructive proof of Highman’s Lemma in
Isabelle. In Berardi, S., Coppo, M., and Damiani, F., editors, TYPES 2003, 3rd
International Workshop on Types for Proofs and Programs, Torino, Italy, May 2003,
volume 3085 of Lecture Notes in Computer Science, pages 66-82. Springer.

[Berghofer, 2005] Berghofer, S. (2005). Answer to Tom Ridge. Available at the mail list
isabelle-users@cl.cam.ac.uk, February 18, http://www.cl.cam.ac.uk/users/lcp/
archive/|

http://www.cl.cam.ac.uk/users/lcp/archive/�
http://www.cl.cam.ac.uk/users/lcp/archive/�

Bibliography 163

[Bertot and Castéran, 2004] Bertot, Y. and Castéran, P. (2004). Interactive Theorem
Proving and Program Development. Coq’Art: The Calculus of Inductive Construc-
tions, volume 25 of Texts in Theoretical Computer Science. Springer.

[Boulmé et al., 1999] Boulmé, S., Hardin, T., Hirschkoff, D., Ménissier-Morain, V., and
Rioboo, R. (1999). On the way to certify Computer Algebra systems. In Proceedings
of the Calculemus workshop of FLOC’99 (Federated Logic Conference, Trento, Italie),
volume 23 of Electronic Notes in Theoretical Computer Science. Elsevier.

[Bourbaki, 1970] Bourbaki, N. (1970). Eléments de mathématique. Algébre. Chapitres 1
a 3. Hermann.

[Brown, 1965] Brown, R. (1965). The twisted Eilenberg-Zilber theorem. In Celebrazioni
Archimedi de Secolo XX, Simposio di Topologia (Messina, 1964), pages 33-37. Ed-
dizione Oderisi.

[Calmet, 2003] Calmet, J. (2003). Some grand mathematical challenges in mechanized
mathematics. In Hardin, T. and Rioboo, R., editors, Calculemus 2003, 11th Sympo-
stum on the Integration of Symbolic Computation and Mechanized Reasoning, Rome,
Italy, September 2003, pages 137-141. Aracne Editrice S.R.L.

[Church, 1940] Church, A. (1940). A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56-68.

[Constable et al., 1986] Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland,
W. R., Cremer, J. F., Harper, R. W., Howe, D. J., Knoblock, T. B., Mendler, N. P.,
Panangaden, P., Sasaki, J. T., and Smith, S. F. (1986). Implementing Mathematics
with the Nuprl Development System. Prentice-Hall, NJ.

[Coquand and Huet, 1988] Coquand, T. and Huet, G. (1988). The calculus of construc-
tions. Information and Computation, 76(2,3):95-120.

[Cruz-Filipe and Spitters, 2003] Cruz-Filipe, L. and Spitters, B. (2003). Program ex-
traction from large proof developments. In Basin, D. and Wolff, B., editors,
TPHOLs’2003, 16th International Conference on Theorem Proving in Higher Or-
der Logics, Rome, Italy, September 2003, volume 2758 of Lecture Notes in Computer
Science, pages 205-220. Springer.

[Davenport, 1981] Davenport, J. (1981). Effective mathematics—the computer algebra
viewpoint. In Constructive Mathematics, volume 873 of Lecture Notes in Mathematics,
pages 31-43. Springer.

[Davenport, 1989] Davenport, J. (1989). Algebraic computations and structures. In
Computer Algebra, volume 113 of Lecture Notes in Pure and Applied Mathematics,
pages 129-144. Dekker.

[Davis, 2001] Davis, M. (2001). The early history of Automated Deduction. In Robinson,
A. and Voronkov, A., editors, Handbook of Automated Reasoning, volume I, chapter 1,
pages 3-15. Elsevier Science.

164 Bibliography

ousson et al., ousson, X., oergeraert, b., and Siret, Y. . e Kenzo
D 1., 1999] D X, S F d Si Y. (1999). The K
program. http://www-fourier.ujf-grenoble.fr/~{}sergerar/Kenzo/.

[Dybjer et al., 2004] Dybjer, P., Haiyan, Q., and Takeyama, M. (2004). Verifying
Haskell programs by combining testing, model checking and interactive theorem prov-
ing. Information and Software Technology, 46(15):1011-1025.

[Geuvers et al., 2002] Geuvers, H., Pollack, R., Wiedijk, F., and Zwanenburg, J. (2002).
A constructive algebraic hierarchy in Coq. Journal of Symbolic Computation,
34(4):271-286.

[Glimming, 2001] Glimming, J. (2001). Logic and automation for Algebra of program-
ming. Master’s thesis, Maths Institute, University of Oxford. http://www.nada.kth.
se/%7eglimming/publications.shtmll

(Gordon and Melham, 1993] Gordon, M. J. C. and Melham, T. F., editors (1993). In-
troduction to HOL: A theorem proving environment for higher order logic. Cambridge
University Press.

[Gordon et al., 1979] Gordon, M. J. C., Milner, A. J., and Wadsworth, C. P. (1979).
Edinburgh LCF - A mechanized logic of computation, volume 78 of Lecture Notes in
Computer Science. Springer.

[Graham, 1996] Graham, P. (1996). ANSI Common Lisp. Prentice Hall.

[Gugenheim, 1972] Gugenheim, V. K. A. M. (1972). On the chain complex of a fibration.
Illinois Journal of Mathematics, 16(3):398-414.

[Harrison, 1996] Harrison, J. (1996). Formalized Mathematics. Technical Report 36,
Turku Centre for Computer Science (TUCS). http://www.cl.cam.ac.uk/users/
jrh/papers/form-math3.html.

[Hoare, 1972] Hoare, C. A. R. (1972). Proof of correctness of data representations. Acta
Informatica, 1(4):271-281.

[Jacobson, 1995] Jacobson, N. (1995). Basic Algebra I. W. H. Freeman and Company.

[Kammiiller, 1999] Kammiiller, F. (1999). Modular structures as dependent types in Is-
abelle. In Altenkirch, T., Naraschewski, W., and Reus, B., editors, TYPES 98, Inter-
national Workshop on Types for Proofs and Programs, Kloster Irsee, Germany, March
1998, volume 1657 of Lecture Notes in Computer Science, pages 121-133. Springer.

[Kammiiller and Paulson, 1999] Kammiiller, F. and Paulson, L. C. (1999). A formal
proof of Sylow’s Theorem — an experiment in Abstract Algebra with Isabelle/HOL.
Journal of Automated Reasoning, 23(3):235, 264.

[Kaufmann et al., 2000] Kaufmann, M., Manolios, P., and Strother-Moore, J. (2000).
Computer-Aided Reasoning: An Approach. Kluwer Academic Press.

http://www-fourier.ujf-grenoble.fr/~{}sergerar/Kenzo/�
http://www.nada.kth.se/%7eglimming/publications.shtml�
http://www.nada.kth.se/%7eglimming/publications.shtml�
http://www.cl.cam.ac.uk/users/jrh/papers/form-math3.html�
http://www.cl.cam.ac.uk/users/jrh/papers/form-math3.html�

Bibliography 165

[Kopylov and Nogin, 2001] Kopylov, A. and Nogin, A. (2001). Markov’s principle for
propositional type theory. In Fribourg, L., editor, CSL 2001, 15th International
Workshop on Computer Science Logic. 10th Annual Conference of the EACSL, Paris,

France, September 2001, volume 2142 of Lecture Notes in Computer Science, pages
570-584. Springer.

[Lamban et al., 2003] Lambaén, L., Pascual, V., and Rubio, J. (2003). An object-oriented
interpretation of the EAT system. Applicable Algebra in Engineering, Communication
and Computation, 14(3):187-215.

[Leroy et al., 2005] Leroy, X., Doligez, D., Garrigue, J., Rémy, D., and Vouillon, J.
(2005). The Objective Caml system release 3.09. Institut National de Recherche
en Informatique et en Automatique. http://caml.inria.fr/distrib/ocaml-3.09/
ocaml-3.09-refman.pdfl

[Loeckx et al., 1996] Loeckx, J., Ehrich, H., and Wolf, M. (1996). Specification of Ab-
strac Data Types. Wiley and Teubner.

[Mac Lane, 1994] Mac Lane, S. (1994). Homology. Springer.

[Markov, 1971] Markov, A. A. (1971). On constructive mathematics. American Mathe-
matical Society Translations, 2(98):1-9.

May, 1967] May, J. P. (1967). Simplicial objects in Algebraic Topology, volume 11 of
Van Nostrand Mathematical Studies. D. Van Nostrand Co.

[McCune, 2003] McCune, W. (2003). Otter 3.3 Reference Manual. Technical Memoran-
dum 263, Argonne National Laboratory, Mathematics an Computer Science Division.
http://www-unix.mcs.anl.gov/AR/otter/otter33.pdf.

[Miiller and Slind, 1997] Miiller, O. and Slind, K. (1997). Treating partiality in a logic
of total functions. The Computer Journal, 40(10):640-652.

[Naraschewski and Wenzel, 1998] Naraschewski, W. and Wenzel, M. (1998). Object-
oriented verification based on record subtyping in higher-order logic. In Grundy,
J. and Newey, M., editors, TPHOLs’98, 11th International Conference on Theorem
Proving in Higher Order Logics, Canberra, Australia, September 1998, volume 1479
of Lecture Notes in Computer Science, pages 349-366. Springer.

[Nipkow et al., 2000] Nipkow, T., Paulson, L. C.;, and Wenzel, M. (2000). Isabelle’s
Logics: HOL.

[Nipkow et al., 2002] Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL:
A proof assistant for higher order logic, volume 2283 of Lecture Notes in Computer
Science. Springer.

[O’'Keefe, 2004] O’Keefe, G. (2004). Towards a readable formalisation of Category The-
ory. In Atkinson, M., editor, Computing: The Australasian Theory Symposium, vol-
ume 91 of Electronic Notes in Theoretical Computer Science, pages 212-228. Elsevier.

http://caml.inria.fr/distrib/ocaml-3.09/ocaml-3.09-refman.pdf�
http://caml.inria.fr/distrib/ocaml-3.09/ocaml-3.09-refman.pdf�
http://www-unix.mcs.anl.gov/AR/otter/otter33.pdf�

166 Bibliography

[Pascual, 2002] Pascual, V. (2002). Objetos localmente efectivos y tipos abstractos de
datos. PhD thesis, Universidad de La Rioja.

[Paulson, 1989] Paulson, L. C. (1989). The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5(3):363-397.

[Paulson, 1990a] Paulson, L. C. (1990a). A formulation of the simple theory of types
(for Isabelle). In Martin-Lof, P. and Mints, G., editors, COLOG-88, International
Conference on Computer Logic, Tallinn, USSR, December 1988, volume 417 of Lecture
Notes in Computer Science, pages 246-274. Springer.

[Paulson, 1990b] Paulson, L. C. (1990b). Isabelle: The next 700 theorem provers. In
Odifreddi, P., editor, Logic and Computer Science, pages 361-386. Academic Press.

[Paulson, 1992] Paulson, L. C. (1992). Designing a theorem prover. In Abramsky, S.,
Gabbay, D. M., and Maibaum, T. S. E., editors, Handbook of Logic in Computer
Science, volume 2, pages 415-475. Oxford University Press.

[Paulson, 1994] Paulson, L. C. (1994). Isabelle: A Generic Theorem Prover, volume 828
of Lecture Notes in Computer Science. Springer.

[Paulson, 1996] Paulson, L. C. (1996). ML for the working programmer. Cambridge
University Press, 2nd edition.

[Paulson, 2004] Paulson, L. C. (2004). Defining functions on equivalence classes. http:
//www.cl.cam.ac.uk/users/lcp/papers/Reports/equivclasses.pdf|

[Rubio, 2004] Rubio, J. (2004). Emulating proof-by-hand in Isabelle. In Mathematics,
Algorithms and Proofs. http://www.disi.unige.it/map/luminy/slides/rubio.

ppt.

[Rubio, 2005] Rubio, J. (2005). Constructive proofs or constructive statements? In
Dagstuhl Proceedings, volume 050201. http://www.dagstuhl.de/05021/.

[Rubio and Sergeraert, 1988] Rubio, J. and Sergeraert, F. (1988). Homologie effective
et suites spectrales d’Eilenberg-Moore. Comptes Rendus des Séances de [’Academie
des Sciences de Paris, 306(17):723-726.

[Rubio and Sergeraert, 1997] Rubio, J. and Sergeraert, F. (1997). Constructive Al-
gebraic Topology. Lecture Notes Summer School in Fundamental Algebraic
Topology, Institut Fourier. http://www-fourier.ujf-grenoble.fr/~{}sergerar/
Summer-School/.

[Rubio and Sergeraert, 2002] Rubio, J. and Sergeraert, F. (2002). Constructive Alge-
braic Topology. Bulletin des Sciences Mathématiques, 126(5):389-412.

[Rubio et al., 1997] Rubio, J., Sergeraert, F., and Siret, Y. (1997). EAT: Symbolic soft-
ware for effective homology computation. Technical report, Institut Fourier, Grenoble.
ftp://fourier.ujf-grenoble.fr/pub/EAT.

http://www.cl.cam.ac.uk/users/lcp/papers/Reports/equivclasses.pdf�
http://www.cl.cam.ac.uk/users/lcp/papers/Reports/equivclasses.pdf�
http://www.disi.unige.it/map/luminy/slides/rubio.ppt�
http://www.disi.unige.it/map/luminy/slides/rubio.ppt�
http://www.dagstuhl.de/05021/�
http://www-fourier.ujf-grenoble.fr/~{ }sergerar/Summer-School/�
http://www-fourier.ujf-grenoble.fr/~{ }sergerar/Summer-School/�
ftp://fourier.ujf-grenoble.fr/pub/EAT�

Bibliography 167

[Rubio et al., 1998] Rubio, J., Sergeraert, F., and Siret, Y. (1998). Overview of EAT, a
system for effective homology computation. The Symbolic and Algebraic Computation
Newsletter, 3:69-79.

[Schirmer, 2005] Schirmer, N. (2005). A verification environment for sequential impera-
tive programs in Isabelle/HOL. In Baader, F. and Voronkov, A., editors, LPAR 2004,
11th International Workshop on Logic for Programming, Artificial Intelligence, and
Reasoning, Montevideo, Uruguay, March 2005, volume 3452 of Lecture Notes in Ar-
tificial Inteligence, pages 398-414. Springer.

[Shih, 1962] Shih, W. (1962). Homologie des espaces fibrés. Publications Mathématiques
de I’Institut des Hautes Ftudes Scientifiques, 13:1-88.

[Steele, 1990] Steele, G. L. (1990). Common Lisp, the Language. Digital Press.

[Wenzel, 2002] Wenzel, M. (2002). Isabelle/Isar — a versatile environment for human-
readable formal proof documents. PhD thesis, Technische Universitat Miinchen.

[Wenzel, 2004] Wenzel, M. (2004). The Isabelle/Isar reference manual. Technical report,
Technische Universitat Miinchen. http://isabelle.in.tum.de/dist/Isabelle/
doc/isar-ref.pdf.

[Wenzel, 2005] Wenzel, M. (2005). Using axiomatic type classes in Isabelle. Techni-
cal report, Technische Universitat Miinchen. http://isabelle.in.tum.de/dist/
Isabelle/doc/axclass.pdf.

[Wenzel and Wiedijk, 2002] Wenzel, M. and Wiedijk, F. (2002). A comparison of Mizar
and Isar. Journal of Automated Reasoning, 29(3,4):389-411.

[Wiedijk, 2003] Wiedijk, F. (2003). Comparing mathematical provers. In Asperti, A.,
Buchberger, B., and Davenport, J., editors, MKM 2003, 2nd International Conference
on Mathematical Knowledge Management, Bertinoro, Italy, February 2003, volume
2594 of Lecture Notes in Computer Science, pages 188-202. Springer.

http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf�
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf�
http://isabelle.in.tum.de/dist/Isabelle/doc/axclass.pdf�
http://isabelle.in.tum.de/dist/Isabelle/doc/axclass.pdf�

Razonamiento mecanizado en
Algebra Homoldégica

Memoria presentada para la obtencion
del titulo de Doctor

Jests Maria Aransay Azofra

Directores: Dr. D. Julio Rubio Garcia
Dr. D. Clemens Ballarin

Universidad de La Rioja

Departamento de Matematicas y Computacion

Logrono, Enero de 2006

Este trabajo ha sido parcialmente subvencionado por los proyectos DGES (PB98-
1621-C02) y SEUI-MEC (T1C2002-01626) del Gobierno Esparol, el projecto CALCULE-
MUS (HPRN-CT-2000-00102) de la Unién Europea, el proyecto ACP12002/06 de la Co-
munidad de La Rioja, y el proyecto API-02/24 y las becas ATUR02/03, ATUR03/03,

ATURO04/04 de la Universidad de La Rioja.

Agradecimientos

Julio Rubio y Clemens Ballarin hicieron posible este trabajo. Julio, desde la cercania,
me concedid la oportunidad de iniciarme en el camino de la investigacion. Gracias a
su interés disfruté de excelentes oportunidades académicas. Sin embargo, lo que mds
he de agradecerle es su disponibilidad para tratar todas las ideas, cuestiones o simples
comentarios que fueron surgiendo a lo largo de la elaboracion de la tesis, asi como su
cordialidad. Su entusiasmo me ayudo a superar muchos momentos dificiles. Clemens y
su atencion supusieron una gran motivacion para sequir adelante. A pesar de la distancia
que nos separd durante la elaboracion de la mayor parte de esta memoria, siempre se
mostro accesible y dispuesto a colaborar en todo lo necesario.

Dentro de nuestro grupo de investigacion en la Universidad de La Rioja, debo agrade-
cer la labor de Laureano Lambadn. Sus palabras siempre fueron de dnimo y sus consejos
utiles. Vico Pascual y César Dominguez fueron un gran ejemplo a sequir e intentaron
apoyarme con su experiencia. Con Juan José Olarte comparti mis primeros trabajos de
iwestigacion. Ana Romero, Mirian Andreés, Angel Luis Rubio, Francisco José Garcia y
Eloy Mata estuvieron dispuestos a escuchar y valorar cada una de las ideas que forman
parte de este trabajo. Aprovecho también la ocasion para agradecer a los integrantes del
Departamento de Matemdticas y Computacion de la Universidad de La Rioja el trato que
siempre me han deparado. No seria justo olvidar a todos aquellos amigos y companeros
que alguna vez pasaron por el despacho, aunque fuera con la simple intencion de tomar
un café o charlar un rato.

Jacques Calmet me concedio la oportunidad de trabajar durante seis meses en el
Institit fir Algorithmen und Kognitive Systeme de la Universitat Karlsruhe. Fsa es-
tancia sirvio para definir los problemas que se abordan en esta memoria, y a nivel per-
sonal, para comprobar lo dificil y satisfactoria que puede llegar a ser la investigacion.

El grupo de Tobias Nipkow en la Technische Universitat Minchen me acogio de
forma excelente durante diez semanas. Trabajar y convivir con todos ellos fue una gran
eTperiencia.

Finalmente, he de agradecer a mi familia el haber creido en mi y en lo que hacia.
Mis padres y mi hermano Oscar siempre me apoyaron y confiaron en mi. Judith, con su
animo, su paciencia y su carino, hizo que todo esto fuera mas fdacil y gratificante.

A todos ellos, gracias.

Indice General

Introduccién

1 Preliminares

2

1.1

1.2

1.3

Conceptos matematicos
1.1.1 Definiciones basicas en Algebra Homol6gica,
1.1.2 Estructuras Algebraicas
Maquinaria computacionalo
1.2.1 Elsistema Kenzo o
1.2.2 Estructuras de datos en Kenzo
Maquinaria de deduccion
1.3.1 Fundamentos de Isabelle

1.3.2 Estructuras en Isabelle

El Lema Basico de Perturbacién

2.1

2.2

Enunciado del Lema Basico de Perturbacionl
2.1.1 Motivacion topologicalo
2.1.2 Interpretacion algoritmica,
2.1.3 Aplicacién al Algebra Computacional en Topologia Algebraica, . .
Una demostracion detallada del Lema Basico de Perturbacion

2.2.1 Una demostracion detallada del Lema Basico de Perturbacion: las
SEIIeS|

2.2.2 Una demostracion detallada del Lema Basico de Perturbacion: los

© 4 I =

12
12
12
17
17
18

29
29
31
32
33

35

2.3 Version no graduada, o7

Mecanizando la demostracion: estudio de un caso en Isabelle 59
3.1 Introduccion/ 59
3.2 Bl demostrador de teoremas: Isabellel 60
3.3 Un ejemplo introductorio| Lo 62
3.4 Codificando las matematicas L. 67
3.5 La aproximacion simbolicar o000 71

3.5.1 Las estructuras algebraicas 71

3.5.2 Representacion de las estructuras algebraicas y los homomorfismos 72

3.5.3 Lemas demostrados en Isabelle 74
3.0.4 Discusion 76
3.6 La aproximacion conjuntista 78
3.6.1 Las estructuras algebraicas 78
3.6.2 Representacion de las estructuras algebraicas 80
3.6.3 Homomorfismos entre estructuras algebraicas/. 81
3.6.4 Lemas demostrados oo 84
3.6.5 Discusion 91
3.7 La aproximacion basada en morfismos 94
3.7.1 Las estructuras algebraicas 94
3.7.2 Representacion de las estructuras algebraicas/. 95
3.7.3 Homomorfismos entre estructuras algebraicas/. 96
3.7.4 Lemas demostradoso 108
3.0.5 Discusion 114
3.8 La aproximacion por interpretacion 116
3.8.1 Representacion de las estructuras algebraicas 117
3.8.2 Homomorfismos entre estructuras algebraicas/. 118
3.8.3 Lemas demostrados Lo 119

3.8.4 DISCUSION, 122

i

4 Extraccion de programas de Algebra Computacional a partir de enun-

ciados 125
4.1 Introducciono 125
4.2 El programa Kenzo: algunos fragmentos 126
4.3 Ejemplos elementales oo 129
4.4 Aplicacion al Algebra Computacional| 144
5 Conclusiones y trabajo futuro 149
0.1 Conclusiones 149
5.2 Trabajo futuroo 154
A Ficheros Isabelle 157
A.1 Mecanizando la demostracion del Lema Basico de Perturbacion 157

A.2 Extraccién de programas de Algebra Computacional a partir de enunciados159

A.3 Lista detallada de ficheros 159

Bibliografia 161

il

Introduccion

Las Matematicas no son una ciencia formal. O, al menos, no son una ciencia formal en el
sentido estricto de la logica simbdlica. Los matematicos, generalmente, tienen mucha mas
libertad con respecto a los aspectos fundacionales, o al menos, formales. Por ejemplo,
cuando se aplica un resultado previo, se presta poca atencién a demostrar que todas las
condiciones previas se satisfacen, excepto en los casos en los que una condicién previa
parece dificil de ser probada o interesante por si misma. Obviamente, nociones tales
como las de dificultad o interés son bastante elusivas desde un punto de vista formal.

Sin embargo, éste no es un tema completamente subjetivo. El nivel de detalle parece
ser una cuestion social que depende de multiples variables, tales como la audiencia a la
que va destinado el texto (menor detalle en notas de investigacién, més detalle en libros
de texto) o la disciplina en si misma (por ejemplo, es bien sabido que algunos argumentos
en fisica tedrica no son considerados suficientemente rigurosos desde un punto de vista
estrictamente matematico).

Con respecto a la logica en la que se basa el razonamiento, todavia se suele ser
mas difuso. Respecto a los fundamentos, generalmente se suele confiar en algin tipo de
teoria intuitiva de conjuntos, implicitamente basada, de una u otra forma, en el sistema
axiomatico de Zermelo-Fraenkel.

Las wariables son otra fuente de inexactitud en los textos matematicos. Muy a
menudo, el tipo de las variables (es decir, el rango de valores por los que una varia-
ble puede ser reemplazada) es indeterminado o basado en un convenio tipografico. Las
variables no siempre estan claramente definidas como libres o ligadas, y en este segundo
caso, es bastante inusual ser completamente preciso en temas como el rango de la cuan-
tificacion o el alcance de la ligadura. En este contexto, es bastante frecuente renombrar
una variable en algunos sitios, pero no en todas las ocurrencias apropiadas.

Dos consecuencias de esta presentacion informal de las Matematicas, de muy diferente
naturaleza (e importancia), pueden ser destacadas. Por una parte, una cierta cantidad de
demostraciones matematicas publicadas no pueden ser consideradas como tales, ya que
contienen errores (generalmente muy menores) desde un punto de vista formal. Por otra
parte, cierto grado de distanciamiento de las (tediosas) exigencias de la 16gica simbdlica
permite el desarrollo de las matematicas de una forma extremadamente rapida y potente,
que puede ser considerada como una caracteristica del area en general.

La razon para este comportamiento de las matemaéticas es que los matematicos han
alcanzado un alto nivel de razonamiento, y, ain més, parecen ser capaces de incrementar
de forma ilimitada el nivel de abstracciéon de su razonamiento.

. Por qué puede convivir cierto grado de inexactitud con la firme evoluciéon de las
matematicas? La respuesta depende de las diferencias entre tres conceptos relacionados:

e la idea sobre la que se basa una demostracion;
e la presentacion de la demostracion en un texto matematico;

e la demostracion en el sentido de la légica simbdlica.

Si una idea es correcta, entonces se acepta que su presentacion puede ser hecha en una
forma (més o menos) imprecisa. Por supuesto, la idea es correcta si puede ser convertida
(de un modo més o menos elaborado) en una demostracién en el sentido formal.

En la interrelacién entre estas tres entidades es donde se nos muestra la relevancia
de los demostradores de teoremas. Un demostrador de teoremas es un programa de
ordenador disenado con el propdsito de construir demostraciones en el sentido légico.
Desde un punto de vista utépico, un demostrador de teoremas deberia ser capaz de,
dada la idea de una demostracion, obtener la correspondiente demostracién formal de
una forma automadtica.

De hecho, historicamente, la meta de los primeros demostradores de teoremas era
incluso mas pretenciosa: dada una afirmacion, el sistema deberia ser capaz, automatica-
mente, de demostrarla o refutarla, y en el primer supuesto, deberia encontrar una prueba
formal de la afirmacién (que entonces pasaria a ser considerada un teorema). Estas expec-
tativas se vieron alimentadas por la solucion completa del caso proposicional, y también
por el algoritmo de resoluciéon de Robinson. De aqui surgio la primera generacién de
demostradores automaticos de teoremas (ver [Davis, 2001] para una revisién histérica
de estos primeros sistemas).

Sin embargo, y a pesar del éxito de sistemas tales como OTTER [McCune, 2003|,
prontamente se reconocié que una cierta intervencién humana seria necesaria, tanto
para definir las afirmaciones (en la formulacién precisa del demostrador automético de
teoremas") como para ofrecer al sistema guias que le ayuden a dirigir las demostraciones.
En los sistemas més automatizados, como pueden ser OTTER o ACL2 (para ACL2 se
puede consultar, por ejemplo [Kaufmann et al., 2000]), la intervencién mencionada se
organiza en forma de lemas auziliares.

Las posteriores generaciones de demostradores de teoremas surgieron del re-
conocimiento de la necesidad de esta intervencién humana: son los demostradores tdacticos
de teoremas. Estos programas permiten dirigir interactivamente la construccion de una
prueba formal. Los mas relevantes en nuestro contexto son Isabelle y Coq. Isabelle es un
asistente para la demostracién en l6gica de orden superior [Nipkow et al., 2002], disenado

'Esta tarea, en los casos no triviales, es significativamente importante.

como un demostrador de teoremas que es genérico con respecto a las logicas que im-
plementa. Coq es un demostrador interactivo de teoremas [Bertot and Castéran, 2004],
basado en el cdlculo inductivo de construcciones [Coquand and Huet, 1988].

Hoy en dia, cada demostrador de teoremas se puede interpretar como un punto en
la linea que va desde la demostracién automatica de teoremas (donde la entrada es una
afirmacién) a los verificadores de demostraciones (donde la entrada es una supuesta
demostracion formal). Como puntos intermedios se pueden encontrar sistemas que per-
miten al usuario dirigir la construccién de la prueba, y, en particular, los demostradores
tacticos de teoremas. Pero es preciso notar que las sugerencias que pueden ser dadas a
los demostradores de teoremas existentes estan mucho mas cercanas a la logica simbdlica
que a argumentos matematicos de alto nivel (como pueden ser encontrados en cualquier
texto matematico). Incluso si algunos teoremas interesantes han podido ser demostrados
con estas herramientas (por ejemplo, el Teorema Fundamental del Algebm demostrado
en Coq [Geuvers et al., 2002]), el tamanio y la complejidad de estos trabajos ilustra ade-
cuadamente el estado actual de los demostradores de teoremas, con respecto al legado
matematico heredado durante siglos.

Consecuentemente, se hace necesario una mayor investigaciéon con el objetivo de
hacer realmente ttiles los demostradores de teoremas a la comunidad matematica. Esta
memoria se centra en uno de los aspectos de dicha investigaciéon. De hecho, nuestra
motivacion inicial no era de una naturaleza genérica o filoséfica. Nuestro interés se centra
en un emergente campo de aplicacion de los demostradores de teoremas: demostrar la
correccién de programas de ordenador.

Mas concretamente, el primer objeto de interés es un sistema de Algebra Computa-
cional para el calculo en Topologia Algebraica llamado Kenzo. Los sistemas de software
EAT [Rubio et al., 1997] y Kenzo [Dousson et al., 1999] fueron escritos bajo la direccién
de Sergeraert para el Célculo Simbdlico en Topologia Algebraica y Algebra Homolégi-
ca. Estos sistemas han producido resultados relevantes (por ejemplo, algunos grupos de
homologia de espacios de lazos iterados) previamente desconocidos. Ambos sistemas se
caracterizan por un uso intensivo de algunas técnicas de programacion funcional, que
en particular permiten codificar y manipular en tiempo de ejecucion las estructuras de
datos infinitas que aparecen en los algoritmos de Topologia Algebraica. Como fue se-
nalado en [Calmet, 2003], la Topologia Algebraica es una de las dreas donde todavia se
pueden encontrar problemas que supongan un reto para los sistemas de Algebra Com-
putacional y los demostradores de teoremas.

Con el objetivo de incrementar el conocimiento sobre estos sistemas, se puso en mar-
cha hace algunos anos un proyecto para analizar formalmente fragmentos de estos pro-
gramas. En los tltimos anos, algunos resultados relativos a la especificacién algebraica de
las estructuras de datos han sido encontrados; véase, por ejemplo, [Lambén et al., 2003].
Continuando con este proceso, los algoritmos en los que aparecen estas estructuras de
datos son ahora nuestro objetivo, con el proposito de obtener versiones certificadas de
algunos fragmentos cruciales de Kenzo, usando el demostrador tactico de teoremas Is-
abelle. Los trabajos previos en Teoria de Grupos y la expresividad de la légica de orden

superior fueron las razones que nos llevaron a escoger Isabelle para nuestro trabajo.

Un primer resultado para el cual tratamos de implementar una demostracion es el
Lema Basico de Perturbacién, ya que su demostracion tiene un algoritmo asociado que
es usado en Kenzo como una de las partes centrales del programa.

Sin embargo, en esta memoria no se presenta una demostracién mecanizada com-
pleta del Lema Basico de Perturbacion. A lo largo del proceso de investigacién, nuestro
objetivo varié hacia el estudio de técnicas que doten a los sistemas con un mayor ni-
vel de razonamiento. Por lo tanto, preferimos explorar diferentes aproximaciones en un
(pequeno) fragmento de la demostracion, en lugar de incrementar el nimero de frag-
mentos demostrados.

Nuestra perspectiva es la de un usuario final. Es decir, no se ha considerado la posi-
bilidad de introducir cambios en Isabelle (atin cuando nuestro trabajo pueda inspirar
algunas nuevas caracteristicas en las versiones posteriores de Isabelle, en particular en el
mecanismo de interpretacién de locales). Tampoco nuestro punto de vista es el del inge-
niero de sistemas, sino el del matematico computacional. Por lo tanto, hemos perseguido
la introduccién de esquemas conceptuales, con el propdsito de incrementar el nivel de
razonamiento del sistema (Isabelle), en su estado actual. Consideramos que algunos de
esos esquemas han sido encontrados, como pretendemos ilustrar en esta memoria.

La organizacion de la memoria es la siguiente. En el Capitulo I, introducimos al-
gunos preliminares: en Matematicas (Algebra Homolé6gica elemental), demostradores de
teoremas (Isabelle), y Algebra Computacional. El Capitulo 2 esta dedicado a una de-
mostracion extremadamente detallada del Lema de Perturbacién Basico. El nivel de
detalle es mucho maés fino que en un libro de texto convencional. Esta (un poco) pesada
presentacién se justifica por tres motivos. El primero es hacer consciente al lector (y
previamente, al autor) del gran nimero de detalles que generalmente pasan inadvertidos
en cualquier argumento matematico simple. El segundo motivo es servir como diserio (de
nivel medio) de una demostracién mecanizada. El tercero es dejar claro que, incluso con
esta tediosa presentacion, la distancia con un demostrador de teoremas es muy grande.
Este hecho quedara claro cuando se lea el Capitulo 3, donde comienza la codificacién en
Isabelle de (fragmentos de) la demostracién.

El Capitulo 13 contiene nuestras contribuciones principales. Después de introducir
un lema que sirve de ejemplo, presentamos cuatro aproximaciones para mecanizar el
razonamiento en Algebra Homolégica. La primera aproximacion es llamada simbdlica
y estd caracterizada por su gran nivel de automatizacién y su baja capacidad expre-
siva. La segunda aproximacion, llamada conjuntista, intenta emular la forma “tedri-
ca” de razonamiento habitual en Matemadticas (“tedrica” porque las demostraciones
se vuelven impracticables rapidamente debido a su gran tamano). La tercera, llama-
da basada en morfismos, intenta usar las ventajas de las dos aproximaciones previas:
automatizaciéon y poder expresivo. En la cuarta aproximaciéon, se utiliza una mejora
técnica recientemente incorporada a Isabelle (llamada locales), lo que permite hacer
nuestras demostraciones méas cortas y legibles.

El Capitulo 4' explora brevemente un sistema para unir demostraciones y programas.
No pretendemos obtener programas més generales o més eficientes (esa aspiracién queda
fuera del alcance de la tecnologia actual, como explicaremos mas adelante). El objetivo
general es mas bien acercarnos a la meta inicial de nuestra investigacion: dar certificados
de correccion para para programas de Algebra Computacional. Es interesante resaltar
que desde este pequeno experimento hemos llegado, de forma un tanto inesperada, a
un problema de fundamentos importante: a saber, el caracter constructivo de nuestro
enfoque y, mas en general, de la Topologia Algebraica en si misma.

La aproximacién escogida es la extraccion de cddigo. De un texto formal (una de-
mostracién, una especificacion) se extrae (automdticamente) un programa ejecutable.
Este programa es, por construccién, correcto con respecto al texto formal usado como
fuente. En el contexto de los demostradores de teoremas, la aproximacion mas usual es
extraer codigo de las demostraciones (ver, por ejemplo, [Cruz-Filipe and Spitters, 2003]).
Sin embargo, los enunciados en Topologia Algebraica contienen, en la mayoria de los ca-
sos, la definicion de los objetos que deben ser computados, es decir: son enunciados
constructivos. Por lo tanto, el cédigo puede ser extraido a partir de los enunciados en
lugar de a partir de las demostraciones. Estas ideas seran ilustradas en el Capitulo 4
por medio de un ejemplo aritmético elemental (mas concretamente, relacionado con los
ntmeros primos). Al final del capitulo, se presenta un ejemplo simple de extraccién de
codigo en el area del Algebra Computacional.

La memoria termina con un capitulo de conclusiones y problemas abiertos
y la bibliografia. En el Apéndice Al se puede encontrar una enumeracién de-
tallada de los ficheros de Isabelle que han sido desarrollados para este tra-
bajo. Los ficheros de cbédigo Isabelle estan disponibles en la pagina web
http://www.unirioja.es/cu/jearansa/isabellefiles/. El nimero total de lineas
de codigo Isabelle y ML es aproximadamente 8850, y el nimero de KB es superior a los
500.

http://www.unirioja.es/cu/jearansa/isabellefiles/�

Resumen de los capitulos

Preliminares

Introducimos las nociones bésicas que van a ser utilizadas a lo largo de la memoria.
Estéa dividido en tres secciones. La Seccién1.1/esta dedicada a definiciones elementales en
Algebra Homoldgica. En la Seccién (1.2 se introduce el sistema de Algebra Computacional
Kenzo. Finalmente en la Seccién (1.3 se introduce el demostrador de teoremas Isabelle.

El Lema Basico de Perturbacion

En el Capitulo 2 se presenta una demostracién completa de un resultado relevante en el
area del Algebra Homoldgica, generalmente conocido como Lema Bésico de Perturbacién.
En la Seccion 2.1 se destaca la importancia del Lema Bésico de Perturbacion, poniendo
especial énfasis en sus aplicaciones. En la Seccion 2.2 se detalla la demostracion de este
resultado. Finalmente, en la Seccién 2.3 se enuncia una version no graduada del mismo
lema, que sera la que luego abordaremos con ayuda de un demostrador mecanizado.

Mecanizando la demostracion: estudio de un caso en
Isabelle

En el Capitulo 3/ se muestran los resultados hallados al tratar de obtener una de-
mostracion del Lema Bésico de Perturbacion en el demostrador de teoremas Isabelle.
En la Seccién 3.2 hacemos una exposicion de los motivos que nos llevaron a escoger
Isabelle entre los demostradores de teoremas disponibles. En la Seccion 3.3 se describen,
por medio de un ejemplo introductorio, las diferencias entre las cuatro aproximaciones
que planteamos para resolver el problema. La Seccién 3.4 presenta algunas herramien-
tas de especificacién algebraica que nos permitiran una descripcion mas precisa de la
diferente representacion del problema que se hace en cada una de las aproximaciones.
En las Secciones 3.5, 3.6, 13.7/y 3.8 se introducen las cuatro aproximaciones, mediante la
descripcion de sus aspectos formales, la presentacion de los fragmentos del Lema Bésico

de Perturbacion que se han demostrado con cada una de ellas, y la comparacion entre
ellas.

Extraccién de programas de Algebra Computacional
a partir de enunciados

En el Capitulo 4 se presenta una metodologia que permite la obtenciéon de programas
certificados, asi como varios ejemplos de uso. La metodologia se basa en la extraccion de
codigo, mediante una herramienta dispuesta para ello en Isabelle. El codigo es extraido
de definiciones, en lugar de extraerlo desde demostraciones, lo cual permite que la légica
empleada en esas demostraciones pueda ser mas rica. Las definiciones corresponden a
enunciados de teoremas que son, en si mismos, “constructivos”. Una vez esos teoremas
han sido demostrados de forma mecanizada, podemos extraer cddigo de las definiciones
asociadas a ellos. En la Seccion 4.2 introducimos el caso de estudio escogido en Kenzo: la
composicion de homomorfismos. Se presenta un fragmento de CLOS donde se muestra
la definicién de la composicién. En la Seccién 4.3/ escogemos un dominio mas conocido,
la aritmética elemental, para resolver un ejemplo relacionado con la demostracién de
Euclides de la existencia de infinitos primos. El propdsito es introducir las ideas princi-
pales sobre extraccion de codigo evitando la complejidad del Algebra Homolégica. Las
ideas introducidas nos permitiran extraer de nuestras definiciones en Isabelle un progra-
ma certificado ML que calcula un primo mayor que el natural que es su entrada. En la
Seccién 4.4 retomamos nuestro problema original sobre la composicién de morfismos, y
aplicando la misma metodologia obtenemos un programa ML (certificado correcto por
Isabelle) que compone dos morfismos.

Conclusiones y trabajo futuro

El Capitulo 5l esta dividido en dos secciones. En la Seccion 5.1 se presentan las con-
clusiones de nuestro trabajo. La Seccion 5.2/ presenta los problemas abiertos o atin sin
concluir que quedan a raiz de nuestro trabajo.

12

Conclusiones y Trabajo Futuro

Conclusiones

Este trabajo deberia ser entendido como un primer paso hacia la mecanizacién del ra-
zonamiento en Topologia Algebraica, con énfasis en su aplicacién a la demostracién
de la correccion de programas de Algebra Computacional. Mas concretamente, nues-
tra inspiracion proviene del sistema Kenzo [Dousson et al., 1999], y de trabajos previos
realizados para especificar dicho sistema [Lambén et al., 2003].

Nos hemos centrado en un resultado concreto, llamado Lema Basico de Perturbacién.
Después de explicar brevemente la relevancia del Lema Basico de Perturbacion en el
area de la Topologia Algebraica algoritmica, se ha presentado una demostracién muy
detallada del mismo. Esta demostracién sigue las directrices de una demostracién ori-
ginalmente presentada en [Rubio and Sergeraert, 1997]. Es interesante hacer notar que
en [Rubio and Sergeraert, 1997] se emplearon unas 70 lineas de texto para describir la
demostracién (incluyendo el enunciado y demostracién de un lema auxiliar), mientras
que en nuestra presentacion se han necesitado unas 20 paginas. Esta observacion deberia
ser examinada a la luz de tres elementos mencionados en la introduccion:

e la idea sobre la que se basa una demostracion;
e la presentacion de la demostracién en un texto matematico;

e la demostracion en el sentido de la légica simbdlica.

Nuestra demostracién del Lema Bésico de Perturbacion muestra cémo una misma idea
(punto 1) admite muy diferentes presentaciones (punto 2). El Capitulo [3/ de la memoria
ilustra claramente como, incluso en los casos de demostraciones exageradamente detalla-
das, una demostracién completa en el sentido de la 16gica simbdlica (punto 3) continia
siendo excesivamente distante.

Dos aspectos principales han sido detectados en nuestra demostracién (comparéandola
con la demostracién en [Rubio and Sergeraert, 1997]) que motivan el tamano de la pre-
sentacién de la demostracién. Por una parte, el hecho de que, cuando se razona con
complejos de cadenas, se deben considerar gran variedad de morfismos, dependiendo de

cémo respetan los grados y si son coherentes o no con respecto a las diferenciales. En ca-
sos extremos, una misma aplicacién puede ser considerada como un morfismo de grupos
o como un morfismo de complejos de cadenas en un mismo fragmento de demostracion.
Por otra parte, es bastante comin restringir un morfismo a algin subgrupo (o a algun
subcomplejo de cadenas) de su origen, y referirse al morfismo inicial y a su restriccién
de forma indistinta.

Ambos aspectos pueden ser considerados casos particulares de otro tema destaca-
do en la introduccién: la gran libertad para nombrar entidades en textos matematicos
estdandar. Una misma variable (incluso una misma letra) puede denotar diferentes obje-
tos (diferentes pero intimamente relacionados en un sentido conceptual, por supuesto)
en un mismo fragmento de demostracion.

Esta cuestion de las variables parece dificil de ser abordada de forma global (es tan
general que, en estos términos, se trata mds bien de un problema mal planteado). No
obstante, los dos casos particulares mencionados con anterioridad han sido tratados en
nuestro trabajo. El primero en, se podria decir, una forma interna en Isabelle; el segundo
en un modo que podria ser considerado externo a Isabelle.

El primer aspecto es solventado, en parte, usando una herramienta general de
Isabelle/HOL: los registros extensibles. Este tipo de datos provee a Isabelle con cier-
to tipo de herencia. Por lo tanto, un complejo de cadenas puede ser también considerado
simplemente como un grupo graduado por el sistema de tipos, y entonces los morfismos
entre estas estructuras pueden ser mas facilmente tratados.

Para el segundo problema, el de la restriccion, nuestra solucion ha sido representar
un morfismo como una estructura de datos mas compleja. Es decir, hemos cambiado
la forma en que son codificados los morfismos. Esta es la razén por la que considera-
mos esta propuesta como externa a Isabelle: no depende de ningin recurso de Isabelle,
sino de un nuevo esquema conceptual. Los morfismos son representados como ternas:
ademés de la informacién funcional (que incluye el dominio y codominio del morfismo),
el dominio y el codominio verdadero son también incorporados. Por lo tanto, una misma
aplicacion puede ser usada en diferentes morfismos, emulando la forma de trabajar de
los matemaéticos con respecto a las restricciones (y extensiones) de funciones.

Esta técnica de cambiar nuestra perspectiva de un objeto matemético dado (en el
ejemplo mostrado: variando de un morfismo representado como una aplicacion a un
morfismo como una terna), es un punto central en el Capitulo [3, donde realmente em-
pieza la codificacion de la demostracién del Lema Basico de Perturbacion en Isabelle.
Hemos desarrollado 4 aproximaciones diferentes para tratar de resolver los problemas
para un pequeno fragmento de la demostracién. La nocion de abstraccion, introducida
por Hoare para estudiar la implementacién de estructuras de datos [Hoare, 1972], nos
permite analizar las diferentes aproximaciones, y, ain mas, dirigir nuestra investigacion
en algunos puntos delicados.

Aunque la discusion realizada se restringe a un pequeno fragmento de la de-
mostracién, algunos de los problemas encontrados (y resueltos) son de naturaleza bas-

14

tante general, ya que estan relacionados con el razonamiento genérico con estructuras
algebraicas y morfismos. (Otra simplificacién mayor en el Capitulo [3 es la adopcion de
la version no graduada del Lema Basico de Perturbacion; no obstante consideramos esta
simplificacién como una cuestion técnica en un intento de separar problemas: los prob-
lemas de trabajar con estructuras graduadas son ortogonales a la cuestion central de
implementar una demostracién del Lema Bésico de Perturbacién en un demostrador de
teoremas.)

Para entender las diferentes aproximaciones que presentamos es necesario saber que la
demostracion del Lema Basico de Perturbacion utiliza morfismos. Entonces, un morfismo
puede ser visto de dos formas:

e como elemento de una estructura algebraica (el anillo de endomorfismos, por ejem-
plo);

e como una aplicacién entre conjuntos (satisfaciendo ciertas propiedades).

Es claro que la primera forma es incompleta, ya que nuestro interés esta relacionado
con el tratamiento algoritmico de morfismos (desde un punto de vista técnico, se puede
decir que esta representacion carece de contenido computacional). Pero también es cier-
to que la primera perspectiva permite el razonamiento con morfismos en un nivel de
abstraccién préximo al tipico en un texto matematico estandar. Nuestras tres primeras
aproximaciones exploran esta distincién (la cuarta es basicamente una reformulacién de
la tercera, usando una herramienta técnica de Isabelle, llamada locales).

En la primera aproximacion, que denominamos aprozimacion simbdélica, sélo la
primera interpretaciéon de los morfismos es considerada: un morfismo es representado
por medio de un elemento genérico (un simbolo) de un anillo genérico. Si una propiedad
relevante para el Lema Basico de Perturbacién puede ser expresada en este contexto,
se trata de un nivel de razonamiento muy eficiente. A este modo de razonamiento lo
hemos denominado razonamiento ecuacional: las demostraciones son desarrolladas por
reescritura de expresiones, aplicando los axiomas de estructuras algebraicas genéricas
(como anillos o grupos). Esto permite un alto grado de automatizacién, usando la técti-
ca de Isabelle algebra (desarrollada por C. Ballarin). Sin embargo, la expresividad de esta
aproximacién es baja (hay fragmentos de la demostracién del Lema Bésico de Pertur-
bacién que necesitan considerar los morfismos como aplicaciones; por ejemplo, cuando
es necesario restringir un morfismo a un subconjunto distinguido de su dominio) y, como
hemos mencionado previamente, carece de contenido computacional.

Por lo tanto, se necesitan nuevas ideas. En nuestra segunda aproximaciéon considera-
mos los morfismos en la segunda forma citada anteriormente: una aplicacion en el sentido
de la teoria de conjuntos satisfaciendo ciertas propiedades. Esta aproximacion ha sido
nombrada aprorimacion basada en teoria de conjuntos o simplemente aproximacion con-
Juntista. Este punto de vista es el mas ortodoxo en un sentido simplista: desde la teoria
de conjuntos, una jerarquia de estructuras algebraicas es construida, como en Algebra
Universal. Hemos intentado emular esta forma de trabajar en Isabelle, empezando desde

15

las estructuras més elementales (tales como magma, semigrupo, monoide, ...). La prin-
cipal herramienta para este fin han sido los registros extensibles, que dotan a Isabelle
de caracteristicas interesantes relacionadas con la herencia. Esto permite también tratar
con los distintos tipos de morfismos que pueden ser definidos sobre una misma estructura
algebraica, como mencionamos anteriormente.

A pesar de su validez, y de la ayuda técnica de Isabelle, rapidamente se hace evidente
que las demostraciones no son factibles: descender siempre al razonamiento con los ele-
mentos de las estructuras algebraicas (en lugar de trabajar con las estructuras mismas,
y con sus propiedades como tales) incrementa enormemente la longitud de las demostra-
ciones, e, incluso peor, oculta los pasos légicos importantes entre cantidad de tediosos
detalles técnicos. La conclusién es la confirmacién de algo ya conocido: los matemaéticos
hacen uso de las herramientas de bajo nivel en teoria de conjuntos sélo para establecer
fundamentos; después, trabajan con un alto nivel de razonamiento.

La tercera aproximacién intenta reunir las ventajas de las dos aproximaciones pre-
vias, evitando sus inconvenientes. En otras palabras, hemos intentado recobrar el ra-
zonamiento ecuacional (y por consiguiente, un alto nivel de automatizacién) sin perder
expresividad y capacidad de calculo. Para este propdsito, ha sido necesario cambiar en
profundidad la representacién de los morfismos, tanto desde un punto de vista opera-
cional como desde un punto de vista estructural.

Desde la primera perspectiva, ha sido necesario tratar la parcialidad, para poder
conseguir una representacion donde la igualdad en el modelo abstracto (es decir, la
igualdad en matematicas) provenga de la igualdad en la memoria del ordenador (en otras
palabras, de la igualdad como objetos de Isabelle). Isabelle s6lo admite funciones totales y
los morfismos en Algebra Homoldbgica son también aplicaciones totales. Entonces, ;dénde
aparece la parcialidad? Las funciones parciales aparecen debido a la siguiente razén:
las funciones Isabelle son totales con respecto a sus tipos. Pero los morfismos no son
definidos sobre los tipos, sino sobre conjuntos que actian como soporte (carrier, en
inglés) de las estructuras algebraicas. Por lo tanto, cuando representamos un morfismo
en Isabelle, solo los datos del tipo al que pertenece el soporte tienen una imagen bien
definida. Cada dato fuera del soporte debe tener una imagen (ya que las funciones en
Isabelle son totales) pero las Mateméticas no dicen nada sobre la imagen, que es definida
arbitrariamente. Por lo tanto, cuando queremos utilizar la igualdad de Isabelle entre dos
morfismos (y esto es necesario si el razonamiento ecuacional ha de funcionar), resulta que
el sistema no es capaz de decidir, debido a los valores arbitrarios de la funcién Isabelle
fuera del soporte. Nuestra solucion consiste en enviar cada dato fuera del soporte al
elemento neutro de la estructura algebraica que representa el codominio de la funcién
Isabelle. Esta complecion implica que dos morfismos iguales en el modelo abstracto son
representados en el ordenador por dos objetos que son reconocidos como iguales por
Isabelle (en términos técnicos, la representacién es fiel: la funcién de abstraccién es
inyectiva). Entonces, el razonamiento ecuacional es, en principio, posible.

Pero, desde un punto de vista estructural, encontramos el problema de las variables
mencionado anteriormente: la demostracion del Lema Basico de Perturbacion usa in-

16

tensivamente que la misma aplicacién puede definir diferentes morfismos, cambiando su
dominio o codominio. Estos elementos son generalmente denotados por la misma varia-
ble, permitiendo al usuario demostraciones mas cortas y claras. Para obtener este nivel
de abstraccién méas alto en Isabelle, cambiamos una vez mas nuestra representacion de
los morfismos. Ahora, una (complecién de) funcién es codificada con un dominio y un
codominio. Estas ternas nos permiten pasar de un morfismo a una de sus restricciones
(por ejemplo), sin reconstruir la estructura completa: sélo se requiere la modificacién de
uno de sus campos.

Una vez que estas modificaciones operacionales y estructurales han sido dispuestas,
es necesario demostrar que el conjunto de los endomorfismos de un grupo conmutativo
(representados como ternas) en Isabelle puede ser dotado de una estructura de anillo
con las operaciones correspondientes. Como era previsible, el nimero de lineas de cédigo
para demostrar este teorema en Isabelle es bastante considerable, siendo mayor que en las
demostraciones desarrolladas en la segunda aproximacién (jque hemos calificado como no
factibles!). Esto es bastante natural: el trabajo necesario para una infraestructura puede
ser asumido, debido a la importancia de la reutilizacion que puede ser hecha de esos
resultados. En nuestro caso, en particular, el razonamiento ecuacional es completamente
recuperado con esta aproximacion, incluida la automatizacién obtenida con la tactica
algebra.

Finalmente, la cuarta aproximacion, llamada aproximacion por instanciacion, no es
de la misma naturaleza que las anteriores. La razon es que la mejora cualitativa obtenida
con ella es debida a un recurso interno de Isabelle, llamado locales. La instanciacion
de los locales permite al usuario algunas comodidades notacionales importantes: varias
instancias de una misma estructura algebraica (varios anillos, por ejemplo) pueden ser
usadas en el mismo fragmento de Isabelle, importando cada propiedad que haya sido
probada para ellas. Incluso si la expresividad no es especialmente potenciada en nuestro
contexto, las comodidades introducidas por los locales pueden implicar una mejora en
la legibilidad y en la construccién de demostraciones que no debe ser subestimada.

En el Capitulo |4, nuestros resultados tienen un doble interés. Por una parte, nos
permiten ir mas lejos en nuestro problema inicial de probar la correcciéon de Kenzo. Por
otra parte, implican una busqueda de la relacién de nuestro trabajo con el construc-
tivismo. En cambio, hemos ignorado otros problemas relacionados con la extraccién de
programas. Por ejemplo, no nos hemos ocupado de que los programas extraidos mejoren
(en cuanto a su generalidad o eficiencia) a los que estédn actualmente en uso. La razén
principal de esta decision estd basada en las limitaciones de la tecnologia actual.

La principal herramienta en el Capitulo 4 es el sistema disenado por S. Berghofer
para extraer programas ML de cédigo Isabelle (|[Berghofer, 2003al, Berghofer, 2003b),
Berghofer, 2004]). Debido a la riqueza de la légica de orden superior, no esté claro
que cualquier fragmento de Isabelle pueda ser utilizado para extraer cédigo de él. Esto
da lugar a interesantes problemas en las limitaciones de la aplicacién de Berghofer y
también en la comparaciéon con otros sistemas basados en matemaéaticas constructivas
(Coq [Bertot and Castéran, 2004] es la alternativa més cercana). En lugar de afrontar

17

este problema con un espiritu tedrico, tratamos de seguir un camino més prdctico: estu-
diar la aplicacién del programa de Berghofer a algoritmos del Algebra Homoldgica. Se
puede observar que la mayor parte de los teoremas interesantes (como se documenté en
el Capitulo 2)) tienen una propiedad resefiable: en el enunciado, un objeto (estructura
algebraica, morfismo, reduccidn, ...) es definido, y alguna de sus propiedades es hecha
explicita. Hemos definido este tipo de enunciado como enunciado constructivo. La clave
es que entonces el c6digo puede ser extraido del enunciado (o, siendo mds precisos, de
la definicién implicita en el enunciado), sin hacer ninguna referencia a la demostracién.
Como la demostracién no es relevante para el cédigo extraido (excepto en la cuestién
esencial de asegurar su correccién, por supuesto), la 16gica empleada en la demostracién
queda desligada del mecanismo de extraccién. En particular, la demostracién puede ser
no constructiva.

Para reducir la complejidad del cédigo y de las demostraciones, exploramos este de-
licado problema con un ejemplo mas elemental, por medio de un programa simple en
Common Lisp que calcula el primo siguiente a un nimero natural dado como argumen-
to. Aun siendo simple, este ejemplo no es trivial: es precisamente el mismo ejemplo que
Markov eligi6 ([Markov, 1971]) para ilustrar su generalizacién de las matematicas cons-
tructivas (conocida hoy en dia como matemdticas constructivas recursivas). En lugar de
intentar demostrar la correcciéon de ese programa por medio de Isabelle (aparte de las
dificultades tedricas relacionadas con el constructivismo, deberiamos afrontar el proble-
ma de vincular Common Lisp y ML), hemos reformulado el problema para establecerlo
como un enunciado constructivo. Entonces, un programa ML equivalente al inicial ha
sido obtenido con ayuda de la aplicaciéon de Berghofer, mientras que el teorema ha sido
demostrado usando un argumento de “reductio ad absurdum”, lo cual nos da una idea de
su no constructivismo. Todos estos resultados, bastante costosos en niimero de lineas en
Isabelle, equivalen a programar en Isabelle (ademés de la habituales tareas de especificar
y demostrar en Isabelle). Las ideas previas han sido aplicadas después a un caso sencillo
en Algebra Homolo6gica: la composicion de dos morfismos.

En resumen, la memoria contiene bastantes propuestas meditadas con el objetivo
de mecanizar el razonamiento en Algebra Homolégica y obtener programas de Algebra
Computacional certificados para este area. En particular, hemos destacado la importan-
cia del proceso de abstraccion en matematicas mecanizadas, y hemos introducido varios
esquemas conceptuales que podrian ser reutilizados en diversas areas de aplicacién. Otro
resultado de nuestra investigacién es mostrar las limitaciones de ciertas aproximaciones,
y establecer los puntos dificiles en el trabajo que queda por hacer. Queda claro que la
investigacion no esta concluida: asegurar que nuestras propuestas son realmente reuti-
lizables es necesario para avanzar en la demostracion del Lema Baésico de Perturbacion,
y también habrd que aplicar los métodos de extraccién a fragmentos de los algoritmos
mas complejos. Explicamos nuestros proyectos futuros en la siguiente (y tltima) seccién.

18

Trabajo Futuro

En primer lugar, seria necesario comparar nuestros hallazgos con otros enfoques.
Y esto no tanto con respecto a otras soluciones a nuestro mismo problema (nues-
tro trabajo, en este sentido, es bastante innovador y original, en nuestra humilde
opinién), como respecto a otras herramientas alternativas a las utilizadas hasta la
fecha por nosotros. La herramienta més conveniente para comenzar esta compro-
bacién seria el sistema Coq [Bertot and Castéran, 2004]. Para ello, podria interesar
el basarse en el sistema FOCAL [Foc, 2005], que proporciona un entorno integra-
do para la especificacién, la programacién (por medio del lenguaje de programacién
OCAML [Leroy et al., 2005, Boulmé et al., 1999]) y la demostracién (por medio de Coq).

Pero el trabajo més evidente que queda por realizar es completar la segunda parte de
la demostracion del Lema Basico de Perturbacion. Consideramos que nuestras propuestas
seran suficientes para este fin. Quiza la cuestion abierta mas importante sea conocer si
nuestro tratamiento del problema de la igualdad es suficiente. Hasta ahora, la igualdad
entre morfismos ha sido tratada (por medio de la nocién de complecion) de tal forma
que se ha hecho innecesario sobrecargar la definicién de la igualdad en Isabelle. En
situaciones donde la igualdad se extiende a estructuras algebraicas, quizas la sobrecarga
u otras ideas técnicas o conceptuales podrian ser necesarias.

Posteriormente, la primera parte de la demostracién deberia ser considerada. Trata
con una serie funcional, y parece claro que cierta clase de proceso inductivo deberia ser
introducido para manejar esta estructura infinita. Aunque Isabelle soporta esta clase
de razonamiento, pueden aparecer cuestiones complicadas, relacionadas tanto con la
extraccién de cédigo como con los aspectos de fundamentos.

Efectivamente, la extraccién de codigo ML a partir de demostraciones rutinarias en
Algebra Homoldgica (como las que aparecen en la segunda parte de la demostracién
del Lema Bésico de Perturbacién) parece estar resuelta por medio de la aplicacién de
Berghofer y nuestra técnica de enunciados constructivos. Sin embargo, la serie puede
presentar problemas de terminacion, y es mas dificil, sin una mayor investigacion, prever
si la tecnologia actual sera suficiente. Explicaremos este punto con un poco maéas de
detalle.

Las demostraciones en el Capitulo 2 referentes a series estan basadas en el hecho de
que las series funcionales formales definen un morfismo, ya que cuando son aplicadas a
cada elemento se convierten en una suma finita. Esto depende de la nocién de endomor-
fismo localmente nilpotente. En la version presentada en esta memoria (la usual en la
literatura) la situacién es muy similar al ejemplo aritmético considerado en el Capitulo 4:
se sabe que existe una cota, pero no hay informacion explicita sobre ella. Por lo tanto,
demostrar la terminacion es problematico y necesitaria el principio de Markov, yendo
mas alld del constructivismo estricto (y por tanto, quizé, mas alld de las capacidades de
la aplicacién de Berghofer). No obstante, desde un punto de vista pragmatico, la defini-
ci6én puede ser transformada en constructiva (dando lugar a la nocién de nilpotencia local
constructiva), requiriendo una funcién explicita que calcule el grado de nilpotencia de

19

cada elemento. Esta nueva definicién es aplicable a cualquier instancia del Lema Basico
de Perturbacién que haya sido utilizada en Kenzo (y, hasta donde sabemos, en cualquier
aplicacion en Algebra Homolégica algoritmica o Topologia Algebraica), mostrando una
via para la extraccion de c6digo en este marco (no muy diferente de nuestro tratamiento
en el Capitulo 4] del ejemplo de los niimeros primos).

Esta pequena discusion senala claramente que el problema de la naturaleza funda-
cional de la Topologia Algebraica (si puede ser presentada como estrictamente constructi-
vo, recursivamente constructiva o simplemente no constructiva) permanece abierto (esta
cuestién ha aparecido en varias ediciones de las conferencias Mathematics, Algorithms,
Proofs; ver una pequena resena sobre este tema en el MAP2005 en [Rubio, 2005]).

Incluso si cualquier problema préactico o tedrico es resuelto, y el codigo ML es extraido
del Lema Bésico de Perturbaciéon implementado en Isabelle, todavia quedara el salto
entre ML y Common Lisp (el lenguaje de programacién en el que Kenzo fue escrito).
Varias aproximaciones son posibles en este punto. Una de ellas es extraer codigo de
Isabelle a Common Lisp. La otra seria escribir un traductor de ML a Common Lisp
(jeertificado!). Ambos proyectos merecen atencién, también fuera de nuestro contexto
de aplicacion.

Y yendo un paso mas alla, incluso si se pudiese extraer cédigo Common Lisp, el
problema de generar cédigo similar al de Kenzo seguird abierto. En otras palabras, el
problema de extraer c6digo eficiente (comparable a Kenzo) no parece posible en el estado
actual de la tecnologia. Esta es la razén por la que nuestra aproximacion al problema es
muy similar a la mostrada en esta memoria con respecto a la demostracién mecanizada
del Lema Basico de Perturbacién. El objetivo no es obtener una demostracion automatica
completa, sino incrementar nuestro conocimiento (sobre la misma demostracién del Lema
Basico de Perturbacién, sobre los limites de los sistemas de razonamiento mecanizado
actuales, o, en definitiva, sobre la interaccién entre las Matematicas y la Informatica).
En esta misma direccién, el objetivo real no es demostrar de forma automatizada la
correcciéon de Kenzo (que es un sistema bastante seguro, después de muchos anos de
exitoso testing), sino encontrar métodos que incrementen la fiabilidad de programas
informaticos, sin perder eficiencia o aplicabilidad. Los demostradores automaticos de
teoremas pueden ser una de las herramientas para este proposito. La principal contribu-
cion de esta memoria es haber dado un pequeno paso en esa direccion.

20

Publicaciones

e Aransay, J., Ballarin, C. y Rubio, J. . Towards an automated proof of
the Basic Perturbation Lemma. En Giménez, P., editor, EACA 2002,
Octavo Encuentro de Algebra Computacional y Aplicaciones, Penaranda
de Duero, Spain, September 2002, paginas 91-95. Universidad de Valla-
dolid.

El Lema Bdsico de Perturbacion es una herramienta fundamental para el diseno
de algoritmos en /[lgebm Homologica. Presentamos el estado de un proyecto para
dar una demostracion mecanizada del Lema Bdsico de Perturbacion, usando el de-
mostrador tactico de teoremas Isabelle. En particular, presentamos un lema con-
creto junto a su demostracion mecanizada, ilustrando el nivel de abstraccion que
pretendemos alcanzar.

e Aransay, J., Ballarin, C. y Rubio, J. . Mechanizing proofs in Homolo-
gical Algebra. En Zimmer, J. and Benzmiiller, C., editors, Calculemus
Autumn School 2002: Poster Abstracts, volume SR-02-06, paginas 13—
19. Universitat des Saarlandes.

En los ltimos anos, ha habido un creciente interés en el Calculo Simbdlico en
/flgebm Homolégica y en Topologia Algebraica. Una herramienta esencial para el
diseno de algoritmos en este drea es el Lema Bdsico de Perturbacion. Aqui se
presenta un proyecto para construir una demostracion mecanizada de este lema
por medio del demostrador tdctico de teoremas Isabelle. Ademds, un modelo de
representacion para las estructuras algebraicas que han de ser implementadas en
nuestro proyecto es propuesto.

e Aransay, J., Ballarin, C. y Rubio, J. . Deduction and Computation
in Algebraic Topology. En IDEIA 2002, IBERAMIA 2002, I Taller
Iberoamericano sobre Deducciéon Automatica e Inteligencia Artificial,
Sevilla, Spain, October 2002, paginas 47-54. Universidad de Sevilla.

En este articulo se presenta un proyecto para desarrollar una demostracion asistida
por ordenador del Lema Bdsico de Perturbacion. Este lema es uno de los resul-
tados centrales en Topologia Algebraica algoritmica, y obtener una demostracion
mecanizada de €l seria un primer paso para incrementar la fiabilidad de muchos
sistemas de Cdlculo Simbdlico en este drea. Se describen algunas técnicas para
codificar las estructuras algebraicas necesarias en el demostrador de teoremas Isa-
belle, y se incluye una secuencia de lemas de alto mivel disenados para alcanzar
dicha demostracion mecanizada.

e Aransay, J., Ballarin, C. y Rubio, J. . Towards a higher reasoning level
in formalized Homological Algebra. En Hardin, T. and Rioboo, R., edi-
tors, Calculemus 2003, 11th Symposium on the Integration of Symbolic
Computation and Mechanized Reasoning, Rome, Italy, September 2003,
paginas 84—88. Aracne Editrice S.R.L.

21

Introducimos una posible solucion para algunos problemas encontrados cuando
se trata de mecanizar demostraciones de teoremas en /flgebm Homologica: como
tratar con funciones parciales en una logica de funciones totales y como consequir
un nivel de abstraccion que permita al demostrador trabajar con morfismos de for-
ma ecuacional.

Aransay, J., Ballarin, C. y Rubio, J. . Four approaches to automat-
ed reasoning with differential algebraic structures. En Buchberger, B.
and Campbell, J. A., editors, AISC 2004, 7th International Confer-
ence on Artificial Intelligence and Symbolic Computation, Linz, Aus-
tria, September 2004, volumen 3249 de Lecture Notes in Artificial In-
telligence, paginas 222-235. Springer.

Al implementar una demostracion del Lema Bdsico de Perturbacion (un resulta-
do central en /flgebm Homoldgica) en el demostrador de teoremas Isabelle uno se
encuentra con problemas tales como la implementacion de estructuras algebraicas,
funciones parciales en una logica de funciones totales, o el nivel de abstraccion en
demostraciones formales. Diferentes aprorimaciones encaminadas a resolver estos
problemas son evaluadas y clasificadas de acuerdo a caracteristicas tales como el
grado de mecanizacion alcanzado o la correspondencia directa con las demostra-
ciones matematicas. Basdndonos en este estudio, proponemos un entorno para
futuros desarrollos en /flgebm Homologica.

Aransay, J., Ballarin, C. y Rubio, J.. Extracting computer algebra pro-
grams from statements. En Moreno-Diaz, R., Pichler, F., and Quesada-
Arencibia, A., editors, EUROCAST 2005, 10th International Conference
on Computer Aided Systems Theory, Las Palmas de Gran Canaria,
Spain, February 2005, volumen 3643 de Lecture Notes in Computer
Science, paginas 159-168. Springer.

En este articulo se presenta una aprorimacion para la obtencion de programas
correctos a partir de especificaciones. La idea es extraer codigo de las definiciones
que aparecen en los enunciados que han sido demostrados mecanizadamente con
la ayuda de un asistente a la demostracion. Esta aprorimacion ha sido hallada al
demostrar la correccion de ciertos programas de /flgebm Computacional (para la
Topologia Algebraica) usando el asistente Isabelle. Para facilitar la comprension de
nuestras técnicas, las ilustramos con algunos ejemplos sobre aritmética elemental.

22

	Portada
	Acknowledgements
	Contents
	Introduction
	1. Preliminaries
	1.1 Mathemetical Machinery
	1.2 Computing Machinery
	1.3 Deduction Machinery

	2. The Basic Perturbation Lemma
	2.1 Statement of the BPL
	2.2 A detailed proof of the BPL
	2.3 Ungraded version

	3. Mechanizing the proof: a case study in Isabelle
	3.1 Introduction
	3.2 The theorem prover: Isabelle
	3.3 An introductory example
	3.4 Encoding mathematics
	3.5 The symbolic approach
	3.6 The set theoretic approach
	3.7 The morphism based approach
	3.8 The interpreting approach

	4. Extracting Computer Algebra Programs from Statements
	4.1 Introduction
	4.2 The Kenzo program: some tragments
	4.3 Elementary examples
	4.4 Application to Computer Algebra

	5. Conclusion and Further Work
	5.1 Conclusion
	5.2 Further work

	A. Isabelle Files
	A.1 Mechanizing the proof of the BPL
	A.2 Extracting Computer Algebra Programs from Stategements
	A.3 Detailed list of files

	Bibliography
	Portada en Castellano
	Agradecimientos
	Índice General
	Introducción
	Resumen de los capítulos
	Preliminares
	El Lema Básico de Perturbación
	Mecanizando la demostración: estudio de un caso en Isabelle
	Extracción de programas de Álgebra Computacional a partir de enunciados
	Conclusiones y trabajo futuro

	Conclusiones y Trabajo Futuro
	Conclusiones
	Trabajo Futuro

	Publicaciones

