
 
 
 
 
 
 

 
FAST ML ESTIMATION OF DYNAMIC BIFACTOR MODELS: 

AN APPLICATION TO EUROPEAN INFLATION 
 
 

 
Gabriele Fiorentini, Alessandro Galesi  

and Enrique Sentana 
 
 

CEMFI Working Paper No. 1502 
 

 
 
 

February 2015 
 
 
 

CEMFI 
Casado del Alisal 5; 28014 Madrid 

Tel. (34) 914 290 551 Fax (34) 914 291 056 
Internet: www.cemfi.es 

 
 
 

 
 
 
 
 
 
We are grateful to Ángel Estrada and Albert Satorra, as well as to audiences at the Advances in 
Econometrics Conference on Dynamic Factor Models (Aarhus, 2014), the EC2 Advances in Forecasting 
Conference (UPF, 2014) and the Italian Congress of Econometrics and Empirical Economics (Salerno, 
2015) for helpful comments and suggestions. Financial support from MIUR through the project 
“Multivariate statistical models for risk assessment” (Fiorentini) is gratefully acknowledged. 



CEMFI Working Paper 1502 
February 2015 

 
 
 
 
 

FAST ML ESTIMATION OF DYNAMIC BIFACTOR MODELS: 
AN APPLICATION TO EUROPEAN INFLATION 

 
 
 

Abstract 
 
 
 
We generalise the spectral EM algorithm for dynamic factor models in Fiorentini, Galesi 
and Sentana (2014) to bifactor models with pervasive global factors complemented by 
regional ones. We exploit the sparsity of the loading matrices so that researchers can 
estimate those models by maximum likelihood with many series from multiple regions. 
We also derive convenient expressions for the spectral scores and information matrix, 
which allows us to switch to the scoring algorithm near the optimum. We explore the 
ability of a model with a global factor and three regional ones to capture inflation 
dynamics across 25 European countries over 1999-2014. 
 
 
JEL Codes: C32, C38, E37, F45. 
Keywords: Euro area, Inflation convergence, spectral maximum likelihood, Wiener-
Kolmogorov filter. 
 
 
 
Gabriele Fiorentini 
Università di Firenze 
fiorentini@disia.unifi.it 

Alessandro Galesi 
CEMFI 
alessandro.galesi@cemfi.es 

Enrique Sentana 
CEMFI 
sentana@cemfi.es 

 
 



1 Introduction

The dynamic factor models introduced by Geweke (1977) and Sargent and Sims (1977) con-

stitute a �exible tool for capturing the cross-sectional and dynamic correlations between multiple

series in a parsimonious way. Although single factor versions of those models prevail because

their ease of interpretation and the fact that they provide a reasonable �rst approximation to

many data sets, there is often the need to add more common factors to adequately capture the

o¤-diagonal elements of the autocovariance matrices. When the cross-sectional dimension, N , is

commensurate with the time series dimension, T , one popular solution is to rely on the approx-

imate factor models structures originally introduced by Chamberlain and Rothschild (1983) in

the static case, which allow for some mild contemporaneous and dynamic correlation between

idiosyncratic terms (see e.g. Bai and Ng (2008) and the references therein). Unfortunately,

the cross-sectional asymptotic boundedness conditions on the eigenvalues of the autocovariance

matrices of the idiosyncratic terms underlying those approximate factor models are largely mean-

ingless in empirical situations in which N is small relative to T . In those situations in which it

is natural to group the N series into R homogeneous blocks, an attractive solution are bifactor

models with two types of factors:

1. Pervasive common factors that a¤ect all N series

2. Block factors that only a¤ect a subset of the series, such as the ones belonging to the same

country or region.

In principle, Gaussian (P)MLEs of the parameters can be obtained from the usual time do-

main version of the log-likelihood function computed as a by-product of the Kalman �lter predic-

tion equations or from Whittle�s (1962) frequency domain asymptotic approximation. Further,

once the parameters have been estimated the Kalman smoother or its Wiener-Kolmogorov coun-

terpart provide optimally �ltered estimates of the latent factors. These estimation and �ltering

issues are well understood (see e.g. Harvey (1989)), and the same can be said of their numer-

ical implementation (see Jungbacker and Koopman (2008)). In practice, though, researchers

may be reluctant to use ML because of the heavy computational burden involved, which is

disproportionately larger as the number of series considered increases.

In the context of standard dynamic factor models, Watson and Engle (1983) and Quah

and Sargent (1993) applied the EM algorithm of Dempster, Laird and Rubin (1977) to the time

domain versions of these models, thereby avoiding the computation of the likelihood function and

its score. This iterative algorithm has been very popular in various areas of applied econometrics

(see e.g. Hamilton (1990) in a di¤erent time series context). Its popularity can be attributed
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mainly to the e¢ ciency of the procedure, as measured by its speed, and also to the generality

of the approach, and its convergence properties (see Ruud (1991)). However, the time domain

version of the EM algorithm has only been derived for dynamic factor models in which all the

latent variables follow pure Ar processes, and works best when the e¤ects of the common factors

on the observed variables are contemporaneous, which substantially limits the class of models

to which it can be successfully applied.

In a recent companion paper (Fiorentini, Galesi and Sentana (2014)), we introduced a fre-

quency domain version of the EM algorithm for general dynamic factor models with latentArma

processes. We showed there that our algorithm reduces the computational burden so much that

researchers can estimate such models by maximum likelihood with a large number of series even

without good initial values. The purpose of the current paper is to extend our methods to

dynamic versions of bifactor models.

We illustrate our procedure with an empirical application in which we study the dynamics of

European in�ation rates since the creation of the European Monetary Union (EMU). Speci�cally,

we consider a dynamic bifactor model with a single global factor and three regional factors

representing core, new entrant and outside EMU countries.

The rest of the paper is organised as follows. In section 2, we review the properties of dy-

namic factor models and their �lters, as well as maximum likelihood estimation in the frequency

domain. Then, we derive our estimation algorithm and present a numerical evaluation of its

�nite sample behaviour in section 3. This is followed by the empirical application in section 4

and our conclusions in section 5. Auxiliary results are gathered in appendices.

2 Theoretical background

2.1 Dynamic bifactor models

Let yt denote a �nite dimensional vector of N observed series, which can be grouped into R

di¤erent categories or blocks as follows

y0t =
�
y01t : : : y0rt : : : y0Rt

�
;

where y1t is of dimension N1, yrt of dimension Nr and yRt is of dimension NR, with N1 + : : :+

Nr + : : :+NR = N . Henceforth we shall refer to each category as a �region�, even though they

could represent alternative groupings.

To keep the notation to a minimum, we focus on models with a single global factor and a

single factor per region, which su¢ ce to illustrate our procedures. Speci�cally, we assume that
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yt can be de�ned in the time domain by the system of dynamic stochastic di¤erence equations

yrt = �r + crg(L)xgt + crr(L)xrt + urt; r = 1; : : : ; R
�xg(L)xgt = �xg(L)fgt;

�xr(L)xrt = �xr(L)frt; r = 1; : : : ; R
�ui(L)ui;t = �ui(L)vi;t; i = 1; : : : ; N;

(fgt; f1t; : : : ; fRt; v1t; : : : ; vNt)jIt�1;�;� � N [0; diag(1; 1; ; : : : ; 1;  1; : : : ;  N )];

9>>>>=>>>>; (1)

where xgt is the global factor, xrt (r = 1; : : : ; R) the rth regional factor, ut = (u01t; : : : ;u
0
rt; : : : ;u

0
Rt)

0

the N speci�c factors,

crg(L) =

ngX
k=�mg

crgkL
k (2)

crr(L) =

nrX
l=�mr

crrlL
k (3)

for (r = 1; : : : ; R) are NR � 1 vectors of possibly two-sided polynomials in the lag operator

cig(L) and cir(L), �xg(L), �xr(L) and �ui(L) are one-sided polynomials of orders pxg , pxr and

pui , respectively, while �xg(L), �xr(L) and �ui(L) are one-sided polynomials of orders qxg , qxr

and qui , coprime with �xg(L), �xr(L) and �ui(L), respectively, It�1 is an information set that

contains the values of yt and ft = (fgt; f1t; : : : ; fRt)
0 up to, and including time t � 1, � is the

mean vector and � refers to all the remaining model parameters.

A speci�c example for a series yit in region r would be

yit = �i + ci0gxgt + ci1gxgt�1 + ci0rxrt + ci1rxrt�1 + uit
xgt = �1xgxgt�1 + fgt

xrt = �1xrxrt�1 + �2xrxrt�2 + frt
uit = �1uiuit�1 + vit

9>>=>>; : (4)

Note that the dynamic nature of the model is the result of three di¤erent characteristics:

1. The serial correlation of the global and regional factors x0t = (xgt; x1t; : : : ; xRt)

2. The serial correlation of the idiosyncratic factors ut

3. The heterogeneous dynamic impact of the global and regional factors on each of the ob-

served variables through the country-speci�c distributed lag polynomials cig(L) and cir(L).

To some extent, characteristics 1 and 3 overlap, as one could always write any dynamic

factor model in terms of white noise common factors. In this regard, the assumption of Arma

dynamics for the global and regional factors can be regarded as a parsimonious way of modelling

in�nite distributed lags.

The main di¤erence with respect to the standard dynamic factor models considered in Fioren-

tini, Galesi and Sentana (2014) is the presence of regional factors, which allow for richer covari-

ance relationships between series that belong to the same region (see e.g. Stock and Watson
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(2009)).1 As we shall see below, though, the covariance between series in di¤erent regions

depends exclusively on the pervasive common factor.

Model (1) di¤ers from the dynamic hierarchical factor model considered by Moench, Ng and

Potter (2013) in an important aspect. In their model, the common factor a¤ects the observed

series only through its e¤ect on the regional factor. As a result, the autocovariance matrices of

each block have a single factor structure and the dynamic impact of the common factor in the

observed variables must involve longer distributed lags than the dynamic impact of the regional

factor. As usual, the increase in parsimony involves a reduction in �exibility.

2.2 Spectral density matrix

Under the assumption that yt is a covariance stationary process, possibly after suitable

transformations as in section 4, the spectral density matrix of the observed variables will be

proportional to

Gyy(�) =

26666664
Gy1y1(�) : : : Gy1yr(�) : : : Gy1yR(�)

...
. . .

...
. . .

...
Gyry1(�) : : : Gyryr(�) : : : GyryR(�)

...
. . .

...
. . .

...
GyRy1(�) : : : GyRyr(�) : : : GyRyR(�)

37777775 = C(e
�i�)Gxx(�)C

0(ei�) +Guu(�);

where

C(z) =

26666664
c1g(z) c11(z) : : : 0 : : : 0
...

...
. . .

...
. . .

...
crg(z) 0 : : : crr(z) : : : 0
...

...
. . .

...
. . .

...
cRg(z) 0 : : : 0 : : : cRR(z)

37777775 =
�
cg(z) Cr(z)

�
; (5)

Gxx(�) = diag[Gxgxg(�); Gx1x1(�); : : : ; Gxrxr(�) : : : ; GxRxR(�)];

Gxgxg(�) =
�xg(e

�i�)�xg(e
i�)

�xg(e
�i�)�xg(e

i�)
; Gxrxr(�) =

�xr(e
�i�)�xr(e

i�)

�xr(e�i�)�xr(e
i�)
;

and

Guu(�) = diag[Gu1u1(�); : : : ; GuNuN (�)];

Guiui(�) =  i
�ui(e

�i�)�ui(e
i�)

�ui(e
�i�)�ui(e

i�)
:

Thus, the matrix Gyy(�) inherits the restricted (R + 1)-factor structure of the unconditional

covariance matrix of a static bifactor model with a common global factor and an additional
1Static versions of bifactor models have a long tradition in psychometrics after their introduction by Holzinger

and Swineford (1937) as an important special case of con�rmatory factor analysis (see Reise (2012) for an up to
date list of references).
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factor per region. As a result, the cross-covariances between two series within one region will

depend on the in�uence of both the global and regional factors on each of the series since

Gyryr(�) = crg(e
�i�)Gxgxg(�)c

0
rg(e

i�) + crr(e
�i�)Gxrxr(�)crr(e

i�) +Gurur(�):

In contrast, the cross-covariances between two series that belong to di¤erent regions will only

depend on their dynamic sensitivities to the common factor because

Gyryk(�) = crg(e
�i�)Gxgxg(�)c

0
r0g(e

i�); r 6= r0:

We can easily ensure the separate identi�cation of the common and idiosyncratic compo-

nents of Gyryr(�) when Gurur(�) has full rank provided Nr is su¢ ciently large. The separate

identi�cation of crg(e�i�), crr(e�i�), Gxgxg(�) and Gxrxr(�) is trickier, but it can be guaranteed

(up to scale and time shifts) as long as R is su¢ ciently large, the polynomials cir(:) do not share

a common root within block r, and the polynomials cig do not share a common root across all

N countries (see Geweke (1977), Geweke and Singleton (1981) and more recently Heaton and

Solo (2004) for a more thorough discussion of identi�cation in dynamic factor models). To avoid

dealing with nonsensical situations, henceforth we maintain the assumption that the model that

has to be estimated is identi�ed. This will indeed be the case in our empirical application in

section 4.

For the model presented in (4),

Gxgxg(�) =
1

�xg(e
�i�)�xg(e

i�)
=

1

1 + �21xg � 2�1xg cos�
;

Gxrxr(�) =
1

�xr(e
�i�)�xr(e

i�)
=

1

1 + �21xr + �
2
2xr
� 2�1xr(1� �2xr) cos�� 2�2xr cos 2�

;

where we have exploited the fact that the variances of fgt and frt can be normalised to 1 for

identi�cation purposes.2

Similarly,

Guiui(�) =
 i

�ui(e
�i�)�ui(e

i�)
=

 i
1 + �2ui � 2�ui cos�

:

Finally,

cig(e
�i�) = cig0 + cig1e

�i�;

cir(e
�i�) = cir0 + cir1e

�i�:

The fact that the idiosyncratic impact of the common factors on each of the observed variables

is in principle dynamic implies that the spectral density matrix of yt will generally be complex
2Other symmetric scaling assumptions would normalise the unconditional variance of xgt and xrt (r = 1; : : : ; R),

or some norm of the vectors of impact multipliers cg0 = (c01g0; : : :,c
0
Rg0) and crr0 (r = 1; : : : ; R) or their long run

counterparts cg(1) and crr(1). Alternatively, we could asymmetrically �x one element of cg0 and crr0 (or cg(1)
and crr(1)) (r = 1; : : : ; R) to 1.
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but Hermitian, even though the spectral densities of xgt, xrt and uit are all real because they

correspond to univariate processes.

2.3 Wiener-Kolmogorov �lter

By working in the frequency domain we can easily obtain smoothed estimators of the latent

variables. Speci�cally, let

yt � � =

Z �

��
ei�tdZy(�);

V [dZy(�)] = Gyy(�)d�

denote the spectral decomposition of the observed vector process.

Assuming that Gyy(�) is not singular at any frequency, the Wiener-Kolmogorov two-sided

�lter for the (R+ 1) �common�factors xt at each frequency is given by

dZx
K
(�) = Gxx(�)C

0(ei�)G�1
yy(�)dZ

y(�); (6)

where

Gxx(�)C
0(ei�)G�1

yy(�)

is known as the transfer function of the common factors�smoother. As a result, the spectral

density of the smoothed values of the common factors, xKtj1, is

GxKxK (�) = Gxx(�)C
0(ei�)G�1

yy(�)C(e
�i�)Gxx(�)

thanks to the Hermitian nature of Gyy(�), while the spectral density of the �nal estimation

errors xt � xKtj1 will be given by

Gxx(�)�Gxx(�)C
0(ei�)G�1

yy(�)C(e
�i�)Gxx(�) = 
(�):

Similarly, the Wiener-Kolmogorov smoother for the N speci�c factors will be

dZu
K
(�) = Guu(�)G

�1
yy(�)dZ

y(�)

=
h
IN �C(e�i�)Gxx(�)C

0(ei�)G�1
yy(�)

i
dZy(�) = dZy(�)�C(e�i�)dZxK (�):

Hence, the spectral density matrix of the smoothed values of the speci�c factors will be given

by

GuKuK (�) = Guu(�)G
�1
yy(�)Guu(�);

while the spectral density of their �nal estimation errors ut � uKtj1 is

Guu(�)�GuKuK (�) = Guu(�)�Guu(�)G
�1
yy(�)Guu(�) = C(e

�i�)
(�)C0(ei�) = �(�):
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Finally, the co-spectrum between xKtj1 and uKtj1 will be

GxKuK (�) = Gxx(�)C
0(ei�)G�1

yy(�)Guu(�):

Computations can be considerably speeded up by exploiting the Woodbury formula under

the assumption that neither Gxx(�) nor Guu(�) are singular at any frequency (see Sentana

(2000) for a generalisation):

jGyy(�)j = jGuu(�)j � jGxx(�)j � j
�1(�)j

G�1
yy(�) = G�1

uu(�)�G�1
uu(�)C(e

�i�)
(�)C0(ei�)G�1
uu(�);


(�) = [G�1
xx(�) +C

0(ei�)G�1
uu(�)C(e

�i�)]�1:

The advantage of this expression is that Guu(�) is a diagonal matrix and 
(�) of dimension

(R+ 1), much smaller than N , which greatly simpli�es the computations.

On this basis, the transfer function of the Wiener-Kolmogorov common factor smoother

becomes

Gxx(�)C
0(ei�)G�1

yy(�) = 
(�)C
0(ei�)G�1

uu(�);

so

GxKxK (�) = 
(�)C
0(ei�)G�1

uu(�)C(e
�i�)Gxx(�) = Gxx(�)C

0(ei�)G�1
uu(�)C(e

�i�)
(�)

= Gxx(�)
n
Gxx(�) + [C

0(ei�)G�1
uu(�)C(e

�i�)]�1
o�1

Gxx(�) = Gxx(�)�
(�); (7)

where we have used the fact that


(�)C0(ei�)G�1
uu(�)C(e

�i�) = IR+1 �
(�)G�1
xx(�); (8)

which can be easily proved by premultiplying both sides by 
�1(�).

Similarly, the transfer function of the Wiener-Kolmogorov speci�c factors smoother will be

Guu(�)G
�1
yy(�) = IN �C(e�i�)
(�)C0(ei�)G�1

uu(�);

so

GuKuK (�) = Guu(�)�C(e�i�)
(�)C0(ei�): (9)

Finally,

GxKuK (�) = 
(�)C
0(ei�): (10)

In addition, we can exploit the special structure of the matrix C(z) in (5) to further speed

up the calculations. Speci�cally, tedious algebraic manipulations show that the (R+1)�(R+1)
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Hermitian matrix 
�1(�) = G�1
xx(�) +C

0(ei�)G�1
uu(�)C(e

�i�) can be easily computed as2666666664

!gg(�) !g1(�) � � � !gr(�) � � � !gR(�)
!1g(�) !11(�) � � � 0 � � � 0
...

...
. . .

...
. . .

...
!rg(�) 0 � � � !rr(�) � � � 0
...

...
. . .

...
. . .

...
!Rg(�) 0 � � � 0 � � � !RR(�)

3777777775
(11)

with

!gg(�) = G�1xgxg(�) + c
0
rg(e

i�)G�1
uu(�)crg(e

�i�);

!rr(�) = G�1xrxr(�) + c
0
rr(e

i�)G�1
urur(�)crr(e

�i�)

and

!rg(�) = c0rr(e
i�)G�1

urur(�)crg(e
�i�) = !gr�(�);

where � denotes the complex conjugate transpose.

Interestingly, we can write (11) as

A(�) +B(�)D�(�);

where

A(�) = diag
�
!gg(�); !11(�); : : : ; !rr(�); : : : ; !RR(�)

�

B(�) =

2666666664

1 0
0 !1g(�)
...

...
0 !rg(�)
...

...
0 !Rg(�)

3777777775
and

D�(�) =

�
0 !g1(�) � � � !gr(�) � � � !gR(�)
1 0 � � � 0 � � � 0

�
are two rank 2 matrices.

The advantage of this formulation is that the Woodbury formula for complex matrices implies

that


(�) = [A(�) +B(�)D�(�)]�1 = A�1(�)�A�1(�)B(�)F�1(�)D�(�)A�1(�);

where

F(�) = I2 +D
�(�)A�1(�)B(�) =

�
1 !+g(�)
1

!gg(�) 1

�
;
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with

!+g(�) =

RX
r=1

k!rg(�)k2

!rr(�)

where we have exploited the fact that !rg(�) and !gr(�) are complex conjugates so that the

matrix F(�) is actually real.

If we put all the pieces together we will end up with


(�) =

2666666664

!gg(�) !g1(�) � � � !gr(�) � � � !gR(�)
!1g(�) !11(�) � � � !1r(�) � � � !1R(�)
...

...
. . .

...
. . .

...
!rg(�) !r1(�) � � � !rr(�) � � � !rR(�)
...

...
. . .

...
. . .

...
!Rg(�) !R1(�) � � � !Rr(�) � � � !RR(�)

3777777775
=

�
!gg(�) !�rg(�)
!rg(�) 
rr(�)

�
(12)

where

!gg(�) =
1

!gg(�)
+

1

!gg(�)

!+g(�)

!gg(�)� !+g(�)
=

1

!gg(�)� !+g(�)

!rr(�) =
1

!rr(�)

 
1 +

k!rg(�)k2

!rr(�)
!gg(�)

!

!rg(�) = �!
rg(�)

!rr(�)
!gg(�) = !�rg(�)

and

!rk(�) =
!rg(�)!gk(�)

!rr(�)!kk(�)
!gg(�) = !�kr(�):

It is of some interest to compare these expressions to the corresponding expressions in the

case of a model with a single global factor but no regional factors and a model with regional

factors but no global factor.

In the �rst case, we would have

!(�) =
1

!gg(�)

while in the second case

!rr(�) =
1

!rr(�)
:

As expected, the existence of regional factors makes more di¢ cult the estimation of the common

factor and vice versa.

The Woodbury formula also implies that

j
(�)j = jA(�)j jF(�)j ;

with

jF(�)j = 1� !+g(�)

!gg(�)
:
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The bifactor structure can also be used to speed up the �ltering procedure. Speci�cally,


(�)C0(ei�) =

�
!gg(�) !�rg(�)
!rg(�) 
rr(�)

� �
c0rg(e

i�)

C0r(e
i�)

�
=

�
!gg(�)c

0
rg(e

i�) + !�rg(�)C
0
r(e

i�)

!rg(�)c
0
rg(e

i�) +
rr(�)C
0
r(e

i�)

�
and

C(e�i�)
(�)C0(ei�) = crg(e
i�)!gg(�)c

0
rg(e

i�) +Cr(e
�i�)
rr(�)C

0
r(e

i�)

+crg(e
�i�)!�rg(�)C

0
r(e

i�) +Cr(e
�i�)!rg(�)c

0
rg(e

i�);

which can be computed rather quickly by exploiting the block diagonal nature of Cr(z) in (5).

2.4 The minimal su¢ cient statistics for fxtg

De�ne xGtj1 as the spectral GLS estimator of xt through the transformation

dZx
G
(�) = [C0(ei�)G�1

uu(�)C(e
�i�)]�1C0(ei�)G�1

uu(�)dZ
y(�):

Similarly, de�ne uGtj1 through

dZu
G
(�) = fIN � [C0(ei�)G�1

uu(�)C(e
�i�)]�1C0(ei�)G�1

uu(�)gdZy(�):

It is then easy to see that the joint spectral density of xGtj1 and uGtj1 will be block-diagonal,

with the (1,1) block being

Gxx(�) + [C
0(ei�)G�1

uu(�)C(e
�i�)]�1

and the (2,2) block

Gyy(�)�C(e�i�)[C0(ei�)G�1
uu(�)C(e

�i�)]�1C0(ei�);

whose rank is N � (R+ 1).

This block-diagonality allows us to factorise the spectral log-likelihood function of yt as the

sum of the log-likelihood function of xGtj1, which is of dimension (R+ 1), and the log-likelihood

function of uGtj1. Importantly, the parameters characterising Gxx(�) only enter through the

�rst component. In contrast, the remaining parameters a¤ect both components. Moreover, we

can easily show that

1. xGtj1 = xt + �
G
tj1, with xt and �

G
tj1 orthogonal at all leads and lags.

2. The smoothed estimator of xt obtained by applying the Wiener- Kolmogorov �lter to xGtj1

coincides with xKtj1.
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This con�rms that xGtj1 constitute minimal su¢ cient statistics for xt, thereby general-

ising earlier results by Jungbacker and Koopman (2008), who considered models in which

C(e�i�) = C for all �, and Fiorentini, Sentana and Shephard (2004), who looked at the re-

lated class of factor models with time-varying volatility (see also Gouriéroux, Monfort and

Renault (1991)). In addition, the degree of unobservability of xt depends exclusively on the

�size�of [C0(ei�)G�1
uu(�)C(e

�i�)]�1 relative to Gxx(�) (see Sentana (2004) for a closely related

discussion).

2.5 Maximum likelihood estimation in the frequency domain

Let

Iyy(�) =
1

2�T

TX
t=1

TX
s=1

(yt � �)(ys � �)0e�i(t�s)� (13)

denote the periodogram matrix and �j = 2�j=T (j = 0; : : : T � 1) the usual Fourier frequencies.

If we assume that Gyy(�) is not singular at any of those frequencies, the so-called Whittle

(discrete) spectral approximation to the log-likelihood function is3

N{ � 1
2

T�1X
j=0

ln jGyy(�j)j �
1

2

T�1X
j=0

tr
�
G�1
yy(�j)[2�Iyy(�j)]

	
; (14)

with { = �(T=2) ln(2�) (see e.g. Hannan (1973) and Dunsmuir and Hannan (1976)).

Expression (13), though, is far from ideal from a computational point of view, and for that

reason we make use of the Fast Fourier Transform (FFT). Speci�cally, given the T �N original

real data matrix Y = (y1; : : : ;yt; : : : ;yT )
0, the FFT creates the centred and orthogonalised

T �N complex data matrix Zy = (zy0 ; : : : ; z
y
j ; : : : ; z

y
T�1)

0 by e¤ectively premultiplying Y � `T�0

by the T � T Fourier matrix W. On this basis, we can easily compute Iyy(�j) as 2�z
y
j z
y�
j ,

where zy�j is the complex conjugate transpose of zyj . Hence, the spectral approximation to the

log-likelihood function (14) becomes

N{ � 1
2

T�1X
j=0

ln jGyy(�j)j �
2�

2

T�1X
j=0

zy�j G
�1
yy(�j)z

y
j ;

which can be regarded as the log-likelihood function of T independent but heteroskedastic com-

plex Gaussian observations.

But since zyj does not depend on � for j = 1; : : : ; T �1 because `T is proportional to the �rst

column of the orthogonal Fourier matrix and zy0 = (�yT ��), where �yT is the sample mean of yt,

it immediately follows that the ML of � will be �yT , so in what follows we focus on demeaned

3There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).
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variables. As for the remaining parameters, the score function will be given by:

d(�) =
1

2

T�1X
j=0

d(�j ;�);

d(�j ;�) =
1

2

@vec0 [Gyy(�j)]

@�

�
G�1
yy(�j)
G0�1

yy (�j)
�
vec

h
2�zycj z

y0
j �G

0
yy(�j)

i
=

1

2

@vec0[Gyy(�j)]

@�
M(�j)m(�j); (15)

where zycj = zy�0j is the complex conjugate of zyj ,

m(�j) = vec
h
2�zycj z

y0
j �G

0
yy(�j)

i
(16)

and

M(�j) = G
�1
yy(�j)
G0�1

yy (�j): (17)

The information matrix is block diagonal between � and the elements of �, with the (1,1)-

element being Gyy(0) and the (2,2)-block being

Q(�) =
1

4�

Z �

��
Q(�;�)d� =

1

4�

Z �

��

@vec0[Gyy(�)]

@�
M(�)

�
@vec0[Gyy(�)]

@�

��
d�; (18)

a consistent estimator of which will be provided by either by the outer product of the score or

by

�(�) =
1

2

T�1X
j=0

@vec0[Gyy(�j)]

@�
M(�j)

�
@vec0[Gyy(�j)]

@�

��
:

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators under suitable regularity conditions have been provided by Dunsmuir and Hannan

(1976) and Dunsmuir (1979), who also show their asymptotic equivalence to the time domain

ML estimators.4

Appendix A provides detailed expressions for the Jacobian of vec [Gyy(�)] and the spectral

score of dynamic bifactor models, while appendix B includes numerically reliable and e¢ cient

formulae for their information matrix. Those expressions make extensive use of the complex

version of the Woodbury formula described in section 2.3. We can also exploit the same formula

to compute the quadratic form zy�j G
�1
yy(�j)z

y
j as

zy�j G
�1
uu(�j)z

y
j � z

y�
j G

�1
uu(�)C(e

�i�)
(�j)C
0(ei�)G�1

uu(�)z
y
j

= zy�j G
�1
uu(�j)z

y
j � z

xK�
j (�)
�1(�j)z

xK

j (�);

4This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see
Choudhuri, Ghosal and Roy (2004)).
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where

zx
K

j (�) = E[zxj jZy;�] = Gxx(�j)C
0(ei�j )G�1

yy(�j)z
y
j = 
(�j)C

0(ei�j )G�1
uu(�j)z

y
j (19)

denotes the �ltered value of zxj given the observed series and the current parameter values from

(6).

Nevertheless, when N is large the number of parameters is huge, and the direct maximisa-

tion of the log-likelihood function becomes excruciatingly slow, especially without good initial

values. For that reason, in the next section we described a much faster alternative to obtain the

maximum likelihood estimators of all the model parameters.

3 Spectral EM algorithm

As we mentioned in the introduction, the EM algorithm of Dempster, Laird and Rubin

(1977) adapted to static factor models by Rubin and Thayer (1982) was successfully employed

to handle a very large dataset of stock returns by Lehmann and Modest (1988). Watson and

Engle (1983) and Quah and Sargent (1993) also applied the algorithm in the time domain to

dynamic factor models and some generalisations, while Demos and Sentana (1998) adapted it to

conditionally heteroskedastic factor models in which the common factors followed Garch-type

processes.

We saw before that the spectral density matrix of a dynamic single factor model has the

structure of the unconditional covariance matrix of a static factor model, but with di¤erent

common and idiosyncratic variances for each frequency. This idea led us to propose a spectral

version of the EM algorihtm for dynamic factor models with only pervasive factors in a com-

panion paper (see Fiorentini, Galesi and Sentana (2014)). In order to apply the same idea to

bifactor models, we need to do some additional algebra.

3.1 Complete log-likelihood function

Consider a situation in which the (R + 1) common factors xt were also observed. The joint

spectral density of yt and xt, which is given by�
Gyy(�) Gyx(�)
G�
yx(�) Gxx(�)

�
=

�
C(e�i�)Gxx(�)C

0(ei�) +Guu(�) C(e�i�)Gxx(�)
Gxx(�)C

0(ei�) Gxx(�)

�
;

could be diagonalised as�
IN C(e�i�)
0 IR+1

� �
Guu(�) 0
0 Gxx(�)

� �
IN 0

C0(ei�) IR+1

�
;

with ����� IN 0
C0(ei�) IR+1

����� = 1
13



and �
IN 0

C0(ei�) IR+1

��1
=

�
IN 0

�C0(ei�) IR+1

�
:

Let us de�ne as [ZyjZx] as the Fourier transform of the T � (N + 1 +R) matrix

[y1; : : : ;yN ;xg;x1; : : : ;xR] = [YjX];

so that the joint periodogram of yt and xt at frequency �j could be quickly computed as

2�

�
zyj
zxj

��
zy�j zx�j

�
;

where we have implicitly assumed that either the elements of y have zero mean, or else that

they have been previously demeaned by subtracting their sample averages.

In this notation, the spectral approximation to the joint log-likelihood function would become

l(y;x) = (N +R+ 1){ � 1
2

T�1X
j=0

ln

����� Gyy(�) Gyx(�j)
G�
yx(�j) Gxx(�j)

�����
�2�
2

T�1X
j=0

�
zy�j zx�j

� � IN 0
�C0(ei�j ) 1

� �
G�1
uu(�j) 0
0 G�1

xx(�j)

� �
IN C(e�i�j )
0 1

��
zyj
zxj

�

= N{ � 1
2

T�1X
j=0

ln jGuu(�j)j �
2�

2

T�1X
j=0

zu�j G
�1
uu(�j)z

u
j

+(R+ 1){ � 1
2

T�1X
j=0

ln jGxx(�j)j �
2�

2

T�1X
j=0

zx�j G
�1
xx(�j)z

x
j

=

NX
i=1

24{ � 1
2

T�1X
j=0

ln jGuiui(�j)j �
2�

2

T�1X
j=0

G�1uiui(�j)z
ui
j z

ui�
j

35 (20)

+{ � 1
2

T�1X
j=0

ln
��Gxgxg(�j)��� 2�2

T�1X
j=0

G�1xgxg(�j)z
xg
j z

xg�
j (21)

+
RX
r=1

24{ � 1
2

T�1X
j=0

ln jGxrxr(�j)j �
2�

2

T�1X
j=0

G�1xrxr(�j)z
ur
j z

ur�
j

35 (22)

=
NX
i=1

l(yijX) + l(xg) +
RX
j=1

l(xj) = l(YjX) + l(X);

where5 if country i belongs to region r we have that

zuij = zyij � cig(e
�i�j )z

xg
j ��cir(e�i�j )zxrj = zyij �

ngX
k=�mg

cikge
�ik�z

xg
j �

nrX
l=�mr

cilre
�il�zxrj ; (23)

5Note that we could have expressed those log-likelihood in terms of Ixx(�j) = zxj z
x�
j , Iuu(�) = zuj z

u�
j and

Iux(�) = zuj z
x�
j , but for the EM algorithm it is more convenient to work with the underlying complex random

variables.
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so that

zuij z
ui�
j = zyij z

yi�
j � cig(e�i�j )zxgj z

yi�
j � cir(e�i�j )zxrj z

yi�
j � cig(ei�j )zyij z

xg�
j � cir(ei�j )zyij z

xr�
j

+cig(e
�i�j )cig(e

i�j )z
xg
j z

xg�
j + cir(e

�i�j )cir(e
i�j )zxrj z

xr�
j

+cig(e
�i�j )cir(e

i�j )z
xg
j z

xr�
j + cir(e

�i�j )cig(e
i�j )zxrj z

xg�
j

= Iyiyi(�j)� cig(e�i�j )Ixgyi(�j)� cir(e�i�j )Ixryi(�j)� cig(ei�j )Iyixg(�j)� cir(ei�j )Iyixr(�j)

+cig(e
�i�j )cig(e

i�j )Ixgxg(�j) + cir(e
�i�j )cir(e

i�j )Ixrxr(�j)

+cig(e
�i�j )cir(e

i�j )Ixgxr(�j) + cir(e
�i�j )cig(e

i�j )Ixrxg(�j) = Iuiui(�j):

In this way, we have decomposed the joint log-likelihood function of y1; : : : ;yN and x as

the sum of the marginal log-likelihood of x, l(X), and the log-likelihood function of y1; : : : ;yN

given x, l(YjX). In turn, each of those components can be decomposed as the sum of univariate

log-likelihoods. Speci�cally, l(YjX) can be computed as in (20) by exploiting the diagonality of

Guu(�j), while l(X) coincides with the sum of (21) and (22) by the diagonality of Gxx(�j).

Importantly, all the above expressions can be computed using real arithmetic only since

cig(e
�i�j )Ixgyi(�j) + cig(e

i�j )Iyixg(�j) = 2<
h
cig(e

�i�j )Ixgyi(�j)
i
;

cir(e
�i�j )Ixryi(�j) + cir(e

i�j )Iyixr(�j) = 2<
h
cir(e

�i�j )Ixryi(�j)
i
;

cig(e
�i�j )cir(e

i�j )Ixgxr(�j) + cir(e
�i�j )cig(e

i�j )Ixrxg(�j) = 2<
h
cig(e

�i�j )cir(e
i�j )Ixgxr(�j)

i
;

cig(e
�i�j )cig(e

i�j )Ixgxg(�j) =
cig(e�i�j )2 Ixgxg(�j)

and

cir(e
�i�j )cir(e

i�j )Ixrxr(�j) =
cir(e�i�j )2 Ixrxr(�j):

Let us classify the parameters into three blocks:

1. the parameters that characterise the spectral density of xt : �x = (�0xg ;�
0
x1 ; ; : : : ;�

0
xR
)0

2. the parameters that characterise the spectral density of uit (i = 1; : : : ; N) :  = ( 1; : : : ;  N )
0

and �u = (�0ui ; ; : : : ;�
0
uN
)0

3. the parameters that characterise the dynamic idiosyncratic impact of the global and re-

gional factor on each observed variable: cig = (ci;�mg ;g; : : : ; ci;0;g; : : : ; ci;ng ;g)
0 and cir =

(ci;�mr;r; : : : ; ci;0;r; : : : ; ci;nr;r)
0.

Importantly, �xg only appear in (21), �xr in (22), while �ui , cig and cir appear in (20). This

sequential cut on the joint spectral density con�rms that zxg and zxr , and therefore xgt and xrt,

would be weakly exogenous for  i, �ui , cig and cir (see Engle, Hendry and Richard (1983)).
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Moreover, the fact that fgt and frt are uncorrelated at all leads and lags with vit implies that

xgt and xrt would be strongly exogenous too.

We can also exploit the aforementioned log-likelihood decomposition to obtain the score of

the complete log-likelihood function. In this way, we can write

@l(Y;x)

@�xg
=
@l(xg)

@�xg
=
1

2

T�1X
j=0

@Gxgxg(�j)

@�xg
G�2xgxg(�j)

h
2�z

xg
j z

xg�
j �Gxgxg(�j)

i
; (24a)

@l(Y;x)

@�xr
=
@l(xr)

@�xr
=
1

2

T�1X
j=0

@Gxrxr(�j)

@�xr
G�2xrxr(�j)

h
2�zxrj z

xr�
j �Gxrxr(�j)

i
(24b)

@l(Y;x)

@�ui
=
@l(yijX)
@�ui

=
1

2

T�1X
j=0

@Guiui(�j)

@�ui
G�2uiui(�j)

h
2�zuij z

ui�
j �Guiui(�j)

i
(24c)

@l(Y;x)

@cikg
=
@l(yijX)
@cikg

=
2�

2

T�1X
j=0

G�1uiui(�j)
h
zuij e

ik�jz
xg�
j + e�ik�jz

xg
j z

ui�
j

i

=
2�

2

T�1X
j=0

G�1uiui(�j)

24 �
zyij �

Png
k=�mg

cikge
�ik�z

xg
j �

Pnr
l=�mr

cilre
�il�zxrj

�
eik�jz

xg�
j

+e�ik�jz
xg
j

�
zyi�j �

Png
k=�mg

cikge
ik�z

xg�
j �

Pnr
l=�mr

cilre
il�zxr�j

� 35 (24d)

@l(Y;x)

@cilr
=
@l(yijX)
@cikr

=
2�

2

T�1X
j=0

G�1uiui(�j)
h
zuij e

il�jzxr�j + e�il�jzxrj z
ui�
j

i

=
2�

2

T�1X
j=0

G�1uiui(�j)

24 �
zyij �

Png
k=�mg

cikge
�ik�z

xg
j �

Pnr
l=�mr

cilre
�il�zxrj

�
eil�jzxr�j

+e�il�jzxrj

�
zyi�j �

Png
k=�mg

cikge
ik�z

xg�
j �

Pnr
l=�mr

cilre
il�zxr�j

� 35 (24e)

where we have used the fact that

@zuij
@cikg

= �e�ik�zxgj

@zuij
@cilr

= �e�il�zxrj

in view of (23).

Expression (24a) con�rms that the MLE of �xg would be obtained from a univariate time

series model for xgt; and the same applies to �xr . However, since Gxgxg(�j) also depends on

�xg , there are no closed form solutions for models with Ma components. Although it would

be straightforward to adapt the indirect inference procedures we have developed in our com-

panion paper (see Fiorentini, Galesi and Sentana (2014)) to deal with general Arma processes

without resorting to the numerical maximisation of (21), in what follows we only consider pure

autoregressions. Obviously, the same comments apply to �xr .

In this regard, if we consider the Ar(2) example for xr in (4), the derivatives of Gxrxr(�)
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with respect to �1xr and �2xg would be

@Gxrxr(�)

@�1xr
=

2(cos�� �1xr � �2xr cos�)
(1 + �21xr + �

2
2xr
� 2�1xr(1� �2xr) cos�� 2�2xr cos 2�)2

;

@Gxrxr(�)

@�2xr
=

2(cos 2�� �1xr cos�� �2xr)
(1 + �21xr + �

2
2xr
� 2�1xr(1� �2xr) cos�� 2�2xr cos 2�)2

Hence, the log-likelihood scores would become

@l(xr)

@�1xr
=
1

2

T�1X
j=0

2(cos�j � �1xr � �2xr cos�j)
(1 + �21xr + �

2
2xr
� 2�1xr(1� �2xr) cos�j � 2�2xr cos 2�j)2

�(1 + �21xr + �
2
2xr � 2�1xr(1� �2xr) cos�j � 2�2xr cos 2�j)

2

�
"
2�zxrj z

xr�
j � 1

(1 + �21xr + �
2
2xr
� 2�1xr(1� �2xr) cos�j � 2�2xr cos 2�j)

#

= 2�
T�1X
j=0

(cos�j � �1xr � �2xr cos�j)zxrj z
xr�
j ;

and

@l(xr)

@�2xr
=

1

2

T�1X
j=0

2(cos 2�j � �1xr cos�j � �2xr)
(1 + �21xr + �

2
2xr
� 2�1xr(1� �2xr) cos�j � 2�2xr cos 2�j)2

� (1 + �21xr + �
2
2xr � 2�1xr(1� �2xr) cos�j � 2�2xr cos 2�j)

2

�
"
2�zxrj z

xr�
j � 1

(1 + �21xr + �
2
2xr
� 2�1xr(1� �2xr) cos�j � 2�2xr cos 2�j)

#

= 2�
T�1X
j=0

2(cos 2�j � �1xr cos�j � �2xr)zxrj z
xr�
j ;

where we have exploited the Yule-Walker equations to show that

T�1X
j=0

(cos�� �1xr � �2xr cos�)
(1 + �21xr + �

2
2xr
� 2�1xr(1� �2xr) cos�� 2�2xr cos 2�)

= xrxr(1)� �1xrxrxr(0)� �2xrxrxr(1) = 0;
T�1X
j=0

(cos 2�� �1xr cos�� �2xr)
(1 + �21xr + �

2
2xr
� 2�1xr(1� �2xr) cos�� 2�2xr cos 2�)

= xrxr(2)� �1xrxrxr(1)� �2xrxrxr(0) = 0:

As a result, when we set both scores to 0 we would be left with the system of equations

T�1X
j=0

�
zxrj z

xr�
j 


�
1 cos�j

cos�j 1

���
�̂1xr
�̂2xr

�
=

T�1X
j=0

�
zxrj z

xr�
j 


�
cos�j
cos 2�j

��
:

But since

Ixrxr(�j) = ̂xrxr(0) + 2
T�1X
k=1

̂xrxr(k) cos(k�j);
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we would have that

T�1X
j=0

2�Ixrxr(�j) = T ̂xrxr(0)

T�1X
j=0

cos�j [2�Ixrxr(�j)] = T [̂xrxr(1) + ̂xrxr(T � 1)];

and
T�1X
j=0

cos 2�j [2�Ixrxr(�j)] = T [̂xrxr(2) + ̂xrxr(T � 2)];

which are the sample (circulant) autocovariances of xrt of orders 0, 1 and 2, respectively. There-

fore, the spectral estimators for �̂1xr and �̂2xr are (almost) identical to the ones we would obtain

in the time domain, which will be given by the solution to the system of equations�
̂xrxr(0) ̂xrxr(1)
̂xrxr(1) ̂xrxr(0)

��
�̂1xr
�̂2xr

�
=

�
̂xrxr(1)
̂xrxr(2)

�
;

because both ̂xrxr(T � 1) = T�1xrTxr1 and ̂xrxr(T � 2) = T�1(xrTxr2 + xrT�1xr1) are op(1).

Similar expressions would apply to the dynamic parameters that appear in �ui for a given

value of cig and cir in view of (24c), since in this case it would be possible to estimate the

variances of the innovations  i in closed form.

Speci�cally, for an Ar(1) example in (4), the partial derivatives of Guiui(�) with respect to

 i and �1ui would be

@Guiui(�)

@ i
=

1

1 + �21ui � 2�1ui cos�
;

@Guiui(�)

@�1ui
=

2(cos�� �1ui) i
(1 + �21ui � 2�1ui cos�)2

:

Hence, the corresponding log-likelihood scores would be

@l(yijX)
@ i

=
1

2

T�1X
j=0

(1 + �21ui � 2�1ui1 cos�j)
2�

1 + �21ui � 2�1ui cos�j
�
 2i

"
2�zuij z

ui�
j �  i

1 + �2ui1 � 2�ui1 cos�j

#

=
1

2 2i

T�1X
j=0

h
(1 + �21ui � 2�1ui cos�j)2�z

ui
j z

ui�
j �  i

i
;

@l(yijX)
@�1ui

=
1

2

T�1X
j=0

2(cos�j � �1ui) i(1 + �2ui1 � 2�ui1 cos�j)
2

(1 + �21ui � 2�1ui cos�j)2 
2
i

�
"
2�zuij z

ui�
j �  i

(1 + �21ui � 2�1ui cos�j)

#
=
2�

 i

T�1X
j=0

(cos�j � �1ui)z
ui
j z

ui�
j :

As a result, the spectral ML estimators of  i and �ui1 for �xed values of cig and cir would
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satisfy

~ i =
2�

T

XT�1

j=0
(1 + ~�21ui1 � 2~�1ui cos�j)z

ui
j z

ui�
j ;

~�1ui =

PT�1
j=0 cos�jz

ui
j z

ui�
jPT�1

j=0 z
ui
j z

ui�
j

:

Intuitively, these parameter estimates are, respectively, the sample analogues to the variance

of vit, which is the residual variance in the regression of uit on uit�1, and the slope coe¢ cient in

the same regression.

Finally, (24d) and (24e) would allow us to obtain the ML estimators of cig and cir for given

values of �ui . In particular, if we write together the derivatives for cikg (k = �mg; : : : ; 0; : : : ; ng)

and cikr (k = �mr; : : : ; 0; : : : ; nr) we end up with the �weighted�normal equations:

T�1X
j=0

2666666664
G�1uiui(�j)

0BBBBBBBB@

eimg�jz
xg
j z

xg�
j e�img�j + eimg�jz

xg
j z

xg�
j e�img�j : : :

...
. . .

eimg�jz
xg
j z

xg�
j eing�j + e�ing�jz

xg
j z

xg�
j e�img�j : : :

eimg�jz
xg
j z

xr�
j e�imr�j + eimr�jzxrj z

xg�
j e�img�j : : :

...
. . .

eimg�jz
xg
j z

xr�
j einr�j + e�inr�jzxrj z

xg�
j e�img�j : : :

e�ing�jz
xg
j z

xg�
j e�img�j + eimg�jz

xg
j z

xg�
j eing�j eimg�jz

xg
j z

xr�
j e�imr�j + eimr�jzxrj z

xg�
j e�img�j

...
...

e�ing�jz
xg
j z

xg�
j eing�j + e�ing�jz

xg
j z

xg�
j eing�j e�ing�jz

xg
j z

xr�
j e�imr�j + eimr�jzxrj z

xg�
j eing�j

e�ing�jz
xg
j z

xr�
j e�imr�j + eimr�jzxrj z

xg�
j eing�j eimr�jzxrj z

xr�
j e�imr�j + eimr�jzxrj z

xr�
j e�imr�j

...
...

e�ing�jz
xg
j z

xr�
j einr�j + e�inr�jzxrj z

xg�
j eing�j e�inr�jzxrj z

xr�
j e�imr�j + eimr�jzxrj z

xr�
j einr�j

: : : eimg�jz
xg
j z

xr�
j einr�j + e�inr�jzxrj z

xg�
j e�img�j

. . .
...

: : : e�ing�jz
xg
j z

xr�
j einr�j + e�inr�jzxrj z

xg�
j eing�j

: : : eimr�jzxrj z
xr�
j einr�j + e�inr�jzxrj z

xr�
j e�imr�j

. . .
...

: : : e�inr�jzxrj z
xr�
j einr�j + e�inr�jzxrj z

xr�
j einr�j

1CCCCCCCCA

3777777775

0BBBBBBBB@

~ci;�mg ;g
...

~ci;ngg
~ci;�mr;r
...

~ci;nr;r

1CCCCCCCCA

=
T�1X
j=0

G�1uiui(�j)

0BBBBBBBB@

zyij z
xg�
j e�img�j + zyi�j z

xg
j e

img�j

...
zyij z

xg�
j eing�j + zyi�j z

xg
j e

�ing�j

zyij z
xr�
j e�imr�j + zyi�j zxrj e

imr�j

...
zyij z

xr�
j einr�j + zyi�j zxrj e

�inr�j

1CCCCCCCCA
:

Thus, unrestricted MLE�s of cig and cir could be obtained from N univariate distributed

lag weighted least squares regressions of each yit on xgt and the appropriate xrt that take into

account the residual serial correlation in uit. Interestingly, given that Guiui(�j) is real, the above
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system of equations would not involve complex arithmetic. In addition, the terms in  i would

cancel, so the WLS procedure would only depend on the dynamic elements in �ui .

Let us derive these expressions for the model in (4). In that case, the matrix on the left

hand of the normal equations becomes

T�1X
j=0

G�1uiui(�j)

0BBB@
2z
xg
j z

xg�
j (e�i�j + ei�j )z

xg
j z

xg�
j

(ei�j + e�i�j )z
xg
j z

xg�
j 2z

xg
j z

xg�
j

(z
xg
j z

xr�
j + zxrj z

xg�
j ) e�i�jz

xg
j z

xr�
j + zxrj z

xg�
j ei�j

z
xg
j z

xr�
j ei�j + e�i�jzxrj z

xg�
j z

xg
j z

xr�
j + zxrj z

xg�
j

z
xg
j z

xr�
j + zxrj z

xg�
j z

xg
j z

xr�
j ei�j + e�i�jzxrj z

xg�
j

e�i�jz
xg
j z

xr�
j + zxrj z

xg�
j ei�j z

xg
j z

xr�
j + zxrj z

xg�
j

2zxrj z
xr�
j zxrj z

xr�
j ei�j + e�i�jzxrj z

xr�
j

e�i�jzxrj z
xr�
j + zxrj z

xr�
j ei�j 2zxrj z

xr�
j

1CCCA ;

while the vector on the right hand side will be

T�1X
j=0

G�1uiui(�j)

0BBB@
zyij z

xg�
j + zyi�j z

xg
j

ei�jzyij z
xg�
j + e�i�jzyi�j z

xg
j

zyij z
xr�
j + zyi�j zxrj

ei�jzyij z
xr�
j + e�i�jzyi�j zxrj

1CCCA :

In principle, we could carry out a zig-zag procedure that would estimate cig and cir for given

�ui , and then �ui for a given cig and cir. This would correspond to the spectral analogue to the

Cochrane-Orcutt (1949) procedure. Obviously, iterations would be unnecessary when Guu(�j)

is in fact constant, so that the idiosyncratic terms are static. In that case, the above equations

could be written in terms of the elements of the covariance and the �rst autocovariance matrices

of yt; xgt and xrt.

3.2 Expected log-likelihood function

In practice, of course, we do not observe xt. Nevertheless, the EM algorithm can be used

to obtain values for � as close to the optimum as desired. At each iteration, the EM algorithm

maximises the expected value of l(YjX) + l(X) conditional on Y and the current parameter

estimates, �(n). The rationale stems from the fact that l(Y;X) can also be factorized as l(Y)+

l(XjY). Since the expected value of the latter, conditional on Y and �(n), reaches a maximum

at � = �(n), any increase in the expected value of l(Y;X) must represent an increase in l(Y).

This is the generalised EM principle.
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In the E step we must compute

E[l(xg)jZy;�(n)] = { � 1
2

T�1X
j=0

ln
��Gxgxg(�j)��� 2�2

T�1X
j=0

G�1xgxg(�j)E[z
xg
j z

xg�
j jZy;�(n)];

E[l(xr)jZy;�(n)] = { � 1
2

T�1X
j=0

ln jGxrxr(�j)j �
2�

2

T�1X
j=0

G�1xrxr(�j)E[z
xr
j z

xr�
j jZy;�(n)];

E[l(yijX)jZy;�(n)] = { � 1
2

T�1X
j=0

ln jGuiui(�j)j �
2�

2

T�1X
j=0

G�1uiui(�j)E[z
ui
j z

ui�
j jZy;�(n)]:

But

E[zxj z
x�
j jZy;�(n)] = zx

K

j (�(n))zx
K�
j (�(n)) + E

n
[zxj � zx

K

j (�(n))][zx�j � zxK�j (�(n))]jzyj ;�
(n)
o

= I
(n)

xKxK
(�j) +


(n)(�j);

where

IxKxK (�) = 2�Gxx(�)C
0(ei�)G�1

yy(�)Iyy(�)G
�1
yy(�)C(e

�i�)Gxx(�)

= 2�
(�)C0(ei�)G�1
uu(�)Iyy(�)G

�1
uu(�)C(e

�i�)
(�): (25)

is the periodogram of the smoothed values of the R+ 1 common factors x and

E
n
[zxj � zx

K

j (�)][zx�j � zxK�j (�)]jZy;�
o
= 
(�j):

In turn, if we de�ne

IyxK (�) = Iyy(�)G
�1
yy(�)C(e

�i�)Gxx(�) = Iyy(�)G
�1
uu(�)C(e

�i�)
(�)

as the cross-periodogram between the observed series y and the smoothed values of the common

factors x, we will have that

I
(n)
uu(�j) = E[zuj z

u�
j jZy;�(n)] = E

nh
zyj �C(e

�i�j )zxj

i h
zy�j � zx�j C0(ei�j )

i
jZy;�(n)

o
= [zyj �C(e

�i�j )zx
K

j (�(n))][zy�j � zxK�j (�(n))C0(ei�j )] +C(e�i�j )
(n)(�j)C
0(ei�j )

= Iyy(�j)� I(n)yxK (�)C
0(ei�j )�C(e�i�j )I(n)

xKy
(�) +C(e�i�j )[I

(n)

xKxK
(�j) +


(n)(�j)]C
0(ei�j );

which resembles the expected value of Iuu(�j) but the values at which the expectations are

evaluated are generally di¤erent from the values at which the distributed lags are computed.

The assumed bifactor structure implies that for the ith series, the above expression reduces

to

I(n)uiui(�j) = E[zuij z
ui�
j jZy;�(n)] = Iyiyi(�j)

�cig(e�i�j )I(n)xKg yi
(�j)� cir(e�i�j )I(n)xKr yi

(�j)� I(n)yixKg
(�j)cig(e

i�j )� I(n)
yixKr

(�j)cir(e
i�j )

+[I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)]cig(e

�i�j )cig(e
i�j ) + [I

(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)]cir(e

�i�j )cir(e
i�j )

+[I
(n)

xKg x
K
r
(�j) + !

(n)
gr (�j)]cig(e

�i�j )cir(e
i�j ) + [I

(n)

xKr x
K
g
(�j) + !

(n)
rg (�j)]cir(e

�i�j )cig(e
i�j ):
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Therefore, if we put all these expressions together we end up with

E[l(xg)jY;�(n)] = { �
1

2

T�1X
j=0

ln
��Gxgxg(�j)��� 2�2

T�1X
j=0

G�1xgxg(�j)
h
I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)

i
; (26)

E[l(xr)jY;�(n)] = { �
1

2

T�1X
j=0

ln jGxrxr(�j)j �
2�

2

T�1X
j=0

G�1xrxr(�j)
h
I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)

i
; (27)

E[l(yijX)jY;�(n)] = { �
1

2

T�1X
j=0

ln jGuiui(�j)j �
2�

2

T�1X
j=0

G�1uiui(�j)I
(n)
uiui(�j): (28)

We can then maximise E[l(xg)jY;�(n)] in (26) with respect to �xg to update those parame-

ters, and the same applies to (27) and �xr . Similarly, we can maximise E[l(yijX)jY;�(n)] with

respect to cig, cir,  i and �ui to update those parameters.

In order to conduct those maximisations, we need the scores of the expected log-likelihood

functions.

Given the similarity between (26) and (21), it is easy to see that

@E[l(xg)jY;�(n)]
@�xg

=
1

2

T�1X
j=0

@Gxgxg(�j)

@�xg
G�2xgxg(�j)

n
2�
h
I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)

i
�Gxgxg(�j)

o
;

which, not surprisingly, coincides with the the expected value of (24a) given Y and the current

parameter estimates, �(n). As a result, for the Ar(1) process for xg in (4) we will have

@E[l(xg)jY;�(n)]
@�1xg

= 2�
T�1X
j=0

(cos�j � �x1)
h
I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)

i
;

whence

�̂
(n+1)
1xg

=

PT�1
j=0 cos�j

h
I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)

i
PT�1
j=0

h
I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)

i :

Likewise, we will have that

@E[l(xr)jY;�(n)]
@�xr

=
1

2

T�1X
j=0

@Gxrxr(�j)

@�xr
G�2xrxr(�j)

n
2�
h
I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)

i
�Gxrxr(�j)

o
:

Hence, in the case of the Ar(2) process for xrt in (4), the expected log-likelihood scores

become

@E[l(xr)jY;�(n)]
@�1xr

= 2�

T�1X
j=0

(cos�j � �1xr � �2xr cos�j)
h
I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)

i
;

@E[l(xr)jY;�(n)]
@�2xr

= 2�

T�1X
j=0

2(cos 2�j � �1xr cos�j � �2xr)
h
I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)

i
;
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so that the updated autoregressive coe¢ cients will be the solution to the system of equations

T�1X
j=0

�h
I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)

i


�

1 cos�j
cos�j 1

���
�̂1xr
�̂2xr

�

=

T�1X
j=0

�h
I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)

i


�
cos�j
cos 2�j

��
:

Similar expressions would apply to the dynamic parameters that appear in �ui and  i for

given values of cig and cir. Speci�cally, when the idiosyncratic terms follow Ar(1) processes

@E[l(yijX)jY;�(n)]
@ i

=
1

2 2i

T�1X
j=0

(1 + �2ui1 � 2�ui1 cos�)
n
2�I(n)uiui(�j)�  i

o
;

E[l(yijX)jY;�(n)]
@�ui1

=
2�

 i

T�1X
j=0

(cos�j � �1ui)I(n)uiui(�j):

As a result, the spectral ML estimators of  i and �ui1 given cig and cir will satisfy

 ̂
(n+1)

i =
2�

T

XT�1

j=0

�
1 +

�
�̂
(n+1)
1ui

�2
� 2�̂(n+1)1ui

cos�j

�
I(n)uiui(�j);

�̂
(n+1)
1ui

=

PT�1
j=0 cos�jI

(n)
uiui(�j)PT�1

j=0 I
(n)
uiui(�j)

:

Finally, the derivatives of (28) with respect to cikg (k = �mg; : : : ; 0; : : : ; ng) and cilr (l =

�mr; : : : ; 0; : : : ; nr) for �xed values of �ui will give rise to a set of modi�ed �weighted�normal

equations analogous to the ones in the previous section but with cross-product terms of the form

z
xg
j z

xr�
j replaced by [I(n)

xKg x
K
r
(�j) + !

(n)
gr (�j)].

For the example in (4), the matrix on the left hand of the normal equations becomes

2

T�1X
j=0

G�1uiui(�j)

0BBBBB@
[I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)]

cos�j [I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)]

<[I(n)
xKg x

K
r
(�j) + !

(n)
gr (�j)]

cos�j<[I(n)xKg x
K
r
(�j)]� sin�j=[I(n)xKg x

K
r
(�j)]

cos�j [I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)] <[I(n)

xKg x
K
r
(�j) + !

(n)
gr (�j)]

[I
(n)

xKg x
K
g
(�j) + !

(n)
gg (�j)] cos�j<[I(n)xKg x

K
r
(�j)] + sin�j=[I(n)xKg x

K
r
(�j)]

cos�j<[I(n)xKg x
K
r
(�j)] + sin�j=[I(n)xKg x

K
r
(�j)] [I

(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)]

<[I(n)
xKg x

K
r
(�j) + !

(n)
gr (�j)] cos�j [I

(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)]

cos�j<[I(n)xKg x
K
r
(�j)]� sin�j=[I(n)xKg x

K
r
(�j)]

<[I(n)
xKg x

K
r
(�j) + !

(n)
gr (�j)]

cos�j [I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)]

[I
(n)

xKr x
K
r
(�j) + !

(n)
rr (�j)]

1CCCCCA
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while the vector on the right hand side will be

2
T�1X
j=0

G�1uiui(�j)

0BBBBB@
<[I(n)

yixKg
(�j)]

cos�j<[I(n)yixKg
(�j)]� sin�j=[I(n)yixKg

(�j)]

<[I(n)
yixKr

(�j)]

cos�j<[I(n)yixKr
(�j)]� sin�j=[I(n)yixKr

(�j)]

1CCCCCA
In principle, we could carry out a zig-zag procedure that would estimate cig, cir and  i for

given �ui and �ui for given cig, cir and  i, although it is not clear that we really need to fully

maximise the expected log-likelihood function at each EM iteration since the generalised EM

principle simply requires us to increase it. Obviously, such iterations would be unnecessary when

the idiosyncratic terms are static.

3.3 Alternative marginal scores

As is well known, the EM algorithm slows down considerably near the optimum. At that

point, the best practical strategy would be to switch to a �rst derivative-based method. Fortu-

nately, the EM principle can also be exploited to simplify the computation of the score. Since

the Kullback inequality implies that E [l(XjY;�)jY;�] = 0, it is clear that @l(Y;�)=@� can be

obtained as the expected value (given Y and �) of the sum of the unobservable scores corre-

sponding to l(y1; : : : ;yN jX) and l(X). This yields

@l(Y)

@�xg
=

1

2

T�1X
j=0

@Gxgxg(�j)

@�xg
G�2xgxg(�j)

h
2�E[z

xg
j z

xg�
j jZy;�]�Gxgxg(�j)

i
;

@l(Y)

@�xr
=

1

2

T�1X
j=0

@Gxrxr(�j)

@�xr
G�2xrxr(�j)

h
2�E[zxrj z

xr�
j jZy;�]�Gxx(�j)

i
;

@l(Y)

@�ui
=

1

2

T�1X
j=0

@Guiui(�j)

@�ui
G�2uiui(�j)

h
2�E[zuij z

ui�
j jZy;�]�Guiui(�j)

i
;

@l(Y)

@cikg
=

2�

2

T�1X
j=0

G�1uiui(�j)
h
eik�jE[zuij z

xg�
j jZy;�] + e�ik�jE[zxgj z

ui�
j jZy;�]

i
;

@l(Y)

@cilr
=

2�

2

T�1X
j=0

G�1uiui(�j)
h
eil�jE[zuij z

xr�
j jZy;�] + e�il�jE[zxrj z

ui�
j jZy;�]
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But since the scores are now evaluated at the values of the parameters at which the expec-
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tations are computed, we will have that

E[zxj z
x�
j jZy;�] = IxKxK (�j) +
(�j);

E[zuj z
u�
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��
zuj � E[zuj jZy;�]
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�
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(29)

is the periodogram of the smoothed values of the speci�c factors, and

IxKuK (�) = 2�Gxx(�)C
0(ei�)G�1

yy(�)Iyy(�)G
�1
yy(�)Guu(�)

= 2�
(�)C0(ei�)G�1
uu(�)Iyy(�)

h
IN �G�1

uu(�)C(e
�i�)
(�)C0(ei�)

i
(30)

is the co-periodogram between xKtj1 and uKtj1.

Tedious algebra shows that these scores coincide with the expressions in appendix A. They

also closely related to the scores of the expected log-likelihoods in the previous subsection,

but the di¤erence is that the expectations were taken there with respect to the conditional

distribution of x given Y evaluated at �(n), not �.

4 In�ation dynamics across European countries

Increasing economic and �nancial integration implies that nowadays countries are more sen-

sitive to shocks originating outside their frontiers. In particular, national price levels may be

a¤ected by external shocks such as �uctuations in global commodity prices, shifts in global de-

mand, exchange rate swings, or variations in the prices of competing countries. Understanding

the extent to which foreign factors determine movements in domestic in�ation is a key question

for macroeconomic policy.

A recent growing literature tackles this question by employing factor analysis techniques.

Ciccarelli and Mojon (2009) estimate a static single factor model for 22 OECD economies over
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the period 1960-2008 and document that the estimated global factor accounts for about 70

percent of the variance of CPI in�ation in those countries. Mumtaz and Surico (2012) estimate

a dynamic factor model with drifting coe¢ cients and stochastic volatility for a panel of 164

in�ation indicators for the G7 countries, Australia, New Zealand and Spain. These authors �nd

that the historical decline in the level of in�ation is shared by most countries in their sample,

which is consistent with the idea that a global factor drives the bulk of in�ation movements

across economies.

At the same time, the in�ation rates of closely integrated economies tend to be more corre-

lated with each other than with other countries, which is di¢ cult to square with a single factor

model. Motivated by this, we explore the ability of the dynamic bifactor models discussed in

section 2.1 to capture in�ation dynamics across European countries. The European case is of

particular interest because whether EMU has played a decisive role in the observed convergence

of in�ation rates across its member economies remains an open question. In this regard, Estrada,

Galí and López-Salido (2013) examine the extent to which the in�ation rates of the original 11

euro area countries and other OECD economies have become synchronised over the period 1999-

2012, reporting strong evidence of convergence towards low in�ation rates. They also show that

other advanced non-euro countries experience similar levels of convergence, which suggests that

EMU may not be responsible for the generalised decline in in�ation.

We use monthly data on Harmonised Indices of Consumer Prices (HICP) for 25 European

economies over the period 1998:1-2014:12.6 In particular, we consider three groups of countries:

1. the original7 euro area members: Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, Netherlands, Portugal and Spain;

2. the new euro area participants: Cyprus, Estonia, Latvia, Lithuania, Malta and Slovakia;

3. other non-EMU countries: Bulgaria, Denmark, Iceland, Norway, Poland, Sweden and

United Kingdom.

We focus on year-on-year growth rates of HICP indices excluding energy and unprocessed

food, which are widely viewed as the relevant measure to track for in�ation targeting purposes;

see for example Galí (2002). As a result, we are left with T = 192 time series observations.

Figure 1, which contains the in�ation rates for each country (solid blue line) together with the

6Since our aim is to maximise the time span of our sample, we exclude several countries for which data
start at later dates: Czech Republic and Slovenia (1999:12-), Hungary and Romania (2000:12-), and Croatia and
Switzerland (2004:12-).

7We include Greece among the original euro area even though its accession year was 2001.
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in�ation rate of the European Union (dashed black line), con�rms the generalised downward

trend in in�ation.

For modelling purposes, we assume that the (demeaned) in�ation rate of each country is

driven by a global factor which a¤ects all European countries, an orthogonal region-speci�c

factor which a¤ects all countries within a region, and an idiosyncratic factor. We also assume

that the global and regional factors a¤ect the in�ation rate of a country not only through their

contemporaneous values but also via their one-month lagged values with country-speci�c load-

ings. Further, we assume that all factors (global, regional, and idiosyncratic) follow orthogonal

Ar(1) processes. Despite the apparent simplicity of our model, each series is e¤ectively the sum

of three components: an Arma(1,1) global component, another Arma(1,1) regional component

and an idiosyncratic Ar(1) term.

We estimate our dynamic bifactor model using the EM algorithm developed in previous

sections. As starting values, we assume unit loadings on the contemporaneous and lagged values

of both common and regional factors, unit speci�c variances, autoregressive coe¢ cients set to 0.5

for both common and idiosyncratic factors, and 0.3 for regional factors. Importantly, the scoring

algorithm fails to achieve convergence from these initial values. To speed up the EM iterations,

we employ just �ve Cochrane-Orcutt iterations instead of continuing until convergence. Despite

the large amount of parameters involved (154), the algorithm performs remarkably well, as shown

in Figure 2. The �rst EM iteration yields a massive increase in the log-likelihood function, while

subsequent iterations also provide noticeable gains. As expected, though, after 200 iterations

the improvements become minimal. For that reason, we switched to a scoring algorithm with

line searches at that stage, which converged rather smoothly to parameter estimates reported in

Tables 1 and 2, together with standard errors obtained on the basis of the analytical expressions

for the information matrix in appendix B.

Table 3 contains the results of joint signi�cance tests for the dynamic loading coe¢ cients

associated to the global (columns 1 and 2) and regional (columns 3 and 4) factors for each

country. Those tests con�rm that with the possible exception of Iceland, all countries in our

sample are dynamically correlated. More importantly, they also show that some clusters of

countries are more correlated with each other than what a single factor model would allow for,

thereby con�rming the need for a bifactor model. This is particularly noticeable for the Baltic

countries, but it also a¤ects Norway, Sweden and the UK among those countries which have

never belonged to EMU.

From an empirical point of view, it is of substantive interest to look at the evolution and

persistence of those latent factors. Unfortunately, it is well known that the usual Wiener-
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Kolmogorov �lter can lead to �ltering distortions at both ends of the sample. For that reason, we

wrote the model in a state-space form and applied the standard Kalman �xed interval smoother

in the time domain with exact initial conditions derived from the stationary distribution of the

33 state variables (2 for the common factor and each of the regional factors and 1 for each of

the idiosyncratic ones; see appendix C for details).8

Smoothed versions of the global and regional factors are displayed in Figure 3. In panel

(a) we plot the estimated global factor jointly with the unweighted average of in�ation rates

across countries in our sample, and the in�ation rate of the European Union countries. For ease

of comparison, we re-scale both the global factor and the equally weighted in�ation average to

have the same mean and variance as the European Union in�ation. The smoothed global factor,

which with an estimated autocorrelation of 0.97 is rather persistent, tracks fairly well these two

measures over the sample. The main exception is the period 1999-2002, when the global factor is

signi�cantly higher than the in�ation rate of the European Union countries. Such discrepancies

are explained by two facts: (i) the European Union HICP is a consumption-weighed average

of country-speci�c price indices, and (ii) there are di¤erences between our sample of countries

and the set of economies used to construct the European Union HICP.9 Since 2002, the global

factor generally trends downwards, in line with the other two measures. The other panels of

Figure 3 plot the estimated regional factors, which are scaled so that their innovations have unit

variance. Interestingly, the factor for the new entrants to the euro area is even more persistent

than the global factor (its autocorrelation is 0.98). In contrast, we do not observe statistically

signi�cant persistence in the evolution of the other two regional factors. These results suggest

that some of the new entrant economies share a regional factor which drives the medium term

trends in in�ation, while other regional factors have a predominant role at higher frequencies.

We revisit this question below.

Given the estimated factors and factor loadings, we can compute the contributions of global,

regional and idiosyncratic factors in driving the observed changes in prices across countries.

Figure 4 plots the results for all the countries in our sample. The global factor clearly drives

the downward trend in in�ation for many countries, including Cyprus, Denmark, France, Italy,

Poland, Slovakia and Spain, among others. We also observe a sizeable role for the regional factor

8The main di¤erence between the Wiener-Kolmogorov �ltered values, xKtj1, and the Kalman �lter smoothed
values, xKtjT , results from the implicit dependence of the former on a doubly in�nite sequence of past and future
observations. As shown by Fiorentini (1995) and Gómez (1999), though, they can be made numerically identical
by replacing both pre- and post- sample observations by their least squares projections onto the linear span of
the sample observations.

9Speci�cally, the weight of a country is its share of household �nal monetary consumption expenditure in the
total. The European Union HICP is constructed as the weighed average of the original 12 countries until 2004,
then it extends to 15 countries until 2006, 27 countries until 2013, and �nally 28 countries until the end of the
sample.
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for Estonia, Latvia, and Lithuania. For these Baltic economies, in�ation dramatically swings

over the period 2005-2011. Conversely, the regional factor only plays a marginal role for the

other new entrants (Cyprus, Malta, and Slovakia), which did not experience such swings over

the same period. In this regard, it is worth noticing that the Baltic countries adopted the euro

in the late part of the sample (Estonia in 2011, Latvia in 2014 and Lithuania in 2015), while the

other entrants joined the euro area earlier (Cyprus and Malta in 2008, Slovakia in 2009). This

evidence, although far from conclusive, suggests that EMU may have had a dampening e¤ect

on in�ation �uctuations for all the new entrant countries.

We complement our time domain results by decomposing the spectral density of each country

in�ation series into the corresponding global, regional, and idiosyncratic components. Figure

5 show for each frequency the fraction of variance explained by each of those components. To

aid in the interpretation of the results, we have added vertical lines at those frequencies which

capture movements in the series at 2 and 1 years, and 6 and 3 months. As can be seen, the

global factor explains an important fraction of variance across many economies, especially at

lower frequencies. This result con�rms the view that most countries experience a common

downward trend in in�ation. Nevertheless, we also observe that the global factor plays virtually

no role in other economies such as Norway, Sweden, and United Kingdom, whose correlations

are mostly driven by the third regional factor. This somewhat surprising result may be partly

explained by the fact that energy and food components are by construction excluded from our

analysis. The regional factor of new entrants a¤ects particularly Estonia, Latvia, and Lithuania,

which con�rms our previous time domain �ndings. In contrast, regional factors do not seem to

in�uence medium term trends for most other countries.

Finally, we conducted two robustness exercises. First, we considered a version of the model

with just a global factor and no regional factors, which hardly surprisingly leads to a markedly

worse �t. More importantly, we have also experimented with a subdivision of the core euro

area region to single out those countries which experienced the most dramatic drops in interest

rates prior to their accession to EMU. This is an important distinction to explore as there

has been considerable debate on whether the conduct of monetary policy by the ECB since its

inception has resulted in unwanted e¤ects on those economies; see Estrada and Saurina (2014)

for a discussion of the Spanish case. By looking at the evolution of real interest di¤erentials

between 1995 and 1999, we interestingly �nd that the additional group is composed by Portugal,

Ireland, Italy, Greece and Spain (the so-called PIIGS). However, we �nd that a dynamic bifactor

model with four regions, including two within the core euro area, does not lead to a substantial

improvement in �t.
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5 Conclusions

We generalise the frequency domain version of the EM algorithm for dynamic factor models

in Fiorentini, Galesi and Sentana (2014) to bifactor models in which pervasive common factors

are complemented by block factors. We explain how to e¢ ciently exploit the sparsity of the

loading matrix to reduce the computational burden so much that researchers can estimate such

models by maximum likelihood with a large number of series from multiple regions. We �nd

that the EM algorithm leads to substantial likelihood gains starting from arbitrary initial values.

Unfortunately, it slows down considerably near the optimum. For that reason, we also derive

convenient expressions for the frequency domain scores and information matrix that allow us to

switch to the scoring method at that point.

In an empirical application we explore the ability of a bifactor model to capture in�ation

dynamics across European countries. Speci�cally, we apply our procedure to year-on-year core

in�ation rates for 25 European countries over the period 1999:1-2014:12. We estimate a model

with a common factor and three regional factors: original euro area members, new entrants and

others. Overall, our results suggest that a global factor drives the medium-long term trends of

in�ation across most European economies, which is consistent with the evidence in the previous

literature. But we also �nd a persistent regional factor driving the in�ation trends of the Baltic

countries, which are new entrants to the euro area. In contrast, we �nd that the regional factors

for most other countries a¤ect mainly their short run movements.
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Appendices

A Spectral scores

The score function for all the parameters other than the mean is given by (15). Since

dGyy(�) = [dC(e�i�)]Gxx(�)C
0(ei�) +C(e�i�)[dGxx(�)]C

0(ei�)

+C(e�i�)Gxx(�)[dC
0(ei�)] + dGuu(�)

(see Magnus and Neudecker (1988)), it immediately follows that
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h
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i
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i
ER+1dvecd [Gxx(�)] +ENdvecd [Guu(�)] ;

where
E0m = (e1me

0
1mj : : : jemme0mm);

(e1mj : : : jemm) = Im;
(A1)

is the uniquem2�m �diagonalisation�matrix that transforms vec(A) into vecd(A) as vecd(A) =

E0mvec(A) andKmn is the commutation matrix of ordersm and n (see Magnus (1988)). Further,

we can use (5) to express dvec [C(z)] in terms of its non-zero elements dc(z) by means of the

following linear transformation
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where E contains a block analogue to the diagonalisation matrix above. Consequently, the

Jacobian of vec [Gyy(�)] will be
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where we have used the fact that

@vec [C(z)]
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0BBBBBBBBBBBBBBBBBB@

0
...
INr
...
0
0
...
0
...
0

1CCCCCCCCCCCCCCCCCCA
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and

@vec [C(z)]
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= E
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0
0
...
0
0
...
...
INr
...
0

1CCCCCCCCCCCCCCCCCCA

zl = errz
l

since

@crg(z)

@c0rgk
= zkINr

@crr(z)

@c0rrl
= zlINr

in view of (2) and (3).

If we combine those expressions with the fact that
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and I0yy(�) = z
yc
j z

y0
j we obtain:
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where we have used the fact that K0
NN = KNN = K

�1
NN (see again Magnus (1988)).

Let us now try to interpret the di¤erent components of this expression. To do so, it is

convenient to further assume that Gxx(�) > 0 and Guu(�) > 0.

The �rst thing to note is that

2�C0(e�i�)G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)C(e

i�)�C0(e�i�)G0�1
yy (�)C(e

i�)

= G�1
xx(�)

�
2�I0xKxK (�)�G

0
xKxK (�)

�
G�1
xx(�):

Given that
@vecd [Gxx(�)]

@�0xg
=
@Gxgxg(�)

@�0xg
e1;R+1;

the component of the score associated to the parameters that determine Gxgxg(�) will be the

cross-product across frequencies of the product of the derivatives of the spectral density of xgt

with the di¤erence between the periodogram and spectrum of xKgt inversely weighted by the

squared spectral density of xgt. Thus, we can interpret this term as arising from a marginal

log-likelihood function for xgt that takes into account the unobservability of xgt. Exactly the

same comments apply to the scores of the parameters that determine Gxrxr(�) for r = 1; : : : ; R

in view of the fact that
@vecd [Gxx(�)]

@�0xr
=
@Gxrxr(�)

@�0xr
er+1;R+1:
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Similarly, given that

2�G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)�G0�1

yy (�) = G
0�1
uu (�)

�
2�I0uKuK (�)�G
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uKuK (�)

�
G0�1
uu (�);

@vecd [Guu(�)]

@ i
=
@Guiui(�)

@ i
eiN

and
@vecd [Guu(�)]

@�0ui
=
@Guiui(�)

@�0ui
eiN ;

the component of the score associated to the parameters that determine Guiui(�) will be the

cross-product across frequencies of the product of the derivatives of the spectral density of uit

with the di¤erence between the periodogram and spectrum of uKit inversely weighted by the

squared spectral density of uit. Once again, we can interpret this term as arising from the

conditional log-likelihood function of uit given xt that takes into account the unobservability of

uti .

Finally, to interpret the scores of the distributed lag coe¢ cients it is worth noting that

e�ik�vec
h
2�G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)C(e

i�)Gxx(�)�G0�1
yy (�)C(e

i�)Gxx(�)
i

and

eik�vec
h
2�G�1

yy(�)Iyy(�)G
�1
yy(�)C(e

�i�)Gxx(�)�G�1
yy(�)C(e

�i�)Gxx(�)
i

are complex conjugates because G�1
yy(�) is Hermitian and the conjugate of a product is the

product of the conjugates, so it su¢ ces to analyse one of them. On this basis, if we write

2�G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)C(e

i�)Gxx(�)�G0�1
yy (�)C(e

i�)Gxx(�)

= G0�1
uu (�)

�
2�I0xKuK (�)�G

0
xKuK (�)

�
;

the components of the score associated to crgk and will be the sum across frequencies of terms

of the form

G0�1
uu (�)

�
2�I0xKuK (�)�G

0
xKuK (�)

�
e�ik�

(and their conjugate transposes), which capture the di¤erence between the cross-periodogram

and cross-spectrum of xKgt�r and u
K
it inversely weighted by the spectral density of uit. Exactly

the same comments apply to the scores of crrl. Therefore, we can understand those terms as

arising from the normal equation in the spectral regression of yit onto xg;t+mg ; : : : xg;t�ng and

xr;t+mr ; : : : xrt�nr but taking into account the unobservability of the regressors.

As usual, we can exploit the Woodbury formula, as in expressions (7), (9), (10), (25), (29)

and (30), to greatly speed up the computations.
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B Spectral information matrix

Given the expression for the Jacobian matrix in derived in appendix A, we will have that
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=
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=
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=
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Hence, it is straightforward to see that the elements of the block of the information matrix

(18) corresponding to the autoregressive parameters for the common factors will be
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where � denotes the Hadamard (or element by element) product of two matrices of equal size.

Similarly,
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with an almost identical expression for Q  (�;�).

Also,
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where we have made use of the properties of the commutation matrix.

Further
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where we have used the properties of the diagonalisation and commutation matrices, and in

particular, that E0mKmm = E0m. In fact, further simpli�cation can be achieved by exploiting

(A1). The formulae for the remaining elements are entirely analogous. In this regard, it is

important to note that all the above expressions can be written as the sum of some matrix and

its complex conjugate transpose, as one would expect given that the information matrix is real.

If we assume that both Gxx(�) and Guu(�) are strictly positive, we can use again the

Woodbury formula to considerably simplify the previous expressions.

Given that
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As a result,and
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In addition, the special structure of C(z) in (5) can also be successfully exploited to speed

up the calculations. In particular,
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where 
�1(�) has been de�ned in (11). Further speed gains can be achieved by noticing that

c0rr(e
i�)G�1

uu(�)crr(e
�i�) =

X
j2Nr

cj(ei�)2
Gujuj (�)

:

C State space representation of dynamic bifactor models with
AR(1) factors

There are several ways of casting the dynamic factor model in (4) into state-space format,

but the most straightforward one is to consider a state vector of dimension 2(R + 1) + N in

which the Ar(1) processes for both global and regional factors are written as a bivariate Var(1)

in (xt; xt�1); and the N Ar(1) processes for the speci�c factors are written as �rst order Ars

in uit. As a result, we can write the measurement equation without an error term as

yt = Z�t;

where the state vector is

�t = (x0t;x
0
t�1;u

0
t)
0;

xt = (xgt; x1t; : : : ; xRt)
0;

ut = (u1t; : : : ; uit; : : : ; uNt)
0;

and Z is the N � (N + 2R+ 2) matrix

Z = [C0jC1jIN ];

with C0;C1being N � (R+ 1) sparse matrices of contemporaneous and lagged loadings.

Consequently, the transition equation is simply24 xt
xt�1
ut

35 =
24 �x 0 0
IR+1 0 0
0 0 �u

3524 xt�1
xt�2
ut�1

35+
24 ft
0
vt

35 ;
with

�x = diag(�xg ; �x1 ; : : : ; �xR);

�u = diag(�u1 ; : : : ; �uN );

Cov(ft) = IR+1;

Cov(vt) = 	 =diag( 1; : : : ;  N ):
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Given our covariance stationarity conditions, the initial condition for the state variables will

trivially be �1j0 = 0(N+2R+2)x1, and

P1j0 =

24 Qx0 Qx1 0
Qx1 Qx0 0
0 0 Qu0

35 ;
where Qx0 and Qu0 are diagonal matrices with the unconditional variance of the corresponding

Ar(1) processes along the main diagonal, whileQx1 is also diagonal with the �rst autocovariance

of the global and regional factors Ar(1) processes on the main diagonal.
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Table 1: Dynamic Loadings Estimates

Country cgi,0 std.err. cgi,1 std.err. cri,0 std.err. cri,1 std.err.

Core euro area
Austria -0.024 (0.017) 0.021 (0.017) -0.058 (0.018) 0.021 (0.019)

Belgium 0.041 (0.021) 0.000 (0.021) -0.170 (0.026) 0.000 (0.033)

Finland -0.001 (0.016) 0.054 (0.016) -0.043 (0.016) 0.054 (0.016)

France 0.041 (0.012) 0.011 (0.012) 0.019 (0.011) 0.011 (0.012)

Germany -0.001 (0.018) 0.013 (0.018) -0.006 (0.020) 0.013 (0.020)

Greece 0.357 (0.039) -0.070 (0.039) 0.083 (0.036) -0.070 (0.036)

Ireland 0.160 (0.023) 0.022 (0.023) 0.049 (0.022) 0.022 (0.022)

Italy 0.117 (0.017) -0.001 (0.017) 0.047 (0.021) -0.001 (0.021)

Luxembourg -0.153 (0.019) 0.206 (0.020) 0.044 (0.020) 0.206 (0.020)

Netherlands 0.093 (0.019) -0.005 (0.019) -0.065 (0.019) -0.005 (0.019)

Portugal 0.185 (0.026) 0.021 (0.026) 0.014 (0.026) 0.021 (0.026)

Spain 0.187 (0.023) 0.007 (0.023) 0.036 (0.023) 0.007 (0.023)

New entrants euro area

Cyprus 0.286 (0.036) -0.145 (0.036) -0.063 (0.047) -0.145 (0.047)

Estonia 0.269 (0.031) -0.033 (0.030) 0.117 (0.049) -0.033 (0.046)

Latvia 0.148 (0.037) 0.086 (0.037) 0.215 (0.076) 0.086 (0.087)

Lithuania 0.162 (0.034) 0.013 (0.033) 0.166 (0.059) 0.013 (0.057)

Malta 0.148 (0.036) -0.015 (0.036) 0.019 (0.050) -0.015 (0.050)

Slovakia 0.390 (0.035) 0.000 (0.035) -0.022 (0.042) 0.000 (0.041)

Outside euro area

Bulgaria 0.472 (0.060) -0.098 (0.060) 0.036 (0.065) -0.098 (0.064)

Denmark 0.077 (0.015) 0.028 (0.015) 0.035 (0.018) 0.028 (0.018)

Iceland 0.078 (0.065) 0.063 (0.065) 0.038 (0.074) 0.063 (0.073)

Norway -0.006 (0.021) -0.006 (0.021) -0.046 (0.031) -0.006 (0.027)

Poland 0.546 (0.043) -0.149 (0.043) -0.005 (0.044) -0.149 (0.042)

Sweden -0.019 (0.017) 0.025 (0.017) 0.007 (0.025) 0.025 (0.021)

United Kingdom 0.026 (0.016) -0.019 (0.015) 0.038 (0.027) -0.019 (0.021)



Table 2: Autoregressive Coefficients Estimates

Country α std.err. ψ std.err.

Global 0.9736 (0.017) 1.000

Core euro area 0.2810 (0.207) 1.000

New entrants euro area 0.9828 (0.013) 1.000

Outside euro area -0.1392 (0.302) 1.000

Core euro area

Austria 0.936 (0.025) 0.049 (0.005)

Belgium 0.912 (0.033) 0.033 (0.007)

Finland 0.974 (0.016) 0.041 (0.004)

France 0.948 (0.023) 0.022 (0.002)

Germany 0.887 (0.033) 0.063 (0.006)

Greece 0.941 (0.025) 0.194 (0.022)

Ireland 0.983 (0.011) 0.079 (0.009)

Italy 0.663 (0.071) 0.051 (0.006)

Luxembourg 0.852 (0.039) 0.049 (0.006)

Netherlands 0.970 (0.017) 0.055 (0.006)

Portugal 0.898 (0.034) 0.107 (0.011)

Spain 0.899 (0.035) 0.080 (0.009)

New entrants euro area

Cyprus 0.805 (0.046) 0.213 (0.024)

Estonia 0.956 (0.028) 0.106 (0.013)

Latvia 0.977 (0.024) 0.113 (0.027)

Lithuania 0.960 (0.026) 0.147 (0.018)

Malta 0.799 (0.045) 0.268 (0.028)

Slovakia 0.981 (0.013) 0.135 (0.016)

Outside euro area

Bulgaria 0.968 (0.018) 0.505 (0.055)

Denmark 0.918 (0.030) 0.036 (0.004)

Iceland 0.980 (0.013) 0.705 (0.072)

Norway 0.940 (0.025) 0.066 (0.009)

Poland 0.986 (0.010) 0.171 (0.023)

Sweden 0.953 (0.022) 0.044 (0.005)

United Kingdom 0.973 (0.016) 0.032 (0.004)



Table 3: Significance of Dynamic Loadings

H0 : cgi,0 = cgi,1 = 0 H0 : cri,0 = cri,1 = 0

Country Wald test p-value Wald test p-value

Core euro area

Austria 3.07 (0.216) 15.44 (0.000)

Belgium 5.38 (0.068) 56.38 (0.000)

Finland 11.26 (0.004) 7.92 (0.019)

France 13.88 (0.001) 4.29 (0.117)

Germany 0.55 (0.760) 5.83 (0.054)

Greece 86.60 (0.000) 5.99 (0.050)

Ireland 47.22 (0.000) 6.40 (0.041)

Italy 61.32 (0.000) 12.23 (0.002)

Luxembourg 119.75 (0.000) 6.42 (0.041)

Netherlands 23.51 (0.000) 16.88 (0.000)

Portugal 53.15 (0.000) 0.42 (0.812)

Spain 65.92 (0.000) 5.68 (0.058)

New entrants euro area

Cyprus 64.54 (0.000) 2.21 (0.330)

Estonia 78.72 (0.000) 25.96 (0.000)

Latvia 17.35 (0.000) 66.20 (0.000)

Lithuania 22.60 (0.000) 30.37 (0.000)

Malta 19.21 (0.000) 0.40 (0.817)

Slovakia 125.00 (0.000) 0.47 (0.790)

Outside euro area

Bulgaria 64.18 (0.000) 0.88 (0.644)

Denmark 30.05 (0.000) 5.75 (0.057)

Iceland 2.36 (0.308) 0.68 (0.710)

Norway 0.18 (0.915) 13.52 (0.001)

Poland 164.30 (0.000) 2.51 (0.285)

Sweden 3.18 (0.204) 8.32 (0.016)

United Kingdom 3.78 (0.151) 11.84 (0.003)
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