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1 Introduction

The dynamic factor models introduced by Geweke (1977) and Sargent and Sims (1977) con-
stitute a flexible tool for capturing the cross-sectional and dynamic correlations between multiple
series in a parsimonious way. Although single factor versions of those models prevail because
their ease of interpretation and the fact that they provide a reasonable first approximation to
many data sets, there is often the need to add more common factors to adequately capture the
off-diagonal elements of the autocovariance matrices. When the cross-sectional dimension, IV, is
commensurate with the time series dimension, 7', one popular solution is to rely on the approx-
imate factor models structures originally introduced by Chamberlain and Rothschild (1983) in
the static case, which allow for some mild contemporaneous and dynamic correlation between
idiosyncratic terms (see e.g. Bai and Ng (2008) and the references therein). Unfortunately,
the cross-sectional asymptotic boundedness conditions on the eigenvalues of the autocovariance
matrices of the idiosyncratic terms underlying those approximate factor models are largely mean-
ingless in empirical situations in which N is small relative to T'. In those situations in which it
is natural to group the IV series into R homogeneous blocks, an attractive solution are bifactor

models with two types of factors:
1. Pervasive common factors that affect all IV series

2. Block factors that only affect a subset of the series, such as the ones belonging to the same

country or region.

In principle, Gaussian (P)MLEs of the parameters can be obtained from the usual time do-
main version of the log-likelihood function computed as a by-product of the Kalman filter predic-
tion equations or from Whittle’s (1962) frequency domain asymptotic approximation. Further,
once the parameters have been estimated the Kalman smoother or its Wiener-Kolmogorov coun-
terpart provide optimally filtered estimates of the latent factors. These estimation and filtering
issues are well understood (see e.g. Harvey (1989)), and the same can be said of their numer-
ical implementation (see Jungbacker and Koopman (2008)). In practice, though, researchers
may be reluctant to use ML because of the heavy computational burden involved, which is
disproportionately larger as the number of series considered increases.

In the context of standard dynamic factor models, Watson and Engle (1983) and Quah
and Sargent (1993) applied the EM algorithm of Dempster, Laird and Rubin (1977) to the time
domain versions of these models, thereby avoiding the computation of the likelihood function and
its score. This iterative algorithm has been very popular in various areas of applied econometrics

(see e.g. Hamilton (1990) in a different time series context). Its popularity can be attributed



mainly to the efficiency of the procedure, as measured by its speed, and also to the generality
of the approach, and its convergence properties (see Ruud (1991)). However, the time domain
version of the EM algorithm has only been derived for dynamic factor models in which all the
latent variables follow pure AR processes, and works best when the effects of the common factors
on the observed variables are contemporaneous, which substantially limits the class of models
to which it can be successfully applied.

In a recent companion paper (Fiorentini, Galesi and Sentana (2014)), we introduced a fre-
quency domain version of the EM algorithm for general dynamic factor models with latent ARMA
processes. We showed there that our algorithm reduces the computational burden so much that
researchers can estimate such models by maximum likelihood with a large number of series even
without good initial values. The purpose of the current paper is to extend our methods to
dynamic versions of bifactor models.

We illustrate our procedure with an empirical application in which we study the dynamics of
European inflation rates since the creation of the European Monetary Union (EMU). Specifically,
we consider a dynamic bifactor model with a single global factor and three regional factors
representing core, new entrant and outside EMU countries.

The rest of the paper is organised as follows. In section 2, we review the properties of dy-
namic factor models and their filters, as well as maximum likelihood estimation in the frequency
domain. Then, we derive our estimation algorithm and present a numerical evaluation of its
finite sample behaviour in section 3. This is followed by the empirical application in section 4

and our conclusions in section 5. Auxiliary results are gathered in appendices.

2 Theoretical background

2.1 Dynamic bifactor models

Let y; denote a finite dimensional vector of NV observed series, which can be grouped into R

different categories or blocks as follows

vi=(¥y o Y o Y )

where yq; is of dimension Ni, y,+ of dimension N, and yg; is of dimension Ng, with N7 + ...+
N, + ...+ Ng = N. Henceforth we shall refer to each category as a “region”, even though they
could represent alternative groupings.

To keep the notation to a minimum, we focus on models with a single global factor and a

single factor per region, which suffice to illustrate our procedures. Specifically, we assume that



y: can be defined in the time domain by the system of dynamic stochastic difference equations

Yrt = Ky + Crg(L)xgt + CTT(L)th +u, r=1,...,R
a:rg(L)mgt = ng(L)fgta

azT(L)xm& = /B;CT(L)f'rt, r=1,...,R (1)
ay;(L)uiy = By, (L)vig, i=1,...,N,
(fgtvfltv"' 7th7v1t>'"7UNt)|It—1;IJ’>9 ~ N[Oadiag(LlM"'?lvwl?' "1¢N>]>
where x4 is the global factor, 7,4 (r = 1,..., R) the r regional factor, u; = (uj, ..., ... )

the N specific factors,

Crg(L) = Z CrgkLk (2)

k=—my
Ny
C’I"I‘(L) = Z CrrlLk (3)
l=—m,
for (r = 1,...,R) are N x 1 vectors of possibly two-sided polynomials in the lag operator

cig(L) and ¢y (L), ag, (L), oz, (L) and ay, (L) are one-sided polynomials of orders p,,, p;, and
Pu;, respectively, while 3, (L), 8, (L) and S,,(L) are one-sided polynomials of orders ¢y, gz,
and gy, coprime with oy, (L), oz, (L) and o, (L), respectively, I; 1 is an information set that
contains the values of y; and f; = (fy, fit, ..., fre)’ up to, and including time ¢ — 1, p is the
mean vector and @ refers to all the remaining model parameters.

A specific example for a series y;; in region r would be

Yit = W + CiogTgt + CilgTgt—1 + CiorTrt + CilrTrt—1 + Uit
Tgt = Qg Tgt—1 + fgt ) (4)
Trt = Qg Trt—1 + 024, Trp—2 + frt
Uit = Oy; Wit—1 + Vgt

Note that the dynamic nature of the model is the result of three different characteristics:
1. The serial correlation of the global and regional factors x; = (gt, T1t, -, TRE)
2. The serial correlation of the idiosyncratic factors uy

3. The heterogeneous dynamic impact of the global and regional factors on each of the ob-

served variables through the country-specific distributed lag polynomials ¢;4(L) and ¢, (L).

To some extent, characteristics 1 and 3 overlap, as one could always write any dynamic
factor model in terms of white noise common factors. In this regard, the assumption of ARMA
dynamics for the global and regional factors can be regarded as a parsimonious way of modelling
infinite distributed lags.

The main difference with respect to the standard dynamic factor models considered in Fioren-
tini, Galesi and Sentana (2014) is the presence of regional factors, which allow for richer covari-

ance relationships between series that belong to the same region (see e.g. Stock and Watson



(2009)).! As we shall see below, though, the covariance between series in different regions
depends exclusively on the pervasive common factor.

Model (1) differs from the dynamic hierarchical factor model considered by Moench, Ng and
Potter (2013) in an important aspect. In their model, the common factor affects the observed
series only through its effect on the regional factor. As a result, the autocovariance matrices of
each block have a single factor structure and the dynamic impact of the common factor in the
observed variables must involve longer distributed lags than the dynamic impact of the regional

factor. As usual, the increase in parsimony involves a reduction in flexibility.

2.2 Spectral density matrix

Under the assumption that y; is a covariance stationary process, possibly after suitable
transformations as in section 4, the spectral density matrix of the observed variables will be

proportional to

GyiniN) v Gy (V) v Gyl
G0 = | Com) . Con ) - Comald) | = Cle NG + Gl
| Guin ) - Gy - CyaralV) |
where
[ ciy(2) cui(z) ... 0 ... 0o |
Cz) = crgi(z) 0 crri(z) 0 —[ey(2) Ci2) ], (5)
erg(x) 0 ... 0 ... cgr(z)
Gx(N) = diaglCGayey (N, Gores V- Gorar (V) -+ GV,
agr) = D G = 2D,
and

Guu()\) = diag[Gulul ()\), ey GUNUN ()\)]’
e_i>\ ) 6Z>\

Loy, (67 e, ()

Thus, the matrix Gyy()) inherits the restricted (R + 1)-factor structure of the unconditional

covariance matrix of a static bifactor model with a common global factor and an additional

!Static versions of bifactor models have a long tradition in psychometrics after their introduction by Holzinger
and Swineford (1937) as an important special case of confirmatory factor analysis (see Reise (2012) for an up to
date list of references).



factor per region. As a result, the cross-covariances between two series within one region will

depend on the influence of both the global and regional factors on each of the series since

Gyv»y7-()‘) = Cryg (eii/\)Ga:ga:g ()‘)Clrg(ei/\) + crr(eii)\)Ga:rxr (A)crr (ei)\) + Gy, (A)-

In contrast, the cross-covariances between two series that belong to different regions will only

depend on their dynamic sensitivities to the common factor because
G,y (A) = Crg(e7M)Gayu, (N g (€?), 7 #£7".

We can easily ensure the separate identification of the common and idiosyncratic compo-
nents of Gy, y, (A) when Gy, y,(A) has full rank provided N, is sufficiently large. The separate
identification of ¢,4(e™™), cpr(e™™), Gaya, (A) and Gy, 4, (A) is trickier, but it can be guaranteed
(up to scale and time shifts) as long as R is sufficiently large, the polynomials ¢;,(.) do not share
a common root within block 7, and the polynomials ¢;; do not share a common root across all
N countries (see Geweke (1977), Geweke and Singleton (1981) and more recently Heaton and
Solo (2004) for a more thorough discussion of identification in dynamic factor models). To avoid
dealing with nonsensical situations, henceforth we maintain the assumption that the model that
has to be estimated is identified. This will indeed be the case in our empirical application in
section 4.

For the model presented in (4),

1 1
G A = - - = ’
xgxg( ) a, (e_M)azg (ez/\) 1+ ngg — 2a1zg cos A
1 1

g, (€7, (e) T 1+ of, + 03, — 201, (1 — ag,) OS A — 2000, cOS 2N

G{E»,-Ir (>\) =

where we have exploited the fact that the variances of f,; and f,+ can be normalised to 1 for

identification purposes.?
Similarly,
Guiui()‘) = ;/}Z S 5 Vi .
' (67 )ay, () 1+ ai, — 2ay, cos A
Finally,
Cig(efi)\) = Cigo T+ cigleii)\,
Ci?"(e_i/\) = Cyo + Cirle_M

The fact that the idiosyncratic impact of the common factors on each of the observed variables

is in principle dynamic implies that the spectral density matrix of y; will generally be complex

20ther symmetric scaling assumptions would normalise the unconditional variance of zgt and zrt (r=1,..., R),
or some norm of the vectors of impact multipliers ¢go = (€ig0,- - -,€rgo) and ¢rro (r =1,..., R) or their long run
counterparts ¢g(1) and ¢,~(1). Alternatively, we could asymmetrically fix one element of c4o and crro (or c4(1)
and ¢-(1)) (r=1,...,R) to 1.



but Hermitian, even though the spectral densities of x4, x4+ and u; are all real because they

correspond to univariate processes.

2.3 Wiener-Kolmogorov filter

By working in the frequency domain we can easily obtain smoothed estimators of the latent
variables. Specifically, let

Ye—H = / ei)\tdzy()\%

—Tr

VIAZY(\)] = Gyy(N)dA

denote the spectral decomposition of the observed vector process.
Assuming that Gyy () is not singular at any frequency, the Wiener-Kolmogorov two-sided

filter for the (R + 1) “common” factors x; at each frequency is given by
dZ*" (A) = Goox(N)C' (M) Gyy (NdZY (N, (6)

where

Gxx(N)C'(€™)Gyy (V)

is known as the transfer function of the common factors’ smoother. As a result, the spectral

density of the smoothed values of the common factors, xtﬂ(oo, is

Gt (N) = Gax (AT (e) Gy (M) Ce™ ) Gix (A)

thanks to the Hermitian nature of Gyy(A), while the spectral density of the final estimation

Koo will be given by

erTors Xy — X,

Gixx(A) = Gx(A)C'(€7)Gyy (M) C(e™™) Gxx(A) = Q(N).

Similarly, the Wiener-Kolmogorov smoother for the N specific factors will be

dZ"" (N) = Guu(N) G (\)dZY (\)

= |Iy — C(e ™) Gx (N C' ()G L (V) | dZ¥ (N) = dZY (A) — C(e™)dZ*" (V).

Hence, the spectral density matrix of the smoothed values of the specific factors will be given
by

Guxur (A) = Guu(N)Gyy (A)Guu(N),

K

while the spectral density of their final estimation errors u; — LH is

Guu(A) — Gurux (A) = Guu(A) — Guu(A)Gyy (A)Guu(A) = Cle™MQN)C/(e?) = E(N).

6



K
t|oo

and uf_ will be

Finally, the co-spectrum between x oo

Gercuic (A) = Gax(N)C'(€™) Gy (A) Guu (V).

Computations can be considerably speeded up by exploiting the Woodbury formula under
the assumption that neither G;z(A) nor Gyu(A) are singular at any frequency (see Sentana

(2000) for a generalisation):

GyyW] = [Guu(V)] - [Gxx(M)] - |27 (V)]
Gyy(V) = GuaV) = Gra(WVC(e™MQNC (€M) G (M),
Q) = [Gx(N) +C'(€M)Gu(N)C(e™™)]

The advantage of this expression is that Gyu(\) is a diagonal matrix and Q(A) of dimension
(R + 1), much smaller than N, which greatly simplifies the computations.

On this basis, the transfer function of the Wiener-Kolmogorov common factor smoother
becomes

Gxx (N C'(€™)Gyy (V) = QA)C'(e7)Ga(N),

yy

SO

Gieriser () = AT (€7) G (M) C(e™) Gxx () = Gxx(A)C'(€7) G (N Cle)2(N)

uu

uu

= G { Q) + [CEN GO N Gud) =GN~ Q0N), (1)
where we have used the fact that

QAT (€M) G (N C(e™™) = Ins1 — RN G (V) (8)

uu

which can be easily proved by premultiplying both sides by 271()).

Similarly, the transfer function of the Wiener-Kolmogorov specific factors smoother will be

Guu(NG I\ =TIy — Cle )N T (e GLL(N),

-1
yy(
SO

Gurux (A) = Guu(N) — C(e™™)QN)C/(eP). (9)

Finally,
Gyxux (N) = Q) C/(eP). (10)

In addition, we can exploit the special structure of the matrix C(z) in (5) to further speed

up the calculations. Specifically, tedious algebraic manipulations show that the (R+1) x (R+1)



Hermitian matrix Q71(\) = GL(\) + C'(eM)GLLl(A\)C(e™™) can be easily computed as

[ wI9(N) wIt(N) - wIT(N) o wIR(N) ]
w19<)\) wll(/\) 0 0
GO 0 e W) e 0 (11)
P T A
with
W) = Grlay(N) + (€™ Gra(Nerg(e™™),
W) = Gl () + (€M, (Ner ()
and

where * denotes the complex conjugate transpose.

Interestingly, we can write (11) as

A(A) +BA)D*(N),

where
AN) = diag [w(N),w (N), ... W (N), . W)
- 0
0 wh())
B = | g o
0w |
and
WILN) e wIT(N) e IR
SO IR

are two rank 2 matrices.

The advantage of this formulation is that the Woodbury formula for complex matrices implies

that
Q) = [AQ) + BOD' ()] = A~1(3) = A~ ()BOF ! ()D" (VA (M),
where
F(\) =1, + D*V)A Y N)B()) = } w+gl()‘) 7
w99(N)



with

R 2

[w™ (Ml

w g()\) = iy
’ 2; w(A)

where we have exploited the fact that w™(\) and w9"(\) are complex conjugates so that the
matrix F()) is actually real.

If we put all the pieces together we will end up with

_ng()\) wgr(A) - wer(A) o wer(A) ]
wig(A)  wii(A) o wir(A) o wir(A)
_ : : e : e : _ | weg(A) Wiy ()
CV= 0y wn) o wn) o wm) | T e @ny ] 1P
| wry ) @) e wr) e wra(Y) |
where
y o 1 wig) 1
N = Gyt L) w0 — w0 @) — g ()
o Jeors ()
org) = () = i,
and .
W' (\)w9
k) = e () = iy )

It is of some interest to compare these expressions to the corresponding expressions in the
case of a model with a single global factor but no regional factors and a model with regional
factors but no global factor.

In the first case, we would have

1
\) =
U)( ) wgg(}\)
while in the second case
1
rr A) = ——.
= )

As expected, the existence of regional factors makes more difficult the estimation of the common
factor and vice versa.

The Woodbury formula also implies that
QN[ = AN FA)],
with

_ W g()‘)
F(\)|=1- ng .




The bifactor structure can also be used to speed up the filtering procedure. Specifically,

o [ w00 @) T (e T [ woo(ely(€2) + why(NC ()
GNCED =1 oo mw][cuew}‘{wa@)c'Z(eM+95~<A>c;<eﬂ>

T

and

Cle™MRNT ™) = ergleM g\, (6) + Cple™ )R (NCH(e™)

r

epg(eMwr, (NCLE) + Cple M wry (Ve (e2),

which can be computed rather quickly by exploiting the block diagonal nature of C,(z) in (5).

2.4 The minimal sufficient statistics for {x;}

Define xﬁoo as the spectral GLS estimator of x; through the transformation
x& i - —iA\]— i -
Az () = [C' (€M) GraM)C(e™™)] 7 C'(e™) Gy (N)dZY (V).

Similarly, define u$_ through

t|oo

dZ" () = {Iy = [C'(eM)Ga(VC(e )] C'(7) G (N }dZY ().

uu

G

G
tloo and u

t|oo

It is then easy to see that the joint spectral density of x
with the (1,1) block being

will be block-diagonal,

Grx(A) + [C'(6M)G (N C(e™)]
and the (2,2) block

Gyy(N) = Cle™M)[C' (€M) Guu(NC (e 71 C' (),

uu

whose rank is N — (R +1).
This block-diagonality allows us to factorise the spectral log-likelihood function of y; as the
sum of the log-likelihood function of Xﬁw which is of dimension (R + 1), and the log-likelihood

function of u&_. Importantly, the parameters characterising Gyx(\) only enter through the

t|oo”
first component. In contrast, the remaining parameters affect both components. Moreover, we

can easily show that

1. x¢

floo = Xt T Cﬁoo, with x; and Ct(foo orthogonal at all leads and lags.

2. The smoothed estimator of x; obtained by applying the Wiener- Kolmogorov filter to Xﬁoo

. . . K
coincides with x oo

10



This confirms that X‘ constitute minimal sufficient statistics for x;, thereby general-
ising earlier results by Jungbacker and Koopman (2008), who considered models in which
C(e=™) = C for all ), and Fiorentini, Sentana and Shephard (2004), who looked at the re-
lated class of factor models with time-varying volatility (see also Gouriéroux, Monfort and
Renault (1991)). In addition, the degree of unobservability of x; depends exclusively on the
“size” of [C'(e)GgL(A)C(e™™)] ! relative to Gxx(A) (see Sentana (2004) for a closely related

uu

discussion).

2.5 Maximum likelihood estimation in the frequency domain

Let
1 T T o)
! _—i(t—s
Lyy(A) =5+ > D (e — ) (ys —w'e (13)

t=1 s=1

denote the periodogram matrix and \; = 275 /T (j = 0,...7 — 1) the usual Fourier frequencies.

If we assume that Gyy()) is not singular at any of those frequencies, the so-called Whittle

(discrete) spectral approximation to the log-likelihood function is?
1 T-1 1 T-1
Nae— 53 In|Gyy ()| — 5 D tr {Gyy (0y)[2rlyy (3]} (14
J=0 j=0

with 3¢ = —(T'/2) In(27) (see e.g. Hannan (1973) and Dunsmuir and Hannan (1976)).
Expression (13), though, is far from ideal from a computational point of view, and for that
reason we make use of the Fast Fourier Transform (FFT). Specifically, given the 7" x N original

real data matrix Y = (y1,...,¥¢...,yr)’, the FFT creates the centred and orthogonalised

T x N complex data matrix Z¥ = (z, ... ,z;’, .. ZT 1) by effectively premultiplying Y — f7p’

by the T' x T' Fourier matrix W. On this basis, we can easily compute Iyy();) as 27er 3’ ,

y*

where z ; is the complex conjugate transpose of Z;I. Hence, the spectral approximation to the

log-likelihood function (14) becomes

= gr T=1
Nz — ) Z In|Gyy (Aj)] — o5 Z Z;’*G;;()‘ﬂzi"?
§=0 §=0

which can be regarded as the log-likelihood function of T independent but heteroskedastic com-
plex Gaussian observations.

But since Z;’ does not depend on pu for j = 1,...,7 —1 because {1 is proportional to the first
column of the orthogonal Fourier matrix and z§ = (§7 — p), where g7 is the sample mean of y,

it immediately follows that the ML of pu will be ¥, so in what follows we focus on demeaned

3There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).

11



variables. As for the remaining parameters, the score function will be given by:

=
d(0) = 5 3" d(y;0)
j=0
1 gved [Gyy(A))] -1 1
d(A\;0) = 3 50 [ny()\ ) ® Gyy (A )] vec [QWZJ z — Gy (N )}
_ 1 av@c’[ny(AJ’)] A ‘
where z;' ‘= zz’*' is the complex conjugate of z;’,
m(\;) = vec 27rz3'c 2’ — Gy (N) (16)
and
M(})) = Gy (A;) ® Gy (). (17)

The information matrix is block diagonal between p and the elements of 6, with the (1,1)-
element being Gy (0) and the (2,2)-block being

_ ﬁ /: QN 0)d) — 417r/7; 81)60’[8(;9”()\)]1\/[()\) {3vec’[§0yy(/\)]} ax, (18)

a consistent estimator of which will be provided by either by the outer product of the score or

by
= c%ec )] e Gyy Ml giy {Gvec’[(ggy()\j)] }* .

1
2
Formal results showing the strong consistency and asymptotic normality of the resulting ML
estimators under suitable regularity conditions have been provided by Dunsmuir and Hannan
(1976) and Dunsmuir (1979), who also show their asymptotic equivalence to the time domain
ML estimators.*
Appendix A provides detailed expressions for the Jacobian of vec [Gyy ()] and the spectral
score of dynamic bifactor models, while appendix B includes numerically reliable and efficient
formulae for their information matrix. Those expressions make extensive use of the complex

version of the Woodbury formula described in section 2.3. We can also exploit the same formula

: —1
to compute the quadratic form 23" Gyy()\;)z] as

Y*a—1(\ .\ _ Y*a-1
Z; Guu()‘J)Zj —Z Guu

(MC(e"™M(N)C ()G ra( Nz

uu ]

* xH % - xK
=2 G Nz -2 (0 (V)= (9),

4This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see
Choudhuri, Ghosal and Roy (2004)).

12



where

z;.‘K(e) = E[z|Z7, 0] = Gux();)C' (V) Gyy (A))2 = Q(X)C'(e™)Ga(N))2) (19)

Yy J uu j

denotes the filtered value of zy given the observed series and the current parameter values from
(6).

Nevertheless, when N is large the number of parameters is huge, and the direct maximisa-
tion of the log-likelihood function becomes excruciatingly slow, especially without good initial
values. For that reason, in the next section we described a much faster alternative to obtain the

maximum likelihood estimators of all the model parameters.

3 Spectral EM algorithm

As we mentioned in the introduction, the EM algorithm of Dempster, Laird and Rubin
(1977) adapted to static factor models by Rubin and Thayer (1982) was successfully employed
to handle a very large dataset of stock returns by Lehmann and Modest (1988). Watson and
Engle (1983) and Quah and Sargent (1993) also applied the algorithm in the time domain to
dynamic factor models and some generalisations, while Demos and Sentana (1998) adapted it to
conditionally heteroskedastic factor models in which the common factors followed GARCH-type
processes.

We saw before that the spectral density matrix of a dynamic single factor model has the
structure of the unconditional covariance matrix of a static factor model, but with different
common and idiosyncratic variances for each frequency. This idea led us to propose a spectral
version of the EM algorihtm for dynamic factor models with only pervasive factors in a com-
panion paper (see Fiorentini, Galesi and Sentana (2014)). In order to apply the same idea to

bifactor models, we need to do some additional algebra.

3.1 Complete log-likelihood function

Consider a situation in which the (R + 1) common factors x; were also observed. The joint

spectral density of y; and x;, which is given by

[ Gyy(A) Gyx(A) ] _ [ Cle™)Gxx(N)C'(€?) + Guu(N)  Cle™?)Gixx () ]
G;x()‘) Gxx(M) GXX(A)C,(GZ/\) Gxx(N) ’

could be diagonalised as

% 1% oot i8]

with



and )
Iy 0 B B Iy 0
C/(ew‘) IR+1 - —C'(ei)‘) IR+1

Let us define as [ZY|Z*] as the Fourier transform of the 7' x (N + 1 + R) matrix

Y1, - YN, Xg, X1, ..., Xg] = [Y[X],

so that the joint periodogram of y; and x; at frequency A; could be quickly computed as
Zgl y* Xk
2m I ( z, 7z ),
J
where we have implicitly assumed that either the elements of y have zero mean, or else that

they have been previously demeaned by subtracting their sample averages

In this notation, the spectral approximation to the joint log-likelihood function would become

Gyx(\))
Iy, N+ R+1)x ln[ * ) yx]”
(y,x) = ( Z Aj) Gax(A))
T—1 _ —i)s
LN (e[ Iv O Gmﬁ(Aj) 0 Iy Ce™) ] (2
2 &0 —C'(e™N) 1 0 Goi(\) 0 1 z
j=
= gp T=1
= Noe— 5 3 n[GualVy)] — o 3 A G ()al
j =0 7=0
= 9r T=1
+(R+1)c— = Z In |Gooe (V)] = = > G (\)z
_]—O j=0
N = gr -1
= Z %= 3 Z I |Guu, (M) — 5 Gq;lu,()\j)zj z (20)
i=1 j=0 Jj=0
T—1 9r T=1
+x— 5 Z In ‘Gxgxg(AJ)‘ T 9 G;glzg(A]) ]gzjg (21)
j=0 j=0
R = 9r T=1
+> |- 5 2 Gea () = 5 ST GHh () (22)
r=1 j=0 j=0
N R
=Y UylX) + Uxg) + Y Uxy) = UY|X) +U(X),
i=1 =1
where® if country i belongs to region r we have that
zft = zjy’ — cig(e*i)‘j)z;ﬂg — —cir(e*“‘j) Z Cirge” "™ xg — Z Cilre Zl}‘z;“, (23)
k=—my l=—m,
= z7z;", Luu(\) = 2}'z}"and

°Note that we could have expressed those log-likelihood in terms of Ixx(Aj)
but for the EM algorithm it is more convenient to work with the underlying complex random

Lux () = 2}z,
variables.
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so that

5 12;7;* — i Yi* ng(e_“\f)z;qu?i* — cw(e_”‘])zx’“z?i* clg(ez)‘j)z 279" — Cir(eMj)Z‘iZ;ﬂT
+cig( j)cig(ei’\ﬂ)z;gz;cg* + cir (e )‘j)Cz‘ ( i )Z;?Tz
teig(e™ ™ )em (™) 277 + cin(e™™ )eig (™) 27 25

= Ty, (Nj) = Cigle ™) I (A)) = cir(e™ ™) Ia,y, (Nj) — Cig(e™) Iya, (Nj) — Cir(€) Iy, (A))
+cig (eii/\j )Cig (eMj )ngxg (Aj) + Cir (eii)\j )Cir (ei)\j My, (Aj)

+Cig(e_i)\j)Cir(ei)\j)[xgxr(/\j) + Cir(e_ikj)cig(euj)[rrmgO‘j) = qu'Ui<)‘j)-

In this way, we have decomposed the joint log-likelihood function of y1,...,yxy and x as
the sum of the marginal log-likelihood of x, {(X), and the log-likelihood function of yi,...,yn
given x, [(Y|X). In turn, each of those components can be decomposed as the sum of univariate
log-likelihoods. Specifically, [(Y|X) can be computed as in (20) by exploiting the diagonality of
Guu(A;j), while [(X) coincides with the sum of (21) and (22) by the diagonality of Gxx();).

Importantly, all the above expressions can be computed using real arithmetic only since
Cig(eii)\j)jxgyi()‘j) + Cig(ei)\jﬂyi% (/\j) = 2R
Cir(e_ikj)lxryi()‘j) + Cir(eiAj)Iyimr (Aj) = 2R

R

Cig(eii)\j)cir@i/\j)Iwgwr()‘j)+Cir(‘eii)\j)Cig(ei/\j)lxrfcg(/\j) = 2

[czg 71)\ Ly gy, ()‘])} )
[CW Iy, ()‘J)} )
[

ng e A])I$g$r (AJ):| ’

Cig(€™™)eig(€™) rye, () = ||eigle™™) 1 Loy, (M)
and
—iXj i —ixgy ||
cir(e™)Cir (€ ) Ip,0, (Aj) = ||Cir(€7") ‘ Iz, ()
Let us classify the parameters into three blocks:
1. the parameters that characterise the spectral density of x; : 0, = (9' 0,0,

2. the parameters that characterise the spectral density of uy (i =1,...,N): b = (¢q,...,¥nN)
and 6, = (6, 0,.)

Wi
3. the parameters that characterise the dynamic idiosyncratic impact of the global and re-
gional factor on each observed variable: cig = (¢i—mgy,g---5Ci0,95---»Cingg) and c; =

/
(C’i,f’mr,rv <oy G0y e e 7Ci,nr,r) .

Importantly, 6, only appear in (21), 8, in (22), while 8y, c;; and c; appear in (20). This
sequential cut on the joint spectral density confirms that "¢ and 2", and therefore x4 and ¢,

would be weakly exogenous for 1;, 8y,, c;y and c; (see Engle, Hendry and Richard (1983)).
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Moreover, the fact that f,; and f,; are uncorrelated at all leads and lags with v;; implies that

zg4¢ and x4 would be strongly exogenous too.

We can also exploit the aforementioned log-likelihood decomposition to obtain the score of

the complete log-likelihood function. In this way, we can write

-1
o(Y,x) 0l(xg) 1 0Gz,0,(Nj) -
89xg - 80mg B 5 gZO 6919 ngxg()\j) [27rzjgzjg N ngzg ()\J)} ’ (24&)
OIY,x)  Ol(x,) 1« 160
T ; =52 W) g2 () oo = G ()] (240)
s T ]:0 T
oY, %) Al(yilX) 1 5 9GO 2 3 [ymsiis _ o o
08., 08y, =~ aoul G220 2~ GunV)] (20
T-1
ol(Y,x) Ol(y:|X) 27 -1 kA ik\; T
’ = = — G o )\ |: i ot WRAG 9 uli|
8Cikg 8C7jkg 2 = uluz( ]) Z] ‘e +€ Zj Z]
:21 T—1 G o (z?i—ZZi,mg Cikge—ikxz;cg _ ln:r_mr Cilre—mz;cT) ik z;:g 1)
25| e (TSR g€ =S e
T—
al(Y,X> Ol(y:X) 2 I\ —ilA g
ociiy Ocikr Z s [Z T e T }
=0
) 2£T 1(;*1 o) <Zji _ Zkg:—mg cikge”k)‘zfg - cilreiil/\zfr> eu,\jzja:r* 10
2 = i —l—e*”’\ﬂ'zf’“ (zf* — Zzg:,mg Cikgeik/\Z;g* D cilrei”‘z;“*>
where we have used the fact that
8'2?1 _ —1kA Zg
aCikg - c Zj
ug
Oz" o—ilA o
acilr J

in view of (23).

Expression (24a) confirms that the MLE of 8., would be obtained from a univariate time
series model for 4, and the same applies to 8,,. However, since G,z,(A;) also depends on
0.,, there are no closed form solutions for models with MA components. Although it would
be straightforward to adapt the indirect inference procedures we have developed in our com-
panion paper (see Fiorentini, Galesi and Sentana (2014)) to deal with general ARMA processes
without resorting to the numerical maximisation of (21), in what follows we only consider pure
autoregressions. Obviously, the same comments apply to 6.

In this regard, if we consider the AR(2) example for z, in (4), the derivatives of G, .. ()
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with respect to ai,, and ag;, would be

0G4, 2, (M) 2(cos A — a1y, — oy, COS )

Oaig, - (1+ad, +ad, —201., (1 — az,) cos A — 2024, cos 2X)2
0Gg,z, () 2(cos 2\ — a1z, COS A — gy, )

Oaag, - (1+ad, +ad, — 20, (1 — az,) oS A — 2094, €OS 2X)?

Hence, the log-likelihood scores would become

ﬂ
L

ol(x,) 1 Z 2(cos A\j — a1z, — Qg COS Aj)
daqy, 2 — (1+ a%x + a%xr — 201z, (1 — ag,) cOS Aj — 29, cOS2))?

1+a + a2 — 201 (1 — a9z ) COS A — 209, cos 2\, )2
1z, 2%, r r ] r J

1
2T 2T —
"5 (14 af, + a3, —201.,(1 - az,)cosAj — 2aa,, cos2);)
=2 Z(cos Aj = Qg, — Q2g, COSAj) 22T,
and
T—1
ol(x,) 1 Z 2(cos2M\j — g, COSAj — (t2y,)
g, 2 = (1+ a%mr + a%xr — 201z, (1 — agg,) cos \j — 202y, cos 2\ ;)2
X (1+af, + a%xr — 201, (1 — @gg,) 08 \j — 209, cos 2X;)?
X 22t — !
7 (1+af, +0a3, —20,, (1 —az,)cos\j — 2as,, cos2);)
T—1
= 21 ) 2(cos2)\; — iy, COS\j — Qo )27 2],
=0

where we have exploited the Yule-Walker equations to show that
= (cos A\ — aqy, — oz, COS M)

Z 1+a? 402 —2a1, (1 — a9y )cos A — 2as,. cos 2\
=0 11‘ 293 T T T

.

= erxr(l) — Q. Vg, z, (0) - O‘2xr7mrmr(1) =0,
T—

[y

(cos 2\ — iy, COS A — agz,)

1+a2 +a2 —2a1.. (1 —agg.)cos\ — 2a9,. cos 2\
=0 ll'r 2£ET ™ T ™

.

= Vx,-z7-(2) - alﬂ?r’)/w,.a:r(l) - a2$7»71‘7-x7-(0) =0.
As a result, when we set both scores to 0 we would be left with the system of equations

-1 1 cos A 6% — cos A
Ty Tk J 1z, — Zr o Tr J

=0 Jj=0
But since

Ixrwr ()\ ) = ’Yx,,,z,r + 2 Z ’Yx Ty COS k)\ )
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we would have that

T—-1
Z 27r[1"rzr (A]) = T’?.’L'T"ET (0)
=0

T—1
cos )‘j [27TI17r93r ()‘J)] = T[PAY:vrxT (1) + fAqunxT (T - 1)]?
=0
and
T—-1
Z cos 2)\j [27TIxTIT()\j)} = T[;Y:I:,»arr(Q) + ﬂl$7-xr (T - 2)]7
=0

which are the sample (circulant) autocovariances of x,; of orders 0, 1 and 2, respectively. There-
fore, the spectral estimators for &1,, and éo,, are (almost) identical to the ones we would obtain

in the time domain, which will be given by the solution to the system of equations

(2= 2=t ) (o )= (2my)).

because both 4, , (T —1) =T z,pzy1 and 4, , (T —2) = T~ (@,rzr2 + Tpr-1201) are op(1).
Similar expressions would apply to the dynamic parameters that appear in 6,, for a given
value of ¢;; and c;, in view of (24c), since in this case it would be possible to estimate the
variances of the innovations ¢, in closed form.
Specifically, for an AR(1) example in (4), the partial derivatives of Gy, (\) with respect to

1; and aq,, would be

OGuu;(N) 1
o, 1+ a%ui — 201y, COS A’
0Gu;(A) 2(cos A — a1y, )W,
Oy, 1+ o, — 20y, cos )%’

Hence, the corresponding log-likelihood scores would be

8l(y7,|X) _ 1 (1 + a%ui - 2@17”1 COs Aj)Q Qg Ui HUi* 1/}1
0 2 (T+od, =200y cosX;)0f |7 7 T4ag, — 201008
=
= 5 Z [(1 + o3, — 201y, cos Aj)2maiz it — wz} )
i =0
ol(y;|X) B lel 2(cos \j — gy, )9 (1 + aiil — 201,;1 COS )\j)2
day, 2= (1+ a3, — 201y, cos Aj)27]
-1
- P, 2 R
X | 2wzttt — L = — COS \j — Quiy, )2t 2t*,
[ 7 (1+ a3, — 201y, cos ;) b, j:O( i )z

As a result, the spectral ML estimators of ¢; and a1 for fixed values of ¢;; and c¢; would
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satisfy

~ 2 T-1
i = A2 — 2a N\ UG UGk
1/% - T =0 (1 + Oy, 2061ui COS )\J)Z] z] ,
-1 UG UGk
Zj:() COSAjz;" 2,

- Uj Uk
2j=0 %%

Intuitively, these parameter estimates are, respectively, the sample analogues to the variance
of v;, which is the residual variance in the regression of u;; on u;;—1, and the slope coeflicient in

the same regression.
Finally, (24d) and (24e) would allow us to obtain the ML estimators of ¢;4 and c;;, for given
values of 6,,. In particular, if we write together the derivatives for cjpy (K = —myg,...,0,...,ng)

and ¢k (k= —my,...,0,...,n,) we end up with the “weighted” normal equations:

B 6img)\j Z;‘g Z;g*e—img)\j _|_ eimg)\j Z‘:;g Z?‘g*e_imgkj

-1 . iMgNj ;79 ;B9 gingAj | o—ingXj ;%9 Ta* o—img);
z : Guzul ()\]) eimQ}\j za.jg Zi{ir*e—’imr}\j + eimr)\j Z?/‘sz‘g*e_img/\j
j= J 77 J
eimgAj zm‘g Zw~r*€inT>\j ‘I’ e—inr/\j z-?rza';g*e—img/\j
- J 77 J 7
e~ MgAj 479 ,Ta* o —img; + eimgAj , %9 ,To* gingXj  gimgAj ,Tg ,Trk ,—imr X + eimrAj e ,Ta* o—img X
J I J 7 J 77 J 7J
e~ ingAj 5 T9 L Ta* pingA; 4 e~ ngAj 59 ,Ta* jingA; e~ Mg V9 L Trx p—imeAj 4 eimrAj Tr Ta* jing\;
e—ingAjZ : .GZ@r*e—imr)\j + eimr)\j Z{Urzi?g*eing)\j eimq-/\j ZQ::TZ@T*e_imT‘Aj _|_ eimr)‘f Z:-BT Z‘?’r*e—im»,«)\j
J 7 J 7J J 7 J 7J
e—ingkj ng Z;T*ein'r)\j + e_in'f)\j Z;TZ;g*eing/\j e—inrAj Z‘Cjﬂr Z‘;‘Er*e—imr/\j + eim,,»)\j Zfrz‘;?r*einrAj
iMmgAj L9 ,Tr¥ jing\; —inpNj ,Tr ,Lg* ,—imgA; - ~
€ %% ¢ te %% © Ci,—mg,g
6—ing)\j Zzg Zm’r‘*einr)\j 4 e—inr)\j Zxrzxg*eing)\j &
ezmr)\j Z;?r Z}Er*emr)‘j + e*mr)\j Z;IT zép’r*efzmr)\j Ei,—n’u-,r
e—mr/\j Z;?TZ;'CT*eznTAj 4 e—znr)\j Z}Erz;cr*eznr)\j | Ei,nr,r

Yi Tg* —imgA; Yi* Tg img;
zj'z;t e —i—zj zoe
-1 i _Tg* 4 . ' i* Tg g .
G—l ()\ ) LYi JTa* pingA; 4 LYi* T p—ing;
w;ug \ N Yi Trk ,—ime\j Yix Tr imy);
— zj'zte + zjhzj'e

<

zi'zite —|—zj zj"e

Thus, unrestricted MLE’s of ¢;4 and c; could be obtained from N univariate distributed
lag weighted least squares regressions of each y;; on x4 and the appropriate x,; that take into

account the residual serial correlation in u;. Interestingly, given that Gy, ();) is real, the above
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system of equations would not involve complex arithmetic. In addition, the terms in 1; would
cancel, so the WLS procedure would only depend on the dynamic elements in 8, .
Let us derive these expressions for the model in (4). In that case, the matrix on the left

hand of the normal equations becomes

Tg Tgk i iN:\ _Tg Tg*
9579 %9 (e [y +ezA )ngzjg
T— 1G ( 2y +6_i>‘ )ngzxg Qng Tg*
T _ T Tg* i\
‘ u1u7 (Z]‘]Z‘;Br + Z.;ETZ]‘A ) ’L)\JZJGZ]xT + Z$T2~g €Z>\j
i= Tg @k GiA; SN Tg* Ty o T Lg*
j j T 9 g ok Lr '9
2" 2 +e 25"z z;" 2 —|—2’ zJ
T Tg*
P gzocr _i_z{vrz'g I gzm* (2Y] e~ z/\]Z Z]
Ta¥ ). o*
e )\] ngzfr + z;:'rzjg elA] ngzxr + zf’rz
229”’“2;“* zf zjwr* e 4+ e~ “\sz z] ’
z)\] Tk Ty Xr* z)\ Xy Tp*
z] 2"+ 25" 22:] z;

while the vector on the right hand side will be

yz + Zyz*zxg
— ’L)\] Yi 257 —’L>\ yz* Tg
§ . Z] Z] t+e ] Z]
U Uz Zlh zl’r + Zyz* Tr
:O %
e’t}\J Z;Jz Z-'Er + 6—’5)\ ;}z Z‘;Er

In principle, we could carry out a zig-zag procedure that would estimate c;, and c;, for given
0.,,, and then 8, for a given c¢;; and c;-. This would correspond to the spectral analogue to the
Cochrane-Orcutt (1949) procedure. Obviously, iterations would be unnecessary when Guu(A;)
is in fact constant, so that the idiosyncratic terms are static. In that case, the above equations
could be written in terms of the elements of the covariance and the first autocovariance matrices

of yi, g and .
3.2 Expected log-likelihood function

In practice, of course, we do not observe x;. Nevertheless, the EM algorithm can be used
to obtain values for @ as close to the optimum as desired. At each iteration, the EM algorithm
maximises the expected value of [(Y|X) + [(X) conditional on Y and the current parameter
estimates, 8™, The rationale stems from the fact that (Y, X) can also be factorized as {(Y) +
[(X]Y). Since the expected value of the latter, conditional on Y and 0™, reaches a maximum
at @ = 0 any increase in the expected value of I('Y,X) must represent an increase in [(Y).

This is the generalised EM principle.
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In the F step we must compute

Ell(xg)|Z¥,0"] = 5= 5% I|Gap, (V)| = 5 D Gre, (W) EL"277(27, 0],
j=0 Jj=0
1 T—-1 o T—1

Ell(x,)|2%,8™] = =5 n|Guu, (W) = 5 D Gl () Bl 257127, 6],
j=0 j=0
1 T—-1 o T—1

BllyilX)|22,0™] = =2 > m|Guu W) = 5 D Gut (W) Bz 2727, 6.

j=0 j=0

But
Elz52%*(2Y,0] = 25X (00)zx"*(0™) + E {[Z;F — 2" (0M)] [z — 25 *(0™)]|2], e<n>}
= L () + Q0 0y),
where

Ly (A) = 27Gyx(N)C'(e?)Gyy (MIyy (V) Gyy (A)C(e ™) G (N)

= 210N C'(€?)Gyu(Myy (M) Gy

uu

(NC(e™)Q(N). (25)
is the periodogram of the smoothed values of the R + 1 common factors x and

X XK Xk XK*
E{lzs - 2" (0)]lz — (02,0} = 20).
In turn, if we define

Ly (A) = Iyy (V) Gyy (V) C (™) Gixx (V) = Iyy ()G (V) Cle™)Q2(N)

yy uu
as the cross-periodogram between the observed series y and the smoothed values of the common
factors x, we will have that

18\3()\]') = E[z}z]"(ZY, 0] = {[zg — C(e_i)‘j)zﬂ [zgl* — Z’F*C’(ei/\j)] |ZY, 0(”)}

= [} — C(e~ ™)z} (0™)][2]" — 2} *(8")C/(¢™)] + Ce™ )2 (1) C'(¢™)

= IYY(AJ) - I(n)

Cle™
M N (™) = Cle™ NI () + Ce™) I . () + 2 ()T (™),
which resembles the expected value of Iuu(A;) but the values at which the expectations are
evaluated are generally different from the values at which the distributed lags are computed.
The assumed bifactor structure implies that for the it" series, the above expression reduces

to

100, ()

Bl 2} |2, 0] = I, ()
—eigle I, () = eir (LG, () = 10 (W)eig (€)= L (hg)eis ()
I O0) ) O)esg €™ Jeig (7)1 >+w5ar< Al (€™ )eir(€)

FUL e ) 5 ) eige™)ein (679) + [T () + ) e (™™ )eig (67,
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Therefore, if we put all these expressions together we end up with

T-1 —
1
Ell(xo)[Y, 0] = 5= 5 3 In|Guye, (V) Z ey ) |15 ) + 5 ()], (26)
=0 =0
(n) S 27 N 1 (n) (v
Efl(x,)[Y, 0] = 3¢ = 5 3" In |G, 0 = 5 D G, ) [ LH, )+ O00)] - (27)
j=0 §=0
1 T-1
By XY, 0] = 5= 5 3" |G )| = 5 Z Cupe WIS, D). (28)
j=0

We can then maximise E[l(x4)|Y, 6] in (26) with respect to 0., to update those parame-
ters, and the same applies to (27) and @,,. Similarly, we can maximise E[l(y;|X)[Y, 8] with
respect to ¢4, C;r, ¥; and 0, to update those parameters.

In order to conduct those maximisations, we need the scores of the expected log-likelihood
functions.

Given the similarity between (26) and (21), it is easy to see that

OE[l(x,)[Y,00] 1< 18Gx v L (n) n
e P Wi n 3g) {or [19, 1 00) + 8 O0)] — Gorey O}

which, not surprisingly, coincides with the the expected value of (24a) given Y and the current

parameter estimates, 8. As a result, for the AR(1) process for z, in (4) we will have

OE[(x)|Y,0™] | ¢ .,
o 27 Y condy —an) Lo )+ 50|
Tg =0
whence
) im0 ©O8%y [ 1% K(/\j)+W§Z)(Aj)]
lzg =

PR [Iig?xgu )+l O)]

Likewise, we will have that

OE(I(x,)]Y,0™] 132 0Gu0,(N) g ™) (2 1 o™y |
v g ; e Ga 00) {2 [L ) + 6P 09)] = Geve, ()}

Hence, in the case of the AR(2) process for x,; in (4), the expected log-likelihood scores

become

~
_

= 21 Y (cos\j — iz, — Qog, COSA;j) [Ig(c?()xﬁ( (Aj) + w(")()\j)] ,

rr

OEl(x,)Y, 0]
aO‘lacr

<.
Il
o

S
_

2w 2(COS 2)\]‘ — (1, COS )\j — Oé2xr) |:] T;() K()\j) + w(")(/\])] ;

rr
Ty T

OE[l(x,)Y, 0]
8a2xr

<
I
o

22



so that the updated autoregressive coefficients will be the solution to the system of equations

T 1 COS \j Q1
Z{[m +w£’:><xj>}®(coskj A )}(a>

=0
-1

n n COS \j
= S +eon]e (b
0

ﬂw

<.

Similar expressions would apply to the dynamic parameters that appear in 6,, and v, for

given values of c;; and c;,. Specifically, when the idiosyncratic terms follow AR(1) processes

T-1

. (n)
E[l(yZ’;()’ng ] _ 122 (1402, — 20,1 cos A) {Qﬂ[( ) (O )_%}’
0, 207 &
T—1
E[l(yi|X)[Y, 6] 2m ()
= — cos Aj — iy ) Ly o (Ag)-
e

As a result, the spectral ML estimators of v, and a1 given c¢;4 and c; will satisfy

) 2T Tl (1) - (nt1) ™)

(& = T 2uim0 [1—1-( ) — 2@y, cos Aj| Lo (Ag),
Sy Sy cos Al ()

lu; -

S0 L (A)

Finally, the derivatives of (28) with respect to cixg (K = —mg,...,0,...,n4) and ¢, (I =
—My,...,0,...,n,) for fixed values of 6,, will give rise to a set of modified “weighted” normal
equations analogous to the ones in the previous section but with cross-product terms of the form
zfng’"* replaced by [Ii;f?x£< (A) + wg;?)()\j)].

For the example in (4), the matrix on the left hand of the normal equations becomes

[ég?u>+w%<>1
S 6t o cmxéw55«A>+w$N&n
=0 o §R[IJUK KO‘ )+w97’ (A)]
cos MRIL e ()] = sin AL e ()
cwk[%§<>+w$<>] R, () + g’ (4)]
(L5 1 ) + i ()] wM%W?K(H+wMJU?ﬂMﬂ
cos MARULSE, e ()] + sin A, S, (1) [g?Ku>+ww<>]

R e ) + i ()] cos M1 e () + wi (4))]
cos \;R[L " ) x (Aj)] —sin \; 1 (n)
méﬁKu>+wm >
cos/\[(?() K()\)—i-w” (A))
150 e () + & ()]
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while the vector on the right hand side will be

RS ()]
T-1 (n) —sin S
5 Z Gl cos )\J%[Iyixf(Aj)] sin )\]\S[Iyimf()v)]
UiU; \7Y] n
= R (Ag)]

In principle, we could carry out a zig-zag procedure that would estimate c;4, c;- and v, for
given 0,, and 8, for given c;q4, ¢; and 1;, although it is not clear that we really need to fully
maximise the expected log-likelihood function at each EM iteration since the generalised EM
principle simply requires us to increase it. Obviously, such iterations would be unnecessary when

the idiosyncratic terms are static.

3.3 Alternative marginal scores

As is well known, the EM algorithm slows down considerably near the optimum. At that
point, the best practical strategy would be to switch to a first derivative-based method. Fortu-
nately, the EM principle can also be exploited to simplify the computation of the score. Since
the Kullback inequality implies that E [[(X|Y;80)|Y; 0] =0, it is clear that 0I(Y;80)/00 can be
obtained as the expected value (given Y and 0) of the sum of the unobservable scores corre-

sponding to I(y1,...,yn|X) and I(X). This yields

82:{:9) = 5 Z g g :chxg()‘j) |:27TE[ngng ‘Zy,O] - G$g$g()\j):| )
al(Y) _ aGIriUr( ) 2 . Ty [ Tr¥k|rgy
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90.,, = 5 < 90, G (Nj) [QWE[ZJ' Zj 1ZY,0] - Guiui()‘j)} )
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-1 ik u; Tg* —tkA; Tg ui*

= = ) [ B2 270" |2Y | 0 E[2%02*|ZY 0
100 _ 25 o oo s
ol(Y) 2T = 1 AN, T i ek |y T W
i D IC | Bl |29,6) + e B[ |2, 6]

j:

But since the scores are now evaluated at the values of the parameters at which the expec-
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tations are computed, we will have that

Elz5zi7Z27,0] = Lk (Aj) +Q(N)),

Ez82Y*|2Y,0] = E[z}|2Y,0|E[z}*|2Y,0] + E [{z} — E[z}|Z7,0]} {z}* — E[z}*|2Y,0]} |27, 0]
= Turux (A)) + Cle™)Q(N)C' ().

E[z}2*|2Y,0] = E[z}|27,0]E[z*|ZY,0]) + E [{z}} — E[z}|127,0]} {z}* — E[z}*|2",6]} |ZY,6]

= IquK ()‘]) - C(e_i)\j)ﬂ()‘j)
where

u u - —1 xK
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u u Xk xK % —IA;
Bl(z} — ;%) (zF" — 2§ *)|2Y,6] = Ce~™)Q()),

Lyxux (A) = QWGuu()‘)G;;()‘)Iyy()‘)G;; (A)Guu(A)
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is the periodogram of the smoothed values of the specific factors, and

Iy (A) = 271Gy (A)C'(€) Gy (MIyy (V) Gy (M) Guu(N)

=21\ C' (MG

uu(

Ny (V) [In = Gh(NCe™)RM)C ()] (30)

is the co-periodogram between x

oo and ut‘Oo

Tedious algebra shows that these scores coincide with the expressions in appendix A. They
also closely related to the scores of the expected log-likelihoods in the previous subsection,
but the difference is that the expectations were taken there with respect to the conditional

distribution of x given Y evaluated at 0("), not 6.

4 Inflation dynamics across European countries

Increasing economic and financial integration implies that nowadays countries are more sen-
sitive to shocks originating outside their frontiers. In particular, national price levels may be
affected by external shocks such as fluctuations in global commodity prices, shifts in global de-
mand, exchange rate swings, or variations in the prices of competing countries. Understanding
the extent to which foreign factors determine movements in domestic inflation is a key question
for macroeconomic policy.

A recent growing literature tackles this question by employing factor analysis techniques.

Ciccarelli and Mojon (2009) estimate a static single factor model for 22 OECD economies over
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the period 1960-2008 and document that the estimated global factor accounts for about 70
percent of the variance of CPI inflation in those countries. Mumtaz and Surico (2012) estimate
a dynamic factor model with drifting coefficients and stochastic volatility for a panel of 164
inflation indicators for the G7 countries, Australia, New Zealand and Spain. These authors find
that the historical decline in the level of inflation is shared by most countries in their sample,
which is consistent with the idea that a global factor drives the bulk of inflation movements
across economies.

At the same time, the inflation rates of closely integrated economies tend to be more corre-
lated with each other than with other countries, which is difficult to square with a single factor
model. Motivated by this, we explore the ability of the dynamic bifactor models discussed in
section 2.1 to capture inflation dynamics across European countries. The European case is of
particular interest because whether EMU has played a decisive role in the observed convergence
of inflation rates across its member economies remains an open question. In this regard, Estrada,
Gali and Lépez-Salido (2013) examine the extent to which the inflation rates of the original 11
euro area countries and other OECD economies have become synchronised over the period 1999-
2012, reporting strong evidence of convergence towards low inflation rates. They also show that
other advanced non-euro countries experience similar levels of convergence, which suggests that
EMU may not be responsible for the generalised decline in inflation.

We use monthly data on Harmonised Indices of Consumer Prices (HICP) for 25 European

economies over the period 1998:1-2014:12.% In particular, we consider three groups of countries:

1. the original” euro area members: Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, Netherlands, Portugal and Spain;
2. the new euro area participants: Cyprus, Estonia, Latvia, Lithuania, Malta and Slovakia;

3. other non-EMU countries: Bulgaria, Denmark, Iceland, Norway, Poland, Sweden and

United Kingdom.

We focus on year-on-year growth rates of HICP indices excluding energy and unprocessed
food, which are widely viewed as the relevant measure to track for inflation targeting purposes;
see for example Gali (2002). As a result, we are left with 7" = 192 time series observations.

Figure 1, which contains the inflation rates for each country (solid blue line) together with the

®Since our aim is to maximise the time span of our sample, we exclude several countries for which data
start at later dates: Czech Republic and Slovenia (1999:12-), Hungary and Romania (2000:12-), and Croatia and
Switzerland (2004:12-).

"We include Greece among the original euro area even though its accession year was 2001.
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inflation rate of the European Union (dashed black line), confirms the generalised downward
trend in inflation.

For modelling purposes, we assume that the (demeaned) inflation rate of each country is
driven by a global factor which affects all European countries, an orthogonal region-specific
factor which affects all countries within a region, and an idiosyncratic factor. We also assume
that the global and regional factors affect the inflation rate of a country not only through their
contemporaneous values but also via their one-month lagged values with country-specific load-
ings. Further, we assume that all factors (global, regional, and idiosyncratic) follow orthogonal
AR(1) processes. Despite the apparent simplicity of our model, each series is effectively the sum
of three components: an ARMA(1,1) global component, another ARMA(1,1) regional component
and an idiosyncratic AR(1) term.

We estimate our dynamic bifactor model using the EM algorithm developed in previous
sections. As starting values, we assume unit loadings on the contemporaneous and lagged values
of both common and regional factors, unit specific variances, autoregressive coefficients set to 0.5
for both common and idiosyncratic factors, and 0.3 for regional factors. Importantly, the scoring
algorithm fails to achieve convergence from these initial values. To speed up the EM iterations,
we employ just five Cochrane-Orcutt iterations instead of continuing until convergence. Despite
the large amount of parameters involved (154), the algorithm performs remarkably well, as shown
in Figure 2. The first EM iteration yields a massive increase in the log-likelihood function, while
subsequent iterations also provide noticeable gains. As expected, though, after 200 iterations
the improvements become minimal. For that reason, we switched to a scoring algorithm with
line searches at that stage, which converged rather smoothly to parameter estimates reported in
Tables 1 and 2, together with standard errors obtained on the basis of the analytical expressions
for the information matrix in appendix B.

Table 3 contains the results of joint significance tests for the dynamic loading coeflicients
associated to the global (columns 1 and 2) and regional (columns 3 and 4) factors for each
country. Those tests confirm that with the possible exception of Iceland, all countries in our
sample are dynamically correlated. More importantly, they also show that some clusters of
countries are more correlated with each other than what a single factor model would allow for,
thereby confirming the need for a bifactor model. This is particularly noticeable for the Baltic
countries, but it also affects Norway, Sweden and the UK among those countries which have
never belonged to EMU.

From an empirical point of view, it is of substantive interest to look at the evolution and

persistence of those latent factors. Unfortunately, it is well known that the usual Wiener-
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Kolmogorov filter can lead to filtering distortions at both ends of the sample. For that reason, we
wrote the model in a state-space form and applied the standard Kalman fixed interval smoother
in the time domain with exact initial conditions derived from the stationary distribution of the
33 state variables (2 for the common factor and each of the regional factors and 1 for each of
the idiosyncratic ones; see appendix C for details).®

Smoothed versions of the global and regional factors are displayed in Figure 3. In panel
(a) we plot the estimated global factor jointly with the unweighted average of inflation rates
across countries in our sample, and the inflation rate of the European Union countries. For ease
of comparison, we re-scale both the global factor and the equally weighted inflation average to
have the same mean and variance as the European Union inflation. The smoothed global factor,
which with an estimated autocorrelation of 0.97 is rather persistent, tracks fairly well these two
measures over the sample. The main exception is the period 1999-2002, when the global factor is
significantly higher than the inflation rate of the European Union countries. Such discrepancies
are explained by two facts: (i) the European Union HICP is a consumption-weighed average
of country-specific price indices, and (ii) there are differences between our sample of countries
and the set of economies used to construct the European Union HICP.? Since 2002, the global
factor generally trends downwards, in line with the other two measures. The other panels of
Figure 3 plot the estimated regional factors, which are scaled so that their innovations have unit
variance. Interestingly, the factor for the new entrants to the euro area is even more persistent
than the global factor (its autocorrelation is 0.98). In contrast, we do not observe statistically
significant persistence in the evolution of the other two regional factors. These results suggest
that some of the new entrant economies share a regional factor which drives the medium term
trends in inflation, while other regional factors have a predominant role at higher frequencies.
We revisit this question below.

Given the estimated factors and factor loadings, we can compute the contributions of global,
regional and idiosyncratic factors in driving the observed changes in prices across countries.
Figure 4 plots the results for all the countries in our sample. The global factor clearly drives
the downward trend in inflation for many countries, including Cyprus, Denmark, France, Italy,

Poland, Slovakia and Spain, among others. We also observe a sizeable role for the regional factor

®The main difference between the Wiener-Kolmogorov filtered values, xffoo, and the Kalman filter smoothed
values, X§T7 results from the implicit dependence of the former on a doubly infinite sequence of past and future
observations. As shown by Fiorentini (1995) and Gémez (1999), though, they can be made numerically identical
by replacing both pre- and post- sample observations by their least squares projections onto the linear span of
the sample observations.

9Specifically, the weight of a country is its share of household final monetary consumption expenditure in the
total. The European Union HICP is constructed as the weighed average of the original 12 countries until 2004,
then it extends to 15 countries until 2006, 27 countries until 2013, and finally 28 countries until the end of the
sample.

28



for Estonia, Latvia, and Lithuania. For these Baltic economies, inflation dramatically swings
over the period 2005-2011. Conversely, the regional factor only plays a marginal role for the
other new entrants (Cyprus, Malta, and Slovakia), which did not experience such swings over
the same period. In this regard, it is worth noticing that the Baltic countries adopted the euro
in the late part of the sample (Estonia in 2011, Latvia in 2014 and Lithuania in 2015), while the
other entrants joined the euro area earlier (Cyprus and Malta in 2008, Slovakia in 2009). This
evidence, although far from conclusive, suggests that EMU may have had a dampening effect
on inflation fluctuations for all the new entrant countries.

We complement our time domain results by decomposing the spectral density of each country
inflation series into the corresponding global, regional, and idiosyncratic components. Figure
5 show for each frequency the fraction of variance explained by each of those components. To
aid in the interpretation of the results, we have added vertical lines at those frequencies which
capture movements in the series at 2 and 1 years, and 6 and 3 months. As can be seen, the
global factor explains an important fraction of variance across many economies, especially at
lower frequencies. This result confirms the view that most countries experience a common
downward trend in inflation. Nevertheless, we also observe that the global factor plays virtually
no role in other economies such as Norway, Sweden, and United Kingdom, whose correlations
are mostly driven by the third regional factor. This somewhat surprising result may be partly
explained by the fact that energy and food components are by construction excluded from our
analysis. The regional factor of new entrants affects particularly Estonia, Latvia, and Lithuania,
which confirms our previous time domain findings. In contrast, regional factors do not seem to
influence medium term trends for most other countries.

Finally, we conducted two robustness exercises. First, we considered a version of the model
with just a global factor and no regional factors, which hardly surprisingly leads to a markedly
worse fit. More importantly, we have also experimented with a subdivision of the core euro
area region to single out those countries which experienced the most dramatic drops in interest
rates prior to their accession to EMU. This is an important distinction to explore as there
has been considerable debate on whether the conduct of monetary policy by the ECB since its
inception has resulted in unwanted effects on those economies; see Estrada and Saurina (2014)
for a discussion of the Spanish case. By looking at the evolution of real interest differentials
between 1995 and 1999, we interestingly find that the additional group is composed by Portugal,
Ireland, Italy, Greece and Spain (the so-called PIIGS). However, we find that a dynamic bifactor
model with four regions, including two within the core euro area, does not lead to a substantial

improvement in fit.
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5 Conclusions

We generalise the frequency domain version of the EM algorithm for dynamic factor models
in Fiorentini, Galesi and Sentana (2014) to bifactor models in which pervasive common factors
are complemented by block factors. We explain how to efficiently exploit the sparsity of the
loading matrix to reduce the computational burden so much that researchers can estimate such
models by maximum likelihood with a large number of series from multiple regions. We find
that the EM algorithm leads to substantial likelihood gains starting from arbitrary initial values.
Unfortunately, it slows down considerably near the optimum. For that reason, we also derive
convenient expressions for the frequency domain scores and information matrix that allow us to
switch to the scoring method at that point.

In an empirical application we explore the ability of a bifactor model to capture inflation
dynamics across European countries. Specifically, we apply our procedure to year-on-year core
inflation rates for 25 European countries over the period 1999:1-2014:12. We estimate a model
with a common factor and three regional factors: original euro area members, new entrants and
others. Overall, our results suggest that a global factor drives the medium-long term trends of
inflation across most European economies, which is consistent with the evidence in the previous
literature. But we also find a persistent regional factor driving the inflation trends of the Baltic
countries, which are new entrants to the euro area. In contrast, we find that the regional factors

for most other countries affect mainly their short run movements.
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Appendices

A Spectral scores

The score function for all the parameters other than the mean is given by (15). Since

dGyy(N) = [dC(e ™)]|Gxx(A)C'(e) + Cle™™)[dGxx (N)]C' (")

+C(e" ™) Gx(N)[dC (€™)] + dGyu(N)
(see Magnus and Neudecker (1988)), it immediately follows that

dvec[Gyy(\)] = [C(ei’\)Gxx(A) ® IN] dvec[C(e=™)]
+ [IN ® C(e*“)Gxx()\)} K ns1dvec|C(e™)]
+ [C(ei’\) ® C(e—M)] Epyidvecd [Gex(N)] + Endvecd [Guu (V)]
- [C(eM)Gxx(A) ® IN] dvec|C(e=™)] + Ky [C(e*“)Gxx(A) ® IN] dvec|C(eM)]

n [C(eM) ® C(e—M)] En1dvecd [Gae(N)] + Endvecd [Gua(N)]

where

E., = (e1m€] - - - lemmern)
’ Al
(e1m| .- |lemm) = Ln, (AL)

is the unique m?

xm “diagonalisation” matrix that transforms vec(A) into vecd(A) as vecd(A) =
E! vec(A) and Ky, is the commutation matrix of orders m and n (see Magnus (1988)). Further,
we can use (5) to express dvec[C(z)] in terms of its non-zero elements dc(z) by means of the

following linear transformation
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derr(z) 0O .. 0 ... 0 0 .. O In,
= (C1gy---rrgs---18Rg, €11, Crp,s ..., eRR) dc(z) = Edc(2),

where € contains a block analogue to the diagonalisation matrix above. Consequently, the

Jacobian of vec [Gyy ()] will be

ovec [Gyy(N)] Ovecd [Gxx ()]

= |C(eM) @ C(e™)| Eria

00’ 00’
ovec [Gyy(N)] E ovecd [Gyu(N)]
oy’ N oy
ovec[Gyy(N)] E Ovecd [Guu(N)]
00/, - 00,
ovec[Gyy(N)] { [e7*2C(e)Gxx(N) @ In] }
Ic, ok N +Knn [ C(e™)Gx(N) @ In] [ 777
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where we have used the fact that

0
Iy,
0 C
WC[/ G e O |k erg 2
acrgk 0
0
0
and
0
0
0
dvee[C(2) o
—=¢ : z' = ez
aCrrl '
Iy,
0
since
acrg/](z) _ ZkIN,.
acrgk
ocr(2) !
= Z INT
ac;rl

in view of (2) and (3).

If we combine those expressions with the fact that

[G;;(/\j) ® G'y;,l()\j)] vec [z;-'czz'/ — G'yy()\j)}

= wvec {QWG;_yl()\)Z?cZ?/G;}l()\) - G;_yl()‘)}
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and Iy, (\) = z?’cz;'/ we obtain:
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. —G’ O G
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vy (M C(e™)Gx

where we have used the fact that K’y = Kyy = Ky (see again Magnus (1988)).
Let us now try to interpret the different components of this expression. To do so, it is
convenient to further assume that Gxx(A\) > 0 and Gyu(A) > 0.

The first thing to note is that

27C/ (e GY (NI, (VGLy (VC(e?) — C'(e7 )Gy (A C(e™)

yy

= Gt (V) 27T e (A) — Gl e (V)] Gt (V).

Given that
dvecd [Gxx(N)] 8Gxgxg(/\)e
ae;g - ae;g 1,R+1,

the component of the score associated to the parameters that determine Gz, (M) will be the
cross-product across frequencies of the product of the derivatives of the spectral density of x4
with the difference between the periodogram and spectrum of l‘ﬁ inversely weighted by the
squared spectral density of 4. Thus, we can interpret this term as arising from a marginal
log-likelihood function for x4 that takes into account the unobservability of x,. Exactly the
same comments apply to the scores of the parameters that determine G, ., (A) forr=1,... R

in view of the fact that
ovecd [Gxx(A)]  0Gg,z,.(N)
6’ T g bl
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Similarly, given that

21 Gl (WL, (NG — Gyt () = Gk ) 20Tk (A) — Gliiec (V)] Gl (V).

uu

dvecd [Guu(N)] — 0Gyu,(N)
T

and
dvecd [Guu(N)] aGuiui()\)e'
o6, o6,

the component of the score associated to the parameters that determine G, (A) will be the

cross-product across frequencies of the product of the derivatives of the spectral density of u;;
with the difference between the periodogram and spectrum of uft{ inversely weighted by the
squared spectral density of u;. Once again, we can interpret this term as arising from the
conditional log-likelihood function of u; given x; that takes into account the unobservability of
U,

Finally, to interpret the scores of the distributed lag coefficients it is worth noting that
—ikA -1 -1 iA -1 iA
e vee [2mG (VT (NG (N C(EN) (V) = Gyt ()T (™) Gax (V)]

and

e pec [27TG;;(>\)Iyy()\)G L) C(e™™) G (N) — G—l(A)C(e—M)Gxx(A)]

vy yy
are complex conjugates because G;,;()\) is Hermitian and the conjugate of a product is the

product of the conjugates, so it suffices to analyse one of them. On this basis, if we write

2mGy (M, (V)G HA)C(€7) Gax(A) — Gy () C () G (N)

= Gt V) 27Tk i (V) — Gl (V)] 4

the components of the score associated to ¢4 and will be the sum across frequencies of terms

of the form
G:.l_ul()\) [27TI;KUK()\) - ;KUK()\)] e

(and their conjugate transposes), which capture the difference between the cross-periodogram

K
gt—r

and cross-spectrum of x and uff inversely weighted by the spectral density of u;. Exactly
the same comments apply to the scores of c¢,..;. Therefore, we can understand those terms as
arising from the normal equation in the spectral regression of y;; onto g ¢4m gs -+ Tgt—n, and
Ty t4mys - - - Tri—n, but taking into account the unobservability of the regressors.

As usual, we can exploit the Woodbury formula, as in expressions (7), (9), (10), (25), (29)

and (30), to greatly speed up the computations.
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B Spectral information matrix

Given the expression for the Jacobian matrix in derived in appendix A, we will have that

dvec’ [ny()‘)] — dvecd’ [GXX()‘)] E;%Jrl [C/(ei)\) ® C/(efi)\):|
00, 00,
oved [Gyy (N)] _ dvecd’ [Guu()\)]E,N
o B’
ovec [Gyy (N)] _ dvecd’ [Guu()\)]ng
00, 00y
ovec [Gyy(N)] [e7* A Gyx (V) C' (e™) @ Iy]
8C7~gk — g { + [eik)‘Gxx()\)Cl(efi/\) & IN] Kyn }
dved [Gyy(N)] (67 A Gyx (V) C' (™) @ Iy]
807’7’[ - { + [eiZAGxx()‘)C,(e_i/\) ® IN] Knyn }
and
{ 8U6016[)§'yy(/\)] }* = {C(e*u) ® C(eiA)] Erit avecda[;;;xx()\)]
{81)60’ (Gyy ()] }* _ E dvecd [Guu(N)]
o N ey
{ Ovec [Gyy(N)] }* Ex Ovecd [Guu(N)]
00y 00,
oved [Gyy W * _ [ C (e ) Gn(N) & L]
8crgk o +Knyn [B_ikAC(eM)Gxx()\) X IN] } trg
oved [GryW" _ [ [P MGV @ T
{ ocr } B { +Kyn [e7"C(e)Gxx(N) @ In] } frr

Hence, it is straightforward to see that the elements of the block of the information matrix

(18) corresponding to the autoregressive parameters for the common factors will be

Qo.60, (A 0) = avedéﬁij] [Gyy (V) ® Giy' (V)] {8@@0’([93:,y(/\)] }*
- el S, [ @ e )] [0 @ 63 ()]
X {C(e_i’\) ® C(ei)‘)} ER+18veCda[zxx()\)]
- et e {[eenegmce ™) o [ole Megtanee] | 2B,
where ® denotes the Hadamard (or element by element) product of two matrices of equal size.
Similarly,
Qu0,000) = 2182 610y & o) { 2 e
_ 8vecd(’9[0Guuu()\)] Ely [G;,;()\) ® G;,;,l()\)] Ey 8Uecda[§}fu()\)]
_ 8vecd;)[§;uu()\)] [G;;()\) o G;yl()\)] Bvecdé?/:m()\)]7
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with an almost identical expression for Qupq(A; 9).
Also,
oved [Gyy (A _ B
Qe 30) = G2 [G ) @ Gt {
Crgk
—ikA (0N
/ [e"*AGxx (V) C'(e?) @ In] . -
a4 { + [eik)\Gxx()\)Cl(eiiA) ® IN] Kyy [ny(A) ® GYY ()\)]

[ C(e7)Gxx(N) ® Iy]
x { FK oy [e‘i”‘C(e”\)Gxx(A)]g@ 1y] }e”"

eI [Grn (W) C' () @ In] [Gyy (V) © G (V)] Kivw [C(€™)Goex (V) © In]
} Crp
]

ovecd [Gyy (N)] *
acrrl

=¢

) PO [Gux (M) C' (e7) @ In] Ky [Gyg (A) @ G4t (A)] [Clem™)Gxx(A) @ In]

"9 e DA [Gux (V) C'(€) @ In] [Gyg (A) ® G (N)] [Cle™™) G (A) ® L]

e'*FDA [Gx (V) C'(e7) @ In] K [Gyyp (V) ® G4 A)] Kvy [C(€7)Gax (M) @ Iy

e DA [Gyye (N)C' () @ Iy ] [Gyg (M) ® Giyt (V)] [Iv ® C(e)Gix (V)] K v, r41

;] e G (VT (em™) @ IN] Gy, (V) @ Gy (V)] [Ty @ Cle” ™) Gex(V)] Kvria |

"9 e DA [Gay (W) C/(€) @ Iy | [Gyg (M) ® Giyt(A)] [Ce™™) Gyx () @ Iy ”
P DA [Gyx (W) C/ (7)) @ In] (G (A) © Gy (V)] [C(e)Gax (A) @ Iy ]

e DA [Gr () C/ (€M) G (A) ® G (A)C(e™) Gx(A) ] Ky, 1 }

e [Gux (A)C' (67 Gyt () @ Gyt (M) C(e™ ) Gixx (V)] K r41
& e FDA [Gyx (N) C/(€1) Gy (A1) Ce™ ™) Gx (A) ® Gy H(N)]
' FDA [Gyx (M) C' (e7) Gyt (M) C(€) G (A) ® Gyt (V)]

where we have made use of the properties of the commutation matrix.

=¢

Further
Qo.0,(X:0) = Mgf;yy“” [Giy (V) @ G (V)] awc[;j”(m
8U€Cd/8[§:(x(>\)]E;%+l [C’(e“) ® C,(e%)} [GyE(N) © Gt (V)] ENW
— 8”60‘1:9[;“()\)] [C/(em)ggyl()\) @c/(e—m)g;}l@)} W,

ovec [Gyy(N)]
oc!

rrl

Qs (1:6) = 2L [0y 0 G2 v

_ Ovecd [Gxx(N)]
B 00«

SIANC (i
X [Gyy(N) ® Gig' (V)] { +K][VN [(;(u,\c)(gf)xgi((g;;]g Iy] } Err

By [C(e™) @ C(e™)]

_ dueed (G, [ ()G (VO )G (V) @ C'le )Gt () } .
004 T e UAC! (e )Gy_y (M)C(e)Gxx(A) @ C'(e’ )G;y()\)
and

ovec [Gyy(A)]
oc!

rrl

oved [Gyy (N)] o ,
Tﬁy [Gy;()‘) ® nyl()‘)]

Q@ucwl()\; 0) =
Bvecd [Gax(N)] oy o _ IAC (e~ ™M) G (A) ® T
= vee 8[01, ( )]EN [GY;<)‘) ®ny1(A)] { +K][V6N [e_(Z)‘C)(el)‘)((}x)x(?)\)JgIN] }err
_ Oveed [Gxx(N)] o ePGTLN)C(e™M)Gyx(A) @ GEH(N)
= 08, oW [ e NG (A)C () G (V) ® Gt () ] err,
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where we have used the properties of the diagonalisation and commutation matrices, and in
particular, that E! K,,,,, = E/ . In fact, further simplification can be achieved by exploiting
(Al). The formulae for the remaining elements are entirely analogous. In this regard, it is
important to note that all the above expressions can be written as the sum of some matrix and
its complex conjugate transpose, as one would expect given that the information matrix is real.

If we assume that both Gxx(A) and Guu(A) are strictly positive, we can use again the

Woodbury formula to considerably simplify the previous expressions.

Given that
Gy () = [Gudd) = GLiNC(e™MRAC () Gui(V)]
Gl () = [Gub(N) = GaaNC(EMRNC (™) Gai(V)] |

we will have that

C'(eMGyy(N) = C'(eM)Gua(N) = C'(¢M)Gua(NCe™™)QMNC (€M) Gu()

= Gu(NRNC ()G (V)

XX

Cle™MBLN) = Cle™Gua(N) = Cle ™ GuaNCEN X NC (e M Gri(V)

uu uu uu

= GV WC (MG,
where we have used the fact that

C/(M)Gh(NC(e ™M) = st — G (NQN)

uu

and

C'(e™™)GauMC(eM) () = g1 — G (M (N).

uu

As a result,and

TN MICE™) = GNRNC () Gab(NC(e™),

Gxx(NC (€MGyy(\) = QNC'(™)Gra(N)

Gxx(NC'(e7M)Gy! (V) = NC (e Gu(N),

and
Gx (V)T (€M) Gy (M)Ce™)Gxx(A) = RN C' (€M) Ga (N C(e™) Gx(A).

In addition, the special structure of C(z) in (5) can also be successfully exploited to speed

up the calculations. In particular,

C'(eMGr(VC (™) = Q71 (N) - G (V).

uu XX
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where ©71()\) has been defined in (11). Further speed gains can be achieved by noticing that

()G ere = 3 B
rr uu rr jGNT Gu]uj ()\) .

C State space representation of dynamic bifactor models with
AR(1) factors

There are several ways of casting the dynamic factor model in (4) into state-space format,
but the most straightforward one is to consider a state vector of dimension 2(R + 1) + N in
which the AR(1) processes for both global and regional factors are written as a bivariate VAR(1)
in (x¢,24-1), and the N AR(1) processes for the specific factors are written as first order ARs

in ug. As a result, we can write the measurement equation without an error term as

yYi = Zat7
where the state vector is
o = (X{‘?X:f—la u;)lv
Xt = (Hfgt,@“u, ceey OCRt),;
u = (U1t7 vy Uity el ey UNt)/,
and Z is the N x (N 4 2R + 2) matrix
Z = [Cy|Cy|In],

with Cg, Cibeing N x (R + 1) sparse matrices of contemporaneous and lagged loadings.

Consequently, the transition equation is simply

Xt Px 0 0 Xt—1 ft
xt-1 | = | Irgr O O xi2 | +1] 0 |,
Uy 0 0 Pu Ut—1 V¢
with
Px = diag(pmgapxla"'vp:pjg)v
pu = diag(py,,---,Puy),

Cov(fy) = Igpta,

Cov(vy) = W=diag(®,...,Vn)-
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Given our covariance stationarity conditions, the initial condition for the state variables will

trivially be a9 = O(n42R42)21, and

QxO Qxl 0
Pijo=|Qx1 Qx 0 |,
0 0 QuO

where Qo and Quo are diagonal matrices with the unconditional variance of the corresponding
AR(1) processes along the main diagonal, while Qx; is also diagonal with the first autocovariance

of the global and regional factors AR(1) processes on the main diagonal.
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Table 1: Dynamic Loadings Estimates

Country cgio std.err. cgin std.err. crio std.err. crin  std.err.

Core euro area

Austria -0.024 (0.017) 0.021 (0.017) -0.058 (0.018) 0.021 (0.019)
Belgium 0.041 (0.021) 0.000 (0.021) -0.170 (0.026) 0.000 (0.033)
Finland -0.001 (0.016) 0.054 (0.016) -0.043 (0.016) 0.054 (0.016)
France 0.041 (0.012) 0.011 (0.012) 0.019 (0.011) 0.011 (0.012)
Germany -0.001 (0.018) 0.013 (0.018) -0.006 (0.020) 0.013 (0.020)
Greece 0.357 (0.039) -0.070 (0.039) 0.083 (0.036) -0.070  (0.036)
Ireland 0.160 (0.023) 0.022 (0.023) 0.049 (0.022) 0.022 (0.022)
Ttaly 0.117 (0.017) -0.001 (0.017) 0.047 (0.021) -0.001 (0.021)
Luxembourg -0.153 (0.019) 0.206 (0.020) 0.044 (0.020) 0.206 (0.020)
Netherlands 0.093 (0.019) -0.005 (0.019) -0.065 (0.019) -0.005 (0.019)
Portugal 0.185 (0.026) 0.021 (0.026) 0.014 (0.026) 0.021 (0.026)
Spain 0.187 (0.023) 0.007 (0.023) 0.036 (0.023) 0.007 (0.023)
New entrants euro area

Cyprus 0.286 (0.036) -0.145 (0.036) -0.063 (0.047) -0.145 (0.047)
Estonia 0.269 (0.031) -0.033 (0.030) 0.117 (0.049) -0.033  (0.046)
Latvia 0.148 (0.037) 0.086 (0.037) 0.215 (0.076) 0.086 (0.087)
Lithuania 0.162 (0.034) 0.013 (0.033) 0.166 (0.059) 0.013 (0.057)
Malta 0.148 (0.036) -0.015 (0.036) 0.019 (0.050) -0.015 (0.050)
Slovakia 0.390 (0.035) 0.000 (0.035) -0.022 (0.042) 0.000 (0.041)
Outside euro area

Bulgaria 0.472 (0.060 -0.098 (0.060 0.036 (0.065 -0.098 (0.064
Denmark 0.077 (0.015 0.028 (0.015 0.035 (0.018 0.028 (0.018

(0.060) (0.060) (0.065) (0.064)
(0.015) (0.015) (0.018) (0.018)
Iceland 0.078 (0.065)  0.063 (0.065)  0.038 (0.074)  0.063 (0.073)
Norway -0.006 (0.021)  -0.006 (0.021)  -0.046 (0.031)  -0.006 (0.027)
Poland 0.546 (0.043)  -0.149 (0.043)  -0.005 (0.044)  -0.149 (0.042)
Sweden 0.019 (0.017)  0.025 (0.017)  0.007 (0.025)  0.025 (0.021)
United Kingdom 0.026 (0.016)  -0.019 (0.015)  0.038 (0.027)  -0.019 (0.021)




Table 2: Autoregressive Coefficients Estimates

Country o std.err. 1 std.err.
Global 0.9736 (0.017) 1.000

Core euro area 0.2810 (0.207) 1.000

New entrants euro area  0.9828 (0.013) 1.000
Outside euro area -0.1392 (0.302) 1.000

Core euro area

Austria 0.936 (0.025) 0.049 (0.005)
Belgium 0.912 (0.033) 0.033 (0.007)
Finland 0.974 (0.016) 0.041 (0.004)
France 0.948 (0.023) 0.022 (0.002)
Germany 0.887 (0.033) 0.063 (0.006)
Greece 0.941 (0.025) 0.194 (0.022)
Treland 0.983 (0.011) 0.079 (0.009)
Ttaly 0.663 (0.071) 0.051 (0.006)
Luxembourg 0.852 (0.039) 0.049 (0.006)
Netherlands 0.970 (0.017) 0.055 (0.006)
Portugal 0.898 (0.034) 0.107 (0.011)
Spain 0.899 (0.035) 0.080 (0.009)
New entrants euro area

Cyprus 0.805 (0.046) 0.213 (0.024)
Estonia 0.956 (0.028) 0.106 (0.013)
Latvia 0.977 (0.024) 0.113 (0.027)
Lithuania 0.960 (0.026) 0.147 (0.018)
Malta 0.799 (0.045) 0.268 (0.028)
Slovakia 0.981 (0.013) 0.135 (0.016)
Outside euro area

Bulgaria 0.968 (0.018) 0.505 (0.055)
Denmark 0.918 (0.030) 0.036 (0.004)
Tceland 0.980 (0.013) 0.705 (0.072)
Norway 0.940 (0.025) 0.066 (0.009)
Poland 0.986 (0.010) 0.171 (0.023)
Sweden 0.953 (0.022) 0.044 (0.005)
United Kingdom 0.973 (0.016) 0.032 (0.004)




Table 3:

Significance of Dynamic Loadings

Ho:cgio=1c4i1 =0 Hp:crio=c¢riz =0

Country Wald test  p-value Wald test p-value
Core euro area

Austria 3.07  (0.216) 15.44  (0.000)
Belgium 5.38  (0.068) 56.38  (0.000)
Finland 11.26  (0.004) 7.92 (0.019)
France 13.88  (0.001) 4.29 (0.117)
Germany 0.55  (0.760) 5.83  (0.054)
Greece 86.60  (0.000) 5.99 (0.050)
Ireland 47.22  (0.000) 6.40 (0.041)
Ttaly 61.32  (0.000) 1223 (0.002)
Luxembourg 119.75  (0.000) 6.42 (0.041)
Netherlands 23.51  (0.000) 16.88  (0.000)
Portugal 53.15  (0.000) 0.42 (0.812)
Spain 65.92  (0.000) 5.68 (0.058)
New entrants euro area

Cyprus 64.54  (0.000) 2.21  (0.330)
Estonia 78.72  (0.000) 25.96 (0.000)
Latvia 17.35  (0.000) 66.20 (0.000)
Lithuania 22.60  (0.000) 30.37  (0.000)
Malta 19.21  (0.000) 0.40 (0.817)
Slovakia 125.00  (0.000) 0.47 (0.790)
Outside euro area

Bulgaria 64.18  (0.000) 0.88 (0.644)
Denmark 30.05  (0.000) 5.75  (0.057)
Iceland 2.36  (0.308) 0.68 (0.710)
Norway 0.18  (0.915) 13.52  (0.001)
Poland 164.30  (0.000) 2.51 (0.285)
Sweden 3.18  (0.204) 8.32 (0.016)
United Kingdom 3.78  (0.151) 11.84 (0.003)
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