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1 Introduction

There is a long tradition of factor or multi-index models in �nance, where they were originally

introduced to simplify the computation of the covariance matrix of returns in a mean-variance

portfolio allocation framework (see Connor, Goldberg and Korajczyk (2010) for a recent mono-

graph). In this context, the common factors usually correspond to unobserved fundamental

in�uences on returns, while the idiosyncratic factors re�ect asset speci�c risks. In addition,

the concept of factors plays a crucial role in two major asset pricing theories: the mutual fund

separation theory (see e.g. Ross, 1978), of which the standard CAPM is a special case, and the

Arbitrage Pricing Theory (see Ross (1976), and Connor (1984) for a unifying approach).

Factor models for low frequency �nancial returns are routinely estimated by Gaussian max-

imum likelihood under the assumption that the observations are serially independent using

statistical factor analysis routines (see Lawley and Maxwell (1971)). In this context, the EM

algorithm of Dempster, Laird and Rubin (1977) and Rubin and Thayer (1982) provides a cheap

and reliable procedure for obtaining initial values as close to the optimum as desired, as illus-

trated by Lehmann and Modest (1988), who successfully employed this algorithm to handle a

very large cross-sectional dataset of monthly returns on individual US stocks.

However, there are three empirical characteristics of assets returns which question the ade-

quacy of this estimation procedure. First, there is some evidence of return predictability, which

although far from controversial, casts a doubt on the assumption of lack of serial correlation of

common and idiosyncratic factors. Second, there is much stronger evidence on time variation

in volatilities and correlations at high frequencies such as daily, which is di¢ cult to square with

the fairly widespread belief that those e¤ects are irrelevant at monthly and lower frequencies.

Finally, many empirical studies with �nancial time series data indicate that the distribution of

asset returns is rather leptokurtic, even after controlling for volatility clustering e¤ects. The

lack of normality is particularly relevant in this context not only because one could obtain more

e¢ cient estimators and test procedures by exploiting it, but also because the Kalman �lter pre-

diction equations do not generally provide the conditional mean vector and covariance matrix of

the observed variables given their past values alone in dynamic, non-Gaussian contexts; only the

best linear least squares predictions (see Anderson and Moore (1979)). As a result, one cannot

rely on standard results for Gaussian pseudo maximum likelihood estimators and tests, such as

those in Bollerslev and Wooldridge (1992).

The objective of our paper is to provide joint diagnostic tests for serial dependence in the

common and idiosyncratic factors that take into account the non-normality of asset returns,

which empirical researchers could easily apply to test the implicit lack of dynamics in the factor
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analysis models that they estimate. For that reason, we will focus on Lagrange Multiplier (or

score) tests, which only require estimation of the static model. As is well known, LM tests are

asymptotically equivalent under the null and sequences of local alternatives to both Likelihood

ratio and Wald tests, and therefore share their optimality properties. In this context, our main

contributions is to derive simple algebraic expressions for the score tests of serial correlation

in the levels and squares of common and idiosyncratic factors in static factor models when

the distribution of the innovations in the latent variables is elliptically symmetric, which can

be either parametrically or semiparametrically speci�ed. Elliptical distributions are attractive

in this context because they generalise the multivariate normal distribution while retaining its

tractability irrespective of the number of assets. Importantly, our closed form tests are valid

even though one must generally resort to simulation methods to approximate the log-likelihood

function and its score in non-Gaussian state space models (see e.g. Durbin and Koopman (2000)

and the references therein). In addition, we also explain how to robustify the Gaussian versions

of our LM tests when the return distribution is not normal. Finally, we derive tests that focus

on either the common factors or the speci�c factors, or indeed on some of their elements.

For pedagogical reasons, though, we proceed in steps. We initially derive (i) tests against

Ar/Ma-type serial correlation in the latent factors under the maintained assumption that they

are conditionally homoskedastic; (ii) tests against Arch-type e¤ects in those latent variables

under the maintained assumption that they are serially uncorrelated; and (iii) joint tests of (i)

and (ii) above. We complement our theoretical results with detailed Monte Carlo exercises to

study the �nite sample reliability and power of our proposed tests, and to compare them to

other existing procedures. Finally, we also apply our methods to monthly stock returns on US

broad industry portfolios.

The rest of the paper is organised as follows. First, we study the properties of likelihood-

based estimators of the static factor model parameters under the null of serial independence.

Then we derive tests against serial correlation in section 3, against conditional heteroskedasticity

in section 4, and joint tests in section 5. A Monte Carlo evaluation of all the di¤erent tests can

be found in section 6, followed by the empirical application to US sectorial stock returns in

section 7. Finally, our conclusions, together with several interesting extensions, can be found in

section 8. Proofs and auxiliary results are gathered in appendices.

2 Static factor models

To keep the notation to a minimum, we initially consider a single factor version of a tra-

ditional (i.e. static, conditionally homoskedastic and exact) factor model, which su¢ ces to
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illustrate our main results. Extensions to multiple factors are considered in sections 3.8 and 4.8.

Speci�cally:
yt = � + cft + �

1=2v�t ; 
ft

v�t

!
jIt�1;�s � s

" 
0

0

!
;

 
1 0

0 IN

!
;�

# 9>=>; (1)

where yt is a N � 1 vector of observable variables with constant conditional mean �, ft is

an unobserved common factor, whose constant variance, �, we have normalised to 1 to avoid

the usual scale indeterminacy,1 c is the N � 1 vector of factor loadings, v�t is a N � 1 vector

of standardised idiosyncratic noises, which are conditionally orthogonal to, but not necessarily

independent from, ft, � is a N � N diagonal positive semide�nite (p.s.d.) matrix of constant

idiosyncratic variances, It�1 is an information set that contains the values of yt and ft up to, and

including time t� 1, �s = (�0,c0, 0)0, with  = vecd(�) are the mean and variance parameters,

and � are some additional parameters that determine the shape of the conditional distribution

of the spherical random vector (ft;v�0t )
0, which we assume has a well de�ned density.

The most prominent example of spherical distribution is, of course, the standard normal

distribution, which we assume corresponds to � = 0. As in Bollerslev (1987) in a univariate

context, and Harvey, Ruiz and Sentana (1992) in a multivariate one, followed by many others, we

shall also consider in some detail a standardised multivariate Student t with � degrees of freedom,

or i:i:d: t(0; IN ; �) for short. As is well known, the multivariate t approaches the multivariate

normal as � ! 1, but has generally fatter tails. For that reason, we shall de�ne � as 1=�,

which will always remain in the �nite range 0 � � < 1=2 under our assumptions. More �exible

families of spherical distributions are discrete scale mixtures of normals and Laguerre polynomial

expansions of the multivariate normal density (see Amengual, Fiorentini and Sentana (2012)),

which could form the basis for a proper semiparametric procedure in which � is e¤ectively

regarded as in�nite dimensional.

Our assumptions trivially imply that

ytjIt�1;�s � s[�;�(�s);�]; (2)

�(�s) = cc0 + �; (3)

with �s = (�0s;�
0)0, where we have exploited the fact that linear combinations of elliptical

random variables are elliptical (see thm. 2.16 in Fang, Kotz and Ng (1990)). As a result, if we

de�ne the standardised innovations

"�t = �
�1=2(�0)(yt � �0) (4)

1Alternative normalisations would free up the variance of the common factor, �, and impose c1 = 1 or c0c = 1.

3



as an N�dimensional martingale di¤erence sequence that satis�es E("�t jIt�1;�s) = 0 and

V ("�t jIt�1;�s0) = IN , then � fully determines the shape of the conditional density of &t = "�0t "�t .

A non-trivial advantage of factor models is that they automatically guarantee a p.s.d. co-

variance matrix for yt. But the most distinctive feature of these models is that they provide a

parsimonious speci�cation of the cross-sectional dependence in the observed variables,2 which

results in a signi�cant reduction in the number of parameters, and allows the estimation of these

models with a large number of series (see e.g. Lehmann and Modest (1988)). For these reasons,

model (1) continues to be rather popular in empirical �nance applications such as portfolio allo-

cation, asset pricing tests, hedging and portfolio performance evaluation (see Connor, Goldberg

and Korajczyk (2010) for details).

The parameters of interest are usually estimated jointly from the log-likelihood function of

the observed variables. The ellipticity assumption and the serial independence of the variables

involved imply that a modi�ed version of the Kalman �lter can still be used to estimate the

underlying latent variables even when the innovations are not Gaussian. In particular, we prove

in appendix B.1 that:

E

 
ft

vt

�����Yt;�s
!
=

"
c0��1(�s)(yt � �)
���1(�s)(yt � �)

#
=

"
fkt(�s)

vkt(�s)

#
; (5)

and

V

 
ft

vt

�����Yt;�s
!
=

"
�kt(�s;�) �c�kt(�s;�)
�c�kt(�s;�) cc0�kt(�s;�)

#
= h[&t(�s);�] � V

 
ft � fkt(�s)
vt � vkt(�s)

������s
!
;

where Yt = fyt; yt�1; : : :g,

&t(�s) = "
�0
t (�s)"

�
t (�s) = (yt � �)0��1(�s)(yt � �)

and h(&t;�) is a scalar factor of proportionality that re�ects the non-linear dependence between

the elements of a spherical random vector. For example, for the Student t

h(&t;�) =
� � 2

� +N � 2

�
1 +

&t
� � 2

�
;

which reduces to 1 under normality (see Harvey, Ruiz and Sentana (1992)). This scaling factor,

whose unconditional mean is 1, multiplies the matrix of unconditional mean square errors

V

 
ft � fkt(�s)
vt � vkt(�s)

������s
!

=

"
1� c0��1(�s)c �c0��1(�s)�
����1(�s)c �� ���1(�s)�

#

=

"
!k(�s) �c!k(�s)
�c!k(�s) cc0!k(�s)

#
; (6)

2See Sentana (2000) for a random �eld interpretation of factor models, and their time-series and cross-sectional

state-space representations.
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which has rank one because we are trying to infer N +1 latent variables from N observed ones.

The elements of fkt(�s) and vkt(�s) are known as the �regression scores�in the factor analysis

literature because the weights in (5) coincide with the coe¢ cients in the theoretical regression

of each unobserved variable onto the observed series, while (6) coincides with the unconditional

residual covariance matrix from those regressions. As explained in Sentana (2004), the MSE

criterion can be given an intuitive justi�cation in terms of a mean-variance investor, since it

corresponds to the so-called �tracking error�variability in the �nance literature. In that sense,

fkt(�s) are the excess returns to the portfolio that best �tracks�ft, while vkt(�s) are the excess

returns to the original vector of asset returns after we have hedged them against the common

source of risk. As we shall see, fkt(�s), vkt(�s), !k(�s) and �kt(�s;�) constitute the basic

ingredients of our tests.

In this context, we can formally characterise the asymptotic distribution of three likelihood-

based estimators of the static model parameters: the usual maximum likelihood estimator that

simultaneously estimates �s and �; the elliptically symmetric semiparametric estimator of �

considered by Hodgson and Vorkink (2003), Hafner and Rombouts (2007) and others, which

restricts "�t to have an i:i:d: s(0; IN ;�) conditional distribution but does not impose any structure

on the distribution of &t;3 and the Gaussian pseudo maximum likelihood estimator of �, which

sets � = 0 even though the true conditional distribution of "�t may well be non-normal.

Proposition 1 Assume that (i) V (yt) in (3) can be uniquely decomposed into cc0 and �, and

(ii) the matrix

[�� c(c0��1c)�1c0]� [�� c(c0��1c)�1c0]

has full rank, where � denotes the Hadamard product of two matrices of equal orders. Then:

1. The asymptotic distribution of the maximum likelihood estimators �̂s and �̂ will be

p
T (�̂s � �s0)! N [0; I�1�s�s(�s0)];

where the information matrix I�s�s(�s0) will be block diagonal between the elements cor-

responding to � and the elements corresponding to (c;;�), with the �rst block given by

mll(�)��1(�s) and the second block by

3The main advantage of this estimator over traditional semiparametric estimators is that one can obtain an

estimate of the joint density of "�t from a nonparametric estimate of the univariate density of &t, thereby avoiding

the curse of dimensionality (see e.g. appendix B1 in Fiorentini and Sentana (2010a) for details).
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264 mss(�)f[c
0��1(�s)c]�

�1(�s) +��1(�s)cc0��1(�s)g+ [mss(�)� 1]��1(�s)cc0��1(�s)
mss(�)E0N [�

�1(�s)c
��1(�s)] + 1
2 [mss(�)� 1]�

�1(�s)cvecd0[��1(�s)]

m0sr(�)c
0��1(�s)

mss(�)[c0��1(�s)
��1(�s)]EN + 1
2 [mss(�)� 1]vecd[�

�1(�s)]c0��1(�s)
1
2mss(�)[�

�1(�s)���1(�s)] + 1
4 [mss(�)� 1]vecd[�

�1(�s)]vecd0[��1(�s)]
1
2m

0
sr(�)vecd

0[��1(�s)]

��1(�s)cmsr(�)
1
2vecd[�

�1(�s)]msr(�)

Mrr(�)

375 ;
where En is the unique n2 � n �diagonalisation� matrix which transforms vec(A) into

vecd(A) as vecd(A) = E0nvec(A),

mll(�) = E

�
�2[&t(�);�]

&t(�)

N

������ = E

�
2@�[&t(�);�]

@&

&t(�)

N
+ �[&t(�);�]

������ ; (7)

mss(�) =
N

N + 2

h
1 + V

n
�[&t(�);�]

&t
N

����oi = E

�
2@�[&t(�);�]

@&

&2t (�)

N(N + 2)

������+ 1; (8)
msr(�) = E

��
�[&t(�);�]

&t(�)

N
� 1
�
e0rt(�)

������ = �E� &t(�)N

@�[&t(�);�]

@�0

������ ; (9)

Mrr(�) = V [ @c(�)=@� + @g [&t(�);�] =@�j�]

= �E[@2c(�)=@�@�0 + @2g [&t(�);�] =@�@�0
���]; (10)

�(&t;�) = �2@g(&t;�)=@&; (11)

c(�) is the constant of integration of the assumed elliptical density and g(&t;�) its kernel.

2. Assuming that the population coe¢ cient of multivariate excess kurtosis

� = E(&2t j�)=[N(N + 2)]� 1 (12)

is such that �2=(N + 2) < �0 < 1, the e¢ ciency bound associated to the elliptically

symmetric semiparametric estimator��s will be block diagonal between � and (c;), where

the �rst block coincides with the �rst block of the information matrix, and the second one

with the corresponding block of the information matrix minus��
N + 2

N
mss(�)� 1

�
� 4

N [(N + 2)�+ 2]

�
�
"

��1(�s)cc0��1(�s)
1
2�

�1(�s)cvecd0[��1(�s)]
1
2vecd[�

�1(�)]c0��1(�) vecd[��1(�s)]vecd0[��1(�s)]

#
:

3. If �0 < 1, the asymptotic distribution of the Gaussian pseudo maximum likelihood esti-

mator ��s will be

p
T (��s � ��s0)! N [0;A�1�s�s(�s0)B�s�s(�s0)A

�1
�s�s

(�s0)];
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where

A�s�s(�s0) = I�s�s(�s;0);

I�s�s(�s;0) =

264 �
�1(�s) 0

0 [c0��1(�s)c]�
�1(�s) +��1(�s)cc0��1(�s)

0 E0N [�
�1(�s)c
��1(�s)]

0

[c0��1(�s)
��1(�s)]EN
1
2�

�1(�s)���1(�s)

375
and B�s�s(�) has the same expression as I�s�s(�s;�) but with mll(�) and mss(�) replaced

by 1 and (�+ 1), respectively.

In the multivariate standardised Student t case, in particular, Fiorentini, Sentana and Cal-

zolari (2003) show that:

mll(�) =
� (N + �)

(� � 2) (N + � + 2)
; mss(�) =

(N + �)

(N + � + 2)
; msr(�) = �

2 (N + 2) �2

(� � 2) (N + �) (N + � + 2)
;

Mrr(�) =
�4

4

�
 0
��
2

�
�  0

�
N + �

2

��
�

N�4
�
�2 +N(� � 4)� 8

�
2 (� � 2)2 (N + �) (N + � + 2)

;

where  (:) is the di-gamma function (see Abramowitz and Stegun (1964)), which under normality

reduce to 1, 1, 0 and N(N + 2)=2, respectively.

Finally, it is worth mentioning that if we reparametrised the covariance matrix �(�s) as

#2�
�(#1), where #2 is a scalar and

��(#1) = c
�c�0 + ��;

with � = #2�
� and c =

p
#2c

� and eliminated the resulting scale indeterminacy by forcing

j��(#1)j =
�YN

i=1
�i

��
1 +

XN

j=1
c�2j =

�
j

�
to be 1,4 Proposition 8 in Fiorentini and Sentana (2010a) implies that both the maximum

likelihood estimator and the elliptically symmetric semiparametric estimator of #1 would be

adaptive (i.e. as e¢ ciently estimated as if we knew �), while for #2 we could only achieve the

4We can solve the resulting determinantal equation for one of the c�0s, which yields

c�i = ��i

0@ 1QN
i=1 

�
i

� 1�
NX
j 6=i

c�2j =
�
j

1A ;
or for one of the �0s; yielding

�j =

0@1� c2jY
i6=j

�i

1A,24Y
i6=j

�i

0@1 +X
i6=j

c�2i =
�
i

1A35 :
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asymptotic e¢ ciency of its Gaussian pseudo maximum likelihood estimator, which would be

given by the expression:

#2(#1) =
1

N

1

T

TX
t=1

&�t (#1);

&�t (#1) = (yt � �)0���1(#1)(yt � �);

evaluated the Gaussian PML estimator �#1. Moreover, the asymptotic covariance matrices of

the three estimators of #1 and #2 considered in Proposition 1 would be block diagonal.

3 Serial correlation tests for common and idiosyncratic factors

3.1 Baseline case

In this section we shall develop tests of �rst order serial correlation in common and idio-

syncratic factors under the maintained assumption that their conditional variances are time-

invariant. Extensions to higher order serial correlation, multiple factors and conditionally het-

eroskedastic ones are developed in sections 3.7, 3.8 and 5, respectively. The most natural way

of introducing serial correlation in model (1) would be to assume that

yt = � + cxt + ut

xt = �xt�1 + ft

ut = diag(��)ut�1 + �1=2v�t

9>=>; (13)

and  
ft

v�t

!
jIt�1;� � s

" 
0

0

!
;

 
1 0

0 IN

!
;�

#
; (14)

where the parameters of interest become � = (�0;�0)0, � = (�0s;�
y0)0, with �y = (�;��0)0, as this

reduces to our baseline speci�cation (1) under H0 : �y = 0.

The problem with formulation (13) is that unless the true conditional distribution of the

latent variables is Gaussian, the conditional distribution of the observed variables given their

past values alone is unknown when �y 6= 0 and � has full rank, and can only be approximated

by simulation (see e.g. Durbin and Koopman (2000)). While it is true that the Kalman �lter

continues to produce the best linear least squares predictions of the underlying state variables in

those circumstances (see Anderson and Moore (1979)), its prediction equations do not generally

provide the conditional mean vector and covariance matrix of yt given Yt�1 (and the parameter

values). As a result, we cannot rely on standard results for Gaussian pseudo maximum likelihood

estimators and tests, such as those in Bollerslev and Wooldridge (1992). For that reason, in the

rest of this section we assume that the mean vector and covariance matrix of yt conditional
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on Yt�1 are given by the usual Kalman �lter recursions in appendix B.2, but the conditional

distribution is elliptically symmetric. We will revisit this assumption in subsection 3.2.

Gaussian versions of dynamic factor models such as (13) have become increasingly popular

in macroeconomic applications (see e.g. Bai and Ng (2008) and the references therein), but they

are not widely used for stock returns (see Dungey, Martin and Pagan (2000) or Jegadeesh and

Pennacchi (1996) for applications to bonds).

Assuming the stationarity conditions j�j < 1 and j��i j < 1 8i hold, the autocovariance

matrices of the observed series, will be:

Gyy(j) = cc
0Gxx(j) +Guu(j): (15)

In particular, the unconditional covariance matrix of yt, � say, can also be written as:

�(�) = V (ytj�) = cc0Gxx(0) +Guu(0)

even though xt or ut are serially correlated (see Doz and Lenglart (1999)). Similarly, it is

straightforward to obtain the autocorrelation structure of any linear combination of yt, w0yt

say, by exploiting the fact that its jth autocovariance will be given by w0Gyy(j)w (see also

Lütkepohl (1993)). In fact, it is easy to see that the autocovariance structure in (15) corresponds

to a special case of a Varma(2,1) model since

(1� �L)[IN � diag(��)L](yt � �) = [IN � diag(��)L]cft + (1� �L)vt;

whose right hand side has the autocovariance structure of a Vma(1).

As the next proposition shows, however, testing the null of multivariate white noise against

such a complex Varma(2,1) speci�cation is extremely easy. Importantly, we shall distinguish

between the optimal score test obtained by exploiting the non-normality of the conditional

distribution, and the Gaussian pseudo LM test, which although uses the Gaussian scores, has

been robusti�ed against possible non-normality:

Proposition 2 Let

�Gf (j;�) =
1

T

XT

t=1
�[&t(�s);�]fkt(�s)fkt�j(�s)

denote the sample cross moment of �[&t(�s);�]fkt(�s) and fkt�j(�s), where �(&t;�) is de�ned

in (11) and fkt(�s) is obtained from the updating equations (5) of the static factor model (1).

Similarly, let

�Gv(j;�) =
1

T

XT

t=1
�[&t(�s);�]vkt(�s)v

0
kt�j(�s)

denote the analogous sample cross moments for the speci�c factors.
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1. Under the null hypothesis H0 : �y = 0, the score test statistic LMAR(1)(�0) given by T

times�
�Gf (1;�0); vecd

0[�
�1=2
0

�Gv(1;�0)�
�1=2
0 ]

�
I�1
�y�y

(�s0;0;�0)
�
�Gf (1;�0); vecd

0[�
�1=2
0

�Gv(1;�0)�
�1=2
0 ]

�0
;

with

I�y�y(�s;0;�) = V�y�y(�s;0;�)� V�y�y(�s;�;�);

where

V�y�y(�s;�;�) = V

"
�[&t(�s);�]fkt(�s)

�[&t(�s);�]�
�1=2vkt(�s)

#
= mll(�)V�y�y(�s;0;0);

V�y�y(�s;0;�) = V

"
fkt(�s)

��1=2vkt(�s)

#

=

"
c0��1(�s)c c0��1(�s)�1=2

�1=2��1(�s)c �1=2��1(�s)�1=2

#
= V�y�y(�s;0;0);

will be distributed as a �2 with N + 1 degrees of freedom for N �xed as T goes to in�nity.

Moreover, this asymptotic null distribution is una¤ected if we replace �s0 and �0 by their

feasible maximum likelihood estimators in the �rst part of Proposition 1.

2. It also remains valid if we replace �s0 by its elliptically symmetric semiparametric estimator

in the second part of Proposition 1, which requires the nonparametric estimation of the

density of &t(�s).

3. Under the same null hypothesis, the Gaussian pseudo score test statistic LMAR(1)(0) given

by T times�
�Gf (1;0); vecd

0[�
�1=2
0

�Gv(1;0)�
�1=2
0 ]

�
I�1
�y�y

(�s0;0;0)
�
�Gf (1;0); vecd

0[�
�1=2
0

�Gv(1;0)�
�1=2
0 ]

�0
;

will be distributed as a �2 with N + 1 degrees of freedom for N �xed as T goes to in�nity

irrespective of the normality of the conditional distribution. This result continues to hold

if we replace �s0 by its Gaussian pseudo maximum likelihood estimator ��s in the third part

of Proposition 1.

Researchers may sometimes be interested in tests that separately assess the serial correla-

tion of either the common factor or the speci�c factors. In principle, they might even like to

focus on a particular vit. By combining the relevant elements of �Gf (j;�) and �Gv(1;�) with

the corresponding blocks of the information matrix, I�y�y(�s0;0;�), we can easily exploit the

results in Proposition 2 to derive the required test statistics for those subcomponents under the
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maintained hypothesis of serial independence.5 Intuitively, the reason is that we can interpret

LMAR(1)(�) as a test based on the N + 1 orthogonality conditions:

Ef�[&t(�s);�]fkt(�s)fkt�1(�s)j�s;0;�g = 0; (16)

Ef�1i �[&t(�s);�]vkit(�s)vkit�1(�s)j�s;0;�g = 0 (i = 1; : : : ; N): (17)

Similarly, LMAR(1)(0) is based on

E [fkt(�s)fkt�1(�s)j�s;0;�] = 0; (18)

E
�
�1i vkit(�s)vkit�1(�s)j�s;0;�

�
= 0 (i = 1; : : : ; N); (19)

which are the conditions that we would use to test for �rst order serial correlation if we treated

fkt(�s) and vkit(�s) as the series of interest in the Gaussian case (see Breusch and Pagan (1980)

or Godfrey (1988)). In that sense, the factor �(&t;�), which is equal to 1 under Gaussianity and

to (N� + 1)=(1� 2� + �&t) for the Student t, can be regarded as the type of damping factor for

big observations used in the robust estimation literature (see e.g. Maronna, Martin and Yohai

(2006)) because it is a decreasing function of &t for �xed � > 0, the more so the higher � is (see

Fiorentini and Sentana (2010b) for a closely related discussion for univariate models).

Given that we have �xed the variance of the innovations in the common factor to 1, the

moment conditions (18) and (19) closely resemble

E(ftft�1j�s;0) = 0;

E(�1i vitvit�1j�s;0) = 0 (i = 1; : : : ; N);

which are the Gaussian-based orthogonality conditions that we could use to test for �rst order

serial correlation if we could observe all the latent variables.

The similarity between these two sets of moment conditions becomes even stronger if we

consider individual tests for serial correlation in each latent variable. Let us start with a test

of H0 : � = 0 under the maintained assumption that �� = 0. Part 3 of Proposition 2 implies

that the asymptotic variance of �Gf (1;0) is simply [c0��1(�s)c]
2. But we can use (6) to inter-

pret c0��1(�s)c as the R2 in the theoretical least squares projection of ft on a constant and yt.

Therefore, the higher the degree of observability of the common factor, the closer the asymptotic

variance of �Gf (1;0) will be to 1, which is the asymptotic variance of the �rst sample autocorre-

lation of ft. Intuitively, this convergence result simply re�ects the fact that the common factor

becomes observable in the limit, which implies that our Gaussian test of H0 : � = 0 will become

5See Bera and Yoon (1993) for a possible way of orthogonalising those individual LM test under alternatives

local to H0 : �
y = 0.

11



arbitrarily close to a Gaussian �rst order serial correlation test for the common factor as the

�signal to noise�ratio c0��1(�s)c approaches 1. Before the limit, though, our test takes into ac-

count the unobservability of ft. A particularly interesting situation arises if we consider models

in which N is large. Since c0��1(�s)c = (c0��1c)=[1 + (c0��1c)] under the assumption that �

has full rank, the aforementioned R2 converges to 1 as N grows because (c0��1c)!1 in those

circumstances due to the pervasive nature of the common factor (see e.g. Sentana (2004)).

Likewise, part 3 of Proposition 2 implies that the asymptotic variance of �Gvi(1;0) is [i�
ii(�s)]

2,

where �ii(�s) denotes the ith diagonal element of ��1(�s). But we can again use (6) to inter-

pret i�
ii(�s) as the R2 in the theoretical least squares projection of vit on a constant and yt.

Therefore, we can apply a similar line of reasoning to a Gaussian test of H0 : ��i = 0 under the

maintained assumption that both � and the remaining elements of �� are 0. In this respect,

note that �ii(�s) = �1i ��2i c2i =[1+(c
0��1c)] when � has full rank, which means that i�

ii(�s)

also converges to 1 as N increases for �xed ci and i.

Nevertheless, it is important to emphasise that our joint tests take into account the covariance

between the Kalman �lter estimators of common and speci�c factors, even though the latent

variables themselves are uncorrelated. In fact, V�y�y(�;�;�) has rank N instead of N+1 because

of the negative relationship vkt(�) = yt � � � cfkt(�), which rules out the application of the

multivariate serial correlation test discussed in section 3.4 to the vector process [fkt(�s);v0kt(�s)]
0.

Part 3 of Proposition 2 also implies that the asymptotic distribution of the Gaussian tests

does not depend on normality or indeed ellipticity. E¤ectively, this result mimics the fact that

under conditional homoskedasticity, standard score tests for serial correlation in observed series

are also robust to non-normality. In fact, we can strengthen this intuition as follows. Since

V [fkt(�s)j�s;0;�] = c0��1(�s)c, we can obtain an asymptotically equivalent test of H0 : � =

0 by computing the F test of the regression of fkt(�s) on a constant and fkt�1(�s), whose

asymptotic null distribution does not depend on Gaussianity.

Finally, it is worth mentioning that the orthogonality conditions (16) and (17) remain valid

when yt is serially uncorrelated irrespective of V (yt) having an exact single factor structure.

Therefore, one could also use them to derive a standard moment test (see e.g. Newey and Mc-

Fadden (1994), Newey (1985) and Tauchen (1985)), which will continue to have non-trivial power

even though it will no longer be an LM test (see Sentana and Shah (1994) for an interpretation

of �s when �(�s) is misspeci�ed). Naturally, the same applies to (18) and (19).

12



3.2 Unobservable conditional means

The assumption that the distribution of yt conditional on its past alone is elliptically sym-

metric but with a mean vector and covariance matrix given by the Kalman �lter recursions

in appendix B.2 may be regarded as a way of constructing a convenient auxiliary model that

coincides with the model of interest for �y = 0 or � = 0, but whose log-likelihood function and

score we can obtain in closed form for every possible value of �y when � 6= 0. In this regard, it

is important to bear in mind that the fact that we can compute the true log-likelihood function

of yt under the null of �y = 0 is not su¢ cient to compute its derivative with respect to �y.

Nevertheless, it is possible to use the EM principle to obtain this score. Remarkably, it turns

out that the score of the potentially non-Gaussian state-space model (13) and the approximat-

ing model used in the previous section coincide under the null, even though the Kalman �lter

prediction equations do not provide the true conditional mean and covariance matrix under the

alternative. As a result, the test statistics we have derived in Proposition 2 remain valid for

model (13) too. The following proposition formalises our claim for the multivariate Student t,

but we conjecture it applies to most other elliptical distributions:

Proposition 3 Let st(�) = @lt(�)=@� denote the log-likelihood score of the conditionally ellip-

tical model for ytjYt�1;� in section 3.1. Similarly, let qt(�) = @p(ytjYt�1;�)=@� denote the

exact log-likelihood score of model (13). If (14) is a (standardised) multivariate Student t with

0 � � < :5 then lt(�) = p(ytjYt�1;�) and st(�) = qt(�) when evaluated at �y = 0.

In other words, the approximating model �smoothly embeds�(in the sense used by Gallant

and Tauchen (1996) in their Theorem 2) the original model in those circumstances.

3.3 Moving average processes

Speci�cation (13) assumes that common and speci�c factors follow Ar(1) processes. How-

ever, recent macroeconomic applications of dynamic factor models have often considered moving

average processes instead, sometimes treating the lagged latent variables as additional factors

(see again Bai and Ng (2008)). Thus, we could alternatively assume that

xt = ft + 'ft�1;

ut = vt + diag('
�)vt�1:

(20)

In this case the autocorrelation structure of yt corresponds to a restricted Vma(1) process.

Therefore, the Kalman �lter recursions for this dynamic model are di¤erent from the recursions

in Appendix B.2. Nevertheless, straightforward algebra shows that the scores corresponding to

'y = (';'�0)0 evaluated at 'y = 0 numerically coincide with the scores corresponding to �y in
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model (13) evaluated at �y = 0. Hence, we can also interpret LMAR(1)(�) in Proposition 2 as

the LM test of H0 : 'y = 0. This result mimics the well known fact that Ma(1) and Ar(1)

processes provide locally equivalent alternatives in univariate tests for serial correlation (see e.g.

Godfrey (1988)).

3.4 Alternative multivariate serial correlation tests

It is illustrative to compare our test of serial correlation in common and speci�c factors to

the multivariate generalisation of the Box and Pierce (1970) test proposed by Hosking (1981).

In the �rst order case, one can reinterpret his proposal as a test of the null hypothesis of lack

of serial correlation against an unrestricted Var(1) model, as in Hendry (1971), Gulkey (1974)

and Harvey (1982). More formally:

Proposition 4 Consider the following conditionally homoskedastic Gaussian Var(1) model:

yt = (IN �P)� +Pyt�1 + "t
"tjIt�1;� � N(0;�)

)
; (21)

where � = (�0;p0;�0), with p = vec(P) and � = vech(�). Let

�� =
1

T

XT

t=1
yt

denote the sample mean of yt, and

�Gyy(j) =
1

T

XT

t=1
(yt � ��)(yt�j � ��)0

its jth sample autocovariance matrix. Under the null hypothesis H0 : p = 0 the test statistic

LMH = Tvec0[�Gyy(1)][�G
�1
yy(0)
 �G�1

yy(0)]vec[�Gyy(1)]; (22)

will be distributed as a �2 with N2 degrees of freedom for N �xed as T goes to in�nity.

Apart from the fact that it does not exploit the potential non-normality of returns, or indeed

their strong cross-sectional dependence, which results in the number of degrees of freedom being

an order of magnitude larger, with the consequent reduction in power, the main problem with

this test is that in practice it requires T much larger than N2 for the asymptotic distribution in

Proposition 4 to be reliable in �nite samples. In contrast, our joint test only requires that N=T

is small, while our test of H0 : � = 0 should remain valid as long as we can consistently estimate

the static model parameters.

14



3.5 The relative power of AR tests in multivariate contexts

It is interesting to compare the power of our proposed LM tests, Hosking�s test, a standard

univariate Ar(1) test applied to the Equally Weighted Portfolio (EWP), and a joint test of

univariate �rst-order autocorrelation in all N series (H0 : vecd[Gyy(1)] = 0), which takes into

account that the y0its are contemporaneously correlated even when they are serially uncorrelated.
6

We consider a non-exchangeable single factor model of the form:

yit = �i + cixt + uit (i = 1; : : : ; 5)

xt = �xt�1 +
p
1� �2ft

uit = ��iuit�1 +
q
1� ��2i vit

where � = (:5; :4; :5; :4; :5), c = (5; 4; 5; 4; 5),  = (5; 9; 5; 9; 5) and ��i = �� 8i. Such a design

is motivated by the empirical application in section 7. We evaluate asymptotic power against

compatible sequences of local alternatives of the form �y0T = ��
y=
p
T (see appendix C for details).

To avoid penalising Hosking�s test, in this section we only consider the Gaussian versions of our

tests. In any case, all the Gaussian tests that we compare will be robust to the presence of

non-normality.

In view of the discussion following Proposition 2, it is worth looking at the �rst two un-

conditional moments of yt. In this sense, note that by construction E(xt) = 0, V (xt) = 1,

E(uit) = 0, V (uit) = i and cov(xt; uit) = 0 both under the null and the di¤erent alternatives,

which implies that E(yt) = � and V (yt) = cc0+�. Thus, the unconditional standard deviations

will be
p
30 for the �rst, third and �fth series, and 5 for the second and fourth ones, while the

unconditional correlations will be :8�3 (odd with odd), :73 (odd with even) or :64 (even with

even). Finally, the �signal to noise�ratio c0��1c, which coincides with the R2 in the theoretical

least squares projection of ft on a constant and yt, is .95.7 As for the means, note that we have

implicitly imposed that linear factor pricing holds because � = :1c. Although this restriction

is inconsequential for our econometric results, it implies an a priorily realistic unconditional

mean-variance frontier, with a maximum Sharpe ratio of .34 on an annual basis.8

Figure 1a shows that when �� = 1:5� our proposed test of H0 : �y = 0 is the most powerful

at the usual 5% signi�cance level, closely followed by the test of H0 : �� = 0. Next, we �nd

the pormanteau test of H0 : p = 0, the univariate test applied to EWP and �nally the test

of serial correlation in the common factor, with the �diagonal� serial correlation test of H0 :

vecd[Gyy(1)] = 0 somewhere in between. However, this ranking crucially depends on the �signal

6Given the single factor structure of �, this test di¤ers from Test 2 in Harvey (1982), which tests the null

hypothesis H0 : vecd(P) = 0 under the maintained assumption that � is diagonal.
7A more common measure of the importance of commonalities is the R2 in the theoretical regression of each

series on the common factor, which is .8�3 for the odd numbered series and .64 for the even numbered ones.
8The ex-ante optimal mean-variance portfolio % weights are (25.7,11.4,25.7,11.4,.25.7).
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to noise�ratio c0��1c: Figure 1b shows the equivalent picture when we multiply all the elements

of  by 10, so that the R2 in the regression of ft on yt reduces to .65. In this case, the power of

our test of serial correlation in ft decreases, while the power of the univariate test on EWP and

especially the diagonal test increases substantially. In contrast, Figure 1c illustrates the e¤ects

of dividing the elements of  by 5, so that the aforementioned R2 reaches .99. Not surprisingly,

the power of the two univariate tests almost coincides because EWP and fkt(�0) become very

highly correlated, while the diagonal test is now the least powerful.

The other crucial determinant of the power of the di¤erent tests is the relative magnitudes

of � and ��. Figure 2a shows the e¤ect of setting �� = 0 for our baseline signal to noise ratio,

while Figure 2b illustrates the e¤ects of � = 0. In the �rst case, the test of serial correlation in

the common factor becomes the most powerful, with the test of serial correlation in the speci�c

factors having power equal to size, while exactly the opposite happens in the second case.9

3.6 The relative power of the normality tests

Let us now assess the gains that accrue from exploiting the non-normality in the distribution

of returns. It is not di¢ cult to show that the ratio of non-centrality parameters of the normality

test LMAR(1)(0) and the elliptical likelihood test LMAR(1)(�) is m
�1
ll (�0), which re�ects the

fact that the non-centrality parameter of the Gaussian tests is invariant to the true conditional

distribution of the data. In the multivariate Student t case with �0 > 4, in particular, this

asymptotic e¢ ciency ratio becomes

(�0 � 2)(�0 +N + 2)

�0(�0 +N)
: (23)

For any given N , this ratio is monotonically increasing in �0, and approaches 1 from below as

�0 ! 1, and 0 from above as �0 ! 2+. For instance, for N = 1 it takes the values of :9�3 and

:8 for �0 = 9 and �0 = 5, respectively. At the same time, this ratio is decreasing in N for a

given �0, which re�ects the fact that Fisher�s information for the mean is �increasing�in N in

the Student t case (see Fiorentini and Sentana (2010a)). For N = 3 and �0 = 9, for instance, it

takes the value of :907, while for �0 = 5, its value is only :75.

It is also straightforward to map those e¢ ciency ratios into power gains by considering

sequences of local alternatives. For illustrative purposes, we look at the baseline design in

section 3.5 under the assumption that the true conditional distribution of "�t is a multivariate

t6. Figure 2c shows that the power gains that accrue to our proposed serial correlation tests by

exploiting the leptokurtosis of the Student t distribution are far from trivial.
9The case � = �� is rather unusual, in that the reduced form process for the observed series yt becomes a

Var(1) with a scalar companion matrix. As a result, any linear combination of yt will have the autocorrelation

structure of an Ar(1) process with autoregressive coe¢ cient � = ��.
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3.7 Higher order serial correlation

Consider the following alternative:

xt =
Ph
l=1 �lxt�l + ft;

uit =
Ph�i
l=1 �

�
iluit�l + vit; (i = 1; : : : ; N);

so that model (13) corresponds to h = h�1 = : : : = h�N = 1. In view of the discussion in section

3.1, it is perhaps not surprising that the score test of �l = 0 will be based on the condition

E [�[&t(�s);�]fkt(�s)fkt�l(�s)j�s;0] = 0;

while the score test of ��il = 0 will be based on

E
�
�1i �[&t(�s);�]vkit(�s)vkit�l(�s)j�s;0

�
= 0:

Given that yt is i:i:d: under the null, it is not di¢ cult to show that the joint test for higher

order dynamics will be given by T times the sum of terms of the form�
�Gf (l;�) vecd0[��1=2 �Gv(l;�)�

�1=2
�
I�1
�y�y

(�s;0;�)
�
�Gf (l;�) vecd0[��1=2 �Gv(l;�)�

�1=2
�0
:

As expected, these statistics are also LM tests against Ma(h) structures in the factors. And

if for some reason we wanted to test for di¤erent orders of serial correlation in di¤erent latent

variables, then we should eliminate the irrelevant autocovariances from the above expression.

Similarly, we could be interested either in models in which the autoregressive structure of

the latent variable follows some restricted distributed lag, or in panel data type structures in

which ��il = ��l 8i; l to alleviate the incidental parameter problems for large N . In those cases,

we can use the usual chain rule to obtain the relevant moment conditions and their asymptotic

covariance matrix. For instance, imagine that we wanted to test the null against the following

novel Ar(h) speci�cation for the common factor that we consider in our empirical application:

xt =
Xh

l=1
�xt�l + ft:

Then, it is easy to prove that the relevant orthogonality condition of the Gaussian tests will

become

E

�
fkt(�s)

Xh

l=1
fkt�l(�s)j�s;0

�
= 0;

with h�[c0��1(�s)c]2 being the corresponding asymptotic variance. Interestingly, this expression

is entirely analogous to the so-called Hodrick (1992) standard errors used in LM tests for long

run return predictability in univariate regressions with overlapping observations.
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3.8 Multiple factor models

So far, we have worked with single factor models to convey the basic intuition while keeping

the algebra to a minimum. Nevertheless, it is straightforward to extend our results to models

with more than one common factor, which under the null become

yt = � +Cf t + �
1=2v�t ; 

ft

v�t

!
jIt�1;�s � s

" 
0

0

!
;

 
Ik 0

0 IN

!
;�

# 9>=>; ; (24)

where ft is a vector of k unobserved common factors, whose constant covariance matrix we have

normalised to the identity matrix, and C is the corresponding N � k matrix of factor loadings.

In this case, our assumptions trivially imply that

ytjIt�1;�s � s[�;�(�s);�];

�(�s) = CC0 + �:

Apart from messier algebraic expressions, the main complication arises from the non-identi�ed

nature of the model under the null due to two di¤erent issues: (i) the potentially non-unique

decomposition of V (yt) into a diagonal matrix � and a reduced rank matrix CC0, which is

related to the so-called Ledermann bound and the determination of the right number of factors,

k, which we take as given in what follows, and (ii) the underidenti�ability of C from CC0 (see

Anderson and Rubin (1956), Dunn (1973), Jennrich (1978), Bekker (1989) or Wegge (1996)). In

this sense, it is well known that we can obtain an observationally equivalent model by premulti-

plying the common factors by an orthogonal matrix of order k, Q say, and postmultiplying the

factor loading matrix by the transpose of this matrix since the unconditional covariance matrix,

�(�s) = C
�C�0 + � = CQ0QC

0
+ �

remains unchanged. For that reason, empirical researchers often impose a priori restrictions

on the matrix C so that it can be identi�ed (up to permutations and sign changes) from the

unconditional covariance matrix of yt. Although those restrictions are often arbitrary, the factors

can be orthogonally rotated to simplify their interpretation once the model has been estimated.

In some other cases, identi�ability can be achieved by imposing plausible a priori restrictions.

For example, if in a two factor model it is believed that the second factor only a¤ects a subset

of the variables (say the �rst N1, with N1 < N , so that ci2 = 0 for i = N1 + 1; : : : ; N), then

the non-zero elements of C will always be identi�able. In what follows, we assume that enough

restrictions have been imposed to render C identi�able from knowledge of the unconditional

covariance matrix of the observed variables.
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Since our main concern in this section is the existence of multiple common factors, to keep

the algebra simple the alternative hypothesis that we will consider is as follows:

yt = � +Cxt + �
1=2v�t

xt = Rxt�1 + ft

)
(25)

which reduces to speci�cation (24) under the null hypothesis that H0 : � = 0, where � = vec(R).

Importantly, it is easy to show that without further restrictions this model will be identi�ed if

only if C can be identi�ed from the static model. We can then prove the following result:

Proposition 5 Let

�Gf (j;�) =
1

T

XT

t=1
�[&t(�s);�]fkt(�s)f

0
kt�j(�s)

denote the sample cross moments of �[&t(�s);�]fkt(�s) and fkt�j(�s), where �[&t(�s);�] is de�ned

in (11) and the Kalman �lter estimators of the common factors of model (24) are given by

fkt(�s) = C
0��1(�s)(yt � �): (26)

1. Under the null hypothesis H0 : � = 0, the score test statistic

LMFV AR(1)(�0) = T � vec0[�Gf (1;�0)]I�1�� (�s0;0;�0)vec[�Gf (1;�0)];

with

I��(�s;0;�) = V��(�s;0;�)
 V��(�s;�;�); (27)

where

V��(�s;�;�) = V f�[&t(�s);�]fkt(�s)g = mll(�)V��(�s;0;0);

V��(�s;0;�) = V [fkt(�s)] = C
0��1(�s)C = V��(�s;0;0);

will be distributed as a �2 with k2 degrees of freedom as T goes to in�nity. Moreover, this

asymptotic null distribution is una¤ected if we replace �s0 and �0 by their joint maximum

likelihood estimators under the null.

2. It also remains valid if we replace �s0 by its elliptically symmetric semiparametric estima-

tor, which requires the nonparametric estimation of the density of &t(�s).

3. Under the same null hypothesis, the Gaussian pseudo score test statistic

LMAR(1)(0) = Tvec0[�Gf (1;0)]I�1�� (�s0;0;0)vec[�Gf (1;0)];

will be distributed as a �2 with k2 degrees of freedom for N �xed as T goes to in�nity

irrespective of the normality of the conditional distribution. This result continues to hold

if we replace �s0 by its Gaussian pseudo maximum likelihood estimator ��s under the null.
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Importantly, it is easy to see that LMFV AR(1)(�) is numerically invariant to orthogonal

rotations of the common factors, so the test result will not depend on the exact identi�cation

restriction imposed.

Not surprisingly, the Gaussian version of this test can be related to a Hosking test applied

to the common factors ft if they were observed. Unlike the test described in Proposition 4,

though, the number of degrees of freedom is k2 instead of N2, which still makes a noticeable

di¤erence since k is typically much lower than N in practice. Finally, we can easily derive tests

for univariate serial correlation in any particular common factor by focusing on the appropriate

diagonal element of the matrix �Gf (1;�) and the corresponding element of (27).

4 Tests for ARCH e¤ects in common and idiosyncratic factors

4.1 Baseline case

In this section we shall develop tests of �rst order Arch e¤ects in the common and idiosyn-

cratic factors under the maintained assumption that their conditional means are 0. Extensions

to higher order e¤ects, multiple factors and serially correlated ones are considered in sections 4.6,

4.8 and 5, respectively. Speci�cally, the alternative that we consider is the following conditionally

heteroskedastic factor model:

yt = � + cft + vt 
ft

vt

!
jIt�1;�;� � s

" 
0

0

!
;

 
�t(�) 0

0 �t(�)

!
;�

# 9>=>; ; (28)

with
�t(�) = 1 + �[E(f

2
t�1jYt�1;�;0)� 1];

it(�) = i + �
�
i [E(v

2
it�1jYt�1;�;0)� i]; (i = 1; : : : ; N)

)
(29)

where E(f2t�1jYt�1;�;0) and E(v2it�1jYt�1;�;0) are the Kalman �lter estimators of the squares

of the underlying common and idiosyncratic factors obtained from this model (see appendix B.3).

In this case, the parameters of interest become � = (�0s;�
0)0, � = (�0s;�

y0)0, where �y = (�;��)

and �� = (�1; : : : ; �N ). Although it is in principle very important to distinguish between

It�1 = fyt�1; ft�1; yt�2; ft�2; : : :g, and the econometrician�s information set Yt�1, which only

includes lagged values of yt, (see Harvey, Ruiz and Sentana (1992)), for ease of exposition we

postpone the discussion of those cases in which �t(�) =2 Yt�1 until section 4.2.

Given (28) and (29), the distribution of yt conditional on Yt�1 is N(0;�t), where �t =

cc0�t + �t has the usual exact factor structure. For this reason, we shall refer to the data

generation process speci�ed by (28) as a multivariate conditionally heteroskedastic exact factor

model, which reduces to our baseline speci�cation (1) under the null hypothesis that H0 : �y =
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0. But even if ft or vt are conditionally heteroskedastic, provided that they are covariance

stationary, model (28) also implies an unconditional exact factor structure for yt. That is, the

unconditional covariance matrix, �, can be written as:

� = E(�tj�) = cc0 + �; (30)

because we have set the unconditional variance of the common factor to 1 to eliminate the usual

scale indeterminacy.10

The above model has very interesting implications for correlations. A stylised fact that has

been noted before is that periods when markets are increasingly correlated are also times when

markets are volatile (see King, Sentana and Wadhwani (1994)). Since the empirical evidence

typically suggests that changes in the unobservable factor lead to individual stocks moving in

the same direction, model (28) implies that periods when the volatility of the unobservable

factor rises are also those when, ceteris paribus, individual stocks appear to exhibit greater

inter-correlation. Speci�cally, the conditional correlation coe¢ cient between any two elements

of yt is given by

�12t =
c1c2�tp

c21�t + 1t
p
c22�t + 2t

:

Hence, �12t will be increasing in �t if c1c2 > 0 and decreasing in 1t and 2t.

A more precise way to characterise the serial dependence structure implied by model (28) is

to consider the autocovariance structure of

vec[(yt � �)(yt � �)0] = (c
 c)f2t + vec(vtv0t) + (IN2 +KNN )(c
 IN )vec(ftvt);

where Kmn is the commutation matrix of orders m and n (see Magnus and Neudecker (1988)).

Given that vec(ftvt) is a martingale di¤erence sequence, yt follows a weak Arch model (see

Nijman and Sentana (1996)) which shares the factor structure in (15) not for the levels but for

the squares and cross-products of the observed variables yt (see appendix C for further details).

In this sense, another empirically appealing feature of (28) is that all linear combinations of yt

will follow weak Arch processes as long as � and �� are strictly positive.

Sentana and Fiorentini (2001) develop tests of the null hypothesis H0 : � = 0 under the

maintained hypotheses that �� = 0 and the conditional distribution is Gaussian. The following

proposition extends their results to joint tests of Arch e¤ects in common and speci�c factors

in elliptical contexts.

Proposition 6 Let

�Sf (j;�) =
1

T

XT

t=1
f�[&t(�s);�]f2kt(�s) + !k(�s)� 1g[f2kt�j(�s) + !k(�s)� 1]

10See Fiorentini, Sentana and Shephard (2004) for symmetric scaling assumptions for integrated Arch models.
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denote the sample cross moment of �[&t(�s);�]f2kt(�s) +!k(�s)� 1 and E(f2t�j jYt�j ;�s;0;0) =

f2kt�j(�s) + !k(�s) � 1, where �(&t;�) is de�ned in (11) and fkt(�s) and !k(�s) are obtained

from the updating equations (5) of the static factor model (1). Similarly, let

�Sv(j;�) =
1

T

XT

t=1
vecdf�[&t(�s);�]vkt(�s)v0kt(�s)+cc0!k(�s)� �g

�vecd[vkt�j(�s)v0kt�j(�s)+cc0!k(�s)� �]

denote the analogous sample cross moments for the speci�c factors.

1. Under the null hypothesis H0 : �y = 0, the score test statistic LMARCH(1)(�) given by

T
4

�
�Sf (1;�0); vecd

0[��10
�Sv(1;�)�

�1
0 ]
�
I�1
�y�y

(�s0;0;�0)
�
�Sf (1;�0); vecd

0[��10
�Sv(1;�0)�

�1
0 ]
�0
;

is distributed as a �2 with N +1 degrees of freedom for N �xed as T goes to in�nity, where

I�y�y(�s;0;�) = V�y�y(�s;0;�)� V�y�y(�s;�;�);

V�y�y(�s;�;�) = V

"
1p
2
f�[&t(�s);�]f2kt(�s) + !k(�s)� 1g

1p
2
��1vecdf�[&t(�s);�]vkt(�s)v0kt(�s) + cc0!k(�s)� �g

#

= mss(�)

"
[c0��1(�s)c]

2 c0��1(�s)�1=2 � c0��1(�s)�1=2

�1=2��1(�s)c� �1=2��1(�s)c �1=2��1(�s)�1=2 � �1=2��1(�s)�1=2

#

+
[mss(�)� 1]

2

"
[c0��1(�s)c]

2

[c��1(�s)c]vecd[�1=2��1(�s)�1=2]

[c0��1(�s)c]vecd0[�1=2��1(�s)�1=2]

vecd[�1=2��1(�s)�1=2]vecd0[�1=2��1(�s)�1=2]

#
:

and V�y�y(�s;0;�) mimics V�y�y(�s;�;�) after replacing mss(�) by � + 1. Moreover,

this asymptotic null distribution is una¤ected if we replace �s0 and �0 by their feasible

maximum likelihood estimators in Proposition 1.

2. It also remains valid if we replace �s0 by its elliptically symmetric semiparametric estimator

in Proposition 1, which requires the nonparametric estimation of the density of &t(�s).

3. Under the same null hypothesis, the Gaussian pseudo score test statistic LMARCH(1)(0)

given by

T
4

�
�Sf (1;0); vecd

0[��10
�Sv(1;0)�

�1
0 ]
�
B�1
�y�y

(�0)
�
�Sf (1;0); vecd

0[��10
�Sv(1;0)�

�1
0 ]
�0
;

with

B�y�y(�) = V�y�y(�s;0;�)� V�y�y(�s;0;�); (31)
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will be distributed as a �2 with N + 1 degrees of freedom for N �xed as T goes to in�nity

irrespective of whether the elliptical conditional distribution is normal. This result contin-

ues to hold if we replace �s0 by its Gaussian pseudo maximum likelihood estimator ��s in

Proposition 1.

Researchers may once more be interested in tests that separately assess the conditional

heteroskedasticity of either the common factor or the speci�c factors. Indeed, they might even

like to focus on a particular vit. By combining the relevant elements of �Sf (j;�) and �Sv(1;�)

with the corresponding blocks of the information matrix, I�y�y(�s;0;�), we can easily exploit

the results in Proposition 6 to derive the required test statistics for those subcomponents under

the maintained hypothesis of serial independence. Intuitively, the reason is that we can interpret

LMARCH(1)(�) as a test based on the N + 1 orthogonality conditions:

E

(
1
2f�[&t(�s);�]f

2
kt(�s) + !k(�s)� 1g

�[f2kt�1(�s) + !k(�s)� 1]j�s;0;�

)
= 0; (32)

E

(
1
2
�2
i f�[&t(�s);�]v2kit(�s) + c2i!k(�s)� ig
�[v2kit�1(�s) + c2i!k(�s)� i]j�s;0;�

)
= 0 (i = 1; : : : ; N): (33)

Similarly, LMARCH(1)(0) is based on

E

(
1
2 [f

2
kt(�s) + !k(�s)� 1]

�[f2kt�1(�s) + !k(�s)� 1]j�s;0;�

)
= 0; (34)

E

(
1
2
�2
i [v

2
kit(�s) + c

2
i!k(�s)� i]

�[v2kit�1(�s) + c2i!k(�s)� i]j�s;0;�

)
= 0 (i = 1; : : : ; N): (35)

As in the serial correlation tests, �(&t;�) acts as a damping factor for big observations (see

Fiorentini and Sentana (2010b) for a closely related discussion for univariate models).11

Once again, given that we normalise V (ft) to 1, the moment conditions (34) and (35) closely

resemble

E[(f2t � 1)(f2t�1 � 1)j�s;0;�] = 0;

E[�2i (v
2
it � i)(v2it�1 � i)j�s;0;�] = 0 (i = 1; : : : ; N);

which are the Gaussian-based orthogonality conditions that we would use to test for �rst order

Arch e¤ects if we could observe the latent variables (see e.g. Engle (1982)).

The similarity between these two sets of moment conditions becomes even stronger if we

consider individual tests for Arch in each latent variable. Let us start with a test of H0 :
11This factor also plays an important role in the beta-t-Arch models proposed by Harvey and Chakravarty

(2008), although if one derived an LM test for conditional homoskedasticity against their models, �(&t;�) would

appear not only in the regressand but also in the regressor.
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� = 0 under the maintained assumption that �� = 0. Part 3 of Proposition 6 implies that the

asymptotic variance of �Sf (1;0) is simply 1
2(3� + 2)

2[c0��1(�s)c]
4. But as we saw in section

3.1, we can interpret c0��1(�s)c as the R2 in the theoretical least squares projection of ft on

a constant and yt. Therefore, the higher the degree of observability of the common factor, the

closer the asymptotic variance of �Sf (1;0) will be to 1
2(3�+2)

2, which is the asymptotic variance

of the �rst sample autocovariance of f2t under normality. Intuitively, this convergence result

simply re�ects the fact that the common factor becomes observable in the limit, which implies

that our test of H0 : � = 0 will become arbitrarily close to a �rst order Arch test for the

common factor as the �signal to noise�ratio c0��1(�s)c approaches 1. Before the limit, though,

our test takes into account the unobservability of ft.

Likewise, part 3 of Proposition 6 implies that the asymptotic variance of �Svkivki(1;0) is

1
2(3� + 2)

2[i�
ii(�s)]

4, where �ii(�s) denotes the ith diagonal element of ��1(�s). But since

we can again interpret i�
ii(�s) as the R2 in the theoretical least squares projection of vit on

a constant and yt, we can apply a similar line of reasoning to a test of H0 : ��i = 0 under the

maintained assumption that � = 0 and the remaining elements of �� are 0. Once again, though,

it is important to emphasise that our joint tests take into account the covariance between the

Kalman �lter estimators of the underlying factors, even though the latent variables themselves

are uncorrelated.

Part 3 of Proposition 6 also implies that the asymptotic distribution of the Gaussian tests

does not depend on normality, although if the conditional distribution of yt given Yt�1 were

not elliptical, then one would have to replace V�y�y(�s;0;�) in (31) by the joint unconditional

covariance matrix of 1p
2
[f2kt(�s) + !k(�s) � 1] and 1p

2
��1vecd[vkt(�s)v

0
kt(�s)+cc

0!k(�s) � �]

under the null of H0 : �y = 0. The advantage of using the theoretical expressions in the

elliptical case is that they should improve the �nite sample reliability of the Gaussian tests.

Interestingly, such robust versions of the test for Arch e¤ects in common and idiosyncratic

factors can be regarded as the factor analytic analogues to the suggestion that Koenker (1981)

made to robustify tests of conditional homoskedasticity based on Gaussian scores, such as the

original univariate Arch test in Engle (1982), whose information matrix version is only valid

under conditional normality. In fact, we can obtain an asymptotically equivalent test of H0 :

� = 0 by computing the F test of the regression of f2kt(�s) on a constant and f
2
kt�1(�s), whose

asymptotic null distribution remains valid irrespective of the normality of fkt(�s) because it is

e¤ectively using a consistent estimator of V [f2kt(�s)] as the residual variance of the regression

under the null. But if we impose that the residual variance is 2[c0��1(�s)c]
2 instead, which

is its value under normality because V [fkt(�s)j�s;0;�] = c0��1(�s)c, then our F test will be
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incorrectly sized when the conditional distribution is not Gaussian.

Again, it would be straightforward to adapt Proposition 6 to handle large N panel data

restrictions such as ��i = �� 8i, as in Sentana, Calzolari and Fiorentini (2008). Further, given

that the orthogonality conditions (32) and (33) remain valid when yt is serially independent

irrespective of V (yt) having an exact single factor structure, one could also use them to derive

a standard moment test that will still have non-trivial power even though it will no longer be

an LM test.

4.2 Unobservable conditional variances

Following the discussion at the beginning of section 5 in Harvey, Ruiz and Sentana (1992),

speci�cation (28) assumes that the conditional variances of common and speci�c factors are a

function of lagged observable variables. But it may seem more natural to assume that those

variances are in fact functions of the lagged latent variables. Speci�cally,

�t(�) = 1 + �(f
2
t�j � 1);

it(�) = i + �
�
i (v

2
it�1 � i); (i = 1; : : : ; N):

)
(36)

The problem with this formulation is that even in the Gaussian case the log-likelihood function

can no longer be written in closed form except when �y = 0, and one has to resort to simulation

methods, such as the MCMC procedures put forward by Fiorentini, Sentana and Shephard

(2004). As explained by Sentana, Calzolari and Fiorentini (2008), the combination of (28) with

(29) may be regarded as a convenient auxiliary model that coincides with the model of interest

for �y = 0, but whose log-likelihood function and score we can obtain in closed form for every

possible value of �y. In this regard, it is important to bear in mind that the fact that we

can compute the true log-likelihood function of yt under the null of �y = 0 is not su¢ cient

to compute its derivative with respect to �y. Fortunately, it is once again possible to use the

EM principle to obtain this score. Remarkably, it turns out that the score of the model with

latent variances (36) is virtually identical to the score of the approximating model under the

null of conditionally homoskedasticity despite both the non-measurability of �t and �t and the

potential non-normality of the conditional distribution. In fact, they would coincide if we had

followed section 5.2 of Harvey, Ruiz and Sentana (1992) instead, and replaced the conditional

variances of common and speci�c factors in (29) by

�t(�) = 1 + �[E(f
2
t�1jYt�1;�;�)� 1];

it(�) = i + �
�
i [E(v

2
it�1jYt�1;�;�)� i]; (i = 1; : : : ; N)

)
(37)
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where

E(f2t�1jYt�1;�s;0;�) = f2kt�1(�s) + �kt�1(�s;�)� 1;

E(v2it�1jYt�1;�s;0;�) = v2ikt�1(�s) + c
2
i �kt�1(�s;�)� i;

with fkt(�s), !k(�s) and �kt�1(�s;�) de�ned in (5). The following result, which generalises

Proposition 1 in Sentana, Calzolari and Fiorentini (2008), formalises our claim for the multi-

variate Student t, but we conjecture it applies to most other elliptical distributions:

Proposition 7 Let st(�) = @lt(�)=@� denote the log-likelihood score of the conditionally het-

eroskedastic model for ytjYt�1;� in (28) when the variances of the latent factors are given by

(37). Similarly, let qt(�) = @p(ytjYt�1;�)=@� denote the exact log-likelihood score of the same

model when the variances of the latent factors are given by (36) instead. If the conditional dis-

tribution is a (standardised) multivariate Student t with 0 � � < :5 then lt(�) = p(ytjYt�1;�)

and st(�) = qt(�) when evaluated at �y = 0.

Therefore, the approximating model that uses (37) �smoothly embeds� the original model

in those circumstances.

4.3 Alternative multivariate ARCH tests

It is again illustrative to compare our tests of Arch e¤ects in the latent factors to Hosking-

style general multivariate Arch test of the type discussed by Duchesne and Lalancette (2003):

Proposition 8 Consider the following vech speci�cation of the multivariate Gaussian Arch(1)

model:
yt = � + "t

"tjIt�1;� � N(0;�t)

vech(�t) = vech(�) +Avech("t�1"0t�1 ��):

9>=>; (38)

where � = (�0;�0;a0), with � = vech(�) and a = vec(A). Let

�� =
1

T

XT

t=1
yt

denote the sample mean of yt,

�� =
1

T

XT

t=1
(yt � ��)(yt�j � ��)0;

its sample covariance matrix, and

�Syy(j) =
1

T

XT

t=1
vech[(yt � ��)(yt � ��)0 � ��]vech0[(yt�j � ��)(yt�j � ��)0 � ��]
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the jth sample autocovariance matrix of vech[(yt � ��)(yt � ��)0]. Under the null hypothesis that

H0 : a = 0 the asymptotic distribution of the test statistic

LMV ECH(1) =
T

4
vec0[�Syy(1)]f[D0

N (��
�1
 ���1)DN ]
 [D0

N (��
�1
 ���1)DN ]gvec[�Syy(1)]; (39)

will be a �2 with N2(N + 1)2=4 degrees of freedom for N �xed as T goes to in�nity, where DN

is the duplication matrix of order N .

Apart from the fact that it does not exploit the potential non-normality of returns,12 or

indeed their strong cross-sectional dependence, which results in the number of degrees of free-

dom being three orders of magnitude larger, with the consequent reduction in power, the main

problem with (39) is that in practice it requires T much larger than N4 for the asymptotic

distribution in Proposition 8 to be reliable in �nite samples. In contrast, our joint test only

requires that N=T is small, while our test of H0 : � = 0 should remain valid as long as we can

consistently estimate the model parameters.13

4.4 The relative power of ARCH tests in multivariate contexts

We compare the power of our LM tests, Hosking�s test applied to vech[(yt � �)(yt � �)0],

a standard univariate Arch(1) test applied to the EW portfolio, a joint test of univariate

�rst-order autocorrelation in all N(N + 1)=2 squares and cross-products of the (demeaned)

observed series, and an analogous test that only focuses on their squares. Note that our joint

LM test can also be understood as test of univariate �rst-order autocorrelation in the squares

of [fkt(�s);v0kt(�s)]. We consider another non-exchangeable single factor model of the form:

yit = �i + cift + vit (i = 1; : : : ; 5)

�t = (1� �) + �f2t�1
it = i(1� ��i ) + ��i v2it�1

where � = (:5; :4; :5; :4; :5), c = (5; 4; 5; 4; 5),  / (5; 9; 5; 9; 5) and ��i = �� 8i, whose �rst two

unconditional moments are also empirically motivated, as they coincide with those of the model

considered in section 3.5. We evaluate power against compatible sequences of local alternatives

of the form �y0T = ��y=
p
T (see appendix C for details). To avoid penalising Hosking�s test, in

this section we only consider the Gaussian versions of our tests.

12The simplest way to make the test proposed in Proposition 8 robust to any departures from normality would

be to apply expression (22) in Proposition 4 to vech[(yt�1��)(yt�1��)] (but see the proof of Proposition 8 for
a simpli�ed expression in the elliptically symmetric case).
13Another implication of the single factor structure of � is that LMV ECH(1) di¤ers from the multivariate Arch

test considered by Dufour, Khalaf and Beaulieu (2010), who apply Hosking�s test to the vech of the outer product

of standardised values of yt obtained from a Cholesky decomposition of ��.
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For the baseline case in which  = (5; 9; 5; 9; 5), and �� = �, Figure 3a shows that our

proposed test of H0 : �y = 0 is the most powerful at the usual 5% signi�cance level, followed by

our test of H0 : �� = 0. Next we �nd our test of Arch e¤ects in the common factor and the

univariate Arch test applied to EWP, the diagonal serial correlation tests of vecd[(yt��)(yt�

�)0] and vech[(yt � �)(yt � �)0], and �nally the pormanteau test of H0 : a = 0, which su¤ers

from having a large number of degrees of freedom. Once again, though, this ranking crucially

depends on the �signal to noise�ratio c0��1c: Figure 3b shows the equivalent picture when we

multiply all the elements of  by 10, so that the R2 in the regression of ft on yt reduces to .65.

In this case, the power of the two univariate tests decreases substantially, while the power of the

diagonal tests increases. In contrast, Figure 3c illustrates the e¤ects of dividing the elements

of  by 5, so that the aforementioned R2 reaches .99. Not surprisingly, the power of the two

univariate tests almost coincides because EWP and fkt(�0) become very highly correlated.

The other crucial determinant of the power of the di¤erent tests is the relative magnitudes

of � and ��. Figure 4a shows the e¤ect of setting �� = 0 for our baseline signal to noise

ratio, while Figure 4b illustrates the e¤ects of � = 0. In the �rst case, the test of conditional

homoskedasticity in the common factor becomes the most powerful, with the speci�c factors test

having power equal to size, while exactly the opposite happens in the second case.

4.5 The relative power of the normality tests

To keep the algebra simple, we shall initially compare the individual tests of H0 : � = 0

under the maintained assumption that all the remaining Arch parameters in �� are 0. In this

context, we can show that the ratio of non-centrality parameters of the Gaussian test and the

elliptical test is 4=f[3mss(�0)� 1](3�0 + 2)g. In the multivariate Student t case with �0 > 4, in

particular, this asymptotic e¢ ciency ratio becomes

(�0 +N + 2) (�0 � 4)
(�0 � 1)(�0 +N � 1) :

For any given N , this ratio is monotonically increasing in �0, and approach 1 from below as

�0 ! 1, and 0 from above as �0 ! 4+. For instance, for N = 1 , it takes the values of :8�3

and :4 for �0 = 9 and �0 = 5, respectively. At the same time, this ratio is decreasing in N for

a given �0. For N = 3 and �0 = 9, for instance, it takes the value of :795, while for �0 = 5, its

value is only :75. Exactly the same results apply to tests of H0 : ��i = 0.

More generally, we can use the asymptotic distribution of the di¤erent estimators of �y

under the null derived in Proposition 6 to obtain the non-centrality parameters of joint tests of

�� = 0 or �y = 0. Unlike in the case of the mean parameters, though, the asymptotic relative

e¢ ciency of the di¤erent tests depends on the values of the static factor analysis parameters �s.
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In any case, it is straightforward to map those e¢ ciency ratios into power gains by considering

sequences of local alternatives. For illustrative purposes, we look at the baseline design in section

4.4 under the assumption that the true conditional distribution of "�t is a multivariate t6. Figure

4c shows that the power gains are even bigger for our proposed Arch tests, which is in line with

the asymptotic relative e¢ ciency results derived above.

4.6 Higher order ARCH e¤ects

Consider the following alternative speci�cation:

�t(�) = 1 +
Xq

j=1
�j [E(f

2
t�j jYt�j ;�;0)� 1];

it(�) = i +
Xq�i

j=1
��ij [E(v

2
it�j jYt�j ;�;0)� i]; (i = 1; : : : ; N);

so that (29) corresponds to q = q�1 = : : : = q�N = 1. In view of the discussion in section 4.1, it is

perhaps not surprising to �nd out that the score test of �j = 0 will be based on the orthogonality

condition

E
�
[�[&t(�s);�]f

2
kt(�s) + !k(�s)� 1][f2kt�j(�s) + !k(�s)� 1]j�s;0;0

	
= 0;

while the score test of ��ij = 0 will be based on

E
�
�2i [�[&t(�s);�]v

2
kit(�s) + c

2
i!k(�s)� i][v2kit�j(�s) + c2i!k(�s)� i]j�s;0;0

	
= 0

Given that yt is i:i:d: under the null hypothesis, it is not di¢ cult to show that the joint test

for higher order dynamics will be given by 1
4T times the sum of terms of the form

�
�Sf (j;�); vecd

0[��1�Sv(j;�)�
�1]
�
I�1
�y�y

(�s;0;�)
�
�Sf (j;�); vecd

0[��1�Sv(j;�)�
�1]
�0
:

Once again, we could eliminate the irrelevant autocovariances from the above expression to test

for di¤erent orders of serial correlation in the squares of di¤erent latent variables.

4.7 GARCH tests

The univariate empirical evidence suggests that Garch(1,1) speci�cations of the form

�t(�) = 1� �� � + �E(f2t�j jYt�1;�;0) + ��t�1(�)
= 1 + �

P1
j=1 �

j�1[E(f2t�j jYt�j ;�;0)� 1];
it(�) = i(1� ��i � ��i ) + ��iE(v2it�j jYt�1;�;0) + ��i it�1(�)

= i + �
�
i

P1
j=1(�

�
i )
j�1[E(v2it�j jYt�j ;�;0)� i]

should be more realistic than unrestricted Arch(q) ones. As Bollerslev (1986) noted in a uni-

variate context, however, one cannot derive a score test for conditional homoskedasticity versus
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these Garch(1,1) speci�cations in the usual way, because � and ��i are only identi�ed under

the alternative. A possible solution to testing situations such as this one involves computing

the test statistic for many values of � and ��i in the range [0,1), which are then combined to

construct an overall statistic, as initially suggested by Davies (1977, 1987). Andrews (2001) dis-

cusses ways of obtaining critical values for such tests by regarding the di¤erent LM statistics as

continuous stochastic processes indexed with respect to the parameters � and ��i (i = 1; : : : ; N).

Unfortunately, his procedure is di¢ cult to apply in our context because dim(�y) = N + 1. An

alternative solution involves choosing arbitrary values of the underidenti�ed parameters to carry

out a score test of � = 0 and �� = 0 based on the moment conditions

E
n
[�[&t(�s);�]f

2
kt(�s) + !k(�s)� 1]

X1

l=1
�l�1[f2kt�l(�s) + !k(�s)� 1]j�s;0;0

o
= 0;

E
n
[�[&t(�s);�]v

2
kit(�s) + c

2
i!k(�s)� i]

X1

l=1
(��i )

l�1[v2kit�l(�s) + c
2
i!k(�s)� i]j�s;0;0

o
= 0;

whose asymptotic covariance matrix would be

X1

l=0
diagl[�;��0]I�y�y(�s;0;�)diagl[�;��0];

which can be obtained in closed form. The values of � and �� in�uence the small sample power

of these tests, achieving maximum power when they coincide with their true values (see Demos

and Sentana (1998)), but the advantage is that the resulting tests have standard distributions

under H0. An attractive possibility is to set � and �� to the decay factor recommended by

RiskMetrics (1996) to obtain exponentially weighted volatility estimates for fkt and vikt.

4.8 Multiple factor models

As in section 3.8, we assume that k is known, and that enough restrictions have been imposed

to render C identi�able from knowledge of the unconditional covariance matrix of the observed

variables. Since our main concern in this section is the existence of multiple common factors, to

keep the algebra simple the alternative hypothesis that we will consider is as follows:

yt = � +Cf t + vt; 
ft

vt

!
jIt�1;� � s

" 
0

0

!
;

 
�t(�) 0

0 �

!
;�

#
;

vech[V (ftjIt�1;�)] = vech[�t(�)] = Ik +Avech[E(ft�1f
0
t�1jYt�1;�;0)� Ik];

9>>>>=>>>>; ; (40)

which reduces to our baseline speci�cation (24) under the null hypothesis that H0 : � = 0,

where � = vec(A). Importantly, it is easy to show that without further restrictions on the

matrix A this model will be identi�ed if and only if C can be identi�ed from the static model

(cf. Sentana and Fiorentini (2001)). We can then prove the following result:
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Proposition 9 Let

�Sf (j;�) =
1

T

XT

t=1
vechf�[&t(�s);�]fkt(�s)f 0kt(�s) +
k(�s)� Ikg

�vech0[fkt�j(�s)f 0kt�j(�s) +
k(�s)� Ik]

denote the sample cross moments between vechf�[&t(�s);�]fkt(�s)f 0kt(�s) + 
k(�s) � Ikg and

vech0[fkt�j(�s)f
0
kt�j(�s) +
k(�s)� Ik], where �(&t;�) is de�ned in (11), fkt(�s) in (26) and


k(�s) = Ik �C0��1(�s)C:

1. Under the null hypothesis H0 : � = 0, the score test statistic

LMFV ECH(1)(�0) =
T

4
� vec0[�Sf (1;�0)]I�1��(�s0;0;�0)vec[�Sf (1;�0)];

is distributed as a �2 with k2(k+1)2=4 degrees of freedom for N �xed as T goes to in�nity,

where

I��(�s;0;�) = V��(�s;0;�)
 (D0
kDk)V��(�s;�;�)(D0

kDk); (41)

where

V��(�s;�;�) = V

�
1p
2
vechf�[&t(�s);�]fkt(�)f 0kt(�) +
k(�)� Ikg

�
= mss(�)D+

k [C
0��1(�s)C
C0��1(�s)C]D+0

k

+
[mss(�)� 1]

2
vech[��1(�s)C]vech

0[��1(�s)C]; (42)

and V��(�s;0;�) mimics V��(�s;�;�) after replacing mss(�) by � + 1. Moreover, this

asymptotic null distribution is una¤ected if we replace �s0 and �0 by their joint maximum

likelihood estimators under the null.

2. It also remains valid if we replace �s0 by its elliptically symmetric semiparametric estima-

tor, which requires the nonparametric estimation of the density of &t(�s).

3. Under the same null hypothesis, the Gaussian score test statistic

LMFV ECH(1)(0) =
T

4
� vec0[�Sf (1;0)]B�1��(�s0;0;�0)vec[�Sf (1;0)];

with

B��(�s;0;�) = V��(�s;0;�)
 (D0
kDk)V��(�s;0;�)(D0

kDk): (43)

will be distributed as a �2 with k2(k + 1)2=4 degrees of freedom for N �xed as T goes to

in�nity irrespective of whether the elliptical conditional distribution is normal. This result

continues to hold if we replace �s0 by its Gaussian pseudo maximum likelihood estimator

��s in Proposition 1.
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It is easy to see that LMFV ECH(1)(�) is numerically invariant to orthogonal rotations of

the common factors, so the test result will not depend on the exact identi�cation restriction

imposed.

Not surprisingly, this test can be related to the test discussed in Proposition 8 applied to

vech(ftf
0
t) if the common factors were observed. Unlike the test described in that proposition,

though, the number of degrees of freedom is O(k4) instead of O(N4), which makes a tremendous

di¤erence in practice since k is typically much smaller than N .

Finally, note that Proposition (9) also allows us to derive tests for univariate Arch e¤ects in

any particular common factor by focusing on the corresponding autocovariance. In this sense,

our multiple factor test nests the tests proposed in Sentana and Fiorentini (2001), who assumed

that the common factors followed conditionally orthogonal univariate Arch processes instead.

5 Joint tests for serial dependence

In this section we shall consider joint tests of Ar(1)-Arch(1) e¤ects in common and speci�c

factors. Therefore, our alternative will be a single factor version of a dynamic, conditionally

heteroskedastic exact factor model in which both common and idiosyncratic factors follow co-

variance stationary Ar(1)-Arch(1) type processes. Speci�cally,

yt = � + cxt + ut

xt = �xt�l + ft

ut = diag(��)ut�1 + vt 
ft

vt

!
jIt�1;� � s

" 
0

0

!
;

 
�t(�) 0

0 �t(�)

!
;�

#
;

V (ftjIt�1;�) = �t(�) = 1 + �[E(f
2
t�1jYt�1;�;0)� 1];

V (vitjIt�1;�) = it(�) = i + �
�
i [E(v

2
it�1jYt�1;�;0)� i]; (i = 1; : : : ; N)

9>>>>>>>>>>>=>>>>>>>>>>>;
: (44)

When the conditional variances of the common and idiosyncratic factors are constant (i.e.,

� = 0 and �� = 0), the above formulation reduces to (13). Similarly, when the levels of

the latent variables are unpredictable (i.e., � = 0 and �� = 0), the above model simpli�es to

(28). Finally, under the null hypothesis of lack of predictability in mean (�y = 0) and variance

(�y = 0), model (44) reduces to the traditional (static) factor model (1), which is our baseline

speci�cation.

It turns out that the joint tests of Ar(1)-Arch(1) is simply the sum of the separate tests:

Proposition 10 1. Under the joint null hypothesis H0 : �y = 0;�y = 0 the score test

statistic

LMAR(1)�ARCH(1)(�0) = LMAR(1)(�0) + LMARCH(1)(�0);
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will be distributed as a �2 with 2(N + 1) degrees of freedom for N �xed as T goes to

in�nity. This asymptotic null distribution is una¤ected if we replace �s and �0 by their

joint maximum likelihood estimators in Proposition 1.

2. It also remains valid if we replace �s0 by its elliptically symmetric semiparametric estima-

tor, which requires the nonparametric estimation of the density of &t(�s).

3. Under the same null hypothesis

LMAR(1)�ARCH(1)(0) = LMAR(1)(0) + LMARCH(1)(0)

will also be distributed as a �2 with 2(N + 1) degrees of freedom for N �xed as T goes to

in�nity irrespective of whether the elliptical conditional distribution is normal. This result

continues to hold if we replace �s0 by its Gaussian pseudo maximum likelihood estimator

��s in Proposition 1.

Intuitively, the reason is that the serial correlation orthogonality conditions (16)-(17) are

asymptotically orthogonal to the Arch orthogonality conditions (32)-(33) because all odd order

moments of multivariate spherical distributions are 0, which means that the joint test is simply

the sum of its two components.

This additivity, though, no longer holds for non-spherical distributions, in which case one

could robustify the Gaussian tests by using as weighting matrix"
B�y�y(�) B�y�y(�)
B0
�y�y(�) B�y�y(�)

#
=

"
V�y�y(�s;0;%) V�y�y(�s;0;%)
V 0
�y�y(�s;0;%) V�y�y(�s;0;%)

#
�
"
V�y�y(�s;0;%) V�y�y(�s;0;%)
V 0
�y�y(�s;0;%) V�y�y(�s;0;%)

#
;

where

"
V�y�y(�s;0;%) V�y�y(�s;0;%)
V 0
�y�y(�s;0;%) V�y�y(�s;0;%)

#
= V

266664
fkt(�s)

��1=2vkt(�s)
1p
2
[f2kt(�s) + !k(�s)� 1]

1p
2
��1vecd[vkt(�s)v

0
kt(�s)+cc

0!k(�s)� �]

377775
(45)

has to be computed taking into account the third and fourth multivariate moments of the

distribution of yt, except for V�y�y(�s;0;%), whose Gaussian expression remains valid.

6 Monte Carlo analysis

6.1 Design

We assess the �nite sample performance of the di¤erent testing procedures discussed above

by means of an extensive Monte Carlo exercise, with an experimental design that nests those in
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sections 3.5 and 4.4, and is thereby adapted to the empirical application in section 7. For that

reason, we only report the results for samples of 720 observations each (plus another 100 for

initialisation) in which the cross-sectional dimension is N = 5. This sample size corresponds to

60 years of monthly data, roughly the same as in our empirical analysis. In this sense, the main

reason for looking at a small cross-sectional dimension is to handicap our proposed tests relative

to the existing multivariate serial dependence tests, which in the case considered in Proposition

8 already involves 784 degrees of freedom for N = 7. We carry out 20,000 replications for the

purposes of estimating actual sizes and powers with high precision.14All the examples of the

DGP in (44) considered can be written as nonexchangeable single factor models of the form:

yit = �i + cixt + uit (i = 1; : : : ; 5)

xt = �xt�1 + ft

uit = ��iuit�1 + vit (i = 1; : : : ; 5)

�t = (1� �� �)(1� �2) + �(f2kt�1 + !k � 1) + ��t�1
it = i(1� ��i � ��i )(1� ��i )2 + ��i (v2it�1 + c2i!k � i) + ��i it�1 (i = 1; : : : ; 5)

with � = (:5; :4; :5; :4; :5), c = (5; 4; 5; 4; 5),  = (5; 9; 5; 9; 5), ��i = ��, ��i = �� and ��i = �� 8i.

Thus, the values of �, ��, �, ��, �, �� fully explain the di¤erences between our designs.

We generate samples from a Gaussian distribution, a Student t with 6 degrees of freedom,

a discrete scale mixture of normals (DSMN) with the same kurtosis but �nite higher order

moments, and an asymmetric Student t such that the marginal distribution of an equally-

weighted portfolio of yt has the maximum negative skewness compatible with the kurtosis of a

univariate t6 (see Mencía and Sentana (2009, 2012) for details). These distributions allow us

to assess the reliability of the robust Gaussian tests, and to shed some light on the �e¢ ciency-

consistency�trade-o¤s of those tests that exploit the leptokurtosis of �nancial returns.

We draw spherical Gaussian random vectors using the NAG library Fortran G05FDF routine

after initialisation by G05CBF. To sample standardised Student t vectors, we simply divide

those Gaussian random vectors by the square root of an independent univariate Gamma(3,2)

random variable, and scale the result by 2. Similarly, we generate a standardised version of a

two-component scale mixture of multivariate normals as

"�t =
st + (1� st)

p
{p

� + (1� �){
� "�t ;

where "�t is a spherical multivariate normal, { the variance ratio of the two components, and st

is an independent Bernoulli variate with P (st = 1) = �, which we draw by comparing � with a

uniform from G05CAC. Speci�cally, we choose � = :05 and { = :1438. Finally, following Mencía

14For instance, the 95% con�dence interval for a nominal size of 5% would be (4.7%,5.3%).
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and Sentana (2012), we generate a standardised asymmetric multivariate t by choosing

"�t = �
�
��1t � c(�;�)

�
+

s
�t
�t
�1=2"�t ; (46)

where �t is Gamma random variable with parameters (2�)
�1 and �2=2 with � = (1�2�)��1c(�;�),

� is a N � 1 parameter vector, and � is the N �N positive de�nite matrix

� =
1

c(�;�)

�
IN +

c(�;�)� 1
�0�

��0
�
;

with

c(�;�) =
� (1� 4�) +

q
(1� 4�)2 + 8�0� (1� 4�) �
4�0��

:

In this sense, note that lim�0��!0 c(�;�) = 1, so that the above distribution collapses to the usual

multivariate symmetric t when � = 0. In the asymmetric t case, though, we use � = �106�N .

Importantly, we use the same underlying pseudo-random numbers in all designs to minimise

experimental error. In particular, we make sure that the standard Gaussian random vectors are

the same for all four distributions. Given that the usual routines for simulating gamma random

variables involve some degree of rejection, which unfortunately can change for di¤erent values of

�, we use the slower but smooth inversion method based on the NAG G01FFF gamma quantile

function so that we can keep the underlying uniform variates �xed across simulations. Those

uniform random variables are also used to generate the DSMN random vectors.

Finally, we combine the underlying random numbers with the vector of conditional means

�t(�0) and Cholesky decomposition of the covariance matrix �t(�0) provided by the relevant

Kalman �lter recursions, which we describe in Appendix B.15 We start up the recursions by

exploiting covariance stationarity with x�100j�100 = ui;�100j�100 = 0, ��100 = 1 � �2, i;�100 =

(1���2i )i, 
11;�100j�100 = diag(1; 0) and
12;�100j�100 = 
22;�100j�100 = diag(1��2; 1���2�5).

For each Monte Carlo sample thus generated, our ML estimation procedure employs the

following numerical strategy. First, we estimate the static mean and variance parameters �s

under normality with a scoring algorithm that combines the E04LBF routine with the analytical

expressions for the score and the A(�0) matrix appearing in the proof of Proposition 1. For

this purpose, the EM algorithm of Rubin and Thayer (1982) provides very good initial values.

Then, we compute Mardia�s (1970) sample coe¢ cient of multivariate kurtosis �, on the basis

of which we obtain the sequential Method of Moments estimator of � suggested by Fiorentini,

Sentana and Calzolari (2004), which exploits the theoretical relationship � = �=(4�+ 2). Next,

we could use this estimator as initial value for a univariate optimisation procedure that uses the

15The choice of a Cholesky factor is inconsequential for the all estimators of the static factor model parameters

that we consider, and for all simulated distributions except the asymmetric t.
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E04ABF routine to obtain the sequential ML estimator of � discussed by Amengual, Fiorentini

and Sentana (2012), which keeps �, c and  �xed at their Gaussian PML estimators. The

resulting estimates of �, together with the PMLE of �s, become the initial values for the t-

based ML estimators, which are obtained with the same scoring algorithm as the Gaussian

PML estimator, but this time using the analytical expressions for the information matrix I(�0)

in Proposition 1. We rule out numerically problematic solutions by imposing the inequality

constraint 0 � � � :499.

Computational details for the elliptically symmetric semiparametric procedure can be found

in Appendix B of Fiorentini and Sentana (2010a). Given that a proper cross-validation procedure

is extremely costly to implement in a Monte Carlo exercise, we have chosen the �optimal�

bandwidth in Silverman (1986).

6.2 Finite sample size

The size properties under the null of our proposed LM tests, Hosking�s test, the univariate

�rst-order serial correlation test of EWP, and the joint test of univariate �rst-order autocorre-

lation in all N series introduced in section 3.5 are summarised in Figures 5a-5d using Davidson

and MacKinnon�s (1998) p-value discrepancy plots, which show the di¤erence between actual

and nominal test sizes for every possible nominal size. When the distribution is Gaussian, all

tests are very accurate. The same conclusion is obtained when the distribution is a Student t,

although in this case the SSP tests show some very minor distortions. In contrast, when the true

distribution is a DSMN, the tests based on the Student t PMLE�s also show some size distortions,

but they are very small. Finally, all tests are remarkably reliable when the conditional distrib-

ution is an asymmetric Student t, which partly re�ects the fact that the elliptically symmetric

estimators of the autocorrelation coe¢ cients remain consistent in this case (see Proposition 10

in Fiorentini and Sentana (2010a)).

In turn, Figures 6a-6d show the size of the two-sided versions of our Arch(1) LM tests,

Hosking�s test applied to vech[(yt � �)(yt � �)0], a univariate �rst-order Arch test applied

to EWP, the joint test of univariate �rst-order autocorrelation in all N(N + 1)=2 squares and

cross-products of the (demeaned) observed series introduced in section 4.4, and the analogous

test that only focuses on their squares. In the Gaussian case, all tests are fairly accurate, except

the SSP tests, which are rather conservative, and Hosking�s test, which is rather liberal. This

liberality is exacerbated when the true distribution is a Student t, and is shared to some extent

by the diagonal version that looks at all N(N + 1)=2 squares and cross-products, which re�ects

the imprecision in unrestrictedly estimating higher order moments in this case. As expected,
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the non-robust version of the normal test rejects far too often, while all the other tests follow a

similar pattern: they are liberal for low signi�cance values, and conservative for large ones. Not

surprisingly, the sizes of the Student t tests also become highly distorted when the distribution

is a DSMN, but the two robust versions of the normal tests are also somewhat unreliable in that

context. Finally, those versions of the Gaussian tests that are only robust to kurtosis also su¤er

substantial size distortions when the conditional distribution is an asymmetric Student t, but

the ones that are also robust to asymmetries are not very reliable either.

Figures 7a-7d show the size of all our two-sided LM tests for Garch(1,1) e¤ects calculated

with the discount factors �� = ��� = :94 suggested in Riskmetrics (1996). The behaviour of these

tests is fairly similar to that of the Arch(1) tests, although in this case the asymptotically valid

tests show a stronger tendency to underreject in �nite samples.

6.3 Finite sample power

In order to gauge the power of the serial correlation tests we look at a design in which � = :03

and ��i = :045 but � = �� = � = �� = 0. The evidence at the 5% signi�cance level is presented

in panels (a) and (b) of Table 1, which include raw rejection rates, as well as size adjusted

ones based on the empirical distribution obtained under the null, which in this case provides

the closest match because the Gaussian PML estimators of �s that ignore the dynamics in yt

remain consistent in the presence of serial correlation or conditional heteroskedasticity, as shown

by Doz and Lenglart (1999) and Sentana and Fiorentini (2001), respectively.

As expected from our theoretical analysis, the power of the normal tests does not depend

much on the actual distribution of the data, while the tests that exploit the leptokurtosis of yt

o¤er noticeable power gains in the case of the multivariate t, especially the parametric versions.

Another result that we saw in section 3.5 is that in this design the joint test of H0 : �y = 0 is

only marginally more powerful than the joint test of H0 : �� = 0, which in turn is substantially

more powerful than the individual test of H0 : � = 0. Standard serial correlation tests also

behave very much in line with the theoretical analysis in that section.

We also look at a design with � = �� = 0 but � = �� = :05 and � = �� = 0:75 to assess

the power of the Arch(1) and Garch(1,1) tests. A comparison of panels (c)-(e) and (d)-(f)

con�rms thatGarch(1,1) tests are more powerful than theirArch(1) counterparts, even though

the Riskmetrics values for �� and ���are much higher than the true values of these parameters.

We also �nd that the power of the fully robust versions of the normal tests is slightly reduced

when the distribution of the simulated data is leptokurtic. In contrast, the tests that exploit

the leptokurtosis of yt clearly become more powerful. Another result that we saw in section 4.4
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is that in this design the joint tests of H0 : �y = 0 are more powerful than the joint tests of

H0 : �
� = 0, which in turn are substantially more powerful than tests of H0 : � = 0. Finally,

standard �rst-order serial correlation tests applied to the squares and cross-products of yt do

not have much power once we take into account their substantial size distortions under the null,

except for the Arch test applied to the EWP, which is almost as powerful as the analogous test

for the common factor.

7 Empirical application

In this section we initially apply the procedures previously developed to the returns on �ve

portfolios of US stocks grouped by industry in excess of the one-month Treasury bill rate (from

Ibbotson Associates), which we have obtained from Ken French�s Data Library. Speci�cally, each

NYSE, AMEX, and NASDAQ stock is assigned to an industry portfolio at the end of June of year

t based on its four-digit SIC code at the time16 (see <http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html> for further details). We use monthly data from 1952 to

2008, so that our sample starts soon after the March 1951 Treasury - Federal Reserve Accord

whereby the Fed stopped its wartime pegging of interest rates. Nevertheless, since we reserve

1952 to compute pre-sample values, we e¤ectively work with 672 observations.

Table 2 contains the sample means, standard deviation and contemporaneous correlations

for the excess returns on those portfolios. For our purposes, the two most relevant empirical

characteristic are the strong degree of contemporaneous correlation between the series, and

their leptokurtosis. Regarding the �rst aspect, it is customary to look at the ratio of the largest

eigenvalue of the sample covariance matrix in order to its trace to judge the representativeness

of the �rst principal component of yt. However, this measure, which is .79 in our case, fails

to take into account the fact that unlike principal components, factor models fully explain the

variances of all the y0its thanks to the inclusion of idiosyncratic components. For that reason, we

prefer to look at the fraction of the (square) Frobenius norm of the sample covariance matrix

accounted for by a single factor model, which is 99.47%.17

As for the Gaussianity of the data, the Kuhn-Tucker test of normality against the alternative

16 Industry de�nitions: Cnsmr: Consumer Durables, NonDurables, Wholesale, Retail, and Some Services (Laun-

dries, Repair Shops). Manuf: Manufacturing, Energy, and Utilities. HiTec: Business Equipment, Telephone and

Television Transmission. Hlth: Healthcare, Medical Equipment, and Drugs. Other: Other � Mines, Constr,

BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance.
17The Frobenius norm of a general matrix A, jjAjj say, is the Euclidean norm of vec(A), which can be easily

computed as the square root of the sum of its square singular values since vec0(A)vec(A) = tr(A2). Given that

V (yt) is a real, square symmetric matrix with spectral decomposition U�U0, with U orthonormal, it is easy to

see jjV (yt)jj2 can be additively decomposed as the sum of the square eigenvalues of V (yt).
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of multivariate Student t proposed by Fiorentini, Sentana and Calzolari (2003), which test the

restriction on the �rst two moments of &t(�0) implicit in the single condition

E

�
N(N + 2)

4
� N + 2

2
&t(�0) +

1

4
&2t (�0)

�
= E[mkt(�0)] = 0;

yields a value of 1478.9 despite having one degree of freedom. In contrast, the test of multivariate

normal against asymmetric alternatives in Mencía and Sentana (2012), which assesses whether

E f"t(�0) [&t(�0)� (N + 2)]g = E[mst(�0; 0)] = 0; (47)

yields 7.01, whose p-value is 22%. On this basis, we decided to estimate a multivariate t dis-

tribution. The ML estimator of the Student tail parameter � is .189, which corresponds to 5.3

degrees of freedom. This con�rms our empirical motivation for developing testing procedures

that exploit such a prevalent feature of the data.

Nevertheless, both parametric and semiparametric elliptically-based procedures are sensitive

to the assumption of elliptical symmetry. For that reason, we follow Mencía and Sentana (2012),

and test the null hypothesis of multivariate Student t innovations against the multivariate asym-

metric t distribution in (46). Their statistic checks the following moment conditions:

E

�
N� + 1

1� 2� + �&t(�)
"t(�) [&t(�)� (N + 2)]

�
= E[mst(�0; �0)] = 0;

which reduce to (47) when � = 0. The asymptotic distribution that takes into account the fact

that � and � have to be replaced by their t-based ML estimators �̂T and �̂T is

p
T
T

XT

t=1
mst(�̂T ; �̂T )! N [0; 2(N + 2)(N�0 + 1)�0] :

The test statistic is 3:83 with a p-value of 57%, so we cannot reject the null hypothesis that the

distribution of yt is multivariate Student t at conventional levels.

Table 3 presents the three di¤erent estimates of the unconditional covariance parameters,

namely Gaussian PMLE, Student t ML, and SSP. As can be seen, the discrepancies are fairly

minor, especially in the case of estimators that exploit the leptokurtosis of the data. Conse-

quently, the time series evolution of the corresponding Kalman �lter estimates of the common

factor are very highly correlated with each other (>.999), and also with the excess returns on

the Fama and French market portfolio ('.978), which corresponds to the value weighted return

on all NYSE, AMEX and NASDAQ stocks in CRSP.

Table 4a reports the results of the two multivariate serial correlation tests discussed in

section 3.5. As can be seen, there is evidence of �rst order serial correlation in the industry

return series. Nevertheless, it is interesting to understand whether the dependence is due to the

common factor or the speci�c ones. In this sense, note that we have considered not only tests
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against Ar(1) dynamics in common and speci�c factors, but also tests against restricted Ar(3)

and Ar(12) speci�cations in which the autoregressive coe¢ cients are all assumed to be the same.

The motivation for such tests is twofold. First, there is a substantial body of empirical evidence

which suggests that expected returns are smooth processes, while observed returns have a small

�rst order autocorrelation. Second, a rather interesting example of persistent expected returns

is an Ar(h) model in which � = ��, where � is a vector of h 1�s. The results in section 3.7 imply

that a test of � = 0 in this context essentially involves assessing the signi�cance of the sum

of the �rst h autocorrelations of fkt. In this sense, our procedure is entirely analogous to the

one recommended by Jegadeesh (1989) to test for the long run predictability of individual asset

returns without introducing overlapping observations (see also Cochrane (1991) and Hodrick

(1992)). The intuition is that if returns contain a persistent but mean reverting predictable

component, a persistent right hand side variable may pick it up.

The results reported in Table 4a show clear evidence of �rst order serial correlation in both

common and speci�c factors. There is also some evidence that the idiosyncratic factors may have

persistent mean-reverting components. In contrast, there is no evidence that such a component

is present in the common factor. This interesting divergence could be due to the market being

more closely followed by investors than the hedged components of the industry portfolios.

Table 4b presents our tests for conditional heteroskedasticity. Given the strong evidence for

leptokurtosis, we only report the values of the fully robust versions of the di¤erent Gaussian tests.

Not surprisingly, the multivariate serial dependence tests reject conditional homoskedasticity.

We also �nd very strong evidence of Arch e¤ects in the idiosyncratic factors. In contrast,

the Arch(1) tests do not provide such a clear evidence in the case of the common factor.

Nevertheless, the Garch(1,1) tests strongly reject the null of conditionally homoskedasticity.

Our conclusions do not seem to be very sensitive to the degree of aggregation of our data.

When we repeat exactly the same exercise with the excess returns of the ten portfolios of US

stocks grouped by industry in Ken French�s Data Library, we obtain rather similar results.

8 Conclusions and extensions

We obtain simple algebraic expressions for the score tests of serial correlation in the levels

and squares of common and idiosyncratic factors in static factor models. The implicit orthogo-

nality conditions resemble the orthogonality conditions of models with observed factors but the

weighting matrices re�ect their unobservability. We robustify our Gaussian tests against non-

normality, and derive more powerful versions when the conditional distribution is elliptically

symmetric, which can be either parametrically or semipametrically speci�ed. We also explain
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how to derive tests that focus on either the common factors or the speci�c factors, or indeed on

some of their elements.

Importantly, we show that despite the non-Gaussian nature of the state-space models that

we consider, which makes it generally impossible to compute the log-likelihood function and its

score without resorting to simulation methods, our tests coincide with the correct score tests.

We conduct Monte Carlo exercises to study the �nite sample reliability and power of our

proposed tests, and to compare them to existing multivariate serial dependence tests. Our

simulation results suggest that the serial correlation tests have fairly accurate �nite sample sizes,

while the tests for conditional homoskedasticity show some size distortions. Given that yt is

i:i:d: under the null, it would be useful to explore bootstrap procedures, which could also exploit

the fact that elliptical distributions are parametric in N � 1 dimensions, and non-parametric

in only one (see Dufour, Khalaf and Beaulieu (2010) for alternative �nite-sample re�nements

of existing multivariate serial dependence tests). We also con�rm that there are clear power

gains from exploiting the cross-sectional dependence structure implicit in factor models, the

leptokurtosis of �nancial returns, as well as the persistent behaviour of conditional variances.

Finally, we apply our methods to monthly stock returns on US broad industry portfolios.

We �nd clear evidence in favour of �rst order serial correlation in common and speci�c factors,

weaker evidence for persistent components in the idiosyncratic terms, and no evidence that such

a component appears in the common factor. We also �nd strong evidence for persistent serial

correlation in the volatility of common and speci�c terms.

It should be possible to robustify the serial dependence tests which assume that the return

distribution is a Student t when in fact it is not along the lines described by Amengual and

Sentana (2010) for mean-variance e¢ ciency tests, and study their relative power in those cir-

cumstances. It should also be feasible to develop semiparametric tests that do not impose the

assumption of elliptical symmetry. Another interesting extension would be to consider non-

parametric alternatives such as the ones studied by Hong and Shehadeh (1999) and Duchesne

and Lalancette (2003) among others, in which the lag length is implicitly determined by the

choice of bandwidth parameter in a kernel-based estimator of a spectral density matrix. In ad-

dition, we could test for the e¤ect of exogenous regressors in either the conditional mean vector

or the conditional covariance matrix of returns. Moreover, we could use the test statistics that

we have derived to obtain easy to compute indirect estimators of the dynamic models that de�ne

our alternative hypothesis along the lines suggested by Calzolari, Sentana and Fiorentini (2004).

One particularly interesting extension would be to allow for serial dependence under the

null. Speci�cally, suppose that we take as our new null hypothesis the factor model with Ar(1)
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dynamics in the latent variables that we considered as the alternative in section 3.1, and as

our new alternative a model with a common factor that follows an Ar(2) process instead. Al-

though a Lagrange Multiplier test of the new null hypothesis in the time domain is conceptually

straightforward (see e.g. Engle and Watson (1981)), the algebra is incredibly tedious and the

recursive scores di¢ cult to interpret. In contrast, the frequency domain procedures in Harvey

(1989) and Fernández (1990) yield scores which are once again entirely analogous to the uni-

variate frequency domain score obtained if we treated the smoothed estimator of the common

factor, xktjT , as if it were observed. In addition, it is possible to make such a score asymptoti-

cally orthogonal to the scores of all the other parameters estimated under the null, including �

and ��i . We are currently exploring this interesting research avenue in Fiorentini and Sentana

(2012).

42



References

Abramowitz, M. and Stegun, I.A. (1964): Handbook of mathematic functions, AMS 55,

National Bureau of Standards.

Amengual, D., Fiorentini, G. and Sentana, E. (2010): �Sequential estimators of shape para-

meters in multivariate dynamic models�, CEMFI Working Paper 1201.

Amengual, D. and Sentana, E. (2010): �A comparison of mean-variance e¢ ciency tests�,

Journal of Econometrics 154, 16-34.

Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering, Prentice Hall.

Anderson, T.W. and Rubin, H. (1956): �Statistical inference in factor analysis�, in J. Ney-

mann, ed., Proceedings of the III Berkeley symposium on mathematical statistics and probability,

University of California, Berkeley.

Andrews, D.W.K. (2001): �Testing when a parameter is on the boundary of the maintained

hypothesis�, Econometrica 69, 683-734.

Bai, J. and Ng, S. (2008): �Large dimensional factor analysis�, Foundations and Trends in

Econometrics 3, 89�163.

Bekker, P.A. (1989): �Identi�cation in restricted factor models and the evaluation of rank

conditions�, Journal of Econometrics 41, 5-16.

Bera, A. and Yoon, M.J. (1993): �Speci�cation testing with locally misspeci�ed alternatives�,

Econometric Theory 9, 649-658.

Bollerslev, T. (1986): �Generalized autoregressive conditional heteroskedasticity�, Journal

of Econometrics 31, 307-327.

Bollerslev, T., and J. M. Wooldridge (1992): �Quasi maximum likelihood estimation and

inference in dynamic models with time-varying covariances�, Econometric Reviews 11, 143-172.

Box, G. E. P. and D.A. Pierce (1970): �Distribution of the autocorrelations in autoregressive

moving average time series models�, Journal of the American Statistical Association 65, 1509�

1526.

Breusch, T. S. and Pagan, A.R. (1980): �The Lagrange Multiplier test and its applications

to model speci�cation in econometrics�, Review of Economic Studies 47, 239-253.

Calzolari, G., Fiorentini, G. and Sentana, E. (2004): �Constrained indirect estimation�,

Review of Economic Studies 71, 945-973.

Cochrane, J.H. (1991): �Volatility tests and e¢ cient markets: a review essay�, Journal of

Monetary Economics 27, 661-676.

Connor, G. (1984): �A uni�ed beta pricing theory�, Journal of Economic Theory 34, 13-31.

Connor, G., Goldberg, L.R. Korajczik, R.A. (2010): Portfolio risk analysis, Princeton.

43



Crowder, M.J. (1976): �Maximum likelihood estimation for dependent observations�, Jour-

nal of the Royal Statistical Society B 38, 45-53.

Davidson, R. and MacKinnon, J.G. (1998): �Graphical methods for investigating the size

and power of tests statistics�, The Manchester School 66, 1-26.

Davies, R. B. (1977): �Hypothesis testing when a nuisance parameter is present only under

the alternative�, Biometrika 64, 247-254.

Davies, R. B. (1987): �Hypothesis testing when a nuisance parameter is present only under

the alternative�, Biometrika 74, 33-43.

Demos, A. and Sentana, E. (1998): �Testing for Garch e¤ects: a one-sided approach�,

Journal of Econometrics, 86, 97-127.

Dempster, A., Laird, N., and Rubin, D. (1977): �Maximum likelihood from incomplete data

via the EM algorithm�, Journal of the Royal Statistical Society B 39, 1-38.

Diebold, F.X. and M. Nerlove (1989): �The dynamics of exchange rate volatility: a multi-

variate latent factor Arch model�, Journal of Applied Econometrics 4, 1-21.

Doz, C. and Lenglart, F. (1999): �Dynamic factor models: test of the number of factors and

estimation with an application to the French Industrial Business Survey�, Annales d�Economie

et Statistique 54, 91-128.

Duchesne, P. and Lalancette, S. (2003): �On testing for multivariate Arch e¤ects in vector

time series models�, Canadian Journal of Statistics 31, 275-292.

Dufour, J.M., Khalaf, L. and Beaulieu, M.C. (2010): �Multivariate residual-based �nite-

sample tests for serial dependence and Arch e¤ects with application to asset pricing models�,

Journal of Applied Econometrics 25, 263-285.

Dungey, M., Martin, V.L. and Pagan, A.R. (2000): �A multivariate latent factor decompo-

sition of international bond yield spreads�, Journal of Applied Econometrics 15, 697-715.

Dunn, J.E. (1973): �A note on a su¢ ciency condition for uniqueness of a restricted factor

matrix�, Psychometrika 38, 141-143.

Durbin, J. and Koopman, S.J. (2000): �Time series analysis of non-Gaussian observations

based on state space models from both classical and Bayesian perspectives�, Journal of the Royal

Statistical Society Series B 62, 3-56.

Engle, R.F. (1982): �Autoregressive conditional heteroskedasticity with estimates of the

variance of United Kingdom in�ation�, Econometrica 50, 987-1007.

Engle, R.F. (1984): �Wald, likelihood ratio and Lagrange multiplier tests in econometrics�,

in Handbook of Econometrics vol II, ed. Griliches and Intrilligator (Amsterdam: North Holland),

775-826.

44



Engle, R.F. and Watson, M.W. (1981): �A one-factor multivariate time series model of

metropolitan wage rates�, Journal of the American Statistical Association 76, 774-781.

Fang, K.-T., Kotz, S., and Ng, K.-W. (1990), Symmetric multivariate and related distribu-

tions, Chapman and Hall.

Fernández, F.J. (1990): �Estimation and testing of a multivariate exponential smoothing

model�, Journal of Time Series Analysis 11, 89�105.

Fiorentini, G. and Sentana, E. (2009): �Dynamic speci�cation tests for static factor models�,

CEMFI Working Paper 0912.

Fiorentini, G. and Sentana, E. (2010a): �On the e¢ ciency and consistency of likelihood

estimation in multivariate conditionally heteroskedastic dynamic regression models�, mimeo,

CEMFI.

Fiorentini, G. and Sentana, E. (2010b): �New testing approaches for mean-variance pre-

dictability�, mimeo, CEMFI.

Fiorentini, G. and Sentana, E. (2012): �Dynamic speci�cation tests for dynamic factor

models�, mimeo, CEMFI.

Fiorentini, G., Sentana, E. and Calzolari, G. (2003): �Maximum likelihood estimation and

inference in multivariate conditionally heteroskedastic dynamic regression models with Student

t innovations�, Journal of Business and Economic Statistics 21, 532-546.

Fiorentini, G., Sentana, E. and Shephard, N. (2004): �Likelihood estimation of latent gen-

eralised Arch structures�, Econometrica 72, 1481-1517.

Gallant, A.R. and G. Tauchen (1996): �Which moments to match?�, Econometric Theory

12, 657-681.

Godfrey, L.G. (1988): Misspeci�cation tests in econometrics: the Lagrange multiplier prin-

ciple and other approaches, Econometric Society Monographs.

Guilkey, D.K. (1974): �Alternative tests for a �rst-order vector autoregressive error speci�-

cation�, Journal of Econometrics 4, 95-104.

Hafner, C.M. and Rombouts, J.V.K. (2007): �Semiparametric multivariate volatility mod-

els�, Econometric Theory 23, 251-280.

Harvey, A.C. (1982): �A test of misspeci�cation for systems of equations�, LSE Econometrics

Programme Discussion Paper A31.

Harvey, A.C. (1989): Forecasting, structural models and the Kalman �lter, Cambridge Uni-

versity Press, Cambridge.

Harvey, A., and Chakravarty, T. (2008): �Beta-t-(E)garch�, Cambridge Working Papers

in Economics 08340.

45



Harvey, A., Ruiz, E. and Sentana, E. (1992): �Unobservable component time series models

with Arch disturbances�, Journal of Econometrics 52, 129-158.

Hendry, D.F. (1971): �Maximum likelihood estimation of systems of simultaneous regression

equations with errors generated by a vector autoregressive process�, International Economic

Review 12, 257-272.

Hodgson, D.J. and Vorkink, K.P. (2003): �E¢ cient estimation of conditional asset pricing

models�, Journal of Business and Economic Statistics 21, 269-283.

Hodrick, R. J. (1992): �Dividend yields and stock returns: alternative procedures for infer-

ence and measurement�, Review of Financial Studies 5, 357-386.

Hong, Y. (1996): �Consistent testing for serial correlation of unknown form�Econometrica

64, 837-864.

Hong Y. and R.S. Shehadeh (1999): �A new test for Arch e¤ects and its �nite sample

performance�, Journal of Business and Economic Statistics 17, 91�108.

Hosking, J. R. M. (1981): �Lagrange-multiplier tests of multivariate time series models�,

Journal of the Royal Statistical Society B 43. 219-230.

Jegadeesh, N. (1989): �On testing for slow decaying components in stock prices�, mimeo,

Anderson Graduate School of Management, University of California at Los Angeles.

Jegadeesh, N. and G.G. Pennacchi (1996): �The behavior of interest rates implied by the

term structure of eurodollar futures�, Journal of Money, Credit and Banking 28, 426-446.

Jennrich, R.I. (1978): �Rotational equivalence of factor loading matrices with speci�ed val-

ues�, Psychometrika 43, 421-426.

Kano, Y. (1983): �Consistency of estimators in factor analysis�, Journal of the Japan Sta-

tistical Society 13, 137-144.

King, M.A., Sentana, E. and Wadhwani, S.B. (1994): �Volatility and links between national

stock markets�, Econometrica 62, 901-933.

Koenker, R. (1981): �A note on studentizing a test for heteroskedasticity�, Journal of Econo-

metrics 17, 107-112.

Lawley, D.N. and Maxwell, A.E. (1971): Factor analysis as a statistical method, 2nd ed.,

Butterworths, London.

Lehmann, B., and Modest, D. (1988): �The empirical foundations of the Arbitrage Pricing

Theory�, Journal of Financial Economics 21, 213-254.

Lütkepohl, H. (1993): Introduction to multiple time series analysis, 2nd. ed., Springer,

Berlin.

Magnus, J.R. (1988): Linear structures, Oxford University Press, New York.

46



Magnus, J.R. and Neudecker, H. (1988): Matrix di¤erential calculus with applications in

Statistics and Econometrics, Wiley, Chichester.

Mardia, K.V. (1970): �Measures of multivariate skewness and kurtosis with applications�,

Biometrika 57, 519-530.

Maronna, R., Martin, D. and Yohai, V. (2006): Robust Statistics - theory and methods,

Wiley.

Mencía, J. and E. Sentana (2009): �Multivariate location-scale mixtures of normals and

mean-variance-skewness portfolio allocation�, Journal of Econometrics 153, 105-121.

Mencía, J. and E. Sentana (2012): �Distributional tests in multivariate dynamic models with

Normal and Student t innovations�, Review of Economics and Statistics 94, 133-152.

NAG (2001): NAG Fortran 77 Library Mark 19 Reference Manual.

Newey, W.K. (1985): �Maximum likelihood speci�cation testing and conditional moment

tests�, Econometrica 53, 1047-70.

Newey, W.K. and McFadden, D.L. (1994): �Large sample estimation and hypothesis testing�,

in R.F. Engle and D.L. McFadden (eds.) Handbook of Econometrics vol. IV, 2111-2245, Elsevier.

Nijman, T. and Sentana, E. (1996): �Marginalization and contemporaneous aggregation of

multivariate Garch processes�, Journal of Econometrics 71, 71-87.

RiskMetrics Group (1996): RiskMetrics Technical Document.

Ross, S.A. (1976): �The arbitrage theory of capital asset pricing�, Journal of Economic

Theory, 13, 341-360.

Ross, S.A. (1978): �Mutual fund separation in �nancial theory - the separating distribu-

tions�, Journal of Economic Theory 17, 254-286.

Rubin, D.B. and D.T. Thayer, D.T. (1982): �EM algorithms for ML factor analysis�, Psy-

chometrika 57, 69-76.

Sentana, E. (1991): Time-varying volatility and returns on ordinary shares: an empirical

investigation, unpublished Doctoral Dissertation, University of London.

Sentana, E. (2000): �The likelihood function of conditionally heteroskedastic factor models�,

Annales d�Economie et de Statistique 58, 1-19.

Sentana, E. (2004): �Factor representing portfolios in large asset markets�, Journal of Econo-

metrics 119, 257-289.

Sentana, E., Calzolari, G. and Fiorentini, G. (2008): �Indirect estimation of large condi-

tionally heteroskedastic factor models, with an application to the Dow 30 stocks�, Journal of

Econometrics 146, 10-25.

Sentana, E. and Fiorentini, G. (2001): �Identi�cation, estimation and testing of conditionally

47



heteroskedastic factor models�, Journal of Econometrics 102, 143-164.

Sentana, E. and M. Shah (1993): �An index of co-movements in �nancial time series�,

CEMFI Working Paper 9415.

Silverman B.W. (1986): Density estimation, Chapman and Hall.

Tauchen, G. (1985): �Diagnostic testing and evaluation of maximum likelihood models�,

Journal of Econometrics 30, 415-443.

Wegge, L.E. (1996): �Local identi�ability of the factor analysis and measurement error model

parameter�, Journal of Econometrics 70, 351-382.

48



Appendices

A Proofs

Proposition 1

Given that the conditional density of "�t jIt�1;� is exp[c(�) + g(&t;�)] under ellipticity, the

log-likelihood function of a sample of size T will take the form LT (�) =
PT
t=1 lt(�), with lt(�) =

dt(�) + c(�) + g [&t(�);�], where dt(�) = �1=2 ln j�t(�)j is the Jacobian, &t(�) = "�0t (�)"
�
t (�),

"�t (�) = �
�1=2
t (�)"t(�) and "t(�) = yt � �t(�). Let st(�) denote the score function @lt(�)=@�,

and partition it into two blocks, s�t(�) and s�t(�), whose dimensions conform to those of �

and �, respectively. Fiorentini and Sentana (2010a) show that if �t(�) has full rank and �t(�),

�t(�), c(�) and g [&t(�);�] are di¤erentiable, then

s�t(�) =
@dt(�)

@�
+
@gt [&t(�);�]

@�
= [Zlt(�);Zst(�)]

"
elt(�)

est(�)

#
= Zdt(�)edt(�);

s�t(�) = @c(�)=@� + @g [&t(�);�] =@� = ert(�);

where

Zlt(�) = @�0t(�)=@� ��
�1=20
t (�);

Zst(�) =
1

2
@vec0 [�t(�)] =@��[��1=20t (�)
��1=20t (�)];

elt(�;�) = � [&t(�);�] "
�
t (�);

est(�;�) = vec
�
� [&t(�);�] "

�
t (�)"

�0
t (�)� IN

	
;

and �(&t;�) is de�ned in (11). Given correct speci�cation, the results in Crowder (1976) imply

that et(�) = [e0dt(�); ert(�)]
0 evaluated at the true parameter values follows a vector martingale

di¤erence, and therefore, the same is true of the score vector st(�). His results also imply that,

under suitable regularity conditions, the asymptotic distribution of the feasible ML estimator

will be
p
T (�̂T � �0)! N [0; I�1(�0)], where I(�0) = E[It(�0)j�0],

It(�) = �E [ht(�)jzt; It�1;�] = V [st(�)jzt; It�1;�] = Zt(�)M(�)Z0t(�);

ht(�) =
@st(�)

@�0
=
@2lt(�)

@�@�0
;

Zt(�) =

 
Zdt(�) 0

0 Iq

!
=

 
Zlt(�) Zst(�) 0

0 0 Iq

!
;

andM(�) = V [et(�)j�]. In particular, Crowder (1976) requires that: (a) �0 is locally identi�ed

and belongs to the interior of the admissible parameter space, which is a compact subset of Rp+r;

(b) the Hessian matrix is non-singular and continuous throughout some neighbourhood of �0;

49



(c) there is uniform convergence to the integrals involved in the computation of the mean vector

and covariance matrix of st(�); and (d) �E�1
�
�T�1

P
t ht(�)

�
T�1

P
t ht(�)

p! Ip+r, where

E�1
�
�T�1

P
t ht(�)

�
is positive de�nite on a neighbourhood of �0. These regularity conditions

are easy to verify in our i:i:d: context. In particular, the conditions in the theorem statement

guarantee the identi�cation of the factor model parameters and the positive de�niteness of the

Hessian matrix (see Theorem 12.1 in Anderson and Rubin (1956) and Theorem 2 in Kano (1983)).

So the only remaining task is to �nd out the expression for the unconditional information matrix.

In this context, Proposition 2 in Fiorentini and Sentana (2010a) states that:

M(�) =

0B@ Mll(�) 0 0

0 Mss(�) Msr(�)

0 M0
sr(�) Mrr(�)

1CA ;

Mll(�) = V [elt(�)j�] = mll(�)IN ;

Mss(�) = V [est(�)j�] = mss(�) (IN2 +KNN ) + [mss(�)� 1]vec(IN )vec0(IN );

Msr(�) = E[est(�)e
0
rt(�)

���] = �E �@est(�)=@�0���	 = vec(IN )msr(�);

where mll(�), mss(�), msr(�) and Mrr(�) are de�ned in (7), (8), (9) and (10), respectively.

Therefore, all we need is the matrix Zdt(�s), which in turn requires the Jacobian of the condi-

tional mean and covariance functions. In view of (B31) and (B32), it is clear that d�t(�) = d�

and

d�t(�s) = d(cc0 + �) = (dc)c0 + c(dc0) + d�

(see Magnus and Neudecker (1988)). Hence, the only three non-zero terms of the Jacobian will

be:
@�t(�s)

@�0
= IN ;

@vec [�t(�s)]

@c0
= (IN2 +KNN )(c
 IN );

@vec [�t(�s)]

@ 0
= EN :

As a result,

Zdt(�s) =

264 �
�1=20(�s) 0

0 [c0��1=20(�s)
��1=20(�s)]
0 1

2E
0
N [�

�1=20(�s)
��1=20(�s)]

375 = Zd(�):
After some straightforward algebraic manipulations, we get that the elliptically symmetric

score is

s�t(�s;�) = �[&t(�s);�]�
�1(�s)(yt � �)

sct(�s;�) = �[&t(�s);�]�
�1(�s)(yt � �)(yt � �)0��1(�s)c���1(�s)c

st(�s;�) =
1
2vecdf�[&t(�s);�]�

�1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)g
(A1)

Assuming that �> 0 we can use the Woodbury formula

��1(�s) = �
�1 � (1 + c0��1c)�1��1cc0��1 = ��1[�� (1 + c0��1c)�1cc0]��1 (A2)
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to write

�[&t(�s);�]�
�1(�s)(yt � �)(yt � �)0��1(�s)c���1(�s)c

= ��1f�[&t(�s);�]vkt(�s)fkt(�s)� c!k(�s)g;

��1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)

= ��1f�[&t(�s);�]vkt(�s)v0kt(�s) + cc0!k(�s)� �g��1;

and

&t(�s) = (yt � �)0��1(�s)(yt � �) = (yt � �)0��1(yt � �)� f2kt(�s)=!k(�s);

which greatly simpli�es the computation of all the elements of s�t(�s;�), as well as s�t(ytjYt�1;�)

(see Sentana (2000)).

If we put all the previous elements together, we can �nally obtain the conditional (and

unconditional) information matrix, which in view of the expression for Zdt(�s) will be block

diagonal between the elements corresponding to �, and the elements corresponding to (c;;�),

with the diagonal blocks given in the statement of the �rst part of the proposition. Once

again, the Woodbury formula simpli�es considerably the computation of the information matrix

when �> 0 because ��1(�s)c = (1 + c0��1c)�1��1c and c0��1(�s)c = (1 + c0��1c)�1c0��1c.

Expression (A2) also makes clear that condition (ii) guarantees the full rank of the block of the

information matrix corresponding to .

Next, we can use Proposition 7 in Fiorentini and Sentana (2010a) to obtain the elliptically

symmetric semiparametric score and corresponding e¢ ciency bound. Speci�cally, they will be

given by:

�s�t(�0)=Zdt(�0)edt(�0)�Wd(�0)

��
�[&t(�0);�0]

&t(�0)

N
�1
�
� 2

(N+2)�0+2

�
&t(�0)

N
� 1
��

;

(A3)

and

�S(�0) = I��(�0)�Wd(�0)W
0
d(�0) �

��
N + 2

N
mss(�0)� 1

�
� 4

N [(N + 2)�0 + 2]

�
; (A4)

respectively, where

Wd(�) = Zd(�)[0
0; vec0(IN )]

0 = E[Zdt(�)j�][00; vec0(IN )]0

= E

�
1

2
@vec0 [�t(�)] =@��vec[��1t (�)]

������ = �E f@dt(�)=@�j�g = E[Wdt(�)j�]: (A5)

But since in the case of a static factor model

W0
dt(�) =

h
0 c0��1(�s)

1
2vecd

0[��1(�s)]
i
=W0

d(�); (A6)
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we will have that:

�s�t(�s;�) = s�t(�s;�);

�sct(�s;�) = sct(�s;�)���1(�s)c
h
f�[&t(�s);�]&t(�s)=N � 1g � 2

(N+2)�+2 (&t(�s)=N � 1)
i
;

�st(�s;�) = st(�s;�)� 1
2vecd[�

�1(�)]
h
f�[&t(�s);�]&t(�s)=N � 1g � 2

(N+2)�+2 (&t(�s)=N � 1)
i
:

Expression (A6) also implies that the elliptically symmetric semiparametric e¢ ciency bound

will be block diagonal between � and (c;), where the �rst block coincides with the �rst block

of the information matrix, and the second one with the expression given in the second part of

the proposition.

Finally, the Gaussian PML estimator of the conditional mean and variance parameters �

sets to 0 the average value of s�st(�;0), which is trivially obtained from (A1) by noting that

�(&t;0) = 1. Given that the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are

satis�ed in our context, then we know from Proposition 3 in Fiorentini and Sentana (2010a)

that
p
T (��T � �0)! N [0; C(�0)], where

C(�) = A�1(�)B(�)A�1(�);

A(�) = �E [h��t(�;0)j�] = E [At(�)j�] ;

At(�) = �E[h��t(�;0)j zt; It�1;�] = Zdt(�)K(0)Z0dt(�);

B(�) = V [s�t(�;0)j�] = E [Bt(�)j�] ;

Bt(�) = V [s�t(�;0)j zt; It�1;�] = Zdt(�)K(�)Z0dt(�);

and K (�)=V [edt(�;0)j zt; It�1;�]=
"
IN 0

0 (�+1) (IN2+KNN )+�vec(IN )vec
0(IN )

#
; (A7)

which only depends on � through �. Hence, we can easily see that A�s�s(�) coincides with
I�s�s(�s;0) irrespective of the distribution of yt because the model is static and A�s�st(�) =

�E [h�s�st(�;0)jIt�1;�] is equal to I�s�st(�s;0). A closely related argument shows that B�s�s(�)

also mimics the expression for the information matrix if we replace mll(�) by 1 and mss(�) by

(�+ 1).

More generally, if "�t jIt�1;�0;%0 is i:i:d: (0; IN ) with density function f("�t ;%), where %

are some shape parameters and % = 0 denotes normality, then Proposition 1 in Bollerslev and

Wooldridge (1992) coupled with the static nature of the model implies that:

Bt(�) = Zdt(�s)K (%)Z0dt(�s);

where

K (%) = V [edt(�;0)j It�1;�;%] (A8)

is the matrix of third and fourth order central moments of "�t , whose �rst block is the identity

matrix of order N . This means that the block diagonality between � and (c;) disappears if

52



the true distribution is asymmetric even though B��(�) continues to equal I��(�s;0). In view

of s�t(�s;0), an alternative expression will be

B�s�s(�) = V

264 ��1(�s)(yt � �)
��1[vkt(�s)fkt(�s)� c!k(�s)]

1
2vecdf�

�1[vkt(�s)v
0
kt(�s) + cc

0!k(�s)� �]��1g

375 ;
which is more amenable for empirical applications. �

Proposition 2

Initially, the proof follows the same steps as the proof of Proposition 1. Therefore, we

need expressions for @�t(�)=@� and @vec[�t(�)]=@� to obtain Zdt(�). Given our maintained

assumption about the coincidence of the �rst two conditional moments with the Kalman �lter

prediction equations (B33) and (B35), we will have that

d�t(�) = d� + d( c IN )

 
xtjt�1(�)

utjt�1(�)

!
+ ( c IN )d

 
xtjt�1(�)

utjt�1(�)

!

and

d�t(�) = d( c IN )
tjt�1(�)

 
c0

IN

!
+ ( c IN )d
tjt�1(�)

 
c0

IN

!

+( c IN )
tjt�1(�)d

 
c0

IN

!
;

whence
@�t(�)

@�0
=
@�

@�0
+ [xtjt�1(�)
 IN ]

@c

@�0
+ c

@xtjt�1(�)

@�0
+
@utjt�1(�)

@�0

and

@vec[�t(�)]

@�0
= (IN2 +KNN )[( c IN )
tjt�1(�)
 IN ]

 
@c=@�0

0

!

+[( c IN )
 ( c IN )]
@vec[
tjt�1(�)]

@�0
:

Now, equation (B34) implies that

@xtjt�1(�)

@�0
= xtjt�1(�)

@�

@�0
+ �

@xt�1jt�1(�)

@�0
;

and
@utjt�1(�)

@�0
= [u0tjt�1(�)
 IN ]EN

@��

@�0
+ diag(��)

@ut�1jt�1(�)

@�0
:

In fact, it is easy to see that this last expression reduces to

@uitjt�1(�)

@�0
= uitjt�1(�)

@��i
@�0

+ ��i
@uit�1jt�1(�)

@�0
:
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Similarly, equation (B36) implies that

@vec[
tjt�1(�)]

@�0
= (I(N+1)2 +KN+1;N+1)

("
� 0

0 diag(��)

#

 IN+1

)
EN+1

 
@�=@�0

@��=@�0

!

+EN+1

 
0

@=@�0

!
+

("
� 0

0 diag(��)

#


"
� 0

0 diag(��)

#)
@vec[
t�1jt�1(�)]

@�0
:

In principle, we would need to derive expressions for @xt�1jt�1(�)=@�
0, @uit�1jt�1(�)=@�

0 and

@vec[
t�1jt�1(�)]=@�
0. However, since we are only interested in evaluating the score at � = 0

and �� = 0, those expressions become unnecessary.

In addition, it is worth noting that under the null xtjt�1(�s;0) = 0, utjt�1(�s;0) = 0,


tjt�1(�s;0) = diag(1;), �t(�s;0) = cc0 + � = �(�s), xtjt(�s;0) = fkt(�s) and utjt(�s;0) =

vkt(�s), so that
@�t(�s;0)

@�0
=
@�

@�0
+ cfkt(�s)

@�

@�0
+ diag[vkt(�s)]

@��

@�0

and
@vec[�t(�s;0)]

@�0
= (IN2 +KNN )(c
 IN )

@c

@�0
+EN

@

@�0
:

Hence

Zdt(�s;0) =

26666664
��1=20(�s) 0

0 1
2(c

0 
 IN )(IN2 +KNN )[�
�1=20(�s)
��1=20(�s)]

0 1
2E

0
N [�

�1=20(�s)
��1=20(�s)]
fkt�1(�s)c

0��1=20(�s) 0

diag[vkt�1(�s)]�
�1=20(�s) 0

37777775 ;

Zd(�) =

26666664
��1=20(�s) 0

0 1
2(c

0 
 IN )(IN2 +KNN )[�
�1=20(�s)
��1=20(�s)]

0 1
2E

0
N [�

�1=20(�s)
��1=20(�s)]
0 0

0 0

37777775
and

Wd(�) =
h
00 c0��1(�s)

1
2vecd

0[��1(�s)] 0 00
i0
; (A9)

where we have used the fact that

E[fkt(�s)j�s;0;0] = E[c0��1(�s)(yt � �)j�s;0;0] = 0
E[vkt(�s)j�s;0;0] = E[���1(�s)(yt � �)j�s;0;0] = 0

)
(A10)

irrespective of the distribution of yt.

As a result, the elliptically symmetric score under the null will be26666664
s�t(�s;0;�)

sct(�s;0;�)

st(�s;0;�)

s�t(�s;0;�)

s��t(�s;0;�)

37777775 =
26666664

�[&t(�s);�]�
�1(�s)(yt � �)

�[&t(�s);�]�
�1(�s)(yt � �)(yt � �)0��1(�s)c���1(�s)c

1
2vecdf�[&t(�s);�]�

�1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)g
fkt�1(�s)�[&t(�s);�]c

0��1(�s)(yt � �)
diag[vkt�1(�s)]�[&t(�s);�]�

�1(�s)(yt � �)

37777775 :
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Therefore, the only di¤erence relative to the static factor model are the scores s�t(�s;0;�) and

s��t(�s;0;�). In this sense, if we assume that � > 0, then we can use the Woodbury formula

once again to show that"
s�t(�s;0;�)

s��t(�s;0;�)

#
=

"
�[&t(�s);�]fkt�1(�s)fkt(�s)

�[&t(�s);�]diag[vkt�1(�s)]�
�1vkt(�s)

#
:

Using the expression for Zdt(�s;0), together with (A10), it is easy to show that the uncondi-

tional information matrix I��(�s;0;�) will be block diagonal between �, (c;;�) and �y, with

the �rst two blocks as in the static case. Consequently, in computing our ML-based tests we

can safely ignore the sampling uncertainty in estimating �s and �. In addition, we can write

I�y�yt(�;0;�) = diag

"
fkt�1(�s)

��1=2vkt�1(�s)

#
V�y�y(�s;�;�)diag

"
fkt�1(�s)

��1=2vkt�1(�s)

#
;

where

V�y�y(�s;�;�) = V

"
�[&t(�s);�]fkt(�s)

��1=2�[&t(�s);�]vkt(�s)

#
= mll(�)

"
c0��1(�s)c c0��1(�s)�1=2

�1=2��1(�s)c �1=2��1(�s)�1=2

#

= mll(�)

"
(c0��1c)=(1 + c0��1c) c0��1=2=(1 + c0��1c)

��1=2c=(1 + c0��1c) IN � ��1=2cc0��1=2=(1 + c0��1c)

#
:

Thus, the only remaining item is the calculation of the second moments appearing in V�y�y(�s;0;�).

But since

E[f2kt(�s)j�s;0;�] = E[c0��1(�s)(yt � �)(yt � �)0��1(�s)cj�s;0;�]

= c0��1(�s)c = c
0��1c=(1 + c0��1c);

Efvkt(�s)fkt(�s)j�s;0;�g = Ef[���1(�s)(yt � �)(yt � �)0��1(�s)cj�s;0;�g

= ���1(�s)c = c=(1 + c
0��1c)

and

Efvkt(�s)vkt(�s)0]j�s;0;�] = E[���1(�s)(yt � �)(yt � �)0��1(�s)�]j�s;0;�g

= ���1(�s)� = �� cc0=(1 + c0��1c);

we �nally obtain that V�y�y(�s;0;�) mimics V�y�y(�s;�;�) if we replace mll(�) by 1.

In addition, it follows from (A9) that the elliptically symmetric semiparametric scores for

� and �� coincide with the parametric ones, and that the elliptically symmetric semiparamet-

ric e¢ ciency bound will be block diagonal between �, (�;��) and (c;), where the �rst two

blocks coincide with the �rst two blocks of the information matrix, and the third one with the

corresponding bound in the static factor model.
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Finally, let us consider the tests based on the Gaussian PML scores s�t(�s;0;0) and s��t(�s;0;0)

when ytjIt�1;� is i:i:d: D(�;�(�s);%) but not necessarily normal or elliptical. To do so, let

us partition the parameter vector � as (�s;�y). It is well known (see e.g. Engle (1984)) that a

robust Gaussian pseudo score test of the null hypothesis H0 : �y = 0 can be computed as"p
T

T

TX
t=1

s0�yt(
~�s;0;0)

#
A�y�y (�0) C�1�y�y (�0)A

�y�y (�0)

"p
T

T

TX
t=1

s�yt(~�s;0;0)

#
;

where s�yt(~�s;0;0) is the Gaussian score evaluated at the restricted PML estimator ~�s, A�
y�y (�0)

is the relevant block of the inverse of the expected Hessian matrix A(�) = �E [h��t(�;0)j�] and

C�y�y (�0) is the corresponding block of the usual sandwich expression C(�)=A�1(�)B(�)A�1(�),

with B(�) = V [s�t(�;0)j�]. Once again, the structure of Zdt(�), together with (A10), im-

plies that A(�) will be block diagonal between (�;��) and (�; c;) irrespective of the true

distribution of yt. In addition, A�y�y(�) will coincide with I�y�y(�s;0;0). A closely related

argument shows that B(�) will also be block diagonal between (�;��) and (�; c;), and that

B�y�y(�) = A�y�y(�), which validates the expression for LMAR(1)(0). �

Proposition 3

For the sake of brevity, the proof will be developed for the following univariate model:

yt = � + xt + 
1=2v�t ;

xt = �xt�1 + ft; 
ft

v�t

!
jIt�1 � t

" 
0

0

!
;

 
1 0

0 1

!
; �

#
:

Nevertheless, it can be tediously extended to cover the general case. Given that when � = 0

the log-likelihood function of this model coincides with the log-likelihood function of the model

considered in section 2, we only need to look at the score associated to this parameter.

It is easy to see that the joint distribution of yt and xt give the past of both variables will be 
yt

xt

!
jIt�1 � t

" 
�xt�1

�xt�1

!
;

 
1 +  1

1 1

!
; �

#
:

Hence, we can write down the joint log-likelihood as

c2(�)�
1

2
ln  + g[&t(�; ); �];

where

c2(�) = ln

�
�

�
2� + 1

2�

��
� ln

�
�

�
1

2�

��
� ln

�
1� 2�
�

�
� ln�
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is the (log) constant of integration,

 =

�����
 
1 +  1

1 1

!�����
the Jacobian, and

g[&t(�; ); �] = �
�
2� + 1

2�

�
ln

�
1 +

�

1� 2� &t(�; )
�
;

with

&t(�; ) =
�
yt � �xt�1 xt � �xt�1

� 1 +  1

1 1

!�1 
yt � �xt�1
xt � �xt�1

!
= �1(yt � xt)2 + (xt � �xt�1)2;

the (log) kernel of the bivariate Student t density.

Given that we can write the standardised residuals as 
1 +  1

1 1

!�1=2 
yt � �xt�1
xt � �xt�1

!
=

 
1
 � 1



0 1

! 
yt � �xt�1
xt � �xt�1

!

=

 
�1=2(yt � xt)
xt � �xt�1

!
and the gradient of the conditional mean vector with respect to � will be xt�1 times the vector

(1; 1)0, we will have that the score of the joint log-likelihood function with respect to � will be

given by

� 2� + 1

1� 2� + �&t(�; )
xt�1

�
1 1

� �1=2 0

��1=2 1

! 
�1=2(yt � xt)
xt � �xt�1

!
= � 2� + 1

1� 2� + �&t(�; )
(xt � �xt�1)xt�1:

The Kullback inequality then implies that score of the marginal log-likelihood function of yt

with respect to � will be given by

E

�
� 2� + 1

1� 2� + �&t(�; )
(xt � �xt�1)xt�1

����YT ; �� :
This expected value becomes analytically tractable when � = 0. First of all, the expression

inside the expectation simpli�es to

E

"
2� + 1

1� 2� + �
�
�1(yt � xt)2 + x2t

�xtxt�1
�����YT ; � = 0

#
:

Second, the joint distribution of yt and xt is i:i:d: over time, which means that the expected

value of this product is equal to

E

"
2� + 1

1� 2� + �
�
�1(yt � xt)2 + x2t

�xt
����� yt; � = 0

#
E [xt�1j yt�1; � = 0] :
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But the distribution of xt = ft given yt will also be t with mean

fkt() =
1

1 + 
yt; (A11)

variance

�kt(; �) =
1� 2�
1� �

�
1 +

�

1� 2�
y2t
1 + 

��
1� 1

1 + 

�
(A12)

=
1� 2�
1� �

�
1 +

�

1� 2�
y2t
1 + 

�
!k()

and shape parameter
�

1 + �
; (A13)

since the degrees of freedom of the conditional distribution of xt given yt are 1 plus the degrees

of freedom of the joint distribution. Therefore, the second term is simply given by the lagged

value of (A11). The �rst term is trickier, as we need to �nd the expected value of

2� + 1

1� 2� + �
�
�1(yt � xt)2 + x2t

�xt: (A14)

To do so, it is convenient to follow Fiorentini, Sentana and Calzolari (2003) and write xt in

terms of a conditionally standardised Student t component x�t as follows:

xt =
1

1 + 
yt +

s
1� 2�
1� �

�
1 +

�

1� 2�
y2t
1 + 

�


1 + 
x�t ;

x�t =

r
1� �
�

�
p
�t=�tut;

where ut is either 1 or -1 with probability 1/2, �t is a chi-square random variable with 1 degree

of freedom and �t is a gamma random variable with mean 1+ ��1 and variance 2(1+ ��1), with

ut, �t and �t mutually independent and independent of yt and It�1.

In turn, this decomposition implies that

&t(0; ) = �1(yt � xt)2 + x2t =
y2t
1 + 

+

�
1 + 



��
xt �

1

1 + 
yt

�2
=

y2t
1 + 

�
1 +

�t
�t

�
+
1� 2�
�

�t
�t
;

so that the denominator of (A14) can be written as

1� 2� + �&t(0; ) =
�
1� 2� + �y2t

1 + 

��
�t + �t
�t

�
:

As a result, (A14) becomes�
1� 2� + �y2t

1 + 

��1�
�t

�t + �t

�
2� + 1

1 + 
yt

+

�
1� 2� + �y2t

1 + 

��1s
1� 2�
1� �

�
1 +

�

1� 2�
y2t
1 + 

�


1 + 

r
1� �
�

�
�t

�t + �t

�s
�t
�t
ut:

58



The expected value of the second summand conditional on yt is 0 because of the symmetry of

ut. In contrast, we can use the properties of the beta distribution to prove that

E

�
�t

�t + �t

�
=
1 + �

1 + 2�

and consequently, that

E

"�
1� 2� + �y2t

1 + 

��1�
�t

�t + �t

�
2� + 1

1 + 
yt

����� yt
#
=

�
1� 2� + �y2t

1 + 

��1
1 + �

1 + 
yt:

Therefore, we have proved that

E

"
2� + 1

1� 2� + �
�
�1(yt � xt)2 + x2t

�xtxt�1
�����YT ; � = 0

#

=

�
1� 2� + �y2t

1 + 

��1
1 + �

1 + 
yt

1

1 + 
yt�1:

Finally, using the general expressions for the score of the approximating model obtained in

the proof of Proposition 2, we will have that the score with respect to � of such a univariate

log-likelihood function under the null of � = 0 will be given

� + 1

1� 2� + �(1 + )�1y2t
(1 + )�1=2yt(1 + )

�1=2(1 + )�1yt�1;

as required. �

Proposition 4

Given that in model (21)

�t(�) = (I�P)� +Pyt�1 = � +P(yt�1 � �)

and �t(�) = �, we will have that

Zdt(�) =

264 (IN �P)��1=20 0

[(yt�1 � �)
 IN ]��1=20 0

0 1
2D

0
N (�

�1=20 
��1=20)

375 :
Hence, the Gaussian score vector will be given by

264 s�t(�;p;�)spt(�;p;�)

s�t(�;p;�)

375 =
266664

(IN �P)��1(yt � �)
(IN 
��1)vec[(yt � �)(yt�1 � �)0]

1
2D

0
N (�

�1 
��1)DNvechf[(yt � �)�P(yt�1 � �)]
�[(yt � �)�P(yt�1 � �)]0 ��g

377775
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and the conditional information matrix by

It(�) =

264 (IN �P)��1(IN �P)0 (IN �P)[(yt�1 � �)0 
��1]
[(yt�1 � �)
��1](IN �P)0 [(yt�1 � �)(yt�1 � �)0 
��1]

0 0

0

0
1
2D

0
N (�

�1 
��1)DN

375 :
If we de�ne � = V (yt), which can be obtained from the relationship � = P�P0 +�, we can

�nally obtain the following expression for the unconditional information matrix:

I(�) =

264 (IN �P)�
�1(IN �P)0 0 0

0 (�
��1) 0

0 0 1
2D

0
N (�

�1 
��1)DN

375 ;
where we have used the fact that

E(yt) = �: (A15)

From here, it is trivial to show that the score under the null will be264 s�t(�;0;�)spt(�;0;�)

s�t(�;0;�)

375 =
264 ��1(yt � �)

(IN 
��1)vec[(yt � �)(yt�1 � �)0]
1
2D

0
N (�

�1 
��1)DNvech[(yt � �)(yt � �)0 ��]

375 ;
and

I(�;0;�) =

264 �
�1 0 0

0 (�
��1) 0

0 0 1
2D

0
N (�

�1 
��1)DN

375 :
Given that we are basing our test in the sample average of vec[(yt � �)(yt�1 � �)0], the above

expression con�rms that the LM test forH0 : p = 0 will be given by (22). Finally, the asymptotic

distribution follows from standard arguments (see e.g. Newey and McFadden (1994)).

Finally, let us consider the test in Proposition 4, which is based on a full rank linear trans-

formation of the Gaussian scores, spt(�;0;�), when the conditional distribution of yt is not

multivariate normal. Once again, the structure of Zdt(�), together with (A15) and the fact

that At(�) and It(�) coincide, implies that A(�) will be block diagonal between �, p and �

irrespective of the true distribution of yt. In addition, App(�) will coincide with Ipp(�). A

closely related argument shows that B(�) will also be block diagonal between p and (�;�), and

that Bpp(�) = App(�). As a result, the Gaussian-based LM test for H0 : p = 0 remains valid

regardless of the true distribution of yt. �
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Proposition 5

As in the case of Proposition 2, we will assume for simplicity that the conditional mean

and variance are given by the Kalman �lter prediction equations, in the understanding that the

analogue of Proposition 3 applies in this context too. Once again, in order to obtain Zdt(�)

we need expressions for @�t(�)=@� and @vec[�t(�)]=@�. Since we are assuming that only the

common factors can be serially correlated, we can write (25) in state space representation with

ft as the only state variable. Then, a straightforward application of the Kalman �lter implies

that

�t(�) = � +Cxtjt�1(�);

xtjt�1(�) = Rxt�1jt�1(�); (A16)

�t(�) = C
tjt�1(�)C
0 + �;


tjt�1(�) = R
t�1jt�1(�)R
0 + Ik; (A17)

whence

d�t(�) = d� + (dC)xtjt�1(�) +Cdxtjt�1(�)

and

d�t(�) = (dC)
tjt�1(�)C
0 +Cd
tjt�1(�)C

0 +C
tjt�1(�)(dC
0) + d�:

As a result,
@�t(�)

@�0
=
@�

@�0
+ [x0tjt�1(�)
 IN ]

@vec(C)

@�0
+C

@xtjt�1(�)

@�0

and

@vec[�t(�)]

@�0
= (IN2 +KNN )[C
tjt�1(�)
 IN ]

@vec(C)

@�0

+(C
C)
@vec[
tjt�1(�)]

@�0
+EN

@

@�0
:

Now, equation (A16) implies that

@xtjt�1(�)

@�0
= [x0t�1jt�1(�)
 Ik]

@�

@�0
+R

@xt�1jt�1(�)

@�0
;

while equation (A17) implies that

@vec[
tjt�1(�)]

@�0
= (Ik2 +Kkk)(R
t�1jt�1(�)
 Ik)

@�

@�0
+ (R
R)

@vec[
t�1jt�1(�)]

@�0
:

Under the null xtjt�1(�s;0) = 0, 
tjt�1(�s;0) = Ik, �t(�s;0) = CC0 + � = �(�s) and

xtjt(�s;0) = fkt(�s), so that

@�t(�s;0)

@�0
=
@�

@�0
+C[f 0kt�1(�)
 Ik]

@�

@�0
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and
@vec[�t(�s;0)]

@�0
= (IN2 +KNN )(C
 IN )

@vec(C)

@�0
+EN

@

@�0
:

Hence, if we de�ne J as the matrix that implicitly imposes the identi�ability conditions on C

through the relationship vec(C) = Jc, then we will have that

Zdt(�s;0) =

266664
��1=20(�s) 0

0 1
2J
0(C0 
 IN )(IN2 +KNN )[�

�1=20(�s)
��1=20(�s)]
0 1

2E
0
N [�

�1=20(�s)
��1=20(�s)]
[fkt�1(�)
 Ik]C0��1=20(�s) 0

377775 ;

Zd(�) =

266664
��1=20(�s) 0

0 1
2J
0(C0 
 IN )(IN2 +KNN )[�

�1=20(�s)
��1=20(�s)]
0 1

2E
0
N [�

�1=20(�s)
��1=20(�s)]
0 0

377775
and

Wd(�) =
h
00 J0C0��1(�s)

1
2vecd

0[��1(�s)] 00
i0
; (A18)

where we have used the fact that

E[fkt(�s)j�s;0;�] = E[C0��1(�s)(yt � �)j�s;0] = 0 (A19)

irrespective of the true distribution of yt.

As a result, the score under the null will be266664
s�t(�s;0;�)

sct(�s;0;�)

st(�s;0;�)

s�t(�s;0;�)

377775 =
266664

�[&t(�s);�]�
�1(�s)(yt � �)

J0vecf�[&t(�s);�]C0��1(�s)(yt � �)(yt � �)0��1(�s)�C0��1(�s)g
1
2vecdf�[&t(�s);�]�

�1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)g
[fkt�1(�)
 Ik]�[&t(�s);�]C0��1(�s)(yt � �)

377775 :
Therefore, the only di¤erence relative to the static factor model are the scores s�t(�s;0;�). In

this sense, if we assume that � > 0 we can use the Woodbury formula once again to show that

s�t(�s;0;�) = �[&t(�s);�]vec[fkt(�s)f
0
kt�1(�s)]:

Using the expression for Zdt(�s;0), together with (A10), it is easy to show that the uncon-

ditional information matrix I��(�s;0;�) will be block diagonal between �, (c;;�) and �, with

the �rst two blocks being exactly the same as in the static factor model after excluding the

restricted elements of C. Consequently, in computing our ML-based tests we can safely ignore

the sampling uncertainty in estimating �s and �. In addition, we can write

I��t(�s;0;�) = [fkt�1(�)
 Ik]V��(�s;�;�)[f 0kt�1(�)
 Ik];
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where

V��(�s;�;�) = V f�[&t(�s);�]fkt(�s)g = mll(�)C0��1(�s)C:

But since

E[fkt(�s)f
0
kt(�s)j�s;0;�] = E[C0��1(�s)(yt � �)(yt � �)0��1(�s)Cj�s;0] = C0��1(�s)C;

we �nally obtain that V��(�s;0;�) mimics V�y�y(�s;�;�) if we replace mll(�) by 1.

In addition, it follows from (A18) that the elliptically symmetric semiparametric scores for �

coincide with the parametric ones, and that the elliptically symmetric semiparametric e¢ ciency

bound will be block diagonal between �, � and (c;), where the �rst two blocks coincide with

the �rst two blocks of the information matrix, and the third one with the corresponding bound

in the static factor model.

Finally, let us consider the tests based on the Gaussian PML scores s�t(�s;0;0) when

ytjIt�1;� is i:i:d: D(�;�(�s);%) but not necessarily normal or elliptical. Once again, the

structure of Zdt(�), together with (A19), implies that A(�) will be block diagonal between

� and (�; c;) irrespective of the true distribution of yt. In addition, A��(�) will coincide

with I��(�s;0;0). A closely related argument shows that B(�) will also be block diagonal be-

tween � and (�; c;), and that B��(�) = A��(�). As a result, the Gaussian-based LM test for

H0 : � = 0 remains valid irrespective of the true distribution of yt. �

Proposition 6

Given (B37) and (B38) it is clear that d�t(�) = d� and

d�t(�) = (dc)�t(�)c+ c[d�t(�)]c
0 + c�t(�)dc

0 + d�t(�);

whence
@�t(�)

@�0
=
@�

@�0

and

@vec[�t(�)]

@�0
= (IN2 +KNN )[c�tjt�1(�)
 IN ]

@c

@�0
+ (c
 c)@�t(�)

@�0
+EN

@t(�)

@�0
:

But since

�t(�) = 1 + �[E(f2t�1jYt�1;�;0)� 1];

it(�) = i + �
�
i [E(v

2
it�1jYt�1;�;0)� i];

we will have that:

@�t(�)

@�
= �

@E(f2t�1jYt�1;�;0)
@�

+
@�

@�
[E(f2t�1jYt�1;�;0)� 1];

@it(�)

@�
=

@i
@�

+ ��i
@E(v2it�1jYt�1;�;0)

@�
+
@��i
@�

[E(v2it�1jYt�1;�;0)� i]:
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This implies that under the null hypothesis of �y = 0,

@�t(�s;0)

@�
=

@�

@�
[f2kt�1(�s) + !k(�s)� 1];

@it(�s;0)

@�
=

@i
@�

+
@��i
@�

[v2kit�1(�s) + c
2
i!k(�s)� i];

where we have used the fact that �t(�s;0) = cc0 + � = �(�s) 8t.

As a result,

Zdt(�s;0) =

26666664
��1=20(�s) 0

0 1
2(c

0 
 IN )(IN2 +KNN )[�
�1=20(�s)
��1=2(�s)]

0 1
2E

0
N [�

�1=20(�s)
��1=2(�s)]
0 1

2 [f
2
kt�1(�s) + !k(�s)� 1][c0��1=20(�s)
 c0��1=2(�s)]

0 1
2dg[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]E0N [��1=20(�s)
��1=2(�s)]

37777775 ;

whence it is easy to see that

Zd(�) =

26666664
��1=20(�s) 0

0 1
2(c

0 
 IN )(IN2 +KNN )[�
�1=20(�s)
��1=2(�s)]

0 1
2E

0
N [�

�1=20(�s)
��1=2(�s)]
0 0

0 0

37777775
and

Wd(�) =
h
0 c0��1(�s)

1
2vecd

0[��1(�s)] 0 0
i0
; (A20)

where we have used the fact that

E[f2kt�1(�s) + !k(�s)� 1j�s;0] = 0
E[v2kit�1(�s) + c

2
i!k(�s)� ij�s;0] = 0

)
(A21)

irrespective of the true distribution of yt.

In addition, it follows that the elliptical score under the null will be:26666666664

s�t(�s;0;�)

sct(�s;0;�)

st(�s;0;�)

s�t(�s;0;�)

s��t(�s;0;�)

37777777775
=

2666666666664

�[&t(�s);�]�
�1(�s)(yt � �)

�[&t(�s);�]�
�1(�s)(yt � �)(yt � �)0��1(�s)c���1(�s)c

1
2vecd[�[&t(�s);�]�

�1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)]
1
2 [f

2
kt�1(�s) + !k(�s)� 1]

f�[&t(�s);�]c0��1(�)(yt � �)(yt � �)0��1(�s)c� c0��1(�s)cg
1
2dg[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]
�vecdf�[&t(�s);�]��1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)g

3777777777775
:

Therefore, the only di¤erence relative to the static factor model are the scores s�t(�s;0;�) and

s��t(�s;0;�). In this sense, if we assume that � > 0 we can use the Woodbury formula to show

that

�[&t(�s);�]c
0��1(�s)(yt � �)(yt � �)0��1(�s)c� c0��1(�s)c

= �[&t(�s);�]f
2
kt(�s) + !k(�s)� 1;
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so that"
s�t(�s;0;�)

s��t(�s;0;�)

#
=

264
1
2 [f

2
kt�1(�s) + !k(�s)� 1]f�[&t(�s);�]f2kt(�s) + !k(�s)� 1g

1
2dg[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]
�vecdf��1[�[&t(�s);�]vkt(�s)v0kt(�s) + cc0!k(�s)� �]��1g

375 :
Using the expression for Zdt(�s;0), together with (A21), it is easy to show that the uncondi-

tional information matrix I��(�;0;�) will be block diagonal between �, (c;;�) and �y, with

the �rst two blocks as in the static case. Consequently, in computing our ML-based tests we

can safely ignore the sampling uncertainty in estimating �s and �. In addition, we can write

I�y�yt(�;0;�) = diag

"
1p
2
[f2kt�1(�s) + !k(�s)� 1]

1p
2
��1vecd[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]

#

�V�y�y(�s;�;�)� diag
"

1p
2
[f2kt�1(�s) + !k(�s)� 1]

1p
2
��1vecd[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]

#
;

where

V�y�y(�s;�;�) = V

"
1p
2
f�[&t(�s);�]f2kt(�s) + !k(�s)� 1g

1p
2
��1vecdf�[&t(�s);�]vkt(�s)v0kt(�s) + cc0!k(�s)� �g

#

= mss(�)

"
[c0��1(�s)c]

2 c0��1(�s)�1=2 � c0��1(�s)�1=2

�1=2��1(�s)c� �1=2��1(�s)c �1=2��1(�s)�1=2 � �1=2��1(�s)�1=2

#

+
[mss(�)� 1]

2

"
[c0��1(�s)c]

2 [c0��1(�s)c]vecd0[�1=2��1(�s)�1=2]

[c��1(�s)c]vecd[�1=2��1(�s)�1=2] vecd[�1=2��1(�s)�1=2]vecd0[�1=2��1(�s)�1=2]

#
:

(A22)

Thus, the only remaining item is the calculation of fourth order terms appearing in V�y�y(�s;0;�).

But if we write

f2kt(�s) + !k(�s)� 1 = c0��1(�s)(yt � �)(yt � �)0��1(�s)c� [1� !k(�s)];

then it is easy to see that

E[f2kt(�s) + !k(�s)� 1]2

= Efvec[c0��1(�s)(yt � �)(yt � �)0��1(�s)c]vec0[c0��1(�s)(yt � �)(yt � �)0��1(�s)c]g

�[1� !k(�s)]2

= [c0��1=20(�s)
 c0��1=20(�s)]E[vec("�t"�0t )vec0("�t"�0t )][��1=2(�s)c
��1=2(�s)c]

�[1� !k(�s)]2

= [c0��1=20(�s)
 c0��1=20(�s)](�+ 1)[(IN2 +KNN ) + vec (IN ) vec
0 (IN )]

[��1=2(�s)c
��1=2(�s)c]� [1� !k(�s)]2

= (�+ 1)f2[c0��1(�s)c]2 + [c0��1(�s)c]2g � [c0��1(�s)c]2 = (3�+ 2)[c0��1(�s)c]2:
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Similarly, since

vecd[vkt(�s)v
0
kt(�s)+cc

0!k(�s)� �]

= E0Nfvec[���1(�s)(yt � �)(yt � �)0��1(�s)�]� vec[�� cc0!k(�s)]g;

we will have that

Efvecd[vkt(�s)v0kt(�s)+cc0!k(�s)� �]vecd0[vkt(�s)v0kt(�s)+cc0!k(�s)� �]g

= E0NEfvec[���1(�s)(yt � �)(yt � �)0�
�1
(�s)�]vec

0[���1(�s)(yt � �)(yt � �)0��1(�s)�]gEN

�vecd[�� cc0!k(�s)]vecd0[�� cc0!k(�s)]

= E0N [��
�1=20(�s)
 ���1=20(�s)]E[vec("�t"�0t )vec0("�t"�0t )][��1=2(�s)�
��1=2(�s)�]

�vecd[�� cc0!k(�s)]vecd0[�� cc0!k(�s)]

= E0N [��
�1=20(�s)
 ���1=20(�s)](�+ 1)[(IN2 +KNN ) + vec (IN ) vec

0 (IN )]

�[��1=2(�s)�
��1=2(�s)�]� vecd[�� cc0!k(�s)]vecd0[�� cc0!k(�s)]

= (�+ 1)f2[���1(�s)�� ���1(�)�] + vecd[���1(�s)�]vecd0[���1(�s)�]g

�vecd[�� cc0!k(�s)]vecd[�� cc0!k(�s)]EN

= 2(�+ 1)[���1(�s)�� ���1(�s)�] + �vecd[���1(�s)�]vecd0[���1(�s)�]g:

Finally,

Efvecd[vkt(�s)v0kt(�s)+cc0!k(�s)� �][f2kt(�s) + !k(�s)� 1]g

= E0NEfvec[���1(�s)(yt � �)(yt � �)0�
�1
(�s)�]vec

0[c0�
�1
(�s)(yt � �)(yt � �)0��1(�s)c]g

�vecd[�� cc0!k(�s)][1� !k(�s)]

= E0N [��
�1=20(�s)
 ���1=20(�s)]E[vec("�t"�0t )vec0("�t"�0t )][��1=2(�s)c
��1=2(�s)c]

�vecd[�� cc0!k(�s)][1� !k(�s)]

= E0N [��
�1=20(�s)
 ���1=20(�s)](�+ 1)[(IN2 +KNN ) + vec (IN ) vec

0 (IN )]

�[��1=2(�s)c
��1=2(�s)c]� vecd[�� cc0!k(�s)][1� !k(�s)]

= 2(�+ 1)[���1(�s)c� ���1(�s)c] + �vecd[���1(�s)�][c0��1(�s)c]:

Therefore, V�y�y(�s;0;�) mimics V�y�y(�s;�;�) if we replace mss(�) by �+ 1.

In addition, it follows from (A20) that the elliptically symmetric semiparametric scores

for �y coincide with the parametric ones, and that the elliptically symmetric semiparametric

e¢ ciency bound will be block diagonal between �, (c;), and �y, where the �rst and last blocks

coincide with the corresponding blocks of the information matrix, and the second one with the

corresponding bound in the static factor model.
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Finally, let us consider the tests based on the Gaussian PML scores s�t(�s;0;0) and s��t(�s;0;0)

when ytjIt�1;� is i:i:d: D(�;�(�s);%) but not necessarily normal or elliptical. Once again, a

robust Gaussian pseudo score test of the null hypothesis H0 : �
y
1 = 0 can be computed as"p

T

T

TX
t=1

s0�yt(
~�s;0;0)

#
A�y�y (�0) C�1�y�y (�0)A

�y�y (�0)

"p
T

T

TX
t=1

s0�yt(
~�s;0;0)

#
;

where s0
�yt(

~�s;0;0) is the Gaussian score evaluated at the restricted PML estimator ~�s, A�
y�y (�0)

is the relevant block of the inverse of the expected Hessian matrix A(�) = �E [h��t(�;0)j�] and

C�y�y (�0) is the corresponding block of the usual sandwich expression C(�)=A�1(�)B(�)A�1(�),

with B(�) = V [s�t(�;0)j�] (see e.g. Engle (1984)). The structure of Zdt(�), together with (A21)

and the fact that A��t(�) equals I��t(�s;0;0), implies that A(�) will be block diagonal between

(�;��) and (�; c;) irrespective of the true distribution of yt. In addition, it is easy to see that

A�y�y(�) = E[A�y�yt(�)j�s;0;%] = V�y�y(�s;0;%)� V�y�y(�s;0;0);

where

V�y�y(�s;0;%) = V

"
1p
2
[f2kt(�s) + !k(�s)� 1]

1p
2
��1vecd[vkt(�s)v

0
kt(�s) + cc

0!k(�s)� �]

������s;0;%
#
:

A closely related argument shows that Bt(�) will also be block diagonal between (�;��) and

(�; c;). Further, the stationarity of yt implies that

B�y�y(�) = E[B�y�yt(�)j�s;0;%] = V�y�y(�s;0;%)� V�y�y(�s;0;%);

which is generally di¤erent from A�y�y(�). As we have seen in (A22) above, V�y�y(�s;0;%) will

simplify considerably when "�t is spherical. In any case, the block diagonality of A(�) and B(�)

implies that

A�y�y (�0) C�1�y�y (�0)A
�y�y (�0) = B�1�y�yt(�);

which proves the last part of the proposition. �

Proposition 7

For the sake of brevity, the proof will be developed for the following univariate model:

yt = ft + vt; 
ft

vt

!
jIt�1 � t

( 
0

0

!
;

"
1 + �(f2t�1 � 1) 0

0 

#
; �

)
;

where � � 0 and  � 0. Nevertheless, it can be tediously extended to cover the general case.

Given that when � = 0 the log-likelihood function of this model coincides with the log-likelihood
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function of the model considered in section 2, we only need to look at the score associated to

this parameter.

It is easy to see that the joint distribution of yt and ft give the past of both variables will be 
yt

ft

!
jIt�1 � t

" 
0

0

!
;

 
1 + �(f2t�1 � 1) +  1 + �(f2t�1 � 1)
1 + �(f2t�1 � 1) 1 + �(f2t�1 � 1)

!
; �

#
:

Hence, we can write down the joint log-likelihood as

c2(�)�
1

2
ln  � 1

2
ln[1 + �(f2t�1 � 1)] + g[&t(�; ); �];

where

c2(�) = ln

�
�

�
2� + 1

2�

��
� ln

�
�

�
1

2�

��
� ln

�
1� 2�
�

�
� ln�

is the (log) constant of integration,

[1 + �(f2t�1 � 1)] =
�����
 
1 + �(f2t�1 � 1) +  1 + �(f2t�1 � 1)
1 + �(f2t�1 � 1) 1 + �(f2t�1 � 1)

!�����
the Jacobian and

g[&t(�; ); �] = �
�
2� + 1

2�

�
ln

�
1 +

�

1� 2� &t(�; )
�
;

with

&t(�; ) =
�
yt ft

� 1 + �(f2t�1 � 1) +  1 + �(f2t�1 � 1)
1 + �(f2t�1 � 1) 1 + �(f2t�1 � 1)

!�1 
yt

ft

!
= �1(yt � ft)2 + [1 + �(f2t�1 � 1)]�1f2t ;

the (log) kernel of the bivariate Student t density.

Given that we can write the standardised residuals as 
1 + �(f2t�1 � 1) +  1 + �(f2t�1 � 1)
1 + �(f2t�1 � 1) 1 + �(f2t�1 � 1)

!�1=2 
yt

ft

!

=

 
�1=2 ��1=2

0 [1 + �(f2t�1 � 1)]�1=2

! 
yt

ft

!

=

 
�1=2(yt � ft)

[1 + �(f2t�1 � 1)]�1=2ft

!

and the gradient of the vec of the conditional covariance matrix with respect to � will be f2t�1�1

times the vector (1; 1; 1; 1)0, we will have that the score of the joint log-likelihood function with
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respect to � will be given by

1

2
(f2t�1 � 1)(1; 1; 1; 1)

�
" 

�1=2 0

��1=2 [1 + �(f2t�1 � 1)]�1=2

!


 

�1=2 0

��1=2 [1 + �(f2t�1 � 1)]�1=2

!#

�vec

0@ 2�+1
1�2�+�&t(�;)

(yt�ft)2
 � 1 2�+1

1�2�+�&t(�;)
(yt�ft)p


ftp

1+�(f2t�1�1)
2�+1

1�2�+�&t(�;)
(yt�ft)p


ftp

1+�(f2t�1�1)
2�+1

1�2�+�&t(�;)
f2t

1+�(f2t�1�1)
� 1

1A
=
1

2

�
2� + 1

1� 2� + �&t(�; )
f2t

1 + �(f2t�1 � 1)
� 1
�

f2t�1 � 1
1 + �(f2t�1 � 1)

;

where we have used the fact that 
�1=2 ��1=2

0 [1 + �(f2t�1 � 1)]�1=2

! 
1 1

1 1

! 
�1=2 0

��1=2 [1 + �(f2t�1 � 1)]�1=2

!

=

 
0 0

0 [1 + �(f2t�1 � 1)]�1

!
:

The Kullback inequality implies that score of the marginal log-likelihood function of yt with

respect to � will be given by

1

2
E

��
2� + 1

1� 2� + �&t(�; )
f2t

1 + �(f2t�1 � 1)
� 1
�

f2t�1 � 1
1 + �(f2t�1 � 1)

����YT ; �� :
This expected value becomes analytically tractable when � = 0. First of all, the expression

inside the expectation simpli�es to

E

" 
(2� + 1)f2t

1� 2� + �
�
�1(yt � ft)2 + f2t

� � 1! (f2t�1 � 1)
�����YT ; � = 0

#
:

Second, the joint distribution of yt and ft is i:i:d: over time, which means that the expected

value of this product should be equal to

E

" 
(2� + 1)f2t

1� 2� + �
�
�1(yt � ft)2 + f2t

� � 1!����� yt; � = 0
#
E
�
f2t�1 � 1

�� yt�1; � = 0� :
But since ft given yt has a Student t distribution with (conditional) mean, variance and

shape parameter given by (A11), (A12) and (A13), respectively, the second term is simply given

by

f2kt�1() + �kt�1(; �)� 1:

The �rst term is trickier, as we need to �nd the expected value of

(2� + 1)f2t
1� 2� + �

�
�1(yt � ft)2 + f2t

� � 1: (A23)
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To do so, it is convenient to follow Fiorentini, Sentana and Calzolari (2003) and write ft in terms

of a conditionally standardised Student t component f�t as follows:

ft =
1

1 + 
yt +

s
1� 2�
1� �

�
1 +

�

1� 2�
y2t
1 + 

�


1 + 
f�t ;

f�t =

r
1� �
�

�
p
�t=�tut;

where ut is either 1 or -1 with probability 1/2, �t is a chi-square random variable with 1 degree

of freedom and �t is a gamma random variable with mean 1+ ��1 and variance 2(1+ ��1), with

ut, �t and �t mutually independent and independent of yt and It�1.

This decomposition allows us to express

&t(0; ) = �1(yt � ft)2 + f2t =
y2t
1 + 

+

�
1 + 



��
ft �

1

1 + 
yt

�2
=

y2t
1 + 

+
1� 2�
�

�
1 +

�

1� 2�
y2t
1 + 

�
�t
�t

=
y2t
1 + 

�
1 +

�t
�t

�
+
1� 2�
�

�t
�t
;

so that the denominator of (A14) can be written as

1� 2� + �&t(0; ) = 1� 2� + �
y2t
1 + 

�
1 +

�t
�t

�
+ (1� 2�)�t

�t

=

�
1� 2� + �y2t

1 + 

��
�t + �t
�t

�
= (1� 2�)

�
1 +

�

1� 2�
y2t
1 + 

��
�t + �t
�t

�
:

As for the numerator, we are left with 2� + 1 times

f2t =
1

(1 + )2
y2t +

1� 2�
�

�
1 +

�

1� 2�
y2t
1 + 

�


1 + 

�t
�t

+
2

1 + 
yt

s
1� 2�
�

�
1 +

�

1� 2�
y2t
1 + 

�


1 + 

s
�t
�t
ut:

Therefore, we can re-write (A23) as �1 plus 2� + 1 times
1

(1+)2
y2t

(1� 2�)
�
1 + �

1�2�
y2t
1+

� � �t
�t + �t

�

+


�(1 + )

�
�t

�t + �t

�

+

2
1+ yt

r
1�2�
�

�
1 + �

1�2�
y2t
1+

�

1+

q
�t
�t
ut

(1� 2�)
�
1 + �

1�2�
y2t
1+

��
�t+�t
�t

� :

The expected value of the last summand is clearly 0 because of the symmetry of ut. In

contrast, we can use the properties of the beta distribution to prove that

E

�
�t

�t + �t

�
=
1 + �

1 + 2�
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and

E

�
�t

�t + �t

�
=

�

1 + 2�
:

If we put all the pieces together we end up with

1 + ��
1� 2� + � y2

1+

� y2t
(1 + )2

+


1 + 
� 1

=
1 + ��

1� 2� + � y2

1+

�f2kt() + �kt(; 0)� 1
=

1 + ��
1� 2� + � y2

1+

� �f2kt() + 1� �1 + �
�kt(; �)

�
� 1:

As a result, the score of the true log-likelihood at � = 0 is

1

2

24 1 + ��
1� 2� + � y2

1+

�f2kt() + �kt(; 0)� 1
35 �f2kt�1() + �kt�1(; �)� 1� :

Interestingly, note that �kt(; �) is evaluated in the regressand at its Gaussian value (= !k()),

while in the regressor it is evaluated at the true value of �.

Consider now the following HRS-style auxiliary model

yt = ft + vt; 
ft

vt

!
jIt�1 � t

( 
0

0

!
;

"
1 + �[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1] 0

0 

#
; �

)
;

ftjt(�) =
1 + �[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1]

1 + �[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1] + 
� yt;

!tjt(�; �) =
1� 2�
1� �

 
1 +

�

1� 2�
y2t

1 + �[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1] + 

!

�
1 + �[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1]

1 + �[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1] + 
� ;

and � � 0,  � 0. In order to compute the score of this model with respect to �, we need the

derivative of the conditional variance of yt with respect to this parameter. This derivative will

be

[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1] + �
�
2ft�1jt�1(�)

@ft�1jt�1(�)

@�
+
@!t�1jt�1(�; �)

@�

�
:

However, since we are only interested in evaluating it at � = 0 we do not need to compute the

second term.

The other component of the derivative will be given by the expression

1 + �

1� 2� + �"�2t (�)
"�2t (�)� 1;
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where

"�t (�) =
ytq

1 + �[f2t�1jt�1(�) + !t�1jt�1(�; �)� 1] + 
:

Hence, under the null of � = 0 the score with respect to � will be

1

2

0@ 1 + �

1� 2� + � y2t
1+

y2t
1 + 

� 1

1A 1

1 + 
[f2t�1jt�1(; 0) + !t�1jt�1(; 0; �)� 1]

But since0@ 1 + �

1� 2� + � y2t
1+

y2t
1 + 

� 1

1A 1

1 + 
=

1 + ��
1� 2� + � y2

1+

� 1

(1 + )2
y2t +



1 + 
� 1;

the pseudo log-likelihood score of the auxiliary model coincides with the score of the true model

when we evaluate them at �=0. Hence, the Student t version of HRS auxiliary model smoothly

embeds the true model at those parameter values.

Proposition 8

Given that in model (38) �t(�) = � and

vec[�t(�)] = DNvech(�) +DNAvech[(yt�1 � �)(yt�1 � �)0 ��];

we will have that d�t(�) = d� and

dvec[�t(�)] = DNdvech(�) + fvech0[(yt�1 � �)(yt�1 � �)0 ��]
DNgdvec(A)

�DNAfD+
N (IN2 +KNN )[(yt�1 � �)
 IN ]d� + dvech(�)g

so that the only non-zero elements of the Jacobian will be @�t(�)=@�
0 = IN ,

@vec[�t(�)]

@�0
= �DNAD

+
N (IN2 +KNN )[(yt�1 � �)
 IN ]

@vec[�t(�)]

@�0
= DN (IN(N+1)=2 �A);

@vec[�t(�)]

@a0
= fvech0[(yt�1 � �)(yt�1 � �)0 ��]
DNg;

where D+
N = (D

0
NDN )

�1DN is the Moore-Penrose inverse of DN . But since we are only inter-

ested in evaluating these derivatives under the null hypothesis of � = 0, we will have that

Zdt(�;�;0) =

264 �
�1=20 0

0 1
2D

0
N (�

�1=20 
��1=20)
0 1

2fvech[(yt�1 � �)(yt�1 � �)
0 ��]
D0

Ng(��1=20 
��1=20)

375 :
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Hence, the Gaussian score vector under the null will be given by

264 s�t(�;�;0)s�t(�;�;0)

sat(�;�;0)

375 =
266664

��1(yt � �)
1
2D

0
N (�

�1 
��1)DNvech[(yt � �)(yt � �)0 ��]
1
2fIN(N+1)=2 
 [D

0
N (�

�1 
��1)DN ]g
�vecfvech[(yt � �)(yt � �)0 ��]vech0[(yt�1 � �)(yt�1 � �)0 ��]g

377775 ;
and the conditional information matrix by

I��t(�) =

264 �
�1 0

0 1
2D

0
N (�

�1 
��1)DN

0 1
2fvech[(yt�1 � �)(yt�1 � �)

0 ��]
D0
N (�

�1 
��1)DNg

0
1
2fvech

0[(yt�1 � �)(yt�1 � �)0 ��]
D0
N (�

�1 
��1)DNg
1
2fvech[(yt�1 � �)(yt�1 � �)

0 ��]vech0[(yt�1 � �)(yt�1 � �)0 ��]
D0
N (�

�1 
��1)DNg

375 :
But since

E[(yt�1 � �)(yt�1 � �)0] = � (A24)

regardless of the distribution of yt, I��(�) will be block diagonal between �, � and a. Conse-

quently, in computing our ML-based tests we can safely ignore the sampling uncertainty in the

sample means, variances and covariances of yt.

Given that we are basing our test on

vecfvech[(yt � �)(yt � �)0 ��]vech0[(yt�1 � �)(yt�1 � �)0 ��]g

= fvech[(yt�1 � �)(yt�1 � �)0 ��]
 IN(N+1)=2gvech[(yt � �)(yt � �)0 ��]

= 2fIN(N+1)=2 
 [D+
N (�
�)D

+0
N ]gsat(�;�;0)

the asymptotic covariance matrix of vec[�Syy(1)] will be

4fVaa(�s;0;0)
 Vaa(�s;0;0)g;

where

Vaa(�s;0;�) = V
n

1p
2
vech[(yt � �)(yt � �)0 ��]

o
:

But since

V fvec[(yt�1 � �)(yt�1 � �)0 ��]g

= (�1=2 
�1=2)V [vec("�t�1"�0t�1 � IN )](�1=20 
�1=20)

= (�1=2 
�1=2)[(�+ 1)(IN2 +KNN ) + �vec(IN )vec
0(IN )](�

1=20 
�1=20)

= (�+ 1)(IN2 +KNN )(�
�) + �vec(�)vec0(�) = H(�); (A25)
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when the conditional distribution of yt is elliptically symmetric, we will have that

Vaa(�s;0;�) = 1
2D

+
NH(�)D

+0
N = (�+ 1)D+

N (�
�)D
+0
N +

�

2
vech(�)vech0(�)]: (A26)

Finally, the result in Proposition 8 follows from the fact that

V�1aa (�s;0;0) = D0
N (�

�1 
��1)DN :

When ytjIt�1;� is i:i:d: D(�;�(�s);%) but not necessarily normal or elliptical, the structure

of Zdt(�), together with (A24) and the fact that At(�) and It(�) coincide, implies that A(�) will

also be block diagonal between �, � and a irrespective of the true distribution of yt. Likewise,

it is easy to see that B(�) will also be block diagonal between (�;�) and a. As a result, the

asymptotic covariance matrix of vec[�Syy(1)] will be

4fVaa(�s;0;%)
 Vaa(�s;0;%)g:

In non-elliptical cases, we can �nd Vaa(�s;0;%) by replacing V [vec("�t�1"�0t�1 � IN )] in (A25) by

the 2,2 block of K (%). �

Proposition 9

Given that in model (40) �t(�) = � and

�t(�) = C�t(�)C
0 + �;

we will have that d�t(�) = d� and

d�t(�) = (dC)�t(�)C
0 +C[d�t(�)]C

0 +C�t(�)(dC
0) + d�;

so that

@vec[�t(�)]

@�0
= (IN2 +KNN )[C�t(�)
 IN ]

@vec(C)

@�0
+ (C
C)@vec[�t(�)]

@�0
+EN

@vecd(�)

@�0
;

where

@vech[�t(�)]

@�0
= fvech0[E(ft�1ft�1 � IkjYt�1;�)]
 Ik(k+1)=2g

@vec(A)

@�0

+A

�
@vech[E(ft�1ft�1jYt�1;�)]

@�0

�
:

But since we are only interested in evaluating these derivatives under the null hypothesis of

� = 0, in which case �t(�) = Ik and E(ft�1ft�1jYt�1;�)] = fkt�1(�)f
0
kt�1(�) + 
k(�), we will

have that

Zdt(�s;0) =

26666664
��1=20(�s) 0

0 1
2J
0(C0 
 IN )(IN2 +KNN )[�

�1=20(�s)
��1=20(�s)]
0 1

2E
0
N [�

�1=20(�s)
��1=20(�s)]

0
1
2fvech[fkt�1(�)f

0
kt�1(�) +
k(�)� Ik]
D0

kg
�[C0��1=20(�s)
C0��1=20(�s)]

37777775 ;
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where J as the matrix that implicitly imposes the identi�ability conditions on C through the

relationship vec(C) = Jc. Consequently

Zd(�) =

266664
��1=20(�s) 0

0 1
2J
0(C0 
 IN )(IN2 +KNN )[�

�1=20(�s)
��1=20(�s)]
0 1

2E
0
N [�

�1=20(�s)
��1=20(�s)]
0 0

377775
and

Wd(�) =
h
00 J0C0��1(�s)

1
2vecd

0[��1(�s)] 00
i0
; (A27)

where we have used the fact that

E[fkt�1(�)f
0
kt�1(�) +
k(�)� Ikj�s;0] = 0: (A28)

irrespective of the distribution of yt.

Hence, the score vector under the null will be given by266664
s�t(�s;0;�)

sct(�s;0;�)

st(�s;0;�)

s�t(�s;0;�)

377775 =
26666664
�[&t(�s);�]�

�1(�s)(yt � �)
J0vecf�[&t(�s);�]C0��1(�s)(yt � �)(yt � �)0��1(�s)�C0��1(�s)g
1
2vecdf�[&t(�s);�]�

�1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)g
1
2 [IN(N+1)=2 
 (D

0
kDk)]vec[vechf�[&t(�s);�]C0��1(�s)(yt � �)

�(yt � �)0��1(�s)C�C0��1(�s)Cgvech0[fkt�1(�)f 0kt�1(�) +
k(�)� Ik]]

37777775 ;

Therefore, the only innovation relative to the static factor model are the scores s�t(�s;0;�).

In this sense, if we assume that � > 0 we can use the Woodbury formula once again to show

that

s�t(�s;0;�) =
1

2
[IN(N+1)=2 
 (D0

kDk)]vec[vechf�[&t(�s);�]fkt(�)f 0kt(�) +
k(�)� Ikg

�vech0ffkt�1(�)f 0kt�1(�) +
k(�)� Ikg]

Using the expression for Zdt(�s;0;�) it is also easy to show that the conditional information

matrix I��t(�s;0) will be block diagonal between �, (c;;�) and �, with the �rst two blocks

being exactly the same as in the static factor model after excluding the restricted elements of

C. Thus, in computing our ML-based tests we can safely ignore the sampling uncertainty in

estimating �s and �.

In addition, given that we can also express

s�t(�s;0;�) =
1
2fvech[fkt�1(�)f

0
kt�1(�)+
k(�)�Ik]
(D0

kDk)gvechf�[&t(�s);�]fkt(�)f 0kt(�)+
k(�)�Ikg

we can write

I��t(�;0;�) = [ 1p2vech[fkt�1(�)f
0
kt�1(�) +
k(�)� Ik]
 (D0

kDk)]

�V��(�s;�;�)� [ 1p2vech
0[fkt�1(�)f

0
kt�1(�) +
k(�)� Ik]
 (D0

kDk)]
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where V��(�s;�;�) is given in (42). Thus, the only remaining item is the calculation of fourth

order terms appearing in V��(�s;0;�). But

V fvech[fkt�1(�)f 0kt�1(�) +
k(�)� Ik]g (A29)

= D+
k [C

0��1=20(�s)
C0��1=20(�s)]V [vec("�t�1"�0t�1 � Ik)][��1=2(�s)C
��1=2(�s)C]D
+0
k

= D+
k [C

0��1=20(�s)
C0��1=20(�s)][(�+ 1)(IN2 +KNN ) + �vec(IN )vec
0(IN )]

�[��1=2(�s)C
��1=2(�s)C]D+0
k

= 2(�+ 1)D+
k [C

0��1(�s)C
C0��1(�s)C]D+0
k + �vech[��1(�s)C]vech

0[��1(�s)C];

so V��(�s;0;�) mimics V��(�s;�;�) if we replace mss(�) by � + 1. Hence, the information

matrix will indeed be given by (41).

In addition, it follows from (A27) that the elliptically symmetric semiparametric scores

for � coincide with the parametric ones, and that the elliptically symmetric semiparametric

e¢ ciency bound will be block diagonal between �, (c;), and � where the �rst and last blocks

coincide with the corresponding blocks of the information matrix, and the second one with the

corresponding bound in the static factor model.

Finally, let us consider the tests based on the Gaussian PML scores s�t(�s;0;0) when

ytjIt�1;� is i:i:d: D(�;�(�s);%) but not necessarily normal or elliptical. The structure of

Zdt(�), together with (A28) and the fact that At(�) and It(�) coincide, implies that A(�) will

be block diagonal between � and (�; c;) irrespective of the true distribution of yt. In addition,

it is easy to prove that

A��(�) = E[A��t(�)j�s;0;%] = V��(�s;0;%)
 (D0
kDk)V��(�s;0;0)(D0

kDk):

A closely related argument shows that B(�) will also be block diagonal between � and (�; c;).

Further, the stationarity of yt implies that

B��(�) = E[B��t(�)j�s;0;%] = V��(�s;0;%)� (D0
kDk)V��(�s;0;%)(D0

kDk);

which is generally di¤erent from A��(�). �

Proposition 10

The proof of this proposition combines many elements of the proofs of Propositions 2 and 6.

Given that model (44) reduces to model (13) when � = 0 and �� = 0 for every possible value

of the parameters �; �;��; c and , while it reduces to model (28) when � = 0 and �� = 0 for

every possible value of the parameters �; c,,� and ��, then it trivially follows that under the
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joint null of �y = 0 and �y = 0 we will have that

Zdt(�s;0;0) =

2666666666664

��1=20(�s)

0

0

fkt�1(�s)c
0��1=20(�s)

diag[vkt�1(�s)]�
�1=20(�s)

0

0

0
1
2(c

0 
 IN )(IN2 +KNN )[�
�1=20(�s)
��1=20(�s)]0

1
2E

0
N [�

�1=20(�s)
��1=2(�s)]
0

0
1
2 [f

2
kt�1(�s) + !k(�s)� 1][c0��1=20(�s)
 c0��1=2(�s)]

1
2dg[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]E0N [��1=20(�s)
��1=2(�s)]

3777777777775
;

whence

Zd(�) =

2666666666664

��1=20(�) 0

0 1
2(c

0 
 IN )(IN2 +KNN )[�
�1=20(�s)
��1=20(�s)]

0 1
2E

0
N [�

�1=20(�s)
��1=2(�s)]
0 0

0 0

0 0

0 0

3777777777775
and

Wd(�) =
h
0 c0��1(�s)

1
2vecd

0[��1(�s)] 0 0 0 0
i0
: (A30)

As a result, the score vector under the null will be

2666666666664

s�t(�s;0;0;�)

sct(�s;0;0;�)

st(�s;0;0;�)

s�t(�s;0;0;�)

s��t(�s;0;0;�)

s�t(�s;0;0;�)

s��t(�s;0;0;�)

3777777777775
=

266666666666666664

�[&t(�s);�]�
�1(�s)(yt � �)

�[&t(�s);�]�
�1(�s)(yt � �)(yt � �)0��1(�s)c���1(�s)c

1
2vecd[�[&t(�s);�]�

�1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)]
fkt�1(�s)�[&t(�s);�]c

0��1(�s)(yt � �)
diag[vkt�1(�s)]�[&t(�s);�]�

�1(�s)(yt � �)
1
2 [f

2
kt�1(�s) + !k(�s)� 1]f�[&(�s);�]c0��1(�s)(yt � �)(yt � �)0��1(�s)c

�c0��1(�s)cg
1
2dg[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]
�vecd[�[&t(�s);�]��1(�s)(yt � �)(yt � �)0��1(�s)���1(�s)]

377777777777777775
:

But this score is simply made up of the components of the di¤erent special cases that we have

already studied, so the only thing left to do is to study the blocks of the information matrix and

the other e¢ ciency bounds that corresponds to the cross product of

[s�t(�s;0;0;�); s
0
��t(�s;0;0;�)]
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with

[s�t(�s;0;0;�); s
0
��t(�s;0;0;�)]:

When the observed variables are elliptically distributed, the vector

[fkt�1(�s);v
0
kt�1(�s)]

is unconditionally orthogonal to the vector

f[f2kt�1(�s) + !k(�s)� 1]; vecd0[vkt�1(�s)v0kt�1(�s) + cc0!k(�s)� �]g;

so all the relevant o¤-diagonal blocks of I��(�0), �S(�0), A(�0) and B(�0) will be 0, which

con�rms the additive decomposition of the di¤erent joint tests under elliptical symmetry.

For general distributions, though, the expressions for A(�0) and B(�0) are more involved.

Speci�cally, while it is still true that these matrices will remain block diagonal between (�y;�y)

and �s regardless of the true distribution of yt in view of (A10) and (A21), and that A(�0)

will also be block diagonal between �y and �y, with the relevant expressions for A�y�y(�0)

and A�y�y(�0) as in the proofs of Propositions 2 and 6, respectively, it will no longer be true

that B(�0) will be block diagonal between Ar and Arch parameters, even though B�y�y(�0) =

A�y�y(�0). Nevertheless, straightforward calculations show that the blocks of Bt(�0) corre-

sponding to (�y;�y) will be given by

diag

266664
fkt�1(�s)

��1=2vkt�1(�s)
1p
2
[f2kt�1(�s) + !k(�s)� 1]

1p
2
��1vecd[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]

377775
�
"
V�y�y(�s;0;%) V�y�y(�s;0;%)
V 0
�y�y(�s;0;%) V�y�y(�s;0;%)

#

�diag

266664
fkt�1(�s)

��1=2vkt�1(�s)
1p
2
[f2kt�1(�s) + !k(�s)� 1]

1p
2
��1vecd[vkt�1(�s)v

0
kt�1(�s) + cc

0!k(�s)� �]

377775 ;

which con�rms (45) in view of the stationarity of yt. �

B Kalman �lter recursions

B.1 Static factor models

Model (1) has as a trivial time-series state-space representation, with ft as the state, yt =

cft + vt as the measurement equation and ft = 0 � ft�1 + ft as transition equation. In this
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framework, the serial independence of (ft;v�t ) implies that

E(ytjIt�1;�s) = �; (B31)

E(ftjIt�1;�s) = 0;

and

V (ytjIt�1;�s) = cc0 + �; (B32)

V (ftjIt�1;�s) = 1;

which coincide with the usual Kalman �lter prediction equations. Further, the sphericity as-

sumption on (ft;v�t ) means that yt and ft will be jointly elliptical, which in turn implies an

a¢ ne conditional mean but a conditional variance that depends on &t (see chapters 2 and 3 of

Fang, Kotz and Ng (1990) for a thorough discussion of conditional distributions in this context).

Speci�cally,

E(ftjYt;�s) = c0��1(�s)(yt � �) = fkt(�s);

V (ftjYt;�s) = h[&t(�s);�] � !k(�s) = �kt(�s;�);

where

!k(�s) = V [ft � fkt(�s)j�s] = 1� c0��1(�s)c = �kt(�s;0)

is the mean square error returned by the Kalman �lter (see chapter 2 of Sentana (1991) for

further details). Therefore, the Kalman �lter updating equations provide the correct conditional

expectation but not the conditional variance even though the unconditional mean of h(&t;�) is

1.

If we de�ne vtjt(�s) = E(vtjYt;�s;�) = ���1(�s)(yt � �) = vkt(�s), then it is straightfor-

ward to see that the joint covariance matrix of ft � fkt(�s) and vt � vkt(�s) in (6) will be of

rank 1 because vkt(�s) = yt � � � cfkt(�s). Similarly, V [(fkt v0kt)0jIt�1;�] will be of rank N

because fkt(�s) = c0��1vkt(�s).

Importantly, given the degenerate nature of the transition equation, smoothing is unnecessary

in this case, so that fkt(�s) = E(ftjYT ;�s) and !k(�s) = E(ft � fkt(�s)jYT ;�s).

Finally, if � > 0, then we can use the Woodbury formula to prove that

fkt(�s) = !k(�)c
0��1(yt � �);

!k(�s) = (1 + c0��1c)�1;

��1(�s) = ��1 � !k(�s)��1cc0��1;

which greatly simpli�es the computations (see Sentana (2000)).
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B.2 Conditionally homoskedastic dynamic factor models

Although from a computational point of view this is not the most e¢ cient formulation, for

our purposes it is convenient to write model (13) in state-space form as

yt = � + ( c IN )

 
xt

ut

!
; 

xt

ut

!
=

"
� 0

0 diag(��)

# 
xt�1

ut�1

!
+

 
ft

vt

!
:

Subject to an assumption about initialisation, such as that (x0;u00) is drawn from its stationary

distribution, the Kalman �lter prediction equations will be

ytjt�1(�) = � + ( c IN )

 
xtjt�1(�)

utjt�1(�)

!
; (B33) 

xtjt�1(�)

utjt�1(�)

!
=

"
� 0

0 diag(��)

# 
xt�1jt�1(�)

ut�1jt�1(�)

!
; (B34)

and

�t(�) = V [yt � yt!t�1(�s)j�s;�] = ( c IN )
tjt�1(�)

 
c0

IN

!
; (B35)


tjt�1(�) = V

"
xt � xtjt�1(�)
ut � utjt�1(�)

������;�
#

=

"
� 0

0 diag(��)

#

t�1jt�1(�)

"
� 0

0 diag(��)

#
+

 
1 0

0 �

!
; (B36)

while the updating equations will be 
xtjt(�)

utjt(�)

!
=

 
xtjt�1(�)

utjt�1(�)

!
+
tjt�1(�)

 
c0

IN

!
��1t (�)

"
yt � � � ( c IN )

 
xtjt�1(�)

utjt�1(�)

!#

and


tjt(�) = 
tjt�1(�)�
tjt�1(�)
 
c0

IN

!
��1t (�)( c IN )
tjt�1(�):

Importantly, ytjt�1(�) and�t(�) will allow us to obtain E(ytjYt�1;�;�) and V (ytjYt�1;�s;�)

if either �y = 0, in which case the analysis in section (B.1) applies, or � = 0, so that the true

conditional distribution is Gaussian. More generally, the conditional distribution, including its

�rst two moments, will be unknown.

In any case, note that

( c IN )
tjt(�)

 
c0

IN

!
= 0;

which simply re�ects the fact that utjt(�) = yt � � � cxtjt(�).
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B.3 Conditionally heteroskedastic factor models with constant conditional
means

If we de�ne (ft;v0t) as the state variables, the state-space representation of model (28) is

yt = � + ( c IN )

 
ft

vt

!
; 

ft

vt

!
=

 
0 0

0 0

! 
ft�1

vt�1

!
+

 
ft

vt

!
;

V

" 
ft

vt

!����� It�1;�
#
=

 
�t(�) 0

0 �t(�)

!
:

Subject to an assumption about initialisation, such as that (f0;v00) are drawn from their sta-

tionary distribution, the Kalman �lter prediction equations will be

ytjt�1(�) = �; (B37) 
ftjt�1(�)

vtjt�1(�)

!
=

 
0

0

!
;

and

�t(�) = cc0�t(�) + �t(�); (B38)


tjt�1(�) =

 
�t(�) 0

0 �t(�)

!
;

while the updating equations will be 
ftjt(�)

vtjt(�)

!
=

 
�t(�)c

0

�t(�)

!
��1t (�)(yt � �)

and


tjt(�) =

 
�t(�)� �2t (�)c0��1t (�)c ��t(�)c0��1t (�)�t(�)
��t(�)��1t (�)c�t(�) �t(�)� �t(�)��1t (�)�t(�)

!
:

As in the case of the static models discussed in appendix B.1, we should interpret 
tjt(�) as

the covariance matrix of ft� ftjt(�) and vt�vtjt(�) conditional on Yt. In this regard, we would

need to multiply 
tjt(�) by h(&t;�) in order to get the true conditional covariance matrix of ft

and vt conditional on Yt (see section 5.2 of Harvey, Ruiz and Sentana (1992)).

If �t(�) > 0, then we can use the Woodbury formula to prove that

ftjt(�) = !tjt(�)c
0��1t (�)(yt � �);

!tjt(�) = [c0��1t (�)c+ �
�1
t (�)]

�1;

��1t (�) = ��1t (�)� !tjt(�)��1t (�)cc0��1t (�);

which greatly simpli�es the computations (see Sentana (2000)).
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The degenerate nature of the transition equation implies that smoothing is also unnecessary

in this case, so that ftjt(�) = E(ftjYT ;�) and !tjt(�) = V (ftjYT ;�) (see Diebold and Nerlove

(1989)).

B.4 Conditionally heteroskedastic dynamic factor models

Following Harvey, Ruiz and Sentana (1992), we can write model (44) using the following

state representation:

yt = � + ( c IN 0 0 )

0BBBB@
xt

ut

ft

vt

1CCCCA ;

0BBBB@
xt

ut

ft

vt

1CCCCA =

0BBBB@
� 0 0 0

0 diag(��) 0 0

0 0 0 0

0 0 0 0

1CCCCA
0BBBB@

xt�1

ut�1

ft�1

vt�1

1CCCCA+
0BBBB@
1 0

0 IN

1 0

0 IN

1CCCCA
 

ft

vt

!
;

V

" 
ft

vt

!����� It�1;�
#
=

 
�t(�) 0

0 �t(�)

!
:

Subject to some initial conditions, the prediction equations will be

ytjt�1(�) = � + ( c IN )

 
xtjt�1(�)

utjt�1(�)

!
; (B39) 

xtjt�1(�)

utjt�1(�)

!
=

"
� 0

0 diag(��)

# 
xt�1jt�1(�)

ut�1jt�1(�)

!
; 

ftjt�1(�)

vtjt�1(�)

!
=

 
0

0

!
;

and

�t(�) = ( c IN )
11tjt�1(�)

 
c0

IN

!
; (B40)


11tjt�1(�) =

 
� 0

0 diag(��)

!

11t�1jt�1(�)

 
� 0

0 diag(��)

!
+

 
�t(�) 0

0 �t(�)

!
;


12tjt�1(�) = 
22tjt�1(�) =

 
�t(�) 0

0 �t(�)

!
;

while the updating equations will be 
xtjt(�)

utjt(�)

!
=

 
xtjt�1(�)

utjt�1(�)

!
+
11tjt�1(�)

 
c0

IN

!
��1t (�)

�
yt � � � cxtjt�1(�)� utjt�1(�)

�
; 

ftjt(�)

vtjt(�)

!
=

 
�t(�)c

0��1t (�)
�
yt � � � cxtjt�1(�)� utjt�1(�)

�
�t(�)�

�1
t (�)

�
yt � � � cxtjt�1(�)� utjt�1(�)

� !
;
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and


11tjt(�) = 
11tjt�1(�)�
11tjt�1(�)
 
c0

IN

!
��1t (�)( c IN )
11tjt�1(�);


12tjt(�) =

 
�t(�) 0

0 �t(�)

!
�
11tjt�1(�)

 
�t(�)c

0��1t (�)c c0��1t (�)�t(�)

�t(�)�
�1
t (�)c ��1t �t(�)

!
;


22tjt(�) =

 
�t(�)� �2t (�)c0��1t (�)c ��t(�)c0��1t (�)�t(�)
��t(�)�t(�)��1t (�)c �t(�)� �t(�)��1t (�)�t(�)

!
:

Once again, if �t(�) > 0 then we can use the Woodbury formula to simplify the computations.

Interestingly, the expression for 
22tjt(�) coincides with the analogous expression when there

are no dynamics in the mean, although the expression for �t(�) is obviously di¤erent.

C Local power calculations

Let mt(�1;�2) denote the h in�uence functions used to develop the following moment test

of H0 : �2 = 0:

MT = T �m0
T (�10;0)	

�1 �mT (�10;0); (C41)

where �mT (�10;0) is the sample average of mt(�) evaluated under the null, and 	 is the corre-

sponding asymptotic covariance matrix. In order to obtain the non-centrality parameter of this

test under Pitman sequences of local alternatives of the form H0 : �2T = ��2=
p
T , it is convenient

to linearise mt(�10;0) with respect to �2 around its true value �2T . This linearisation yields

p
T �mT (�10;0) =

p
T �mT (�10;�2T ) +

1

T

XT

t=1

@mt(�10;�
�
2T )

@�02
��2;

where ��2T is some �intermediate�value between �2T and 0. As a result,

p
T �mT (�10;0)! N [M(�10;0)��2;	];

under standard regularity conditions, where

M(�10;0) = E[@mt(�10;0)=@�
0
2];

so that the non-centrality parameter of the moment test (C41) will be

��
0
2M

0(�10;0)	
�1M(�10;0)��2: (C42)

On this basis, we can easily obtain the limiting probability of MT exceeding some pre-

speci�ed quantile of a central �2h distribution from the cdf of a non-central �2 distribution with

h degrees of freedom and non-centrality parameter (C42).
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Finally, note that (C42) remains valid when we replace �10 by its ML estimator under the

null if mt(�1;0) and the scores corresponding to �1 are asymptotically uncorrelated when H0

is true, as in all our tests. In addition, both M(�10;0) and 	 coincide with the (2,2) block of

the information matrix when mt(�1;�2) are the scores with respect to �2. This result con�rms

that the non-centrality parameters of LM and Wald tests will be the same under sequences of

local alternatives, which simpli�es their computation.

Serial correlation tests

Let us assume without loss of generality that � = 0. Hosking�s test is e¤ectively based on

the in�uence functions

mlt(�s;�
y) = vec[yty

0
t�1 �Gyy(1)]

evaluated at �y = 0. But since

Gyy(1) = cc
0�+ diag( � ��)

for the model considered in section 3.5 in view of (15), and

vec[Gyy(1)] = (c
 c)�+ vec[diag( � ��)];

it trivially follows that

Ml(�s;0) = E[@mlt(�s;0)=@�
y0] = �[ (c
 c) EN� ]:

Hence, we will have that

Ml(�s;0)��
y = �[(c
 c)�+EN��]

when

��y0 = ( � ���0N ):

As for the asymptotic covariance matrix, the proof of Proposition 4 implies that if �y = 0, then

p
Tmlt(�s;0) =

p
Tvec(yty

0
t�1)! N(0;�
�)

irrespective of the distribution of yt.

Since the diagonal serial correlation test uses the in�uence functions

vecd[yty
0
t�1 �Gyy(1)] = E

0
Nvec[yty

0
t�1 �Gyy(1)];

it is easy to obtain the corresponding Jacobian matrix by premultiplying Ml(�s;0) by E0N .

Speci�cally,

E0NMl(�s;0)��
y = �[(c� c)�+ ��]:
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We can also exploit the properties of EN (see Magnus (1988)) to show that under the null

p
Tvecd(yty

0
t�1)! N(0;���):

Finally, to obtain the non-centrality parameter for the serial correlation test of w0yt, we

simply have to exploit the fact that the relevant in�uence functions are

w0yty
0
t�1w �w0Gyy(1)w = (w

0 
w0)vec[yty0t�1 �Gyy(1)];

so that the appropriate Jacobian will be (w0 
w0)Ml(�s;0), whence

(w0 
w0)Ml(�s;0)��
y = �[(w0c)2�+ (w0�w)��]:

Similarly, it is straightforward to show that

p
T (w0yty

0
t�1w)! N [0; (w0�w)2]:

ARCH tests

To keep the algebra simple, we assume once again that � = 0, that the conditional variances

of common and speci�c factors have been generated according to (36) and that the conditional

distribution is elliptically symmetric. Hosking�s test applied to all the squares and cross-products

of yt is e¤ectively based on the in�uence functions that correspond to the �rst-order autocovari-

ance matrix of vec(yty0t), Syy(1) say, evaluated at �y = 0. More speci�cally,

mst(�s;�
y) = vecf[vec(yty0t ��)vec0(yt�1y0t�1 ��)]� Syy(1)g:

But since

E(yty
0
tjIt�1;�) = cc0�t + �t

so that

vec[E(yty
0
t ��jIt�1;�)] = (c
 c)(�t � 1) +EN (t � );

and

vec(yt�1y
0
t�1 ��) = (c
 c)(f2t�1 � 1) + vec(vt�1v0t�1 � �) + (IN2 +KNN )(c
 IN )ft�1vt�1;

then it follows that

Syy(1) = E[vec(yty
0
t ��)vec0(yt�1y0t�1 ��)] = EfE[vec(yty0t ��)jIt�1;�]vec0(yt�1y0t�1 ��)]g

= Ef[(c
 c)(�t � 1) +EN (t � )][(c0 
 c0)(f2t�1 � 1)

+vec0(vt�1v
0
t�1 � �) + ft�1v0t�1(c0 
 IN )(IN2 +KNN )g

= (cc0 
 cc0)E[(�t � 1)(f2t�1 � 1)] + (c
 c)E[(�t � 1)(v0t�1 � v0t�1 �  0)]E0N

ENE[(t � )(f2t�1 � 1)](c0 
 c0) +ENE[(t � )(v0t�1 � v0t�1 �  0)]E0N
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because of the assumed elliptical symmetry and lack of cross-sectional correlation between ft

and the v0its, and the fact that we are assuming univariate Arch(1) processes for them. This

last assumption also implies that

E[(�t�1)(f2t�1�1)] = �V (f2t�1) = �[E(f4t�1)�1] = �

�
3(�+ 1)(1� �2)
1� 3(�+ 1)�2 � 1

�
= �

(3�+ 2)

1� 3(�+ 1)�2 ;

where � is the multivariate excess kurtosis coe¢ cient. Similarly

E[(it � i)(v2it�1 � i)] = �iV (v
2
it�1) = �i

(3�+ 2)

1� 3(�+ 1)�2i
2i :

In addition, we can show that

E[(it � i)(v2jt�1 � j)] = �icov(v
2
it�1; v

2
jt�1) = �i[E(v

2
it�1v

2
jt�1)� ij ] = �iij

�

1� (�+ 1)�i�j
;

E[(�t � 1)(v2it�1 � i)] = �cov(f2t�1; v
2
it�1) = �i

�

1� (�+ 1)��i
;

E[(it � i)(f2t�1 � 1)] = �icov(f
2
t�1; v

2
it�1) = �ii

�

1� (�+ 1)��i
:

From here, it is straightforward to see that under the null of conditional homoskedasticity

in common and idiosyncratic factors the only non-zero derivatives will be

@E[(�t � 1)(f2t�1 � 1)=@� = (3�+ 2)

@E[(it � i)(v2it�1 � i)]=@�i = (3�+ 2)2i

@E[(it � i)(v2jt�1 � j)]=@�i = �ij

@E[(�t � 1)(v2it�1 � i)]=@� = �i

@E[(it � i)(f2t�1 � 1)]=@�i = �i

whence we can obtain the appropriate Jacobian matrix

Ms(�s;0) = @E[mt(�s;0)]=@�
y0:

Finally, we will have that

Ms(�s;0)��
y = �vecf(cc0 
 cc0)(3�+ 2)�+ (c
 c) 0E0N��

+EN(c
0 
 c0)��� +EN [2(�+ 1)(�� �) + � 0]E0N��g (C43)

when

��y0 = ( � ���0N ):

As for the asymptotic covariance matrix, the proof of Proposition 8 implies that if �y = 0,

then

p
Tmst(�s;0) =

p
Tvec[vec(yty

0
t ��)vec0(yt�1y0t�1 ��)]! Nf0; [H(�)
H(�)]g;

86



when the conditional distribution of yt is elliptically symmetric, where H(�) is de�ned in (A25).

But given that the autocovariance matrix of vech(yty0t) will be

D+
NE[vec(yty

0
t ��)vec0(yt�1y0t�1 ��)]D+0

N = D+
NSyy(1)D

+0
N ;

it is straightforward to obtain the relevant limiting mean vector as

(D+
N 
D

+
N )Ms(�s;0)��

y:

Similarly, the proof of Proposition 8 also implies that
p
T

T

XT

t=1
vec[vech(yty

0
t ��)vech0(yt�1y0t�1 ��)]! N [0; (D+

NH(�)D
+0
N 
D+

NH(�)D
+0
N )];

where 1
2D

+
NH(�)D

+0
N is de�ned in (A26).

From here, we can obtain the non-centrality parameter for the test that only looks at the

marginal autocovariances of vech(yty0t) by premutiplying by E
0
N(N+1)=2.

In turn, the diagonalisation matrix EN allows us to obtain the autocovariance matrix of

vecd(yty
0
t ��) as

E0NE[vec(yty
0
t ��)vec0(yt�1y0t�1 ��)]EN = E0NSyy(1)EN ;

whence we can obtain the non-centrality parameter for the test that only looks at the marginal

autocovariances of vecd(yty0t) by premutiplying Ms(�s;0)��
y by (E0N 
 E0N ). An analogous

manipulation yields the asymptotic covariance matrix of the relevant in�uence functions.

Finally, it is straightforward to obtain the autocovariance structure of the squares of any

linear combination of yt, w0yt say, by exploiting the fact that

E[(w0yt)
2(w0yt�1)

2] = vec0(ww0)E[vec(yty
0
t)vec

0(yt�1y
0
t�1)]vec(ww

0):

Similarly, it is easy to prove that
p
T

T

XT

t=1
(w0yt)

2(w0yt�1)
2 ! N [0; (3�+ 2)(w0�w)2]

under the null.
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Table 1

Test power

(a) AR(1) tests. DGP: Gaussian (�=:03,��i=:045,�=�
�=�=��=0)

Common Speci�c Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vecd EWP

Rejection rate 0.121 0.121 0.126 0.395 0.396 0.401 0.402 0.402 0.411 0.203 0.110 0.121

Size adjusted 0.116 0.115 0.117 0.390 0.391 0.376 0.398 0.399 0.381 0.209 0.109 0.117

(b) AR(1) tests. DGP: Student t6 (�=:03,��i=:045,�=�
�=�=��=0)

Common Speci�c Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vecd EWP

Rejection rate 0.120 0.143 0.155 0.391 0.500 0.524 0.397 0.509 0.539 0.202 0.110 0.120

Size adjusted 0.119 0.143 0.138 0.394 0.502 0.479 0.399 0.511 0.489 0.206 0.110 0.118

(c) ARCH(1) tests. DGP: Gaussian (�=��=0,�=��=:05,�=��=:75)

Common Speci�c Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vech Vecd EWP

Rejection rate 0.263 0.261 0.228 0.391 0.391 0.315 0.469 0.473 0.389 0.279 0.197 0.219 0.259

Size adjusted 0.270 0.270 0.264 0.401 0.405 0.391 0.480 0.487 0.475 0.215 0.192 0.222 0.265

(d) ARCH(1) tests. DGP: Student t6 (�=��=0,�=��=:05,�=��=:75)

Common Speci�c Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vech Vecd EWP

Rejection rate 0.229 0.238 0.259 0.377 0.397 0.444 0.438 0.484 0.543 0.510 0.293 0.258 0.226

Size adjusted 0.265 0.267 0.268 0.339 0.384 0.423 0.390 0.467 0.517 0.196 0.189 0.223 0.265

(e) GARCH(1,1) tests (��=���=:94). DGP: Gaussian (�=��=0,�=��=:05,�=��=:75)

Common Speci�c Joint

PML ML SSP PML ML SSP PML ML SSP

Rejection rate 0.321 0.321 0.292 0.499 0.499 0.437 0.592 0.594 0.525

Size adjusted 0.358 0.355 0.350 0.538 0.540 0.533 0.631 0.635 0.622

(f) GARCH(1,1) tests (��=���=:94). DGP: Student t6 (�=��=0,�=��=:05,�=��=:75)

Common Speci�c Joint

PML ML SSP PML ML SSP PML ML SSP

Rejection rate 0.286 0.330 0.352 0.456 0.545 0.600 0.530 0.652 0.714

Size adjusted 0.337 0.372 0.380 0.511 0.554 0.612 0.574 0.662 0.726



Table 2

Descriptive statistics

Industry portfolios

Correlations

Sector Means Std.dev. Cnsmr Manuf HiTec Hlth Other

Cnsmr .566 4.481 1

Manuf .543 4.178 .804 1

HiTec .497 5.320 .734 .718 1

Hlth .733 4.995 .710 .668 .634 1

Other .500 4.998 .878 .848 .739 .708 1

Notes: Sample: January 1953-December 2008. Industry de�nitions: Cnsmr: Consumer Durables,
NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufactur-
ing, Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:
Healthcare, Medical Equipment, and Drugs. Other: Other �Mines, Constr, BldMt, Trans, Hotels, Bus
Serv, Entertainment, Finance.



Table 3

Estimates of � = cc0 + �

Industry portfolios

Factor Loadings Speci�c Variances

Sector PML ML SSP PML ML SSP

Cnsmr 4.130 4.309 4.292 3.024 3.263 3.215

Manuf 3.708 3.840 3.847 3.710 3.683 3.705

HiTec 4.223 4.337 4.342 10.465 8.453 8.997

Hlth 3.791 4.120 4.075 10.574 10.915 10.870

Other 4.740 4.900 4.909 2.518 3.105 3.062

Notes: Sample: January 1953-December 2008. Industry de�nitions: Cnsmr: Consumer Durables,
NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufactur-
ing, Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:
Healthcare, Medical Equipment, and Drugs. Other: Other �Mines, Constr, BldMt, Trans, Hotels, Bus
Serv, Entertainment, Finance. PML refers to the Gaussian-based ML estimators, ML to the Student t
ones, and SSP to the elliptically symmetric semiparametric estimators.



Table 4a

Serial correlation tests (p-values, %)

Ar(1) Ar(3) Ar(12)

PML ML SSP PML ML SSP PML ML SSP

Common factor 0.35 2.64 1.35 19.75 35.49 24.04 39.59 53.85 59.63

Speci�c factors 1.46 2.70 1.45 1.40 8.84 4.11 0.06 0.00 0.00

Joint 0.11 0.87 0.30 1.52 11.31 4.71 0.11 0.00 0.00

Table 4b

Conditional heteroskedasticity tests (p-values, %)

Arch(1) Garch(1,1)

PML ML SSP PML ML SSP

Common factor 0.36 6.12 1.79 0.00 0.26 0.01

Speci�c factors 0.00 0.00 0.00 0.00 0.00 0.00

Joint 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Sample: July:1962-June:2007. Industry de�nitions: Cnsmr: Consumer Durables, NonDurables,
Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufacturing, Energy, and
Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth: Healthcare, Medical
Equipment, and Drugs. Other: Other �Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment,
Finance. PML refers to the (fully robust) tests based on the Gaussian ML estimators, ML to the Student
t ones, SSP to the elliptically symmetric semiparametric estimators.
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(a) Baseline signal to noise ratio

 

 

Figure 1: Power of mean dependence tests at 5% level against local alternatives
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(b) Low signal to noise ratio
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(c) High signal to noise ratio
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Figure 2: Power of mean dependence tests at 5% level against local alternatives
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(c) DGP Student t with 6 df
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(a) Baseline signal to noise ratio

 

 

Figure 3: Power of variance dependence tests at 5% level against local alternatives
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Figure 4: Power of variance dependence tests at 5% level against local alternatives
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(c) DGP Student t with 6 df
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