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Abstract
Playas represent evaporitic environments, which are mainly controlled by precipitation, evapotranspiration and elevation.  They 

are well represented on the current Earth and were widely developed on the Permian Pangaea as well, although their geographic 
distribution was different. First, the present paper deals with a clarification in the definition of the relatively confused notion of playa 
or alkali flat including both geomorphological and geological aspects illustrated by field experience carried out in Tunisia, Tibet 
and Oman. Then, we discuss the link between playas, climate and tectonics, with its palaeogeographical implications, using a com-
parison between the current belts (Alps, Himalaya, etc.) and the Appalachian-Variscan-Uralian-Mongolian belt, the development of 
which lasted until the Late Permian for the younger segments. Some tectonic problems are put into light such as the role of orogen 
as climatic barrier and the importance of large-scale strike-slip faulting.
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Resumen
Las playas representan ambientes evaporíticos que están controlados básicamente por la evaporación, evapotranspiración y la 

elevación. Están bien representados en la actualidad en la Tierra y también lo estuvieron en Pangea, durante el Pérmico, aunque su 
distribución geográfica era diferente. La primera intención del presente trabajo está en la clarificación del relativamente confuso 
término de playa o alkali flat, incluyendo los aspectos geomorfológicos y geológicos basándonos en la experiencia llevada a cabo en 
Túnez, Tíbet y Omán. Seguidamente discutimos la relación entre playas, clima y tectónica, con sus implicaciones paleogeográficas, 
utilizando comparaciones entre los cinturones tectónicos actuales (Alpes, Himalaya, etc.) y el cinturón de los Apalaches-Varisco-
Urales-Mongol, cuyo desarrollo se prolongó hasta el final del Pérmico en sus segmentos más jóvenes. Se sacan a la luz algunos 
problemas tectónicos tales como la barrera climática producida por el propio orógeno y la importancia de la fracturación de tipo 
desgarre a gran escala.
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1. Introduction

A major effort is under way to reconstruct past climatic 
changes to help predict physical and biologic responses 
to climate.  The planet Earth is already experiencing the 
impacts of these changes on biodiversity, freshwater re-
sources and local livelihoods. Glacier melting, sea-level 
rise and desertification in the tropical regions (Fig. 1) are 
the major problems to be solved. For the study of global 
climate, the interest of the Late Carboniferous to Permian 
time-span (Ludwig, 1988; Fluteau et al., 2001; Chumak-
ov and Zharkov, 2003) and this from the latest Permian to 
Early Triassic as well (Kiehl and Shields, 2005; Woods, 
2005) has been emphasised. The tectonic influence on 
climate has been evidenced either during Carboniferous 
to Triassic times (Oyarzun et al., 1999) or simply for the 
Late Carboniferous to Early Permian interval (Glover and 
Powell, 1996). Fluteau (2003) provided with an extended 
synthesis for the Phanerozoic. More recently, Roscher 
and Schneider (2006) synthetized the climate setting of 
the Late Carboniferous and Permian, considering some 
major geodynamic aspects such as the closure of the 
Rheic ocean. Moreover, they proposed for the Variscan 
orogen a lower elevation (about 2000 m) than previously 
assumed (Becq-Giraudon and Van den Driessche, 1994).

The Late Carboniferous-Permian-Early Triassic times 
record the transition from a cold interval, approximately 
ending during the Early Permian (Table 1), characterised 

by repeated periods of extensive glaciation and deglacia-
tion affecting the southern Gondwana, to a warm-climate 
interval, prolonged during the whole Mesozoic and a ma-
jor part of the Cenozoic until the Quaternary cold events. 
The most extensive Phanerozoic glaciation lasted about 
90 My and its termination occurred during the Sakmarian 
on the southern border of the Gondwana supercontinent 
(Visser, 1993). 

Consequently, Late Carboniferous to Early Permian 
has been considered as the best available analogue to the 
Recent (DiMichele et al., 2001). During that period, Lau-
rasia and Gondwana became welded together to consti-
tute the supercontinent Pangaea rimmed by a broad and 
unique watermass, the Panthalassic ocean or Panthalassa 
(Fig. 2). Recent advances in palaeogeographic reconstruc-
tions ask for reconsidering the global tectonic evolution 
(Scotese, 2001; Stampfli and Borel, 2002; Torsvik and 
Cocks, 2004). A major worldwide geodynamic event, the 
Variscan orogeny sensu lato, culminated during the Per-
mian. From the Visean onward, mantle-derived activity 
indicated lithosphere thinning and post-orogenic crustal 
extension (Lorenz and Nicholls, 1984; Matte, 1986; Bon-
in, 1998; Stampfli et al., 2002). The European segment, 
the so-called Variscan belt sensu stricto or Hercynian 
belt, was formed by the collision of Gondwana and Lau-
rasia. This sketch is complicated by the subduction of the 
north-western Palaeotethys along an active margin. The 
major collisional effects ceased during the Late Carbonif-

Fig. 1.- Current arid regions of the world (rainfalls less than 200mm/year).
Fig, 1.- Zonas áridas en la actualidad en la Tierra (con precipitaciones inferiors a 200mm/año).
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erous. During the Permian, the Scythian belt was formed 
(Natal’in and Şengör, 2005), Laurasia-Kazakhstan col-
lision produced the Uralian belt (Matte, 2002), whereas 
Kazakhstan and Eastern Siberia led to the Central Asian 
belt (Nikishin et al., 2002; Van der Voo et al., 2006), also 
named Altaids or Mongolian belt. These events culmi-
nated during the Middle Permian. Some tectonic move-
ments occurred also during the Late Permian, particularly 
in eastern Eurasia. In the Alleghanian orogeny (Hatcher, 
2002), the major tectonic activity occurred first in the 
Early Carboniferous (Mississipian) with the closure of 
the eastern Rheic ocean due to the collision of Gondwana 
and part of North America and, second, between the Late 
Carboniferous (Pennsylvanian) and the Early Permian, 
more precisely the Late Sakmarian, with the collision of 
South America and southern North America, forming the 
Ouachitas. The Gondwanan segment or ‘Mauritanides’ 
is less known and time-constrained. One other problem 
is the place of North Gondwana (current Africa) and the 
transition from the Alleghanides to the Eurasian Varis-
cides. Indeed, in northern Africa the chronology of the 
Late Palaeozoic tectonics is not well established such as 
in the Moroccan Meseta and also in the Anti-Atlas where 
there is a lack of Late Carboniferous and Permian depos-
its (Burkhard et al., 2006).

Therefore, during the Middle Permian, there is probably 
a worldwide culmination of the orogenic deformations for 
the Phanerozoic (Khain and Seslavinsky, 1992; see also 
Table 1). Granitization appears as a major geodynamic 
marker for the Middle and Late Permian, particularly in 
America and Asia. The opening of the Neotethys initi-
ated also during the Early Permian (Fig. 2), characterised 
by the drift of the Cimmerian blocks (Cimmerian conti-
nent?) from the Gondwana toward the northern margin 
of the Palaeotethys (Ziegler and Stampfli, 2001; Stampfli 
and Borel, 2002).

The global aridity of the Permian and Triassic Pangaea, 
including some high latitude areas, could be explained by 
the particular distribution of land- and watermasses. Geo-
chemical variations of unusual amplitudes occurred dur-
ing the Permian (Scheffler et al., 2003) and particularly 
at the Permian-Triassic boundary interval (PTBI) (Baud, 
2005). Geochemical elements, such as oxygen or sulphur, 
show extreme negative or positive excursions, revealing 
major changes on the continent and in the ocean where 
the general circulation should be affected (Winguth and 
Maier-Reimer, 2005). This unique Phanerozoic setting 
ended with the major biological crisis close to the PTBI.

The present paper focuses on playas. This typical land-
form could be easily defined in the present-day arid and 

Fig. 2.- Late Permian palaeogeography. Siberia and Emeishan traps are represented in dark grey. * (small stars) Early Permian evapori-
tes. * (large stars) Late Permian evaporites. The Permian palaeogeography is consistent with Pangaea A.

Fig. 2.- Paleogeografía del Pérmico Superior. Los vulcanismos de Siberia y Emeishan están representados en gris.  * (asteriscos peque-
ños) evaporitas del Pérmico Inferior. * (asteriscos grandes) evaporitas del Pérmico Superior. La paleogeografía es consistente con el 
modelo de Pangea A. 
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semi-arid landscapes. Ancient playa environments are 
more difficult to decipher, although they have been docu-
mented in a number of places of different stratigraphic 
ages. One of the oldest playa is probably that identified by 
Simpson et al. (2004) in the Palaeoproterozoic of South 
Africa. Playa facies have been proposed for Uppermost 
Neoproterozoic (Vendian) deposits of Svalbard (Fairch-
ild and Hambrey, 1995). Generally, a few examples of 
saline pan deposits has been described in the Precam-
brian. On the contrary, playa mudflats, perennial lakes 
and ephemeral stream environments are very common in 
the ‘Old Red Sandstones’ (Devonian) (e.g., Clarke and 
Parnell, 1999). After the Carboniferous, a stratigraphic 
system poor in playas, the Permian and Triassic are con-
versely the richest in that kind of environment. However, 
playas still remain relatively rare in the Early Permian, 
for example in the Salagou Fm of the Lodève basin, Nahe 
Subgroup of the Saar basin or the Hornburg Fm of the 
Saale basin (Schneider and Gebhardt, 1993; Schneider et 
al., 2006), and in the Orobic Alps (Cassinis et al., 1986; 
Cadel et al., 1996). Permian playas develop in the mid-
dle Early Permian (Schneider and Gebhardt, 1993; Ro-
scher and Schneider, 2006) and become more and more 
common in the Middle and Late Permian (Gand et al., 
1997; Freytet et al., 1999) and in the Triassic (e.g. Paul 
and Peryt, 2000). More generally, during the Permian the 
widening of closed drainage areas on land reduced the 
transport of organic and mineral nutrients to seas (Chu-
makhov and Zharkov, 2003). Playa environments are 
also very common from the Jurassic (Spalletti and Piñol, 
2005) to the Present, a period characterised by global 
temperate climate conditions. Since the amalgamation 
of almost all continental terranes into the Pangaea super-
continent, plate tectonics radically altered the distribution 
of landmasses. Regional climates developed, and current 
arid conditions prevail in tropical areas but also close to 
the equatorial regions, such as in Peru, NE Brazil, Soma-
lia, Kenya etc. (Fig. 1).

As a result of their low density and high solubility, 
evaporites play key roles in some geological processes 
and particularly in the crustal deformation. Sometimes, 
thick Permian evaporitic sequences could be recognised, 
such as in the Zechstein sea (Langbein, 1987; Hryniv and 
Peryt, 2003), but their marine origin is clear and only 
some paralic facies could be considered as actual playas 
such as in the Late Permian of NE England (Turner and 
Smith, 1997). Using the example of Chott el Djerid, Tuni-
sia, Bryant et al. (1994) have shown that as an ephemeral 
lake shrank, brine produced could be similar to modern 
sea water. Thus, evaporites alone can not be considered 
as the evidence of playa, as illustrated by the evaporites 
of the Messinian crisis, which are linked with evapora-
tion in a deep basin-shallow water model (Rouchy and 
Caruso, 2006) and do not indicate playa environments.

2. The playa environment

2.1 The current playas and their setting

The Spanish name playa, which literally means ‘beach’, 
was initially used in Mexico and U.S. Southwest (e.g. 
Hamilton, 1951).  This morphology, also named ‘alkali 
flat’ or ‘salt pan’, describes a flat-bottom depression pe-
riodically covered by water (Fig. 3).  This water could 
either slowly filtrate into the ground water system or 
evaporate into the atmosphere, both causing the deposi-
tion of evaporites, sand, and mud as well. Briere (2000) 
stipulates that a playa, as a discharging intracontinental 
basin, remains dry at least 75% of the year. Typical sites 
of playa environments are known at Black Rock Desert in 
Nevada and the Bonneville Salt Flats in Utah.  Neverthe-
less, alkali flats are very common, particularly in the dri-
est regions of Asia such as the Qaidam Pendi or Qaidam 
desert in Western China (Fig. 4B), in Southern America 
and particularly in the Atacama desert (Flint, 1985; Hart-
ley and Chong, 2002; Hartley, 2003), in the arid regions 

Fig. 3. Morphology of the bolson landform including both playa and pediment (after Demangeot 
and Bernus, 2001, modified).

Fig. 3.- Morfología de “bolson landform” incluyendo tanto la playa como el pedimento. (Modifi-
cado de Demangeot y Bernus, 2001).
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of Australia – the Lake Eyre Basin, including much of 
the landmass of arid inland Australia drains into it, is the 
largest modern endorheic system in the world (Magee et 
al., 2004) – in the Middle East and in northern Africa. 
They also exist in temperate zone, for example at Laguna 
de Playa in the central Ebro basin, NE Spain.

Therefore, playas or alkali flats constitute large zones 
of aggradation in semiarid or arid regions. The flat-
floored desert depression, usually centred on the playa 
and surrounded by mountains, is named bolson, from the 
Spanish bolsón, which means ‘large purse’ (Fig. 3). Ba-
sically, it is necessary to consider the playa as a whole, 
including the bolson (Fig. 4A). This type of basin char-
acterises Basin-and-Range structures. If developed under 

 
 

certain conditions of aridity, the centre of the playa could 
be occupied by a shallow intermittent endorheic lake, 
the so-called sabkha lake, sometimes but inadequately 
named playa lake. Some authors consider that sabkha 
– or sebkha – would be marine influenced, whereas playa 
would be only continental (e.g., Bates and Jackson, 1987; 
Briere, 2000). For us, this definition is inappropriate be-
cause some typical current sabkhas, such as the ‘Sebkha 
Mekerrhane’, Algeria, are far away from the sea (see also 
Fig. 6). According to seminal works (e.g., Coque, 1962) 
we consider here the sabkha as the centre of the endorheic 
system. Some evaporite-free coastal playas, the so-called 
khabras, are linked with variations of the sea level, in 
Eastern Oman for example. Others are related to the dis-

Fig. 4.- Photographs of the Qinhai Province (China). A. 
Playa landform. Example near Ngola Shan between 
Qaka and Gaxun (Qinhai Province, China). B. Playa 
with sabkha in the background. Eastern Qaidam Pendi 
(Qinhai, China), region of Dulan (Qaganus).C. Alluvial 
deposits (mainly conglomerates) in front of the Kunlun 
belt (Naij River), region of Golmud (Kerno).

Fig. 4.- Fotografías de la Provincia de Qinhai (China). A. 
Extensión de playa. Ejemplo cerca de Ngola Shan, entre 
Qaka y Gaxun (Provincia de Qinhai, China). B. Playa 
con sabkha al fondo. Al este de Qaidam Pendi (Qinhai, 
China), región de Dulan (Qaganus). C. Depósitos alu-
viales (principalmente conglomerados) frente al cintu-
rón de Kunlun (río Naij), región de Golmud (Kerno).

A

B

C
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solution of continental salts, such as the Zone of Chotts in 
Tunisia (chott meaning ‘shore’ in arabic). 

In the salt pan, evaporites are deposited due to the con-
centration by evaporation of natural solutions of salts 
(Warren, 1999). Such areas consist of fine-grained sedi-
ments including colloids and clays infused with alkali 
salts. The least soluble salts (calcium and magnesium 
carbonates) precipitate first, on the outside of the pan, 
followed by sodium and potassium sulphates. Finally, 
in the centre of the playa, sodium chlorides, potassium 
chlorides, and magnesium sulphates are deposited. Asso-
ciated to sodium chlorides, sodium and potassium car-
bonates could be concentrated in alkali sabkha lake, such 
as the current Lake Magadi in the Eastern Rift Valley, 
Kenya. The most common minerals are halite, gypsum 
(or its water-depleted form, the so-called bassanite), an-
hydrite, primary dolomite, and sodium sulphates. While 
the alkali flat itself will be devoid of vegetation, flats are 
commonly ringed by salt-tolerant plants, forming a ha-
lophytic steppe, the famous ‘chott’ stricto sensu. There-
fore, the vegetation-free character indicated by Bates and 
Jackson (1987) is not relevant for defining a playa.

Some of the present-day playas obviously suffer a tec-
tonic influence. For example, the Zone of Chotts, region 
of the Presaharian Tunisia, is situated in a series of tec-
tonically controlled depressions that lie between the Atlas 
Mountains and the Saharan Platform, along a structural 
line, the so-called Sillon Tunisien or Tunisian trough, 
linking the Tripolitania trough, Libya, to the East, to the 
Chott Merouane-Chott Melrhir, Algeria, to the West (Bu-
rollet, 1991). In such areas, subsidence phenomena are 
superimposed to the evaporation and deflation process-
es. Nevertheless, evaporite deposits are not necessarily 
linked with tectonics (Rouchy et al., 2001). For example, 
elevation and strong evaporation could explain the pres-
ence of the famous Salar of Uyuni in the Bolivian Alti-
plano. Salar means salt pan in Spanish and, therefore, is 
equivalent to sabkha.  In addition, hypersaline systems 
are known in current polar regions.

Finally, it should be emphasised the interest of the 
playa as a palaeoenvironmental marker. This landform 
characterises the aridity of the area under investigation, 
any extrapolation in terms of palaeolatitudes being more 
difficult.

2.2. The Permian playas

2.2.1. Evidences and location of the Permian playas

Permian times represent not only a key period for under-
standing the Late Variscan tectonic evolution (e.g. Khain 
and Seslavinsky, 1992; Nikishin et al., 2002; Deroin and 

Bonin, 2003), but also for studying palaeoclimates (e.g. 
Fluteau et al., 2001; Roscher and Schneider, 2006). Dur-
ing the Permian and the Triassic as well, a worldwide de-
velopment of deserts could be emphasised in a number 
of Pangaean places. But, whereas arid facies should be 
inferred, real playa environment are sometimes difficult 
to evidence. If evaporites are used as markers for the 
Permian playas, the following regions should be cited: 
Southern America, South-West north America, Central 
Asia, etc. (Fig. 2).

2.2.2. America

Some authors have depicted the North American equa-
torial region as predominantly everwet. Nevertheless, as 
early as 1964, Briden and Irving recognised eolian sand-
stones and evaporites in the western equatorial Pangaea. 
Equatorial aridity during Early Permian has been specifi-
cally dealt with by Kessler et al. (2001) and shifts in Late 
Palaeozoic atmospheric circulation in that region have 
been documented by Tabor and Montañez (2002). A syn-
thesis of the Permian facies of the USA has been done by 
Mazzullo (1995). In Texas, coastal sabkha and salt pan 
deposits have been inferred by Handford (1981). More 
recently, Dickson et al. (2001) working in West Texas ex-
amined Late Permian continental calcite and saddle dolo-
mite cement. This cement has 87Sr/86Sr values lower than 
those known for contemporaneous marine carbonates. 
This is interpreted by the authors as the evidence of the 
presence of hypersaline brine during diagenesis. Ander-
son and Dean (1995) and Kirkland et al. (2000) detailed 
some aspects of the evaporitic series in the Late Permian 
of the Delaware Basin. Benison and Goldstein (2000) 
studied the sedimentology of ancient Permian saline pans 
in North Dakota. Acid saline lake deposits have even been 
proposed as analog of the Martian strata (Benison, 2006). 
In Arctic North America, Beauchamp (1995) has also em-
phasised the importance of evaporitic deposits.

In Southern America, part of Gondwana, Permian 
evaporites are frequent, particularly at the top of the Late 
Paleozoic, for example in the Upper section of the Pa-
ganzo Group, Argentina (Limarino et al., 2006). The Per-
mian-Triassic sedimentary facies have been correlated 
with both tectonics (Zerfass et al., 2004) and palaeoenvi-
ronment (Zhang et al., 1998).

2.2.3. Eurasia

In Europe, there is a considerable amount of references 
concerning Permian geology (e.g., Cassinis et al., 1995; 
Cassinis, 2001; Virgili et al., 2006). These numerous 
references include the seminal works using the French 
(Autunian, Saxonian, Thuringian) and German termi-
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nology (Rotliegende, Zechstein). Facies such as the so-
called ‘Saxonian’ and ‘Zechstein’ characterise the conti-
nental and marine shallow-water facies, respectively. In 
the same areas, Late Triassic is the realm of large-scale 
evaporites (Keuper). It exists an old and general consen-
sus about the existence of wet conditions during the very 
Early Permian continuing palaeoenvironments developed 
during the uppermost Carboniferous. With the north ori-
ented drift of Laurasia, Europe suffered tropical condi-
tions as early as the Guadalupian and until the PTBI. Dri-
est facies appeared in the Middle (Guadalupian) and Late 
Permian (Lopingian). For example, the Uppermost De-
thlingen and Hannover Formations (Capitanian-Wuchi-
apingian according to Schneider et al., 2006) represent 
an evaporitic playa mud flat environment with associated 
perennial playa lake and salt flats. The facies distribution 
is the result of a complex interplay of climate and tecton-

ism. The recent synthesis by Schneider et al. (2006) also 
precises that several short phases of increased humidity 
could temporarily interrupt the general trend, especially 
during the Wuchiapingian (lower part of the Lopingian) 
as well (Table I). These phases could correspond to the 
last pulses of the major Permo-Carboniferous glaciation.

The Early and Middle Permian are uniquely represent-
ed by continental deposits. In France for instance, most 
of the Permian basins show evidence of arid environ-
ments (Chateauneuf and Farjanel, 1989, Deroin et al., 
2001). Nevertheless, in Europe evaporites are rare. It is 
possible to mention the Eisenach Formation (Kungurian-
Roadian) of the Thuringian Forest Basin, Germany, or 
the Chotĕvice Formation (Kungurian) of the Krkonoše-
piedmont Basin, Czech Republic (Schneider et al., 2006). 
The same trend could be described in Spain (Arche and 
López-Gómez, 2005), British Islands, Germany (Roscher 

Table 1. Stratigraphy of the Permian (according to the Subcommission on Permian Stratigraphy, 2006) and main tectonic and climatic events.
Tabla 1. Estratigrafía del Pérmico (según la Subcomisión Estratigráfica del Pérmico, 2006) y los principales eventos tectónicos y climáticos.
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and Schneider, 2006), Italy (Cassinis, 2001) and par-
ticularly Sardinia (Pittau and Del Rio, 2004), North Sea 
(Martin et al., 2002), the Czech Republic, Poland, Bul-
garia (Yanev, 2000), Russia, Ukraine, etc., where “New 
Red Sandstones” characterised Late Palaeozoic intracra-
tonic basins. 

Playa facies are generally devoid of any biostratigraph-
ical indicative fossils, but tetrapod footprints, and also 
insects, concostracans, plant remains, etc. appear in plac-
es very common.  Such a sedimentology and palaeon-
tology as well are consistent with dry conditions during 
the Middle Permian (Guadalupian). Playa environment 
dominates and is associated with aeolianites and rare 
evaporites. Thus, no large-scale evaporitic deposits are 
known in the Cisuralian and in the Roadian as well. On 
the contrary, Wordian and Capitanian (Upper Rotliegend 
II) and Zechstein present a great amount of marine evap-
orites especially in the Southern Permian Basin, which 
extended from England to North Germany and Poland, 
and in the Zechstein Sea. Legler et al. (2005) have shown 
that the mega-playa system of the central Southern Per-
mian Basin has been temporary flooded by marine in-
gressions. Evaporites are also frequent in central Eurasia 
(Chuvashov, 1995) and largely developed in the eastern 
regions such as the Kungurian deposits of the Precaspian 
basin, Kazakhstan (Barde et al., 2002).

In the higher latitudes of Eurasia, the same sketch as 
been reported from the Norwegian-Greenland sea area 
(Stemmerik, 1995) and in the Barents shelf area as well 
(Stemmerik and Worsley, 1995). Therefore, from the 
Middle Permian onward, arid conditions prevail. These 
conditions characterised also the Triassic times as illus-
trated in the Early Triassic of the Thuringian sub-basin of 
the Germanic basin, where carbonate sedimentation took 
place in a playa lake environment with variable salinities 
(Paul and Peryt, 2000). 

Rotliegend sequence stratigraphy in the Southern Per-
mian Basin suggests climatically forced fluctuations in 
the level of an expanding playa lake system (Gast, 1991, 
Kiersnowski et al., 1995). The associated facies chang-
es define essentially isochronous sequence boundaries. 
Spectral analyses of gamma ray logs have indicated that 
individual sequences display internal cyclicity consistent 
with orbital (Milankovitch) forcing. Confirmatory results 
have been reported from the spectral analysis of field logs 
from the continental Permian Brodick Beds of the Isle of 
Arran, England (Bailey, 2001).

2.2.4. Africa

In Northern Africa, the situation is very similar to that 
encountered in Spain or France (Medina, 1996; Hofman 

et al., 2000). Elsewhere in the North African craton, the 
same type of environment prevailed (Sidor et al., 2005). 
No Permian evaporites are known in southern Africa. 
Nevertheless, the Karoo supergroup perfectly illustrates 
the changes between a cold and semi-arid climate dur-
ing the Late Carboniferous-earliest Permian interval to 
warmer and eventually hot with fluctuating precipitation 
during the most of Permian times (Stollhofen et al., 2000; 
Burgoyne et al., 2005).

3. Geochemical particularities of the Permian times

A number of studies evidence extreme geochemi-
cal conditions during Permian times and particularly at 
the Permian-Triassic boundary interval (PTBI). These 
geochemical variations could be related to major global 
changes leading from icehouse to hothouse conditions, 
probably mainly caused by a drop in atmospheric CO2 to 
about five times present levels (Berner, 2006a), even if 
some authors argue that low atmospheric levels prevailed 
(Beerling, 2002). This Late Permian drop was brought 
about mainly by a decrease in the burial of terrestrial de-
rived organic matter, but also with a possible contribu-
tion from the weathering of older organic matter on land 
(Berner, 2006b). The Early Triassic time is characterised 
by a quite different biological activity, and particularly 
the absence of large metazoan reefs. More generally, car-
bon isotopes provide interesting information for the con-
tinent landmass and for the marine environment as well 
(Krull et al., 2004). 

Although a major attention has been placed on the 
PTBI where rapid environmental changes may occur, a 
longer period spanning at least 4 My also experienced 
a series of evolutionary events as evidenced by numer-
ous extinctions and recoveries of terrestrial animals or 
plants (McAllister Rees, 2002; McAllister Rees et al., 
2002; Burgoyne et al., 2005). In the meantime, multiple 
extinctions of marine organisms occurred and a sustained 
oceanic anoxia prevailed. In the aftermath of the major 
extinction, the fossils are characterised by an incredibly 
small size (Twitchett, 2006). It is noteworthy to consider 
the development of halotolerant bacteria at about 250 Ma 
(Satterfield et al., 2005).

The dramatic negative excursion of the rate in δ34S 
in the Late Permian is probably related to the extent of 
evaporites. High O2 environment could have altered can-
opy transpiration rates and thefore water-use efficiency 
during the Permo-Carboniferous (Beerling and Berner, 
2000). More generally, decreased δ18O revealed as early 
as the Early Permian is generally interpreted as a decrease 
in rainfalls. Nevertheless, increased CO2 seemed to be the 
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main parameter and evidenced the rapid episode of plant 
die-off (Smith, 1995). To explain such an increase in Per-
mian atmospheric CO2 different hypotheses have been 
proposed. The role of the volcanic activity (flood basalts), 
particularly that of the Siberian (Tunguska) and Emeishan 
traps, has been emphasised (Fig. 2) (Bin He et al., 2007). 
If this hypothesis is correct, it should be noticed that the 
CO2 increase appeared as early as the Early Permian. In 
fact, there is few Early Permian datings for this volcanic 
activity and if developed from the Cisuralian onward, the 
traps were probably limited. A more general influence of 
the extensional tectonics as outgassing and CO2-releasing 
source should be taken into account.

4. Comparison between the Appalachian-Variscan-
Uralian-Mongolian belt and the Alpine-Himalayan 
belt

4.1. Palaeogeography

A consensus exists regarding the presence of a mainly 
Palaeozoic ocean North of the Cimmerian continent, the 
Palaeotethys (Fig. 5), a younger late Palaeozoic-Meso-
zoic ocean located South of this continent, the Neotethys, 
and finally a middle Jurassic ocean, the Alpine Tethys, 
an extension of the central Atlantic ocean in the western 
Tethyan regions. Additional Late Palaeozoic to Meso-

Fig. 5. The Appalachian-Variscan-Uralian-Mongolian belt during the Early Permian (about 275 Ma). Note that Tunguska flood-basalt Pro-
vince should appear as early as the Early Permian. Permo-Triassic Silk Road Arc, Khangai-Khantey and Solonker oceans are indicated 
according to Natal’in and Şengör (2005).

Fig. 5.- El cinturón de los Apalaches-Varisco-Urales-Mongolia durante el comienzo del Pérmico (275 m.a. aprox.). Tener en cuenta que los 
basaltos de la provincia de Tunguska aparecerían con el comienzo del Pérmico. El Arco permo-triásico de Silke Road y los océanos de 
Khangai-Khantey y Solonker están localizados basados en datos de Natal’in y Şengör (2005).
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zoic oceans complicate somewhat this relatively simple 
picture. Therefore, there are still some confusions about 
what Tethys existed at what time. The classical Pangaea 
A is consistent with field data and also with the supposed 
plate arrangement of the Jurassic prior to the onset of the 
Atlantic ocean (Scotese, 2001; Stampfli and Borel, 2002). 
Palaeomagnetic measures have led to the Pangaea B hy-
pothesis, Gondwana landmass being in an about 3000 km 
more eastward position with respect to Laurasia (Irving, 
1977). As a contribution to solve that problem, Muttoni 
et al. (1996, 2003) proposed an evolution from an Early 
Permian Pangaea B to a Late Permian Pangaea A. From 
the geodynamic point of view, a large westward displace-
ment of Gondwana could be explained by the dextral 
strike-slip régime during the Late Palaeozoic (Arthaud 
and Matte, 1975, 1977; Shelley and Bossière, 2002). As 
an illustration for France, this large-scale dextral shearing 
brought together, from the one hand the Ligerian (French 
Massif Central) and Aquitaine terranes and, from the 
other hand the Armorican (Brittany) terrane (Stampfli et 
al., 2002). The dextral strike-slip is indicated by arrows 
in Figure 5. During post-Early Permian to Triassic this 
movement is more difficult to advocate. In the Variscan 
belt of Western Europe, for example, the dominant strike-
slip regime along west-east faults is mainly sinistral and 
the strike-slip is probably slower than during the previous 
period. This movement appears later, during the Trias-
sic, in the Russian platform (Ruban and Yoshioka, 2005). 
However, the problem of relating the movement along 
the Palaeotethyan major shear zone (active margin) and 
the deformations along the other shear zones has already 
been addressed (Lawver et al., 2002). It remains difficult 
to consider a 3000 km-displacement during the Late Car-
boniferous-Permian? having no other field marker than 
palaeomagnetism.

4.2. Analogies

First studies in the 1970’s have quoted resemblance be-
tween the Variscan and the Himalayan belts, particularly 
concerning the type of thrusting (Mattauer and Etcheco-
par, 1977). Whereas early stages of an orogen’s exhuma-
tion history are generally obscured in the belt itself by 
later tectonics and erosion, late events are theoretically 
simpler to illustrate. In that way, the comparison between 
the geometry of the Variscan belt of Western Europe and 
the Himalayas (Burg, 1983) or the Basin and Range Prov-
ince (Malavieille, 1993) has been envisaged. Thus, some 
similarities between the pattern of strike-slip faults and 
thrusts in the Ibero-Armorican and West-Himalayan vir-
gations have been emphasised (Matte, 1986). Some at-
tempts have been made to compare the orographic set-

ting of the Tibet Plateau and the French Massif Central 
(Becq-Giraudon and Van den Driessche, 1994). It seems 
interesting to extent the comparison between the orog-
enies using the location of the playas, actually observed 
for the current ones, simply suggested by the geological 
records for the Permian ones.

At the current Earth surface, it exists a more or less 
continuous belt line from the Atlantic ocean to the Far 
East (Fig. 6). Around the Mediterranean sea, the Alps, 
Apennin, Dinarides, Hellenides, Taurides and Pontides 
are linked to the Tethyan Cenozoic tectonics. To the 
East, the major event is the continent-continent colli-
sion between India, one part of the former Gondwana, 
and the south-eastern margin of Eurasia. This collision 
is in progress since about 55 My and produced the major 
current orogen, the Himalayas. Nevertheless, other belts 
have been laterally produced by the collision, for exam-
ple the Hindu Kush and Pamir. One particular aspect of 
the India-Eurasia collision is the presence of a large pla-
teau, the so-called Tibet Plateau, the mean elevation of 
which is about 4500 m. The Tibet Plateau suffered a poly-
phased evolution. It is bordered on its north-western edge 
by a large sinistral strike-slip fault, the Altyn Tagh fault, 
which is still very active (Fig. 7B). 

‘Tectonic escape’, ‘extrusion tectonics’ or ‘lateral ex-
trusion’ have been proposed for the last tectonic devel-
opments either in Tibet (Tapponnier et al., 1986) or in 
the Alps (Ratschbacher et al., 1991). The identification of 
such a tectonics in the Variscan belt is still debated and 
represents a challenge for a better understanding of the 
orogen. Nevertheless, escape tectonics has been proposed 
by Vauchez et al. (1987) to explain the dextral strike-slip 
in the southeastern Appalachian and the sinistral strike-
slip in the western Senegal-Mauritania (Mauritanides) 
provinces. In the European Variscan belt (Fig. 7A) some 
major faults could be related to escape tectonics such as 
the Bray Fault, the Cévennes Fault, a number of faults in 
southern Iberia, etc. The role of the Tornquist Suture, pos-
sibly reactivated during the Late Palaeozoic movements, 
is not clear. In Figure 7A, dextral late strike-slip move-
ments are clearly put into light by the displacement of the 
Armorica terrane bordered to the north by the Avalonia 
terrane and, to the south, by the Galicia-South Brittany 
suture.

Currently, typical playas could be observed in the Qin-
hai Province of western China between the Kuku Nor 
(Lake Kuku) and the northern border of the Altyn Tagh 
sinistral strike-slip fault. These correspond to the Qaidam 
Pendi (Fig. 4B) with other occurrences in the Taklamakan 
(Fig. 7B). This latter is China’s largest and driest desert. 
In Qaidam Pendi and Taklamakan as well, basins lack 
drainage and salt has accumulated over large areas. The 
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Fig. 7. Comparison between A: The Var-
iscan belt of Western Europe (after 
Matte, 2002, modified) and B: The 
Cenozoic Tibet plateau (after Tappon-
nier et al., 2002, modified). In Figure 
7A, grey tones represent the extent of 
the Armorica terrane.

Fig. 7.- Comparación entre A: El Cin-
turón Varisco del Oeste de Europa 
(modificado de Matte, 2002), y B: La 
Plataforma Tibetano cenozoica (modi-
ficado de Tapponnier et al., 2002). En 
la Figura 7, los tonos grises indican la 
extensión del área de Armórica.

Qaidam basin has been undergoing continuous shorten-
ing since the beginning of the Cenozoic and show good 
synchroneity with uplifting history of the Qinhai-Tibet 
Plateau (Wenchen et al., 2001). It has a rhombic shape, 
largely due to the strike-slip tectonics, and an area of 
about 120 000 km² with a mean elevation of 3000 to 3500 
m a.s.l. It suffered a relatively weaker Cenozoic deforma-

tion than that of the deformed surrounding area in the 
northeastern edge of the Qinhai-Tibet Plateau (Zhou et 
al., 2006). Due to their setting, Taklamakan and Qaidam 
Pendi are cut off from the effects of the Asian monsoon. 
In such areas, playas rich in evaporites are common. In 
addition, between the Qaidam Pendi and the Kunlun pied-
mont, a complex system of playas, endorheic basins, and 
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braided rivers surprisingly recalls what should have oc-
curred during the erosion of the Variscan belt associated 
to coarse sediments such as sandstones and conglomer-
ates (Fig 4C).

5. Discussion

Playas are relatively rare at the current Earth surface. 
They are concentrated in isolated areas where arid condi-
tions prevail, principally in Qinhai-Tibet, Central Asia, 
the Middle East and northern Africa (Fig. 6). From the 
tectonic point of view, it is necessary to take into ac-
count the bolson, which is a better marker than the playa 
itself. The bolson delineates large and elongated zones 
of aggradation such as the current Qaidam Pendi. Such 
areas could be linked with escape tectonics. Moreover, 
evaporites could characterise the central part of the mor-
phological system, the so-called sabkha, but they are not 
necessarily present in the current systems and preserved 
in the old ones. Such morphologies were developed in 
the Valley and Ridge Province of the Appalachians and in 
the Ouachitas as well. Due to the Alpine deformation, the 
view is not so clear in the Asian segments of the Variscan 
orogeny where evaporites are common.

The current dispersion of the landmass results in a great 
number of local climatic barriers and, therefore, to dif-
ferent playa types: elevated in the Andes, close to the sea 
– and possibly below the sea level such as in Algeria – in 
the Zone of Chotts, linked with endorheic basin in Lake 
Eyre, etc. Playas from the US Southwest and those from 
China are closely linked to present-day belts. They are 
probably closer analogues to the Permian playas than 
others. 

In southern stable Europe (Fig. 7A), i.e. southern 
France, the Provence, Lodève, Saint-Affrique, Rodez and 
Brive Permian basins contain the most developed playas 
with a special emphasis on the Lodève basin. All these 
basins are separated from the Variscan Front by the Mas-
sif Central. It is interesting to note that in the current Ti-
bet Plateau the younger unit, Plio-Quaternary in age, the 
so-called Qaidam Pendi rich in playa environments, is in 
the same structural position with respect to the Main Cen-
tral Thrust of the Himalayas (note that the vergence of 
the Variscan and Himalayan main thrusting is opposite). 
There is a centrifugal zonation of the Tibetan units lasted 
since about 55 My (Fig. 7B). This time period could more 
or less represent the latest stages of the orogeny, i.e. Late 
Carboniferous-Early Permian for the Variscan one. For the 
Tibetan Plateau this sketch is complicated by large-scale 
strike-slip faults and the link with other further tectonic 
features (Baikal rift, Altai, etc.). Moreover, the Tibet pla-

teau is still uplifting, whereas the Variscan orogen’s uplift 
probably stopped during the Late Carboniferous. There-
fore, the situation during the Late Variscan time with the 
amalgamation of all the landmasses into the Pangaea was 
clearly different. Nevertheless, it is possible to suggest 
that the basins of southern France were parts of an iso-
lated area forming a structural unit at the southwestern 
edge of the Massif Central and bordered by large-scale 
strike-slip faults. The largest Permian playa system, the 
Southern Permian Basin, was in a quite different tectonic 
setting characterized by thermal subsidence.

A question arises: was the Late Variscan belt more or 
less continuous? The large Appalachian-Variscan-Ural-
ian-Mongolian belt comprised some dependencies: Oua-
chitas, Mauritanides, Moroccan Meseta, Scythian belt, 
Altaids (Fig. 5). The entire belt was comparable to the 
present ‘Alpine’ belt starting from the north African Atlas, 
and joining the Alps, Dinarides, Taurides, Causasus, Pen-
jab, Himalayas, etc. (Fig. 6). Clearly, these are the results 
of diachronous and different types of collision: continent/
continent (Himalayas), progressive shortening collapse 
of narrow oceans (Alps, Dinarides), etc. Between the dif-
ferent segments, it exists large corridors of lowlands or 
sea. The timing of each orogeny could be very variable 
and short as recently illustrated by Dewey (2006), par-
ticularly if arc/continent collisions are concerned – this 
is probably the case for the Scythian belt and also for the 
Permian far eastern orogenies affecting the southeastern 
margin of Eurasia and exotic blocks (Tarim, North China, 
etc.). 

The study of the Permian and Triassic times, particu-
larly the tectonic setting of a number of intramountainous 
basins, indicates a transition from plate tectonics to con-
tinental tectonics (Molnar, 1988). There are only rare oc-
currences of Permian oceanic deposits such as in Oman 
Mountains. Therefore, the palinspastic reconstructions 
should be elaborated only with isolated pieces. Some of 
the pieces of this gigantic jigsaw considerably derived, 
such as the Cache Creek terrane of the Canadian Cor-
dillera recently interpreted as accreted seamounts that 
originated close to the eastern Tethys ocean (Johnston 
and Borel, 2007). The major problem is to consider the 
transition from the crustal thickening as a syn-collisional 
effect, and the gravitary collapse clearly post-collision 
and possibly related to basin and range extensional struc-
tures. It should be noticed that the valleys and ridges of 
the Appalachians present some affinities with the basin 
and range structures. 

The problem of gravitationary collapse has been dis-
cussed for the Tibet Plateau and the Variscan orogeny as 
well (Becq-Giraudon and Van den Driessche, 1994). But 
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as already mentioned, the European Variscides are prob-
ably formed as early as the Late Carboniferous and are 
not representative of the entire Late Palaeozoic belt, the 
maximum development of which is situated in the late 
Early Permian and, most probably, in the Guadalupian 
(Khain and Seslavinsky, 2002).

6. Conclusions

The Late Carboniferous and earliest Permian is repre-
sented by worldwide coal basins – even at high latitudes. 
Progressively, arid conditions appeared and dominated 
in the Middle Permian (Guadalupian), with a large de-
velopment of playas even close to the equator. From a 
palaeoenvironmental viewpoint, during the Late Permian 
(Lopingian) and the Early Triassic as well the most im-
portant feature is a major carbon lack, with no more reefs 
in the ocean and no more coal deposits in the continen-
tal basins. The entire planet Earth has been dramatically 
altered: atmospheric composition, general water circula-
tion, chemistry of the oceans, etc. This is mainly due to 
the geodynamic setting, the existence of the large Ap-
palachian-Variscan-Uralian-Mongolian belt modifying 
a lot of parameters. Low 87Sr/86Sr values observed until 
the PTBI illustrate the fact that erosion is a continuing 
phenomenon during the entire Permian and the Triassic 
as well. Moreover, the widening of closed drainage areas 
on land reduced the transportation of organic and mineral 
nutrients to seas. A dramatic negative excursion of the 
rate in δ34S during the Late Permian could be related to 
the extent of evaporites, particularly in the Southern Per-
mian Basin. This resulted in a great climate change and 
finally by the major biological crisis of the Phanerozoic, 
which is not necessary concentrated at the PTBI bound-
ary but begins a few My before.

The understanding of the evaporites and, more gener-
ally, of the Permian and Triassic playa environments with 
respect to the geodynamic evolution would require a bet-
ter knowledge of the palaeogeography from the one hand, 
and of the geometry of the orogens, particularly their el-
evation, from the other hand.
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