SciELO - Scientific Electronic Library Online

 
vol.45 número1SYNTHESIS AND CHARACTERIZATION OF UNSYMMETRICAL BOROLE COMPLEXES OF HETEROCYCLIC ALDIMINESESTUDIO DE LOS MECANISMOS DE FLOTABILIDAD DEL CUARZO EN PRESENCIA DESALES DE ALQUILAMONIO. I. EFECTO DEL pH índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Boletín de la Sociedad Chilena de Química

versión impresa ISSN 0366-1644

Bol. Soc. Chil. Quím. v.45 n.1 Concepción mar. 2000

http://dx.doi.org/10.4067/S0366-16442000000100004 

EXTERNAL FLAVONOIDS FROM HELIOTROPIUM MEGALANTHUM 
AND H. HUASCOENSE (BORAGINACEAE).
CHEMOTAXONOMIC CONSIDERATIONS

ALEJANDRO URZUA1*, BRENDA MODAK1, LUIS VILLARROEL1, RENE TORRES1, LUZ ANDRADE1, LEONORA MENDOZA2, MARCELA WILKENS1

1Laboratorio de Química Ecológica, 2Laboratorio de Microbiología, Facultad de Química
y Biología, Universidad de Santiago de Chile, Casilla 40, Correo-33, Santiago, Chile.
(Received: July 30, 1999 - Accepted: August 23, 1999)

ABSTRACT

From the CH2Cl2 washings of fresh Heliotropium spp. (Cochranea section), flavonoids and aromatic geranyl derivatives have been isolated. Among the flavonoids, flavanones and flavonols are the most common compounds, and only few flavones have been reported. In this communication we report the isolation of several flavonoids from the exudates of H. megalanthum, and H. huascoense. Two of the compounds isolated from H. huascoense are novel flavonoids, belonging to the uncommon groups of penta-O-substituted flavanones and hexa-O-substituted flavonols. Our results show a different external flavonoid composition of H. huascoense from the other Heliotropium spp. so far studied. They are supported by morphological considerations, in special, the presence or absence of glandular trichomes in Heliotropium spp.

KEY WORDS: Heliotropium megalanthum, glandular trichomes, 5-hydroxy-7,3',4',5'-tetramethoxylavanone, 5,3'-dihydroxy-7,4',5'-trimethoxyflavanone, Heliotropium huascoense, non-glandular trichomes, 5-hydroxy-3,7-dimethoxyflavone, (2S, 3S)-3,5-dihydroxy-7-methoxyflavanone.

RESUMEN

Del extracto de compuestos superficiales obtenido con CH2Cl2 de material fresco de especies de Heliotropium, se han aislado flavonoides y derivados aromáticos geranilados. Entre los flavonoides, los tipos estructurales más comunes corresponden a flavanonas y flavonoles y se han reportado solamente pocas flavonas. En este trabajo se informa el aislamiento de varios flavonoides de los exudados de H. megalanthum y H. huascoense. Dos de los componentes aislados de H. huascoense son flavonoides nuevos, que pertenecen a los grupos poco comunes de flavanonas penta-O-substituidas y flavonoles hexa-O-substituidos. Estos resultados muestran una composición de flavonoides externos en H. huascoense, diferente de las otras especies de Heliotropium estudiadas. Los resultados están reafirmados por consideraciones morfológicas, en especial, la presencia o ausencia de tricomas glandulares en especies de Heliotropium.

PALABRAS CLAVES: Heliotropium megalanthum, tricomas glandulares, 5-hidroxi-7,3'.4'.5'-tetrametoxiflavanona, 5-3'-dihidroxi-7,4',5'-trimetoxiflavanona, 3,5-dihidroxi-7,3',4'5'-tetrametoxiflavona, Heliotropium huascoense, tricomas no glandulares, 5-hidroxi-3,7-dimetoxiflavona, 5-hidroxi-3,7-dimetoxiflavona, (2S, 3S) -3,5-dihidroxi-7-metoxiflavanona.

INTRODUCTION

Section Cochranea (Miers) Reiche of the genus Heliotropium (Boraginaceae), is known only from the coastal hills of northern Chile, and in the south of Perú. This section is of particular ecological interest, because the species grow in arid environment with extreme environmental variation. The only exception is H. stenophyllum that grows in Central Chile between lat. 30° and 33° S1).

The section Cochranea is represented by 17 species of Heliotropium with a geographic distribution ranging from lat. 15° to 33° S1). Like many other desert or semidesert plants, most of the Heliotropium spp. produce characteristic resinous exudates secreted by glandular trichomes on the surface of the leaves and stems1).

Flavanones, flavonols, flavones and aromatic geranyl derivatives have been isolated from the surfaces of Heliotropium spp. these results are presented in Table I.

In this paper we report the flavonoid external composition of H. megalanthum and of H. huascoense, and establish some chemotaxonomic correlations between these species by comparison of their chemistry with that of other previously studied species. In addition the antimicrobial properties of some compounds are presented.

EXPERIMENTAL

Plant material

Heliotropium megalanthum Johnston (ST-2579) and H. huascoense Johnston (ST-2580) were collected during the flowering season, October 1995, in the north of Vallenar (IV Region, Chile, 28° 45' S, 70° 49' W). Voucher specimens were deposited in the Herbarium of the National History Museusm Santiago, Chile.

Isolation of the external components

The external components of H. megalanthum, nd H. huascoense were obtained by dipping 200 g of each fresh plant in cold CH2Cl2 for 15 to 20 s. The extracts were concentrated to partially crystalline residues (2.95 g from H. megalanthum, and 18.2 g from H. huascoense).

External flavonoids from H. huascoense

The resinous exudate of H. huascoense was fractionated by CC on silica gel, using hexane with increasing amounts of EtOAc. The fractions were monitored by TLC on silicagel, using the systems hexane-EtOAc (3:1), CHCl3 -MeOH (99:1), and CHCl3 -MeOH (9:1).

Compound 14: 5,7-dihydroxy-3-methoxyflavone (3-methylgalangine) was identified by direct comparison with an authentic sample (FTIR, TLC, HPLC).

Compound 15: 5-hydroxy-3,7-dimethoxyflavone (3,7-dimethylgalangine) was identified by direct comparison with an authentic sample (FTIR, TLC, HPLC).

Compound 5: (2S, 3S)-3,5-dihydroxy-7-methoxyflavanone ((-)-alpinone); crystals from EtOAc, m.p. 184-186°C [a]D25° - 28.1° (C: 0.215, CHCl3); UV (MeOH): lmax 288, 320 (sh) nm; UV (MeOH + NaOAc): lmax 288, 320 (sh) nm; 1H-NMR (500 MHz, CDCl3) d: 3.46 s (1H, OH), 3.80 s (3H, C-7-OMe), 4.54 d (1H, J = 11.9 Hz, H-3), 5.07 d (1H, J = 11.9 Hz, H-2), 6.05 d (1H, J = 2.3 Hz, H-6), 6.11 d (1H, J = 2.3 Hz, H-8), 7.24 s (1H, OH), 7.44 m (3H, H-3', H-4' and H-5'), 7.54 m (2H, H-2' and H-6') and 11.18 s (1H, C-5-OH); EI-MS (m/z, %): 286 (33), 257 (51), 167 (100), 151 (3), 120 (13), 91 (31), 69 (16), 51 (15). HREI-MS: M+, 286.087004 (C16H14O5, requires 286.084125).

TABLE I. Flavonoids and geranyl aromatic derivatives on the surface of Heliotropium spp.


Plant exudatesa
Ref.
1 2 3 4 5 6 7

Flavanones
5,7-dihydroxyflavanone 1 + + 6,7
5,7,4’-trihydroxyflavanone 2 + + + + 5,6,7
5,,4’-dihydroxy-7-methoxyflavanone 3 +   + + 5,6
4’-acetoxy-5-hydroxy-7-methoxyflavanone 4 + 6
(2S,3S)-3,5-dihydroxy-7-methoxyflavanone 5 + *
3-acetoxy-5,7-dihydroxyflavanone 6 + 7
5,7,3’-trihydroxy-4’-methoxyflavanone 7 + 7
5,4’-dihydroxy-3,7-dimethoxyflavanone 8 + + 5
5,3’-dihydroxy-7,4’,5’-trimethoxyflavanone 9 + *
5-hydroxy-7,3’,4’,5’-tetramethoxyflavanone 10   + *
Flavones
5,3’,4’-trihydroxy-7-methoxyflavone 11 + + 6,7
5,4’-dihydroxy-7,3’-dimethoxyflavone 12 + + 5
Flavonols
3,5,7-trihydroxyflavone 13 + + 6,8
5,7-dihydroxy-3-methoxyflavone 14 + + + + 6,7,8,*
5-hydroxy-3,7-dimethoxyflavone 15 + *
3,5,4’-trihydroxy-7-methoxyflavone 16 + + 5
5,7,4’-trihydroxy-3,3’-dimethoxyflavone 17 + 7
5,4’-dihydroxy-3,7,3’-trimethoxyflavone 18 + 7
3,7,4-trihydroxy-5,3’-dimethoxyflavone 19 + 6
5,6,3’-trihydroxy-3,7,4’-trimethoxyflavone 20 + + 5
3,5-dihydroxy-7,3’,4’,5’-tetramethoxyflavone 21   + *
Aromatic geranyl derivatives
2-geranyl-4-hydroxyphenylacetate 22 + 6
Filifolinol 23   + 9
Carrizaloic acid 24 + 10

a1 = H. stenophyllum H.&A.; 2 = H. sinuatum (Miers) Johnston; 3 = H. filifolium (Miers) Reiche; 4 = H. chenopodeaceum var. chenopodeaceum (D.C.) Clos; 5 = H. chenopodeaceum var. ericoideum (Miers)
Reiche; 6 = H. huascoense Johnston; 7 = H. megalanthum Johnston.
* = Present study.

External flavonoids from H. megalanthum

The external components of H. megalanthum were fractioned by CC using the same procedure applied to the resin of H. huascoense.

Compound 10: 5-hydroxy-7,3',4',5'-tetramethoxyflavanone; crystals from EtOAc, m.p. 159-160 °C. [a]D25° -33.33° (C: 0.03, MeOH); UV (MeOH): lmax 285, 320 (sh) nm; UV (MeOH + NaOAc), lmax 285, 320 (sh) nm 1H-NMR (200 MHz, CDCl3) d: 2.80 dd (1H, J = 3.12, J = 17.19 Hz), 3.10 dd (1H, J = 13.07, J = 17.19 Hz), 3.82 s (3H, OCH3), 3.87 s (3H, OCH3), 3.90 s (6H, 2 OCH3), 5.35 dd (1H, J = 3.14, J = 13.02 Hz), 6.08 brs (2H, H-6 and H-8), 6.67 s (2H, H-2' and H-6') and 12.02 s (1H, C-5-OH); EI-MS (m/z, %): 361 (M+1, 22), 360 (M+, 69), 330 (100), 179 (13), 167 (5), 164 (22), 151 (43), 95 (11). HREI-MS: M+, 360.120400 (C19H20O7, requires 360.120905).

Compound 9: 5,4-dihydroxy-7,3',5'-trimethoxyflavanone; crystals from EtOAc, m.p. 144-146°C; [a]D25° -53.66° (C: 0.41, CHCl3); UV (MeOH): 286, 323 (sh) nm; UV (MeOH + NaOAc): 286, 323 (sh) nm, 1H-NMR (500 MHz, CDCl3) d: 2.79 dd (1H, J = 3.3, J = 17.1 Hz), 3.06 dd (1H, J = 12.6, J = 17.1 Hz), 3.81 s (3H, OCH3), 3.90 s (3H, OCH3), 3.91 s (3H, OCH3), 5.30 dd (1H, J = 3.3, J = 12.6 Hz), 6.06 d (1H, J = 2.1 Hz, H-6 or H-8), 6.08 d (1H, J = 2.1, H-6 or H-8), 6.57 d (1H, J = 1.8 Hz, H-2' or H-6'), 6.69 d (1H, J = 1.8 Hz, H-2' or H-6') and 12.00 s (1H, C.5-OH); EIMS (m/z, %): 347 (M+ +1, 43), 346 (M+, 100), 345 (22), 246 (6), 193 (14), 180 (16), 168 (8), 167 (78), 166 (7), 165 (23), 137 (7), 69 (6) and 43 (10). HREI-MS: M+, 346.102214 (C18H18O7, requires 346.105255).

Compound 21: 3,5-dihydroxy-7,3',4',5'-tetramethoxyflavone; amorphous powder; UV (MeOH): lmax 264, 340 nm; UV (MeOH + NaOAc): lmax 264, 340 nm; 1H-NMR (500 MHz, CDCl3) d: 3.89 s (6H, 2 x OCH3), 3.95 s (3H, OCH3), 4.01 s (3H, OCH3), 5.94 brs (1H, OH), 6.37 d (1H, J = 2.25 Hz, H-6), 6.45 d (1H, J = 2.25 Hz, H-8), 7.34 d (1H, J = 1.95 Hz, H-6' or H-2'), 7.36 d (1H, J = 1.95 Hz, H-2' or H-6') and 12.57 s (1H, C-5-OH); EI-MS (m/z, %): 374 (M+, 100), 373 (23), 359 (42), 331 (16), 174 (3), 176 (11), 166 (1), 167 (13) and 149 (27); HREI-MS: M+, 374.098305 (C19H15O8, requires 374.100168); 359.083748 (C18H15O5, requires 359.076693); 167.025040 (C8H7O4, requires 167.034440).

RESULTS AND DISCUSSION

Identification of the flavonoids

Compounds 14 and 15 were shown to be 7,5-dihydroxy-3-methoxyflvone (3-methylgalangine), and 5-hydroxy-3,7-dimethoxyflavone (3,7-dimethylgalangine), respectively, by comparison with authentic samples and with spectral data.

Compound 5 shows spectral data and m.p. identical to those reported for (2R, 3R)-3,5-dihydroxy-7-methoxyflavanone ((+)-alpinone)2). The only difference was the negative specific rotation which indicated that compound 5 has the opposite configuration, and therefore was characterized as (2S, 3S)-3,5-dihydroxy-7-methoxyflavanone ((-)-alpinone).

The HREI-MS spectrum for compound 10 shows the molecular formula C19H20O7. The 1H-NMR spectrumm shows the presence of a flavanone with four methoxy groups and a C-5-OH. In addition two singlets at 6.08 (2H), and 6.67 (2H) were assigned to H-6, H-8 and H-2', H-6' respectively. Compound 10 therefore was characterized as 5-hydroxy-7,3',4',5'-tetramethoxyflavanone, compound previously isolated from the farinose exudate fronds of Notholeana lemonnii var. lemonnii3).

The HREI-MS spectrum for compound 9 shows the molecular formula C18H18O7. The 1H-NMR spectrum shows that 9 was a derivative of compound 10, with only three methoxy groups. The two doublets (J = 2.1) at 6.57 and 6.69, for H-2' and H-6', suggest an asymetrically substituted ring B. The second OH group was assigned to C-3', and therefore compound 9 was characterized as 5,3'-dihydroxy-7,4',5'-trimethoxyflavanone.

The HREI-MS spectrum for compound 21 shows the molecular formula C19H18O8, and a fragment (A+1)+ of molecular formula C8H7O4 consistent with one OH, and one OCH3 on ring A. The 1H-NMR spectrum shows the presence of a flavonol with four methoxy groups, and a C-5-OH. Two doublets (J = 2.25) at 6.37 and 6.45 were assigned to H-6 and H-8 respectively. In addition, two other doublets (J = 1.95) at 6.34 and 6.36 for H-2' and H-6', almost a singlet, suggest a symetrically substituted ring B. Therefore compound 21 was characterized as 3,5-dihydroxy-7,3',4',5'-tetramethoxyflavone (7,3',4',5'-tetramethoxymyrecetin).

The compounds 9 and 21 are novel natural flavonoids.

Chemotaxonomic considerations

Heliotropium huascoense bears glandular trichomes similar to those found in H. stenophyllum, H. sinuatum, H. filifolium and H. chenopodiaceum var. chenopodiaceum; by contrast, H. megalanthum, and H. chenopodiaceum var. ericoideum bear non glandular trichomes1,3,5). These morphological differences are in agreement with the yield of external extracts by those species4-5). In a previous communication5) we found an almost identical external flavonoid composition of H. chenopodiaceum var. chenopodiaceum and H. chenopodiaceum var. ericoideum, which suggests that the presence of glandular trichomes did not determine the external accumulation of the same flavonoids in these two varieties.

This seems not to be the case in this study. The external flavonoids in H. megalanthum are uncommon penta-O-substituted flavanones and hexa-O-substituted flavonols, a pattern of oxygenation not found in other flavonoids isolated from species of Heliotropium so far studied, Table I.

In addition to the aromatic geranyl derivatives isolated from the resinous exudates of H. chenopodiaceum, H. filifolium, and H. huascoense, we have conclusive evidence, obtained by HPLC coupled with UV-vis spectroscopy5), that aromatic geranyl derivates are also present in the resinous exudates of H. sinuatum and H. chenopodiaceum var. chenopodiaceum. This result seems to indicate that these geranyl aromatic derivatives accumulate in the glandular trichomes of Heliotropium spp.

It has been shown that surface waxes as well as trichomes, play an important role in the resistance of some plants against insect and microorganisms attack11), since the resinuous exudates, produced by glandular trichomes, and surface waxes constitute the first line of resistance (physical and chemical) of a plant against insect and microorganisms.

In order to advance in the understanding of this phenomenon, the study of the antimicrobial properties of some compounds of Table I (1, 2, 6, 7, 11, 14, 15, 17, and 18) has been undertaken. Compounds 1, 2, 6, 7, 11, and 14 show antibacterial properties, (MIC'S < 500 µg x mL-1) against Gram-positive and Gram-negative bacteria, using the agar overlay method12).

ACKNOWLEDGEMENT

This work was supported by FONDECYT Chile Grant N 1990209, and by DICYT (Universidad de Santiago de Chile).
___________________________________
*To whom correspondence should be addressed.

REFERENCES

1. I. Johnston. Studies in the Boraginaceae. Contrib. Gray Herbar, Harvard University, 81, 83 (1928).

2. A. Shawl, T. Kumar. Phytochemistry, 31, 1401 (1992).

3. E. Wollenweber, V. Dietz. Phytochemistry, 20, 932 (1981).

4. B. Modak. Ph.D. Thesis, University of Santiago, Chile (1998).

5. A. Urzúa, B. Modak, L. Villarroel, R. Torres, L. Andrade. Biochem. Syst. Ecol., 26, 130 (1998).

6. L. Villarroel, R. Torres, A. Urzúa. Bol. Soc. Chil. Quím., 36, 174 (1991). Bol. Soc. Chil. Quím., 45, N 1 (2000)

7. R. Torres, B. Modak, L. Villarroel, A. Urzúa, F. Delle-Monache, F. Sanchez-Ferrando. Bol. Soc. Chl. Quím., 41, 197 (1996).

8. A. Urzúa, L. Villrroel, R. Torres, S. Teillier. Biochem. Syst. Ecol., 21, 744 (1993).

9. R. Torres, L. Villarroel, A. Urzúa, F. Delle-Monache, G. Delle-Monache, E. Gacs-Baitz. Phytochemistry, 36, 250 (1994).

10. L. Villarroel, R. Torres, A. Urzúa, J. Henríquez. Proceedings of the Chilean National Symp. of Chemistry, Osorno, Chile, P. 310 (1997).

11. L.M. Schoonhoven, T. Jeremy, J.J.A. van Loon "Insect-Plant Biology from Physiology to Evolution" Chapman and Hall, London 31-32 pp (1998).

12. L. Mendoza, M. Wilkens, A. Urzúa. J. Ethnopharm, 58, 85 (1997).

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons