Published

2020-09-01

Impact of biochar use on agricultural production and climate change. A review

Impacto del uso del biocarbón sobre la producción agrícola y el cambio climático. Una revisión

DOI:

https://doi.org/10.15446/agron.colomb.v38n3.87398

Keywords:

pyrolysis, carbon, biomass, amendment (en)
pirólisis, carbono, biomasa, enmienda (es)

Downloads

Authors

Biochar is a solid material obtained from the thermal decomposition of biomass of diverse biological origins through a process called pyrolysis. Biochar has great potential for reducing greenhouse gas emissions, sequester carbon in the soil, rehabilitate degraded soils, and reduce dependence on chemical fertilizers in crops. It also improves the physical, chemical, and biological properties of the soil and has a positive effect on plant growth. Given these attributes, there is a growing interest for adopting its use in agriculture, soil and land reclamation, and climate change mitigation. The effects of biochar application can be neutral or positive and will be determined mainly by factors such as the origin of the raw materials, carbonization conditions, frequency of applications, the method of application and dosage. In this review, we offer a detailed examination of the origins of biochar and the technologies used for its production. We examine the various materials that have been used to produce biochars and how they affect their physico-chemical characteristics, and we describe their applications in agriculture and climate change mitigation. Finally, we list the guides that describe the standards for the production, characterization, and commercialization of biochar that seek to guarantee the quality of the product and the essential characteristics for its safe use.

El biocarbón es un material sólido obtenido a partir de la descomposición térmica de biomasa de diverso origen biológico mediante un proceso llamado pirólisis. El biocarbón tiene un gran potencial para reducir las emisiones de gases de efecto invernadero, secuestrar el carbono en el suelo, rehabilitar los suelos degradados y reducir la dependencia de los fertilizantes químicos en los cultivos. También mejora las propiedades físicas, químicas y biológicas del suelo y tiene un efecto positivo en el crecimiento de las plantas. Teniendo en cuenta estos atributos, existe un interés creciente en adoptar su uso en la agricultura, la recuperación de suelos y tierras, y en la mitigación del cambio climático. Los efectos de la aplicación del biocarbón pueden ser neutros o positivos y estarán determinados principalmente por factores como el origen de la materia prima, las condiciones de carbonización, la frecuencia de las aplicaciones, el método de aplicación y la dosis. En este artículo ofrecemos un examen detallado de los orígenes del biocarbón y las tecnologías utilizadas para su producción. Examinamos los diversos materiales que se han utilizado para producir biocarbones y cómo éstos afectan a sus caracterìsticas fisicoquímicas, y describimos sus aplicaciones en la agricultura y la mitigación del cambio climático. Por último, enumeramos las guìas que describen las normas de producciòn, caracterización y comercialización del biocarbón, las cuales tratan de garantizar la calidad del producto y las características esenciales para su uso seguro.

References

Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. https://doi.org/10.1016/j.biortech.2012.05.042

Ahmed, A., Kurian, J., & Raghavan, V. (2016). Biochar influences on agricultural soils, crop production, and the environment: a review. Environmental Reviews, 24(4), 495–502. https://doi.org/10.1139/er-2016-0008

Ajema, L. (2018). Effects of biochar application on beneficial soil organism review. International Journal of Research Studies in Science, Engineering and Technology, 5(5), 9–18. https://doi.org/10.13140/RG.2.2.15186.66247

Ameloot, N., Maenhout, P., De Neve, S., & Sleutel, S. (2016). Biocharinduced N2O emission reductions after field incorporation in a loam soil. Geoderma, 267, 10–16. https://doi.org/10.1016/j.geoderma.2015.12.016

Bakshi, S., Banik, C., & Laird, D. A. (2020). Estimating the organic oxygen content of biochar. Scientific Reports, 10(1), Article 13082. https://doi.org/10.1038/s41598-020-69798-y

Baldock, J. A., & Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry, 33(9), 1093–1109. https://doi.org/10.1016/S0146-6380(02)00062-1

Bapat, H., Manahan, S. E., & Larsen, D. W. (1999). An activated carbon product prepared from milo (Sorghum vulgare) grain for use in hazardous waste gasification by ChemChar cocurrent flow gasification. Chemosphere, 39(1), 23–32. https://doi.org/10.1016/S0045-6535(98)00585-2

Barbosa, J. Z., Motta, A. C. V., Corrêa, R. S., Melo, V. de F., Muniz, A. W., Martins, G. C., Silva, L. de C. R., Teixeira, W. G., Young, S. D., & Broadley, M. R. (2020). Elemental signatures of an Amazonian Dark Earth as result of its formation process. Geoderma, 361, Article 114085. https://doi.org/10.1016/j.geoderma.2019.114085

Baskar, G., Kalavathy, G., Aiswarya, R., & Abarnaebenezer Selvakumari, I. (2019). Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In K. Azad (Ed.), Advances in eco-fuels for a sustainable environment, a volume in Woodhead Publishing series in energy (pp. 187–210). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102728-8.00007-3

Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction, practical design and theory (3rd ed.) Academic Press. https://doi.org/10.1016/B978-0-12-812992-0.00005-4

Batista, E. M. C. C., Shultz, J., Matos, T. T. S., Fornari, M. R., Ferreira, T. M., Szpoganicz, B., de Freitas, R. A., & Mangrich, A. S. (2018). Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, 8(1), Article 10677. https://doi.org/10.1038/s41598-018-28794-z

Bis, Z., Kobyłecki, R., Ścisłowska, M., & Zarzycki, R. (2018). Biochar - potential tool to combat climate change and drought. Ecohydrology & Hydrobiology, 18(4), 441–453. https://doi.org/10.1016/j.ecohyd.2018.11.005

Bonanomi, G., Ippolito, F., Cesarano, G., Nanni, B., Lombardi, N., Rita, A., Saracino, A., & Scala, F. (2017). Biochar as plant growth promoter: better off alone or mixed with organic amendments? Frontiers in Plant Science, 8, Article 1570. https://doi.org/10.3389/fpls.2017.01570

Burrell, L. D., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96–102. https://doi.org/10.1016/j.geoderma.2016.07.019

Cao, W., Li, J., Martí-Rosselló, T., & Zhang, X. (2018). Experimental study on the ignition characteristics of cellulose, hemicellulose, lignin and their mixtures. Journal of the Energy Institute, 92(5), 1303–1312. https://doi.org/10.1016/j.joei.2018.10.004

Cayuela, M. L., van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A. (2014). Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agriculture, Ecosystems and Environment, 191, 5–16. https://doi.org/10.1016/j.agee.2013.10.009

Chatterjee, R., Sajjadi, B., Chen, W. Y., Mattern, D. L., Hammer, N., Raman, V., & Dorris, A. (2020). Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Frontiers in Energy Research, 8, Article 85. https://doi.org/10.3389/fenrg.2020.00085

Chen, C., Liu, G., An, Q., Lin, L., Shang, Y., & Wan, C. (2020). From wasted sludge to valuable biochar by low temperature hydrothermal carbonization treatment: insight into the surface characteristics. Journal of Cleaner Production, 263, Article 121600. https://doi.org/10.1016/j.jclepro.2020.121600

Chen, W. H., Wang, C. W., Ong, H. C., Show, P. L., & Hsieh, T. H. (2019). Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel, 258, Article 116168. https://doi.org/10.1016/j.fuel.2019.116168

Cheng, F., & Li, X. (2018). Preparation and application of biocharbased catalysts for biofuel production. Catalysts, 8(9), Article 346. https://doi.org/10.3390/catal8090346

Cheng, N., Peng, Y., Kong, Y., Li, J., & Sun, C. (2018). Combined effects of biochar addition and nitrogen fertilizer reduction on the rhizosphere metabolomics of maize (Zea mays L.) seedlings. Plant and Soil, 433, 19–35. https://doi.org/10.1007/s11104-018-3811-6

Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., & Ok, Y. S. (2016). Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecological Engineering, 87, 240–245. https://doi.org/https://doi.org/10.1016/j.ecoleng.2015.11.045

Choudhary, T. K., Khan, K. S., Hussain, Q., Ahmad, M., & Ashfaq, M. (2019). Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes. Arabian Journal of Geosciences, 12, Article 617. https://doi.org/10.1007/s12517-019-4735-z

Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4), 331–339. https://doi.org/10.1177/0734242X14525822

Costa, A. da R., Silva Júnior, M. L., Kern, D. C., Ruivo, M. de L. P., & Marichal, R. (2017). Forms of soil organic phosphorus at black earth sites in the Eastern Amazon. Revista Ciência Agronômica, 48(1), 1–12. https://doi.org/10.5935/1806-6690.20170001

Cross, A., & Sohi, S. P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology and Biochemistry, 43(10), 2127–2134. https://doi.org/10.1016/j.soilbio.2011.06.016

Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification - A critical review. Science of The Total Environment, 581–582, 601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169

De Oliveira, E. A., Marimon-Junior, B. H., Marimon, B. S., Iriarte, J., Morandi, P. S., Maezumi, S. Y., Nogueira, D. S., Aragão, L. E. O. C., da Silva, I. B., & Feldpausch, T. R. (2020). Legacy of Amazonian Dark Earth soils on forest structure and species composition. Global Ecology and Biogeography, 29(9), 1458–1473. https://doi.org/10.1111/geb.13116

Diatta, A. A., Fike, J. H., Battaglia, M. L., Galbraith, J. M., & Baig, M. B. (2020). Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 13(14), Article 595. https://doi.org/10.1007/s12517-020-05586-2

Dicke, C., Andert, J., Ammon, C., Kern, J., Meyer-Aurich, A., & Kaupenjohann, M. (2015). Effects of different biochars and digestate on N2O fluxes under field conditions. Science of The Total Environment, 524–525, 310–318. https://doi.org/10.1016/j.scitotenv.2015.04.005

Ding, F., Van Zwieten, L., Zhang, W., Weng, Z. H., Shi, S., Wang, J., & Meng, J. (2018). A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. Journal of Soils and Sediments, 18, 1507–1517. https://doi.org/10.1007/s11368-017-1899-6

Du, Z., Xiao, Y., Qi, X., Liu, Y., Fan, X., & Li, Z. (2018). Peanut-shell biochar and biogas slurry improve soil properties in the North China Plain: a four-year field study. Scientific Reports, 8, Article 13724. https://doi.org/10.1038/s41598-018-31942-0

Ducey, T. F., Novak, J. M., & Johnson, M. G. (2015). Effects of biochar blends on microbial community composition in two coastal plain soils. Agriculture, 5(4), 1060–1075. https://doi.org/10.3390/agriculture5041060

Durães, N., Novo, L. A. B., Candeias, C., & da Silva, E. F. (2018). Distribution, transport and fate of pollutants. In A. C. Duarte, A. Cachada, & T. Rocha-Santos (Eds.), Soil pollution, from monitoring to remediation (pp. 29–57). Academic Press. https://doi.org/10.1016/B978-0-12-849873-6.00002-9

Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. https://doi.org/10.1016/j.biortech.2012.03.022

European Biochar Foundation. (2016). Guidelines for a sustainable production of biochar. European Biochar Foundation (EBC). https://doi.org/10.13140/RG.2.1.4658.7043

Flores-Félix, J. D., Menéndez, E., Rivas, R., & Velázquez, M. de la E. (2019). Future perspective in organic farming fertilization: management and product. In S. Chandran, M. R. Unni, & S. Thomas (Eds.), Organic farming global perspectives and methods (pp. 269–315). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813272-2.00010-0

Gao, L., Wang, R., Shen, G., Zhang, J., Meng, G., & Zhang, J. (2017). Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. Journal of Soil Science and Plant Nutrition, 17(4), 884–896. https://doi.org/10.4067/S0718-95162017000400004

Gao, X., & Wu, H. (2011). Biochar as a fuel: 4. Emission behavior and characteristics of PM1 and PM10 from the combustion of pulverized biochar in a drop-tube furnace. Energy & Fuels, 25(6), 2702–2710. https://doi.org/10.1021/ef200296u

Ghazi, A. A. (2017). Potential for biochar as an alternate carrier to peat moss for the preparation of Rhizobia bio inoculum. Microbiology Research Journal International, 18(4), 1–9. https://doi.org/10.9734/MRJI/2017/30828

Gilbe, C., Öhman, M., Lindström, E., Boström, D., Backman, R., Samuelsson, R., & Burvall, J. (2008). Slagging characteristics during residential combustion of biomass pellets. Energy & Fuels, 22(5), 3536–3543. https://doi.org/10.1021/ef800087x

Glaser, B., & Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio). Geochimica et Cosmochimica Acta, 82, 39–51. https://doi.org/https://doi.org/10.1016/j.gca.2010.11.029

Gorovtsov, A. V., Minkina, T. M., Mandzhieva, S. S., Perelomov, L. V., Soja, G., Zamulina, I. V., Rajput, V. D., Sushkova, S. N., Mohan, D., & Yao, J. (2020). The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health, 42, 2495–2518. https://doi.org/10.1007/s10653-019-00412-5

Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205. https://doi.org/10.1016/j.biombioe.2013.12.010

Gupta, D. K., Gupta, C. K., Dubey, R., Fagodiya, R. K., Sharma, G., A, K., Noor Mohamed, M. B., Dev, R., & Shukla, A. K. (2020). Role of biochar in carbon sequestration and greenhouse gas mitigation. In J. S. Singh & C. Singh (Eds.), Biochar applications in agriculture and environment management (pp. 141–165). Springer International Publishing. https://doi.org/10.1007/978-3-030-40997-5_7

Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19, 2405–2416. https://doi.org/10.1007/s11368-019-02264-z

Hale, L., Luth, M., Kenney, R., & Crowley, D. (2014). Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Applied Soil Ecology, 84, 192–199. https://doi.org/10.1016/j.apsoil.2014.08.001

Hansen, V., Müller-Stöver, D., Munkholm, L. J., Peltre, C., Hauggaard-Nielsen, H., & Jensen, L. S. (2016). The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: an incubation study. Geoderma, 269, 99–107. https://doi.org/10.1016/j.geoderma.2016.01.033

Hardy, B., Sleutel, S., Dufey, J. E., & Cornelis, J. T. (2019). The longterm effect of biochar on soil microbial abundance, activity and community structure Is overwritten by land management. Frontiers in Environmental Science, 7, Article 110. https://doi.org/10.3389/fenvs.2019.00110

He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini-Bai, S., Wallace, H., & Xu, C. (2017). Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9(4), 743–755. https://doi.org/10.1111/gcbb.12376

Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97(20), 8859–8873. https://doi.org/10.1007/s00253-013-5228-8

Huang, L. Q., Fu, C., Li, T. Z., Yan, B., Wu, Y., Zhang, L., Ping, W., Yang, B. R., & Chen, L. (2020). Advances in research on effects of biochar on soil nitrogen and phosphorus. IOP Conference Series: Earth and Environmental Science, 424, Article 012015. https://doi.org/10.1088/1755-1315/424/1/012015

Hue, N. (2020). Biochar for maintaining soil health. In B. Giri & A. Varma (Eds.), Soil health (pp. 21–46). Springer International Publishing. https://doi.org/10.1007/978-3-030-44364-1_2

Hüppi, R., Felber, R., Neftel, A., Six, J., & Leifeld, J. (2015). Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil, 1(2), 707–717. https://doi.org/10.5194/soil-1-707-2015

Husna, N., Budianta, D., Munandar, M., & Adipati, N. (2019). Evaluation of several biochar types as inoculant carrier for indigenous phosphate solubilizing microoorganism from acid sulphate soil. Journal of Ecological Engineering, 20(6), 1–8. https://doi.org/10.12911/22998993/109078

Hyland, C., Hanley, K., Enders, A., Rajkovich, S., & Lehmann, J. (2010, August 1–6). Nitrogen leaching in soil amended with biochars produced at low and high temperatures from various feedstocks [Conference presentation]. 19th world congress of soil science, soil solutions for a changing world. Brisbane, Australia. https://www.iuss.org/19th%20WCSS/Symposium/pdf/0742.pdf

International Biochar Initiative. (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative. https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf

Intani, K., Latif, S., Kabir, A. K. M. R., & Müller, J. (2016). Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresource Technology, 218, 541–551. https://doi.org/10.1016/j.biortech.2016.06.114

Ippolito, J. A., Laird, D. A., & Busscher, W. J. (2012). Environmental benefits of biochar. Journal of Environment Quality, 41(4), 967–972. https://doi.org/10.2134/jeq2012.0151

Itskos, G., Nikolopoulos, N., Kourkoumpas, D. -S., Koutsianos, A., Violidakis, I., Drosatos, P., & Grammelis, P. (2016). Energy and the Environment. In S. G. Poulopoulos & V. J. Inglezakis (Eds.), Environment and development, basic principles, human activities, and environmental implications (pp. 363–452). Elsevier. https://doi.org/10.1016/B978-0-444-62733-9.00006-X

Jafri, N., Wong, W. Y., Doshi, V., Yoon, L. W., & Cheah, K. H. (2018). A review on production and characterization of biochars for application in direct carbon fuel cells. Process Safety and Environmental Protection, 118, 152–166. https://doi.org/10.1016/j.psep.2018.06.036

Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), Article 053001. https://doi.org/10.1088/17489326/aa67bd

Jenkins, J. R., Viger, M., Arnold, E. C., Harris, Z. M., Ventura, M., Miglietta, F., Girardin, C., Edwards, R. J., Rumpel, C., Fornasier, F., Zavalloni, C., Tonon, G., Alberti, G., & Taylor, G. (2017). Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe. Gcb Bioenergy, 9(3), 591–612. https://doi.org/10.1111/gcbb.12371

Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., & Shi, J. (2016). Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere, 142, 128–135. https://doi.org/10.1016/j.chemosphere.2015.07.015

Jouhara, H., Ahmad, D., van den Boogaert, I., Katsou, E., Simons, S., & Spencer, N. (2018). Pyrolysis of domestic based feedstock at temperatures up to 300°C. Thermal Science and Engineering Progress, 5, 117–143. https://doi.org/10.1016/j.tsep.2017.11.007

Juriga, M., & Šimanský, V. (2019). Effects of biochar and its reapplication on soil pH and sorption properties of silt loam haplic luvisol. Acta Horticulturae et Regiotecturae, 22(2), 65–70. https://doi.org/10.2478/ahr-2019-0012

Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., Fuertes-Mendizabal, T., Jeffery, S., Kern, J., Novak, J., Rasse, D., Saarnio, S., Schmidt, H. P., Spokas, K., & Wrage-Mönnig, N. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden - knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114–139. https://doi.org/10.3846/16486897.2017.1319375

Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2020). Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20, 450–459. https://doi.org/10.1007/s42729-019-00129-5

Kazemi, R., Ronaghi, A., Yasrebi, J., Ghasemi-Fasaei, R., & Zarei, M. (2019). Effect of shrimp waste–derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress. Journal of Soil Science and Plant Nutrition, 19, 758–770. https://doi.org/10.1007/s42729-019-00075-2

Kolton, M., Harel, Y. M., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 77(14), 4924–4930. https://doi.org/10.1128/AEM.00148-11

Kwiatkowski, M., & Kalderis, D. (2020). A complementary analysis of the porous structure of biochars obtained from biomass. Carbon Letters, 30, 325–329. https://doi.org/10.1007/s42823-019-00101-4

Laghari, M., Hu, Z., Mirjat, M. S., Xiao, B., Tagar, A. A., & Hu, M. (2016). Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth. Journal of the Science of Food and Agriculture, 96(1), 199–206. https://doi.org/10.1002/jsfa.7082

Lan, Z. M., Chen, C. R., Rezaei Rashti, M., Yang, H., & Zhang, D. K. (2019). Linking feedstock and application rate of biochars to N2O emission in a sandy loam soil: potential mechanisms. Geoderma, 337, 880–892. https://doi.org/10.1016/j.geoderma.2018.11.007

Lee, J. W., Hawkins, B., Li, X., & Day, D. M. (2013). Biochar Fertilizer for Soil Amendment and Carbon Sequestration.In J. W. Lee (Ed.), Advanced biofuels and bioproducts (pp. 57–68). Springer Science and Business Media. https://doi.org/10.1007/978-1-4614-3348-4_6

Lee, J., Sarmah, A. K., & Kwon, E. E. (2019). Production and Formation of Biochar. In Y. S. Ok, D. C. W. Tsang, N. Bolan, & J. M. Novak (Eds.), Biochar from biomass and waste, fundamentals and applications (pp. 3–18). Elsevier. https://doi.org/10.1016/B978-0-12-811729-3.00001-7

Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, 11, 403–427. https://doi.org/10.1007/s11027-005-9006-5

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: an Introduction. In J. Lehmann, & S. Joseph (Eds.), Biochar for environmental management, science, technology and implementation (pp. 1–12). Taylor & Francis Group.

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota - A review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270, 627–642. https://doi.org/10.1016/j.biortech.2018.09.030

Levin, A. A., Shamansky, V. A., & Kozlov, A. N. (2016). A model of pyrolysis in a staged scheme of low-grade solid fuel gasification. Journal of Physics: conference Series, 754, Article 022006. https://doi.org/10.1088/1742-6596/754/2/022006

Li, X., Chen, X., Weber-Siwirska, M., Cao, J., & Wang, Z. (2018). Effects of rice-husk biochar on sand-based rootzone amendment and creeping bentgrass growth. Urban Forestry and Urban Greening, 35, 165–173. https://doi.org/10.1016/j.ufug.2018.09.001

Li, Y., Xing, B., Ding, Y., Han, X., & Wang, S. (2020). A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology, 312, Article 123614. https://doi.org/10.1016/j.biortech.2020.123614

Liao, N., Li, Q., Zhang, W., Zhou, G., Ma, L., Min, W., Ye, J., & Hou, Z. (2016). Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. European Journal of Soil Biology, 72, 27–34. https://doi.org/10.1016/j.ejsobi.2015.12.008

Liu, H., Li, H., Zhang, A., Rahaman, M. A., & Yang, Z. (2020). Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheatmaize rotation system in North China. Science of the Total Environment, 721, Article 137636. https://doi.org/10.1016/j.scitotenv.2020.137636

Liu, J., Ding, Y., Ma, L., Gao, G., & Wang, Y. (2017). Combination of biochar and immobilized bacteria in cypermethrin-contaminated soil remediation. International Biodeterioration and Biodegradation, 120, 15–20. https://doi.org/10.1016/j.ibiod.2017.01.039

Liu, N., Sun, Z., Wu, Z., Zhan, X., Zhang, K., Zhao, E., & Han, X. (2013). Adsorption characteristics of ammonium nitrogen by biochar from diverse origins in water. Advanced Materials Research, 664, 305–312. https://doi.org/10.4028/www.scientific.net/AMR.664.305

Lyu, H., He, Y., Tang, J., Hecker, M., Liu, Q., Jones, P. D., Codling, G., & Giesy, J. P. (2016). Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution, 218, 1–7. https://doi.org/10.1016/j.envpol.2016.08.014

Macedo, R. S., Teixeira, W. G., Corrêa, M. M., Martins, G. C., & Vidal-Torrado, P. (2017). Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil. PLOS One, 12(5), Article e0178038. https://doi.org/10.1371/journal.pone.0178038

Martinsen, V., Mulder, J., Shitumbanuma, V., Sparrevik, M., Børresen, T., & Cornelissen, G. (2014). Farmer-led maize biochar trials: effect on crop yield and soil nutrients under conservation farming. Journal of Plant Nutrition and Soil Science, 177(5), 681–695. https://doi.org/10.1002/jpln.201300590

Masud, M. M., Abdulaha-Al Baquy, M., Akhter, S., Sen, R., Barman, A., & Khatun, M. R. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202, Article 110865. https://doi.org/10.1016/j.ecoenv.2020.110865

Mendes, K. F., Júnior, A. F. D., Takeshita, V., Régo, A. P. J., & Tornisielo, V. L. (2018). Effect of biochar amendments on the sorption and desorption herbicides in agricultural soil. In S. Edebali (Ed.), Advanced sorption process applications (pp. 87– 103). IntertechOpen. https://doi.org/10.5772/intechopen.80862

Muhammad, N., Aziz, R., Brookes, P. C., & Xu, J. (2017). Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult. Journal of Soil Science and Plant Nutrition, 17(3), 808–823. https://doi.org/10.4067/S0718-95162017000300019

Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, Article 5794869. https://doi.org/10.1155/2019/5794869

Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., Cornelis, W., & Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy, 62, 65–78. https://doi.org/10.1016/j.eja.2014.09.006

Nguyen, B. T., Trinh, N. N., & Bach, Q.-V. (2020a). Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition. Applied Soil Ecology, 152, Article 103531. https://doi.org/10.1016/j.apsoil.2020.103531

Nguyen, T. K. P., Khoi, C., Ritz, K., Sinh, N., Tarao, M., & Toyota, K. (2020b). Potential use of rice husk biochar and compost to improve P availability and reduce GHG emissions in acid sulfate soil. Agronomy, 10, Article 685. https://doi.org/10.3390/agronomy10050685

Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A., & Niandou, M. A. S. (2010). Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154(3–4), 281–288. https://doi.org/10.1016/j.geoderma.2009.10.014

Odinga, E. S., Waigi, M. G., Gudda, F. O., Wang, J., Yang, B., Hu, X., Li, S., & Gao, Y. (2020). Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. Environment International, 134, Article 105172. https://doi.org/10.1016/j.envint.2019.105172

Ogawa, M., & Okimori, Y. (2010). Pioneering works in biochar research, Japan. Australian Journal of Soil Research, 48, 489–500. https://doi.org/10.1071/SR10006

Oladele, S. O. (2019). Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice - maize cropping sequence. Geoderma, 353, 359–371. https://doi.org/10.1016/j.geoderma.2019.06.038

Ouyang, L., Tang, Q., Yu, L., & Zhang, R. (2014). Effects of amendment of different biochars on soil enzyme activities related to carbon mineralisation. Soil Research, 52(7), 706–716. https://doi.org/10.1071/SR14075

Oyedeji, S., Animasaun, D. A., Ademola, O. I., & Agboola, O. O. (2018). Growth performance of cowpea in spent oil-contaminated soils ameliorated with cocoa shell powder and biochar. Journal of Biological and Environmental Sciences, 12(36), 105–112.

Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biocharamended soils: a critical review. Biochar, 1, 3–22. https://doi.org/10.1007/s42773-019-00009-2

Pariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental andagricultural application. Science of the Total Environment, 713, Article 136433. https://doi.org/10.1016/j.scitotenv.2019.136433

Park, J. H., Ok, Y. S., Kim, S. H., Kang, S. W., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2015). Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. Journal of the Korean Society for Applied Biological Chemistry, 58(5), 751–760. https://doi.org/10.1007/s13765-015-0103-1

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532, 49–57. https://doi.org/10.1038/nature17174

Pratiwi, E. P. A., Hillary, A. K., Fukuda, T., & Shinogi, Y. (2016). The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma, 277, 61–68. https://doi.org/10.1016/j.geoderma.2016.05.006

Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. W. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere, 227, 345–365. https://doi.org/10.1016/j.chemosphere.2019.03.170

Rafiq, M. K., Bachmann, R. T., Rafiq, M. T., Shang, Z., Joseph, S., & Long, R. (2016). Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLOS One, 11(6), Article e0156894. https://doi.org/10.1371/journal.pone.0156894

Saeid, A., & Chojnacka, K. (2019). Fertlizers: need for new strategies. In S. Chandran, M. R. Unni, & S. Thomas (Eds.), Organic farming, global perspectives and methods (pp. 91–116). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813272-2.00004-5

Sahu, P. K., & Brahmaprakash, G. P. (2016). Formulations of biofertilizers - approaches and advances. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 179–198). Springer. https://doi.org/10.1007/978-81-322-2644-4_12

Saranya, K., Kumutha, K., & Krishnan, P. S. (2011). Influence of biochar and Azospirillum application on the growth of maize. Madras Agricultural Journal, 98(4/6), 158–164.

Sato, M. K., de Lima, H. V., Costa, A. N., Rodrigues, S., Pedroso, A. J. S., & de Freitas Maia, C. M. B. (2019). Biochar from acai agroindustry waste: study of pyrolysis conditions. Waste Management, 96, 158–167. https://doi.org/10.1016/j.wasman.2019.07.022

Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., & Kammann, C. (2014). Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth. Agriculture, Ecosystems and Environment, 191, 39–52. https://doi.org/10.1016/j.agee.2014.03.027

Shaheen, A., & Turaib Ali Bukhari, S. (2018). Potential of sawdust and corn cobs derived biochar to improve soil aggregate stability, water retention, and crop yield of degraded sandy loam soil. Journal of Plant Nutrition, 41(20), 2673–2682. https://doi.org/10.1080/01904167.2018.1509092

Shahjahan, M., Inam-ul-Haq, M., Mukhtar, T., & Khalid, A. (2018). Biochar as a carrier of antagonistic rhizobacteria suppressing Macrophomina phaseolina. Transylvanian Review, 26(28), 7469–7476.

Shareef, T. M. E., Zhao, B., & Filonchyk, M. (2018). Characterization of biochars derived from maize straw and corn cob and effects of their amendment on maize growth and loess soil properties. Fresenius Environmental Bulletin, 27(5A), 3678–3686.

Sharma, S. P. (2018). Biochar for carbon sequestration: bioengineering for sustainable environment. In D. Barh & V. Azevedo (Eds.), Omics technologies and bio-engineering volume 2: towards improving quality of life (pp. 365–385). Academic Press. https://doi.org/10.1016/B978-0-12-815870-8.00020-6

Shen, J., Tang, H., Liu, J., Wang, C., Li, Y., Ge, T., Jones, D. L., & Wu, J. (2014). Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agriculture, Ecosystems and Environment, 188, 264–274. https://doi.org/10.1016/j.agee.2014.03.002

Shetty, R., & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, 10(1), Article 12249. https://doi.org/10.1038/s41598-020-69262-x

Shim, T., Yoo, J., Ryu, C., Park, Y. K., & Jung, J. (2015). Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresource Technology, 197, 85–90. https://doi.org/10.1016/j.biortech.2015.08.055

Sigmund, G., Hüffer, T., Hofmann, T., & Kah, M. (2017). Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Science of the Total Environment, 580, 770–775. https://doi.org/10.1016/j.scitotenv.2016.12.023

Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315–1324. https://doi.org/10.1111/gcb.13178

Spokas, K. A., Baker, J. M., & Reicosky, D. C. (2010). Ethylene: potential key for biochar amendment impacts. Plant and Soil, 333(1–2), 443–452. https://doi.org/10.1007/s11104-010-0359-5

Stewart, C. E., Zheng, J., Botte, J., & Cotrufo, M. F. (2013). Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy, 5(2), 153–164. https://doi.org/10.1111/gcbb.12001

Sun, H., Zhang, H., Shi, W., Zhou, M., & Ma, X. (2019). Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil. Plant, Soil and Environment, 65(2), 83–89. https://doi.org/10.17221/525/2018-PSE

Szwaja, S., Poskart, A., & Zajemska, M. (2018, June 26–29). A new approach for evaluating biochar quality from biomass thermal processing [Conference presentation]. 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia. https://ieeexplore.ieee.org/document/8448316

Tabakaev, R., Kanipa, I., Astafev, A., Dubinin, Y., Yazykov, N., Zavorin, A., & Yakovlev, V. (2019). Thermal enrichment of different types of biomass by low-temperature pyrolysis. Fuel, 245, 29–38. https://doi.org/10.1016/j.fuel.2019.02.049

Tag, A. T., Duman, G., Ucar, S., & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis, 120, 200–206. https://doi.org/10.1016/j.jaap.2016.05.006

Taghizadeh-Toosi, A., Clough, T. J., Condron, L. M., Sherlock, R. R., Anderson, C. R., & Craigie, R. A. (2011). Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. Journal of Environment Quality, 40(2), 468–476. https://doi.org/10.2134/jeq2010.0419

Tan, Z., Lin, C. S. K., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: a review. Applied Soil Ecology, 116, 1–11. https://doi.org/10.1016/j.apsoil.2017.03.017

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191–215. https://doi.org/10.1007/s11157-020-09523-3

Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., & Ashrafur, S. M. (2018). An overview of recent developments in biomass pyrolysis technologies. Energies, 11(11) Article 3115. https://doi.org/10.3390/en11113115

Vecstaudza, D., Senkovs, M., Nikolajeva, V., Kasparinskis, R., & Muter, O. (2017). Wooden biochar as a carrier for endophytic isolates. Rhizosphere, 3, 126–127. https://doi.org/10.1016/j.rhisph.2017.04.002

Ventura, M., Alberti, G., Panzacchi, P., Vedove, G. D., Miglietta, F., & Tonon, G. (2019). Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biology and Fertility of Soils, 55, 67–78. https://doi.org/10.1007/s00374-018-1329-y

Wang, X., Li, X., Liu, G., He, Y., Chen, C., Liu, X., Li, G., Gu, Y., & Zhao, Y. (2019). Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: adsorption properties and mechanisms. Environmental Science: processes and Impacts, 21(3), 584–592. https://doi.org/10.1039/C8EM00457A

Wang, Y., Yin, R., & Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110, 375–381. https://doi.org/10.1016/j.jaap.2014.10.006

Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054

Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, Article 56. https://doi.org/10.1038/ncomms1053

Wu, Q., Xian, Y., He, Z., Zhang, Q., Wu, J., Yang, G., Zhang, X., Qi, H., Ma, J., Xiao, Y., & Long, L. (2019). Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Scientific Reports, 9(1), Article 15999. https://doi.org/10.1038/s41598-019-52554-2

Xiao, R., Yang, W., Cong, X., Dong, K., Xu, J., Wang, D., & Yang, X. (2020). Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy, 201, Article 117537. https://doi.org/10.1016/j.energy.2020.117537

Yaashikaa, P. R., Senthil Kumar, P., Varjani, S. J., & Saravanan, A. (2019). Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresource Technology, 292, Article 122030. https://doi.org/10.1016/j.biortech.2019.122030

Yadav, V., Karak, T., Singh, S., Singh, A. K., & Khare, P. (2019). Benefits of biochar over other organic amendments: responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Industrial Crops and Products, 131, 96–105. https://doi.org/10.1016/j.indcrop.2019.01.045

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002

Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., & Sabir, M. (2020). Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls. Soil Use and Management, 36, 2–18. https://doi.org/10.1111/sum.12546

Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils: a review. Journal of Environmental Management, 232, 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117

Yu, J., Paterson, N., Blamey, J., & Millan, M. (2017). Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 191, 140–149. https://doi.org/10.1016/j.fuel.2016.11.057

Zhang, C., Liu, L., Zhao, M., Rong, H., & Xu, Y. (2018). The environmental characteristics and applications of biochar. Environmental Science and Pollution Research, 25(22), 21525–21534. https://doi.org/10.1007/s11356-018-2521-1

Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., Tang, W., Tang, L., Dong, H., Huang, B., Tan, X., & Wang, R. (2019). Biochar for environmental management: mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902–922. https://doi.org/10.1016/j.cej.2019.05.139

Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136–146. https://doi.org/10.1016/j.biombioe.2017.06.024

Zhao, J., Shen, X. J., Domene, X., Alcañiz, J. M., Liao, X., & Palet, C. (2019). Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports, 9, Article 9869. https://doi.org/10.1038/s41598-019-46234-4

Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015

Zhou, Z., Shi, D., Qiu, Y., & Sheng, G. D. (2010). Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environmental Pollution, 158, 201–206. https://doi.org/10.1016/j.envpol.2009.07.020

Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science and Technology, 44(4), 1295–1301. https://doi.org/10.1021/es903140c

Zong, Y., Wang, Y., Sheng, Y., Wu, C., & Lu, S. (2018). Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar. Environmental Science and Pollution Research, 25, 25726–25733. https://doi.org/10.1007/s11356-017-9509-0

Zwart, K. (2020). Effects of biochar produced from waste on soil quality. In E. Meers, G. Velthof, E. Michels, & R. Rietra (Eds.), Biorefinery of Inorganics: recovering mineral nutrients from biomass and organic waste (pp. 283–299). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118921487.ch5-7

How to Cite

APA

Moreno-Riascos, S. and Ghneim-Herrera, T. (2020). Impact of biochar use on agricultural production and climate change. A review. Agronomía Colombiana, 38(3), 367–381. https://doi.org/10.15446/agron.colomb.v38n3.87398

ACM

[1]
Moreno-Riascos, S. and Ghneim-Herrera, T. 2020. Impact of biochar use on agricultural production and climate change. A review. Agronomía Colombiana. 38, 3 (Sep. 2020), 367–381. DOI:https://doi.org/10.15446/agron.colomb.v38n3.87398.

ACS

(1)
Moreno-Riascos, S.; Ghneim-Herrera, T. Impact of biochar use on agricultural production and climate change. A review. Agron. Colomb. 2020, 38, 367-381.

ABNT

MORENO-RIASCOS, S.; GHNEIM-HERRERA, T. Impact of biochar use on agricultural production and climate change. A review. Agronomía Colombiana, [S. l.], v. 38, n. 3, p. 367–381, 2020. DOI: 10.15446/agron.colomb.v38n3.87398. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/87398. Acesso em: 21 may. 2024.

Chicago

Moreno-Riascos, Sandra, and Thaura Ghneim-Herrera. 2020. “Impact of biochar use on agricultural production and climate change. A review”. Agronomía Colombiana 38 (3):367-81. https://doi.org/10.15446/agron.colomb.v38n3.87398.

Harvard

Moreno-Riascos, S. and Ghneim-Herrera, T. (2020) “Impact of biochar use on agricultural production and climate change. A review”, Agronomía Colombiana, 38(3), pp. 367–381. doi: 10.15446/agron.colomb.v38n3.87398.

IEEE

[1]
S. Moreno-Riascos and T. Ghneim-Herrera, “Impact of biochar use on agricultural production and climate change. A review”, Agron. Colomb., vol. 38, no. 3, pp. 367–381, Sep. 2020.

MLA

Moreno-Riascos, S., and T. Ghneim-Herrera. “Impact of biochar use on agricultural production and climate change. A review”. Agronomía Colombiana, vol. 38, no. 3, Sept. 2020, pp. 367-81, doi:10.15446/agron.colomb.v38n3.87398.

Turabian

Moreno-Riascos, Sandra, and Thaura Ghneim-Herrera. “Impact of biochar use on agricultural production and climate change. A review”. Agronomía Colombiana 38, no. 3 (September 1, 2020): 367–381. Accessed May 21, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/87398.

Vancouver

1.
Moreno-Riascos S, Ghneim-Herrera T. Impact of biochar use on agricultural production and climate change. A review. Agron. Colomb. [Internet]. 2020 Sep. 1 [cited 2024 May 21];38(3):367-81. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/87398

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Mani Jayakumar, Abas Siraj Hamda, Lata Deso Abo, Bulcha Jifara Daba, Sundramurthy Venkatesa Prabhu, Magesh Rangaraju, Abdisa Jabesa, Selvakumar Periyasamy, Sagadevan Suresh, Gurunathan Baskar. (2023). Comprehensive review on lignocellulosic biomass derived biochar production, characterization, utilization and applications. Chemosphere, 345, p.140515. https://doi.org/10.1016/j.chemosphere.2023.140515.

2. Sundramurthy Venkatesa Prabhu, Abas Siraj Hamda, Mani Jayakumar, Selvakumar Periyasamy, Subramanian Manivannan, Workisa Bacha. (2024). Production strategies and potential repercussion of sewage sludge biochar as a futuristic paradigm toward environmental beneficiation: A comprehensive review. Environmental Quality Management, 33(3), p.1. https://doi.org/10.1002/tqem.22007.

3. Bryan Díaz, Alicia Sommer-Márquez, Paola E. Ordoñez, Ernesto Bastardo-González, Marvin Ricaurte, Carlos Navas-Cárdenas. (2024). Synthesis Methods, Properties, and Modifications of Biochar-Based Materials for Wastewater Treatment: A Review. Resources, 13(1), p.8. https://doi.org/10.3390/resources13010008.

4. Eileen Torres-Morales, Dilip Khatiwada, Maria Xylia, Francis X. Johnson. (2023). Investigating biochar as a net-negative emissions strategy in Colombia: Potentials, costs, and barriers. Current Research in Environmental Sustainability, 6, p.100229. https://doi.org/10.1016/j.crsust.2023.100229.

5. Yunusa Mustapha, Ibrahim Manu, Ibrahim Alhassan. (2022). Use of biochar for enhance carbon sequestration to mitigate climate change and growth of maize in Sudan savanna zone of Nigeria. Brazilian Journal of Science, 1(12), p.63. https://doi.org/10.14295/bjs.v1i12.207.

Dimensions

PlumX

Article abstract page views

781

Downloads

Download data is not yet available.