Skip to main content

Advertisement

Log in

Despite similar clinical features metabolomics reveals distinct signatures in insulin resistant and progressively obese minipigs

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Obesity is a major contributor to the silent and progressive development of type 2 diabetes (T2D) whose prevention could be improved if individuals at risk were identified earlier. Our aim is to identify early phenotypes that precede T2D in diet-induced obese minipigs. We fed four groups of minipigs (n = 5–10) either normal-fat or high-fat high-sugar diet during 2, 4, or 6 months. Morphometric features were recorded, and metabolomics and clinical parameters were assessed on fasting plasma samples. Multivariate statistical analysis on 46 morphometrical and clinical parameters allowed to differentiate 4 distinct phenotypes: NFC (control group) and three others (HF2M, HF4M, HF6M) corresponding to the different stages of the obesity progression. Compared to NFC, we observed a rapid progression of body weight and fat mass (4-, 7-, and tenfold) in obese phenotypes. Insulin resistance (IR; 2.5-fold increase of HOMA-IR) and mild dyslipidemia (1.2- and twofold increase in total cholesterol and HDL) were already present in the HF2M and remained stable in HF4M and HF6M. Plasma metabolome revealed subtle changes of 23 metabolites among the obese groups, including a progressive switch in energy metabolism from amino acids to lipids, and a transient increase in de novo lipogenesis and TCA-related metabolites in HF2M. Low anti-oxidative capacities and anti-inflammatory response metabolites were found in the HF4M, and a perturbed hexose metabolism was observed in HF6M. Overall, we show that IR and progressively obese minipigs reveal phenotype-specific metabolomic signatures for which some of the identified metabolites could be considered as potential biomarkers of early progression to TD2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boudah S, Olivier M-F, Aros-Calt S et al (2014) Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J Chromatogr B 966:34–47. https://doi.org/10.1016/j.jchromb.2014.04.025

    Article  CAS  Google Scholar 

  2. Cirera S, Taşöz E, Juul Jacobsen M et al (2020) The expression signatures in liver and adipose tissue from obese Göttingen Minipigs reveal a predisposition for healthy fat accumulation. Nutr Diabetes 10:9. https://doi.org/10.1038/s41387-020-0112-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Curtasu MV, Knudsen KEB, Callesen H, et al (2018) Obesity development in a miniature Yucatan pig model: a multi-compartmental metabolomics study on cloned and normal pigs fed restricted or ad libitum high-energy diets. J Proteome Res acs.jproteome.8b00264. https://doi.org/10.1021/acs.jproteome.8b00264

  4. Curtasu MV, Skou Hedemann M, Nygaard Lærke H, Bach Knudsen KE (2021) Obesity development and signs of metabolic abnormalities in young Göttingen minipigs consuming energy dense diets varying in carbohydrate quality. Nutrients 13:1560. https://doi.org/10.3390/nu13051560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Curtasu MV, Tafintseva V, Bendiks ZA et al (2020) Obesity-related metabolome and gut microbiota profiles of juvenile Göttingen minipigs—long-term intake of fructose and resistant starch. Metabolites 10:456. https://doi.org/10.3390/metabo10110456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11

    CAS  PubMed  Google Scholar 

  7. Duan Y, Sun H, Yao Y et al (2021) Perturbation of serum metabolome in relation to type 2 diabetes mellitus and urinary levels of phthalate metabolites and bisphenols. Environ Int 155:106609. https://doi.org/10.1016/j.envint.2021.106609

    Article  CAS  PubMed  Google Scholar 

  8. Dyson MC, Alloosh M, Vuchetich JP et al (2006) Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp Med 56:35–45

    CAS  PubMed  Google Scholar 

  9. Faucher P, Poitou C (2016) Physiopathologie, déterminants et complications de l’obésité. Soins 61:20–25. https://doi.org/10.1016/j.soin.2016.10.003

    Article  PubMed  Google Scholar 

  10. Forouhi NG, Misra A, Mohan V, et al (2018) Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ k2234. https://doi.org/10.1136/bmj.k2234

  11. Gastaldelli A, Gaggini M, DeFronzo RA (2017) Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio metabolism study. Diabetes 66:815–822. https://doi.org/10.2337/db16-1167

    Article  CAS  PubMed  Google Scholar 

  12. Guasch-Ferré M, Hruby A, Toledo E et al (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39:833–846. https://doi.org/10.2337/dc15-2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haslam DW, James WPT (2005) Obesity. The Lancet 366:1197–1209. https://doi.org/10.1016/S01406736(05)67483-1

    Article  Google Scholar 

  14. International Diabetes Federation (2021) IDF Diabetes Atlas 2021 – 10th edition.

  15. Jung CH, Lee WJ, Song K-H (2017) Metabolically healthy obesity: a friend or foe? Korean J Intern Med 32:611–621. https://doi.org/10.3904/kjim.2016.259

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee H, Lee IS, Choue R (2013) Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr 16:143. https://doi.org/10.5223/pghn.2013.16.3.143

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee S, Bayless DS, Scroggins RJ et al (2015) Disconnect between adipose tissue inflammation and cardiometabolic dysfunction in Ossabaw pigs: Obese Ossabaw Pigs are Protected from Inflammation. Obesity 23:2421–2429. https://doi.org/10.1002/oby.21252

    Article  CAS  PubMed  Google Scholar 

  18. Lim EL, Hollingsworth KG, Aribisala BS et al (2011) Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54:2506–2514. https://doi.org/10.1007/s00125-011-2204-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu L, Wang M, Yang X et al (2013) Fasting serum lipid and dehydroepiandrosterone sulfate as important metabolites for detecting isolated postchallenge diabetes: serum metabolomics via ultra-high-performance LC-MS. Clin Chem 59:1338–1348. https://doi.org/10.1373/clinchem.2012.200527

    Article  CAS  PubMed  Google Scholar 

  20. Low Wang CC, Lu L, Leitner JW et al (2013) Arterial insulin resistance in Yucatan micropigs with diet-induced obesity and metabolic syndrome. J Diabetes Complications 27:307–315. https://doi.org/10.1016/j.jdiacomp.2013.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ludvigsson J (2013) C-peptide in diabetes diagnosis and therapy. Front Biosci E5:214–223. https://doi.org/10.2741/E609

    Article  CAS  Google Scholar 

  22. Patel DP, Krausz KW, Xie C et al (2017) Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLoS ONE 12:e0177953. https://doi.org/10.1371/journal.pone.0177953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45e–445. https://doi.org/10.1093/nar/29.9.e45

    Article  Google Scholar 

  24. Phillips CM, Perry IJ (2013) Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab 98:E1610–E1619. https://doi.org/10.1210/jc.2013-2038

    Article  CAS  PubMed  Google Scholar 

  25. Polakof S, Rémond D, Bernalier-Donadille A et al (2018) Metabolic adaptations to HFHS overfeeding: how whole body and tissues postprandial metabolic flexibility adapt in Yucatan mini-pigs. Eur J Nutr 57:119–135. https://doi.org/10.1007/s00394-016-1302-1

    Article  CAS  PubMed  Google Scholar 

  26. Polakof S, Rémond D, David J et al (2018) Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig. Nutrition 50:66–73. https://doi.org/10.1016/j.nut.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  27. Poupin N, Tremblay-Franco M, Amiel A et al (2019) Arterio-venous metabolomics exploration reveals major changes across liver and intestine in the obese Yucatan minipig. Sci Rep 9:12527. https://doi.org/10.1038/s41598-019-48997-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Renner S, Blutke A, Clauss S et al (2020) Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 380:341–378. https://doi.org/10.1007/s00441-019-03158-9

    Article  CAS  PubMed  Google Scholar 

  29. Sébert SP, Lecannu G, Kozlowski F, Siliart B, Bard JM, Krempf M, Champ MM (2005) Childhood obesity and insulin resistance in a Yucatan mini-piglet model: putative roles of IGF-1 and muscle PPARs in adipose tissue activity and development. Int J Obes (Lond) 29(3):324–333. https://doi.org/10.1038/sj.ijo.0802823

    Article  CAS  PubMed  Google Scholar 

  30. Shan L, Yang J, Meng S et al (2021) Urine metabolomics profiling of lumbar disc herniation and its traditional Chinese medicine subtypes in patients through gas chromatography coupled with mass spectrometry. Front Mol Biosci 8:648823. https://doi.org/10.3389/fmolb.2021.648823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stefanovski D, Punjabi NM, Boston RC, Watanabe RM (2021) Insulin action, glucose homeostasis and free fatty acid metabolism: insights from a novel model. Front Endocrinol 12:625701. https://doi.org/10.3389/fendo.2021.625701

    Article  Google Scholar 

  32. Steinert RE, Feinle-Bisset C, Asarian L et al (2017) Ghrelin, CCK, GLP-1, and PYY(3–36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev 97:411–463. https://doi.org/10.1152/physrev.00031.2014

    Article  PubMed  Google Scholar 

  33. Strömbom U, Krotkiewski M, Blennow K et al (1996) The concentrations of monoamine metabolites and neuropeptides in the cerebrospinal fluid of obese women with different body fat distribution. Int J Obes Relat Metab Disord 20:361–368

    PubMed  Google Scholar 

  34. Sun Y, Gao H-Y, Fan Z-Y et al (2020) Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. J Clin Endocrinol Metab 105:1000–1008. https://doi.org/10.1210/clinem/dgz240

    Article  Google Scholar 

  35. Ulaszewska MM, Weinert CH, Trimigno A et al (2019) Nutrimetabolomics: an integrative action for metabolomic analyses in human nutritional studies. Mol Nutr Food Res 63:1800384. https://doi.org/10.1002/mnfr.201800384

    Article  CAS  Google Scholar 

  36. Vangaveti V, Baune BT, Kennedy RL (2010) Review: Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Therapeutic Adv Endocrinol 1:51–60. https://doi.org/10.1177/2042018810375656

    Article  CAS  Google Scholar 

  37. Wan Y, Yuan J, Li J et al (2020) Overweight and underweight status are linked to specific gut microbiota and intestinal tricarboxylic acid cycle intermediates. Clin Nutr 39:3189–3198. https://doi.org/10.1016/j.clnu.2020.02.014

    Article  CAS  PubMed  Google Scholar 

  38. Wang F, Zhao Y, Niu Y et al (2012) Activated glucose-6-phosphate dehydrogenase is associated with insulin resistance by upregulating pentose and pentosidine in diet-induced obesity of rats. Horm Metab Res 44:938–942. https://doi.org/10.1055/s-0032-1323727

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Zhang H, Yao L et al (2018) Serum metabolic profiling of type 2 diabetes mellitus in Chinese adults using an untargeted GC/TOFMS. Clin Chim Acta 477:39–47. https://doi.org/10.1016/j.cca.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  40. Wang Sattler R, Yu Z, Herder C et al (2012) Novel biomarkers for pre[Inline Image Removed] diabetes identified by metabolomics. Mol Syst Biol 8:615. https://doi.org/10.1038/msb.2012.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Washburn R, Cox J, Muhlestein J et al (2019) Pilot study of novel intermittent fasting effects on metabolomic and trimethylamine N-oxide changes during 24-hour water-only fasting in the FEELGOOD trial. Nutrients 11:246. https://doi.org/10.3390/nu11020246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu L, Parhofer KG (2014) Diabetic dyslipidemia. Metabolism 63:1469–1479. https://doi.org/10.1016/j.metabol.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  43. Xu Y, Curtasu MV, Bach Knudsen KE et al (2021) Dietary fibre and protein do not synergistically influence insulin, metabolic or inflammatory biomarkers in young obese Göttingen minipigs. Br J Nutr 125:828–840. https://doi.org/10.1017/S0007114520003141

    Article  CAS  Google Scholar 

  44. Yamamoto T, Inokuchi T, Ka T et al (2010) relationship between plasma uridine and insulin resistance in patients with non-insulin-dependent diabetes mellitus. Nucleosides, Nucleotides Nucleic Acids 29:504–508. https://doi.org/10.1080/15257771003740986

    Article  CAS  PubMed  Google Scholar 

  45. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98. https://doi.org/10.1038/nrendo.2017.151

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge D. Durand and the staff of the IEN Animal Facility (B. Cohade, Y. Guerin, and J. Hermet) for technical assistance.

Funding

This study was funded by Agence Nationale de La Recherche (ANR-19-CE14-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Polakof.

Ethics declarations

Ethics approval

All procedures were in accordance with the guidelines formulated by the European Community for the use of experimental animals (L358-86/609/EEC, Council Directive, 1986) and approved by the Auvergne Ethical Committee (authorization 23392–2019121914101286).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• HFHS-fed minipigs showed progressive obesity stages up to almost 50% of fat mass.

• Obese minipigs developed IR, mild dyslipidemia but without overt inflammation.

• Plasma metabolomics profiles are modified along the different obesity stages.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 508 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousahba, I., David, J., Castelli, F. et al. Despite similar clinical features metabolomics reveals distinct signatures in insulin resistant and progressively obese minipigs. J Physiol Biochem 79, 397–413 (2023). https://doi.org/10.1007/s13105-022-00940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00940-2

Keywords

Navigation