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Abstract
NOX5 is the last member of the NADPH oxidase (NOXs) family to be identified and presents some specific characteristics 
differing from the rest of the NOXs. It contains four Ca2+ binding domains at the N-terminus and its activity is regulated by 
the intracellular concentration of Ca2+. NOX5 generates superoxide (O2

•−) using NADPH as a substrate, and it modulates 
functions related to processes in which reactive oxygen species (ROS) are involved. Those functions appear to be detrimental 
or beneficial depending on the level of ROS produced. For example, the increase in NOX5 activity is related to the devel-
opment of various oxidative stress-related pathologies such as cancer, cardiovascular, and renal diseases. In this context, 
pancreatic expression of NOX5 can negatively alter insulin action in high-fat diet-fed transgenic mice. This is consistent with 
the idea that the expression of NOX5 tends to increase in response to a stimulus or a stressful situation, generally causing a 
worsening of the pathology. On the other hand, it has also been suggested that it might have a positive role in preparing the 
body for metabolic stress, for example, by inducing a protective adipose tissue adaptation to the excess of nutrients supplied 
by a high-fat diet. In this line, its endothelial overexpression can delay lipid accumulation and insulin resistance development 
in obese transgenic mice by inducing the secretion of IL-6 followed by the expression of thermogenic and lipolytic genes. 
However, as NOX5 gene is not present in rodents and human NOX5 protein has not been crystallized, its function is still 
poorly characterized and further extensive research is required.
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NADPH oxidases 

The NADPH oxidase (NOXs) family is characterized for 
being membrane proteins that use NADPH as an electron 
donor. The first enzyme belonging to this family of oxi-
dases was identified in 1986. It was located in the mem-
brane of phagocytic cells and it was found to be a protein 
capable of generating H2O2 using NADPH as a substrate. 
This enzyme was named NOX2/gp91PHOX. Since then, six 
more isoforms have been identified, constituting the family 
of NADPH oxidases (Fig. 1), whose 7 members are called 
NOX 1–5 and dual oxidases DUOX 1–2 [15, 17, 94]. As 
explained below, the DUOX family constitutes a different 
subfamily due to their extended primary sequence, the type 
of ROS formed, their maturation process, and their func-
tional regulation [29]. The NOX members share the same 
catalytic core: a six-transmembrane helical domain (TM) 
with a C-terminal cytosolic dehydrogenase domain (DH). 
The DH domain includes the binding sites for FAD (flavin 

Keypoints   
- NOX5 levels increase in the body as a response to stress.
- NOX5 has been associated with the development of pathologies 
and metabolic complications.
- NOX5 might prepare the body for stressful situations.
- Endothelial NOX5 activity promotes thermogenesis and lipolysis 
in the adipose tissue of knock-in transgenic mice by activating 
IL-6.
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adenine dinucleotide) and NADPH, whereas TM binds two 
hemes [15, 73].

NOX2 is the most studied member of those oxidases. It 
can be found in cardiomyocytes, myocytes, hepatocytes, 
and endothelial cells. Its gp91phox subunit, also cataloged 
as NOX2, represents the catalytic center. The p22phox, 
p47phox, and p67phox subunits form the stabilizing, organ-
izing, and activating subunits, respectively [44, 46, 49, 55, 
92]. The mechanism by which this enzyme and the rest of 
NOXs generates O2•− is the following: NADPH binds to 
FAD and transfers two electrons to it. As a result, FAD is 
reduced to FADH2 and transfers an electron to the heme 
group located on the gp91phox subunit. Consecutively, the 
latter will reduce the O2 molecule to produce O2

•−. FADH• 
can repeat the process faster generating another molecule 
of O2

•− [28, 46].
The NOX1 isoform has 60% sequence identity to NOX2. 

It is expressed in various tissues such as the epithelium of 
the colon, uterus, prostate, and muscle and in endothelial 
cells. Like NOX2, NOX1 acts as a catalytic center for the 
generation of O2

•−; p22phox is the stabilizing subunit; 
NOXO1 is the organizer; and NOXO1A is the activator [2, 
10, 99]. In the case of NOX3, its sequence identity to NOX2 
is 56%. Like NOX1, this enzyme complex is composed of 
NOX3, p22phox, NOXO1, and NOXO1A. It is expressed 
in tissues such as the inner ear and its main characteristic 
is that it can be activated without the need for an external 
stimulus [11, 104].

Interestingly, NOX4 protein is not as similar to NOX2 as 
the previous isoforms. Its distribution is especially abundant 
in the kidney, but it is also expressed in endothelium and 
muscle. The enzymatic complex of this protein is formed 
only by two proteins: NOX4, which is the catalytic center, 
and p22phox. Furthermore, it does not require the binding 
of cytosolic subunits to carry out its activity. NOX4 presents 
an activity similar to that of superoxide dismutase (SOD) so 

that the superoxide that is generated is rapidly converted to 
H2O2 [41, 53, 83].

Lastly, there are the DUOX 1 and 2. These isoforms pre-
sent a high level of expression in the thyroid gland and they 
are known as thyroid oxidases, although they have also been 
identified in the gastrointestinal tract and prostate. The main 
difference between DUOXs and the rest of NOXs is that 
they present an additional intracellular region containing 
two EF-hands motifs preceded by a seventh transmembrane 
fragment ended by an extracellular peroxidase-homology 
domain (PHD) in the N-terminal region, and require the 
presence of maturation factors (DUOXA1/2) for their activ-
ity. Like NOX4, DUOX1 and 2 generate H2O2, whose pro-
duction is dependent on calcium and phosphorylation [4, 17, 
29, 30, 45, 68, 105].

NOX5

The last member of the NOX family to be identified was 
NOX5. In 2001, two independent research groups first 
detected the mRNA of a protein with high homology to 
NOX1 and 2. This mRNA encoded the NOX5 protein, and 
was detected in spleen, kidney, and testis samples. Despite 
the high degree of homology, NOX5 presented a great struc-
tural difference compared to the rest of NOXs, the pres-
ence of calcium-binding domains (Ca2+) at the N-terminus 
[12, 26]. From the research carried out by Cheng et al., it 
was determined that the human NOX5 protein constituted 
its own phylogenetic branch, quite different from the rest 
of the NOXs. This suggests that NOX5 perhaps represents 
the most similar protein to the ancestral NOX [26]. Due to 
several evolutionary studies, it has been observed that vari-
ous plants, animals, and some fungi incorporate enzymes 
similar to NOX5, which suggests that the appearance of the 
first NOX5 occurred before the evolutionary separation of 

Fig. 1   Schematic representation 
of the structure of the different 
NOXs. A Structure of isoforms 
1–3. B Structure of isoform 4. C 
Structure of isoform 5. D Struc-
ture of DUOX1-2 isoforms. The 
transmembrane domains (blue), 
the subunits necessary for the 
activation of each enzyme 
(brown), the stabilizer subunits 
(orange), and maturation factors 
in DUOX (red) and the FAD/
NADH binding domains (pur-
ple) are indicated in each figure. 
Image adapted from Buvelot 
et al. [17]
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the kingdoms. These analyses have also served to find out 
that this protein has disappeared or duplicated itself in some 
organisms. For example, up to 10 NOX5-like genes have 
been detected in plants. In contrast, in organisms such as 
rodents its existence has not been detected [14, 63].

Based on this information, some experts refer to this oxi-
dase as “the enigmatic NOX” [103]. The reasons that justify 
this name are as follows:

1.	 NOX5 gene is not present in rodents.
2.	 It does not require the union of other subunits to be 

active.
3.	 Its structure incorporates four Ca2+ binding domains at 

the N-terminus.
4.	 Its activity is regulated by the intracellular concentration 

of Ca2+.
5.	 The activation of this oxidase requires protein confor-

mational changes.
6.	 NOX5 is not N-glycosylated, in contrast to other NOXs.

NOX5 gene

In humans, the NOX5 gene is located on the long arm of 
chromosome 15 and is composed of 18 exons. Through alter-
native splicing of exons, six variants have been identified: α, 
β, δ, γ, ε (truncated variant), and ζ. Two gene transcription 
start sites have been identified by studies using the 5′ RACE 
technique. One of them is for the β and δ variants (exon 4) 
and another is for the α and γ variants (exon 3). In the case 
of the ε isoform, its start is located in exon 6. The rest of the 
exons are common to all isoforms [14, 35, 97, 103].

As mentioned above, NOX5 mRNA was initially identi-
fied in testis, spleen, and kidney samples [12, 26]. Over the 
years, the presence of this enzyme in other tissues and cell 
types has been demonstrated. This is the case of endothelial 
cells, vascular smooth muscle cells, and cardiomyocytes 
of the cardiovascular system [74, 80, 108]. Other tissues 
where this protein is expressed are bone marrow, uterus, 
stomach, skeletal muscle, and in the placenta [103]. Pre-
vious work carried out in our research group also demon-
strated its expression in hepatic stellate cells [6]. Regard-
ing the isoforms, their expression depends on the cell type 
analyzed. The β variant is usually the most frequent and has 
been detected in lung smooth muscle or podocytes. For its 
part, the ε variant, which was thought to be practically inac-
tive, causes the increase in reactive oxygen species (ROS) 
characteristic of Barrett’s carcinoma [86, 98].

The promoter region of the gene presents alternative 
binding sites for different transcription factors as follows: 
AP-1, C/EBP, NF-κB, and STAT [75, 86]. Moreover, NOX5 
gene expression can be induced by using different agonists. 
Angiotensin II represents an example of an agonist whose 

binding to its receptor in vascular smooth muscle and 
endothelial cells can produce an increase in the expression 
of NOX5 both at the mRNA and protein levels [80]. In the 
same work, the existence of another agonist, endothelin 1, 
was also confirmed. NOX5 is a protein capable of induc-
ing various cellular changes when it binds to the endothelin 
receptor. One of these changes is the increase in ROS levels. 
Other molecules that have been described as NOX5 inducers 
are platelet-derived growth factor (PDGF), tumor necrosis 
factor-alpha (TNFα), or leptin [56, 74, 86].

Concerning the epigenetic regulation of the gene, some 
microRNAs (miRNAs), a class of non-coding RNAs that 
play important roles in regulating gene expression, have 
been postulated to modulate NOX5 expression. Thus, 
miR-15a-3p, present in circulating exosomes from diabetic 
patients, appears to reduce NOX5 expression within human 
endothelial cells [107]. On the other hand, in an in vitro 
model of diabetic nephropathy, miR-485 suppresses inflam-
mation and proliferation of human mesangial cells by sup-
pressing the expression of NOX5 [106]. Finally, the in 
silico analysis of miR-4321 and miR-4270, miRNAs that 
are upregulated in the serum of sepsis-induced acute kidney 
injury patients, predicts that they are able to decrease NOX5 
expression [40].

Structure and localization of NOX5

The human NOX5 protein has not yet been crystallized. 
However, in 2017, the structure of the ortholog of the cyano-
bacterium Cylindrosperum stagnale was determined. Due to 
this work, it has been possible to carry out experiments that 
allow studying the mechanism of O2

•− production derived 
from FAD domains [73].

From the crystallized structure and through compara-
tive studies with other NOXs, it has been concluded that 
the main components for electron transport are conserved 
in the NOX5 protein (Fig. 2). These are the six transmem-
brane domains with two histidine-linked Fe groups that 
link α-helices 3 and 5, the FAD-binding domain, and the 
NADPH-binding motif located at the C-terminus [12]. 
Along with these conserved elements, NOX5 includes other 
characteristics that influence its biochemical properties. The 
major difference over other enzymes of the same family is 
that, as mentioned above, the N-terminal end of NOX5 con-
tains four EF-hands motifs, which allow the binding of Ca2+ 
ions. It also includes a polybasic domain (PBR-N), which 
is present at the carboxyl end (PBR-C). It is a region rich in 
residues susceptible to being phosphorylated (S and T) and 
with a characteristic calmodulin-binding region [13, 35].

In the case of the NOX5 variants, with the excep-
tion of the δ isoform, there are no major differences in 
their structure (Fig. 3). All NOX5 variants present six 
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transmembrane domains and the same characteristics of 
the C-terminal region. However, at the amino terminus, 
there are slight divergences among variants. The α and β 
isoforms are the most active and they do not present inser-
tions among the EF-hands motifs. In contrast, in the case 
of γ and δ, there is an insertion between these motifs that 
seems to affect the activity of the enzyme. The ε isoform, 

which does not seem to present much activity either, is 
characterized by the absence of EF-hands motifs. Finally, 
the ζ isoform is quite similar to the α but differs in that it 
hardly shows any activity [86].

Finally, in contrast to the rest of NOXs, NOX5 is mainly 
located in intracellular membranes such as the endoplas-
mic reticulum and the perinuclear area. Its presence in 
the plasma membrane appears to be limited to the release 
of ROS into the extracellular space [3, 62]. The reason 
why NOX5 localizes to the reticulum is not entirely clear 
but this might be related to the fact that it is an organelle 
rich in intracellular Ca2+, thus establishing a regulation 
of NOX5 via the endoplasmic reticulum [81]. The tran-
sition of NOX5 from the reticulum to the plasma mem-
brane seems to be mediated by the carboxy-terminal PBR 
domain, as it is capable of binding the membrane phospho-
lipid phosphatidylinositol 4,5-bisphosphate [62].

Regulation of NOX5 activity

The molecular mechanism by which NOX5 generates 
O2

•− is the same as the one described above for NOX2. 
Briefly, NADPH donates electrons to the FAD domain, 
which binds to the heme group of the transmembrane 
regions. This entails the reduction of the O2 molecule to 
generate O2

•−. However, the regulation of NOX5 activity 
presents relevant differences compared with other oxidases 
of the family. Although NOX5 can bind to the p22phox 
subunit, it has been described that such interaction is not 
required for NOX5 activity [91]. In fact, as observed at the 
time of its discovery, the activity of the enzyme depends 
mainly on its binding to Ca2+ [12, 26].

Fig. 2   Schematic representation of the structure of NOX5. The pro-
tein contains six transmembrane domains (dark blue), with the N- 
and C-terminus disposed toward the cytosol. At the amino end, the 
EF-hand motifs are located, capable of binding Ca2+ ions (golden). 
The FAD domain (yellow) and the NADPH binding motif (purple), 
responsible for the production of O2.•−, and the polybasic domain 
(PBR-C) (pale blue) are located at the carboxyl end. Image adapted 
from Touyz et al. [103]

Fig. 3   Schematic representation 
of the structure of the six NOX5 
variants. The transmembrane 
domains and the C-terminus are 
identical for all isoforms. The 
main differences are present at 
the amino end. Image adapted 
from Fulton et al. [35]
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Calcium‑dependent allosteric regulation

As previously mentioned, the regulatory domain (called 
NOX5-EF) present in the N-terminal end of NOX5, includes 
four EF-hand domains that allow Ca2+ binding. These motifs 
act two by two, with those closer to the end having the low-
est affinity for Ca2+. The binding of Ca2+ to these motifs 
induces a conformational change in the structure of NOX5 
characterized by the interaction of some hydrophobic resi-
dues of the amino end with the C-terminal catalytic domain 
activating the enzyme. The C-terminus incorporates an 
autoinhibitory domain called the EF-hand binding domain. 
Interaction of the Ca2+-bound N-terminus with this region 
removes the inhibition, facilitating the activation of the 
enzyme [13, 101]. The production of ROS derived from 
NOX5 requires high concentrations of intracellular Ca2+. 
Nevertheless, since the enzyme is capable of producing ROS 
in situations where Ca2+ concentrations are low, there must 
be other mechanisms that regulate NOX5 activity.

Regulation by covalent modification 
(phosphorylation) of NOX5

In 2007, Jagnandan D. et al. [54] demonstrated another form 
of regulation of NOX5 activity, independent of Ca2+. These 
studies found that the protein kinase C (PKC) activator com-
pound phorbol 12-myristate 13-acetate (PMA) was able to 
activate NOX5 without an increase in intracellular Ca2+ 
levels. In addition, a synergy between PMA and Ca2+ was 
observed. That is, the presence of PMA caused the enzyme 
to be even more sensitive to the action of Ca2+. At the 
C-terminal end of the protein, there is a series of serine and 
threonine residues (T512 and S516) that can be phosphoryl-
ated by PKC. Mutation of these residues to alanine reduced 
NOX5 activation in the presence of PMA [54]. Within the 
PKC family, phosphorylation was found to be dependent on 
the α isoform as its silencing reduced the ability of PMA to 
activate O2

•− production [22]. Likewise, it seems that the 
kinases regulated by extracellular signals (ERK1/2) would 
also regulate the activity of NOX5 [84].

Other types of regulation

NOX5 activity can also be regulated by other types of post-
translational modifications. These changes can occur through 
oxidation, nitrosylation, sumoylation, and palmitoylation. 
The oxidation of the enzyme seems to cause a reduction 
in its activity since it reduces the Ca2+ binding capacity of 
the protein. Nitrosylation, together with sumoylation, also 
reduce its activity. Instead, palmitoylation appears to regu-
late the cellular localization of the enzyme [103].

Taking into account the role played by PKC in the regu-
lation of oxidase activity, the possibility that other proteins 

could interact with NOX5, modifying its activity, has been 
evaluated. In this sense, the first protein described was calm-
odulin, for which NOX5 displays a binding domain at the 
C-terminal end and allows the oxidase to be active without 
the need for high Ca2+ levels. In turn, it has been reported 
that certain calmodulin inhibitors such as KN-93 are also 
capable of inhibiting the activity of NOX5 [85].

NOX5 also interacts with the chaperone Hsp90. This 
interaction results critical for the oxidase activity, since its 
inhibition compromises the ability of NOX5 to generate 
O2

•−. Furthermore, inhibition of Hsp90 leads to the binding 
of another chaperone, Hsp70, which induces the degradation 
of NOX5 in the proteasome [72]. Finally, another protein 
that exhibits direct binding to NOX5 is caveolin 1 (Cav1). 
Previously, the existence of a direct union between Cav1 and 
NOX2 had already been described, a fact that facilitated the 
activation of this member of the family [71]. In the case of 
NOX5, in 2014, an article was published for the first time 
linking both proteins and reflecting the opposite of what was 
observed with NOX2. Cav1 negatively regulated the activity 
of not only NOX5, but also NOX1-3 [21]. In fact, in 2020, 
the presence of NOX5 and NOX1 in the caveolae of the 
plasma membrane in smooth muscle cells was established 
and the negative regulatory role that Cav1 plays on the activ-
ity of both enzymes was confirmed [5].

Role of NOX5 in physiology 
and pathophysiology

NOX5 in physiology

The presence of NOX5 in different cell types and the vari-
ability in its expression make it ambiguous whether its 
expression promotes positive or negative effects on the 
tissues in which it is expressed. Its basal activity could be 
related to physiological effects mediated by oxidative signal-
ing, whereas its overexpression or activation tends to cause 
oxidative stress-induced physiopathological damage (Fig. 4).

Cellular differentiation

The first studies dedicated to this protein determined that 
NOX5 is expressed in human monocytes and macrophages 
and that it is capable of regulating the differentiation of 
monocytes to dendritic cells [78]. However, these studies 
were carried out with leukemia cell lines, so the physiologi-
cal effects of NOX5 on neutrophils are not entirely clear. 
Regarding the involvement of NOX5 in cellular differentia-
tion, it has been confirmed that NOX5 is required for the 
proper differentiation of human oligodendrocytes [1].

387Structure, regulation, and physiological functions of NADPH oxidase 5 (NOX5)
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Cardiovascular function

NOX5 is also expressed in other non-immune cell types and 
appears to modulate functions related to processes in which 
ROS are involved. In this sense, physiological levels of 
ROS are essential for normal vascular functions, including 
endothelial homeostasis and smooth muscle cell contraction 
[25]. The NOX family represents the principal enzymatic 
source of ROS in the vasculature [77]. Additionally, among 
the NOX isoforms present in human vessels, NOX5 seems 
to be the major ROS-generating oxidase [60, 102]. In this 
system, the presence of NOX5 has been confirmed at the 
vascular wall in endothelial cells, vascular smooth mus-
cle cells (VSMC), and interstitial fibroblasts, as well as in 
blood cells themselves, such as circulating monocytes and 
macrophages [60]. Considering all these factors, it has been 
described the involvement of NOX5 activity in the physi-
ological regulation of vascular tone [81] and angiogenesis 
[89]. Moreover, in relation to cardiac muscle, as previously 
mentioned, NOX5 is slightly expressed at the endothelium 
of intramyocardial blood vessels and in cardiomyocytes 
[48, 109], and both Ca2+ and ROS-mediated signaling are 
responsible for controlling cardiomyocyte contraction. In 
this context, NOX5 has been shown to have a key role in the 
regulation of muscle cell contraction, cell proliferation, and 
capillary generation [81, 89]. However, the expression of 
NOX5 in necrotic and non-necrotic as well as hypertrophied 
areas of the myocardium makes its role in the cardiovascular 
system difficult to interpret [48].

Sperm functionality

Furthermore, ROS (and more precisely O2
•−) are involved in 

sperm functionality under physiological condition, and they 
are required for processes such as hyperactivation, acrosome 
reaction, and sperm-oocyte fusion [65]. It had been previ-
ously described that the mRNA of NOX5 is highly expressed 
in human testis [12], and the expression of the oxidase was 
identified in human [82], canine [96], and equine [95] sper-
matozoa. Taking all these data into account, Ghanbari et al. 
demonstrated that NOX5 participates in the regulation of 
human progesterone-activated sperm motility and viability 
[42]. Moreover, some studies developed in ram demon-
strated that it is also involved in sperm capacitation [79].

NOX5 in pathophysiology

On the other hand, the increase in ROS levels in the body is 
associated with the development of oxidative stress. For this 
reason, the increase in NOX5 activity is related to the pro-
gression of various pathologies such as vascular and renal 
diseases and cancer.

Cardiovascular diseases

In the case of vascular diseases, as previously mentioned, the 
presence and activity of the oxidase in different cell types 
of this system makes the circulatory system more sensitive 
to alterations of NOX5. Thus, human and animal studies 

Fig. 4   Schematic representation of the main physiological and physiopathological functions described so far for NOX5

388 J. G. García et al.
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suggest that NOX5 might promote endothelial dysfunction 
and inflammation in the vasculature [77]. Inflammation and 
oxidative stress are currently regarded as important compo-
nents of atherosclerosis pathogenesis, a process in which 
lipid-containing plaques are formed in the blood vessel wall 
that can obstruct the vessel lumen or provoke erosion or 
rupture, inducing further thrombotic events. The implication 
of the NADPH family members and their role in atheroscle-
rosis has been previously reviewed in Poznyak et al. [90]. 
Regarding the precise implication of NOX5 in this process, 
it has been described that the mRNA and protein levels of 
NOX5 as well as the calcium-dependent NADPH oxidase 
activity are significantly increased in the atherosclerotic 
coronary arteries from patients with coronary artery disease 
as compared to nonatherosclerotic vessels [47]. However, 
in a recent work employing a humanized Nox5 knock-in 
mice that expressed NOX5 in endothelial cells to test the 
pro-atherogenic hypothesis, Ho et al. [50] found that the 
expression of the oxidase per se was insufficient to induce 
aortic atherosclerotic lesions, even in aged mice and exposed 
to a high cholesterol atherogenic diet. Moreover, in the same 
work, the authors demonstrated that the endothelial expres-
sion of NOX5 did not aggravate aortic atherosclerosis in the 
atherosclerosis-prone ApoE−/− mice with and without induc-
tion of diabetes [50]. Another process related to vascular dis-
eases in which NOX5 appears to be involved is in vascular 
calcification, the formation of calcium phosphate crystals 
in the vessel wall that promotes vascular stiffness. In vitro 
studies employing hVSMCs demonstrated that the oxidase 
would be mediating the phenotypic switching between the 
normal “contractile VSMCs” to a dedifferentiated “synthetic 
VSMCs.” In addition, the work presents that in these syn-
thetic VSMCs, Ca2+-NOX5-induced ROS would induce an 
increase in the release of extracellular vesicle (EV) as well 
as a decrease in their uptake, causing their extracellular 
accumulation and increasing calcification [36]. In the case 
of cardiovascular diseases, the expression of the oxidase 
seems to be increased in intramyocardial blood vessels and 
cardiomyocytes after acute myocardial infarction [48] and in 
the cardiomyocytes of failing human hearts [109]. Due to the 
regulatory role it exerts on cardiac tissue, NOX5 also seems 
to be involved in the development of heart attacks, hyperten-
sion, and cardiac hypertrophy [52, 64, 109]. Our group has 
also observed that NOX5-derived ROS may modulate the 
COX-2/PGE2 axis in endothelial cells, which might play a 
relevant role in the pathophysiology of heart infarction [76].

Neurological diseases

In the case of the brain, the works from the group of Harald 
Schmidt associate the expression of human NOX5 in 
endothelial and hematopoietic cells in a knock-in mouse 
model and in vitro organotypic hippocampal cultures, with 

the presence of hypertension and the risk of stroke [20, 
64]. The authors show that NOX5-dependent ROS forma-
tion compromises the integrity of the blood–brain barrier, 
increasing infarct size and aggravating neurological function 
after cerebral ischemia and reperfusion injury.

Diabetic nephropathy

Likewise, it has been observed that NOX5 is expressed in 
renal tubule cells and that in conditions of diabetic nephrop-
athy, its overexpression affects the correct functioning of the 
renal system. Specifically, NOX5 overexpression produces 
an increase in inflammatory cytokines that result in the 
appearance of kidney damage [52, 60]. In this sense, a recent 
paper of Jha et al. suggests that NOX 5 could be playing a 
much more prominent role than NOX4 in this disease [59].

Cancer

Elevated NOX5 levels have been also reported in various 
types of tumors and cancer cell lines (lymphoma, Barrett’s 
esophageal adenocarcinoma, gastric, melanoma, colon, 
breast, and prostate), where an increase in ROS levels cor-
relates with increased cell proliferation, DNA damaged, 
angiogenesis, and reduced apoptosis [7, 9, 33, 37, 69, 93].

The activity of the oxidase has been associated with 
different roles in cancer progression. At the cellular level, 
in vitro studies have confirmed that NOX5 promotes pro-
liferation and survival and reduced apoptosis in prostate 
carcinoma cancer cells, breast cancer cells, lymphoma, 
Barrett esophageal adenocarcinoma cells, and melanoma 
[7, 19, 33, 34, 51]. Using human colon and breast cancer 
cell lines in which the expression of NOX5 was depleted 
employing specific siRNAs, some works demonstrated the 
direct involvement of NOX5 in the migration or cell motil-
ity of those transformed cell lines [8, 33]. In addition, the 
activity of NOX5 is also responsible for the increased tumor 
cell invasion of human prostate, colon, and breast tumor cell 
lines [8, 33, 66]. Moreover, NOX5 could be acting as a driv-
ing oncoprotein through the regulation of the expression of 
several cytokines to provide the conditions that facilitates 
tumor malignant progression [24].

On the other hand, the clinical relevance of the activ-
ity of NOX 5 in oncology patients presenting different 
types of cancers has also been described. Hence, NOX5 
expression was found to be increased at the invasive front 
of prostate cancer tumors, increasing the ROS levels in 
the area. The ROS produced, could potentially contrib-
ute to the expression of an active form of HIF1, that in 
turn, can increase the expression of the metalloproteinase 
14, which was found to be also increased at the invasive 
front of prostate cancer tumors. NOX5 expression could 
be thus contributing to conferring an invasive advantage 
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to tumor cells [66]. In the case of lymphomas, the work of 
Gonçalves et al. [43] demonstrated that NOX5 upregula-
tion was associated with the acquisition of an aggressive 
phenotype. NOX5 expression was increased in esopha-
geal squamous cell carcinoma (ESCC) tumors, and this 
elevated NOX5 was correlated to malignancy of (ESCC) 
tumors and poor prognosis, as a strong expression of the 
oxidase positively associated with advanced-stage, higher 
grade tumor status and higher grade lymph node status. 
Furthermore, those patients presenting a higher expression 
of NOX5 showed a shorter overall survival time. NOX5 
induced the malignant progression of ESCC by activat-
ing the proto-oncogenic protein tyrosine kinase Src, par-
ticularly under hypoxic conditions [23]. NOX5 upregula-
tion was also associated as a poor prognostic factor and 
worse prognosis in colon cancer patients, as the 5-year 
progression-free survival rate of NOX5-positive patients 
was significantly worse than that observed in NOX5-neg-
ative patients. Those NOX5-positive patients presented a 
higher local recurrence rate than that observed in NOX-
5-negative patients. Besides, NOX-5 positive expression 
was significantly correlated with poorer differentiated his-
tology [9].

Roles of NOX5 to be determined

Recent studies have also suggested the involvement of NOX5 
in the development of other different process in which the 
precise function and physiological or pathophysiological 
consequences of the presence and activity of the oxidase 
are not yet fully characterized [103]. In this context, the 
implication of other NADPH oxidases and oxidative stress in 
pulmonary hypertension or neurodegenerative disorders and 
neuroinflammation has been previously described, though 
the precise role of NOX5 in those events remains elusive 
[87, 100]. Related to neurological disorders, our group 
has recently described that the endothelial expression of 
NOX5 in a knock-in mouse model alters the integrity of the 
blood–brain barrier causing loss of memory in aged animals 
[27]. Other work from our group also described for the first 
time expression and functional relevance of NOX5 in the 
human cell line of hepatic stellate cells (HSC) LX-2 [6]. This 
cell line, when activated, presents a proliferative and myofi-
broblastic phenotype with increased production of collagen 
type I and other extracellular matrix proteins responsible for 
the development of liver fibrosis. The work of Andueza et al. 
[6] confirmed that NOX5 activity contributes to the prolif-
eration of the cell line as well as the increased production of 
collagen type I, pointing to a possible implication of the oxi-
dase in the initiation and progression of liver fibrosis, in line 
with the role previously reported played by NOX1,NOX2, 
and NOX4 [70].

Metabolic diseases

In relation to metabolic diseases, several works have ana-
lyzed the effect of NOX5 in diabetes. It has been described 
that high concentrations of glucose can increase NOX5 
expression and activity [16, 22]. The activity of the oxidase 
tends to demonstrate a detrimental effect in this condition, 
mainly due to the induction of vascular complications such 
as diabetic nephropathy [57], but it is also related to other 
complications related to the disease as the presence of foot 
ulcers [107], vascular retinopathy [31], or the formation of 
abdominal aortic aneurysms [50]. In this sense, the kidneys 
are probably the organs in which the effect of the activity 
of NOX5 has been better characterized in this situation. 
In patients with diabetes, there is an increased expression 
of renal NOX5 associated with enhanced ROS formation 
and the upregulation of ROS-sensitive pathways as early 
growth response 1 (EGR-1), protein kinase C-α (PKC-α), 
and thioredoxin-interacting protein (TXNIP). Moreover, in 
animal models of diabetic kidney diseases, the overexpres-
sion of NOX5 enhanced kidney damage by increasing albu-
minuria, inflammation, and renal fibrosis due to the increase 
of ROS and the activation of the previously mentioned 
ROS-sensitive pathways [58]. A recent work suggested that 
pancreatic (β‐cell‐specific) doxycycline‐inducible expres-
sion of NOX5 in RIP/rtTA/NOX5 transgenic mice can nega-
tively alter insulin action in high-fat diet-fed mice [16]. All 
these data are consistent with the idea that the expression of 
NOX5 tends to increase in several diseases, generally caus-
ing a worsening of the pathology [57].

However, other studies have suggested that the activity 
of NOX5 could present beneficial effects in other diseases, 
leading to an improvement in certain conditions such as car-
diac remodeling or the differentiation of monocytes into den-
dritic cells [48, 78]. For example, disruption of the NOX5 
gene employing CRISPR/Cas9 aggravates atherosclerosis 
in rabbits that were administered an atherogenic diet based 
on a high-fat cholesterol-rich (0.5% w/w) diet to induce 
plaque formation, suggesting a protective role for the oxi-
dase against atherosclerosis in this model [88]. Some works 
from our group demonstrated that knock-in transgenic mice 
expressing endothelial NOX5, presented lower body weight 
gain and less mesenteric and epididymal fat mass com-
pared to control mice. Those endothelial NOX5-expressing 
transgenic mice also showed significantly lower glycaemia 
and improved insulin-induced glucose uptake, which was 
accompanied by increased expression of Glut4 and Cav1 
in the adipose tissue of these animals [38]. Likewise, 3T3-
L1 adipocytes treated with conditioned media from NOX5-
expressing endothelial cells previously incubated with high 
glucose and palmitic acid, presented lower lipid accumula-
tion and higher glucose uptake. In this context, another study 
from our group showed that, in high-fat diet-fed endothelial 
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NOX-5-expressing transgenic mice, endothelial NOX5 activ-
ity promotes thermogenesis and lipolysis in the mesenteric 
and epididymal fat through phosphorylation of STAT3 and 
AMPK, respectively [39]. Those effects were mediated by 
activating interleukin-6 (IL-6) production. Moreover, 3T3-
L1 adipocytes treated with conditioned media of endothe-
lial NOX5-expressing cells previously incubated with high 
glucose and palmitic acid also presented higher expression 
of thermogenic and lipolytic genes. All these examples illus-
trate the need for additional studies in order to address other 
potentially beneficial effects that NOX5 activity could be 
mediating in other diseases.

As mentioned above, in the recent years, the development 
of transgenic models of the expression of NOX5 in mice, has 
enabled to demonstrate the involvement of the oxidase in 
several new functions. In some of those new roles, as in the 
field of metabolic diseases, liver fibrosis, pulmonary hyper-
tension, neurodegenerative disorders, or neuroinflammation, 
the precise effect of the activity of NOX5 has to be better 
characterized, since it is not still clear whether its activity 
is being part of the damage, or an attempt of the body to 
activate compensatory mechanisms to solve an insult [6, 38, 
39, 87, 100]. In this sense, it would be desirable to study 
how the expression and activity of NOX5 are modulating 
the endothelial function in processes that result critical in 
vascular structures involved in natural barriers in the organ-
ism like the blood–brain barrier, renal glomerulus or the 
alveoli of the lungs. Besides, further studies should be per-
formed in order to obtain specific inhibitors for this oxidase. 
In this regard, it is the first and only crystallized NADPH 
oxidase and there are relevant studies suggesting that NOX5 
could be a good therapeutic target in vascular diseases as 
diabetic nephropathy [59, 67, 87], cerebral ischemic injury 
[18], acute myocardial infarction or stroke [77], as well as 
in some types of cancer [9] and a potential target of cancer 
cell sensitivity to chemotherapies, such as cisplatin [32, 61]. 
Lastly, future works would be needed to explore the epige-
netic regulation of the NOX5 gene and the posttranslational 
regulation of the protein which are still unknown so far, and 
the interaction with other proteins that affects its activity.

Conclusion

In summary, in humans, NOX5 modulates functions related 
to processes in which ROS participate. Although in some 
cases, NOX5 has been associated with the development and 
worsening of several pathologies and metabolic complica-
tions, such as in cardiac ischemia or pancreatic beta-cells, in 
other circumstances it may play a beneficial role in the con-
dition of metabolic stress by adapting adipocyte metabolism. 
For example, it seems to induce a protective adipose tissue 
adaptation to the excess of nutrients caused by a high-fat diet 

in order to avoid, or at least delay, lipid accumulation and 
insulin resistance development. This may be mediated by 
an activation of the secretion of IL-6. Nonetheless, further 
research is needed in order to totally unveil the role of this 
protein in human health and disease.
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