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Abstract
We propose simple specification tests for independent component analysis and struc-
tural vector autoregressions with non-Gaussian shocks that check the normality of a
single shock and the potential cross-sectional dependence among several of them. Our
tests compare the integer (product) moments of the shocks in the sample with their
population counterparts. Importantly, we explicitly consider the sampling variability
resulting from using shocks computed with consistent parameter estimators. We study
the finite sample size of our tests in several simulation exercises and discuss some
bootstrap procedures. We also show that our tests have non-negligible power against
a variety of empirically plausible alternatives.
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1 Introduction

The literature on structural vector autoregressions (Svar) is vast. Popular identifi-
cation schemes include short- and long-run homogenous restrictions [see, e.g. Sims
(1980), Blanchard and Quah (1989)], sign restrictions [see, e.g. Faust (1998), Uhlig
(2005)], time-varying heteroskedasticity (Sentana and Fiorentini 2001) or external
instruments [see, e.g. Mertens and Ravn (2012), Stock and Watson (2018) or Dolado
et al. (2020)]. Recently, identification through independent non-Gaussian shocks has
become increasingly popular after Lanne et al. (2017) andGouriéroux et al. (2017). The
signal processing literature on Independent Component Analysis (Ica) popularised by
Comon (1994) shares the same identification scheme. Specifically, if in a static model
the N × 1 observed random vector y—the so-called signals or sensors—is the result
of an affine combination of N unobserved shocks ε∗—the so-called components or
sources—whose mean and variance we can set to 0 and IN without loss of generality,
namely

y = μ + Cε∗, (1)

then the matrix C of loadings of the observed variables on the latent ones can be
identified (up to column permutations and sign changes) from an i .i .d. sample of
observations on y provided the following assumption holds:1

Assumption 1: Identification

(1) the N shocks in (1) are cross-sectionally independent,
(2) at least N − 1 of them follow a non-Gaussian distribution, and
(3) C is invertible.

Failure of any of the three conditions in Assumption 1 results in an underidentified
model. The best known counterexample is a multivariate Gaussian model for ε∗, in
whichwe can identify V ( y) = CC ′ but not C without additional structural restrictions
despite the fact that the elements of ε∗ are cross-sectionally independent. Intuitively,
the problem is that any rotation of the structural shocks ε∗∗ = Qε∗, where Q is
an orthogonal matrix, generates another set of N observationally equivalent, cross-
sectionally independent shocks with standard normal marginal distributions. A less
well-known counterexample would be a non-Gaussian spherical distribution for ε∗,
such as the standardisedmultivariate Student t . In this case, the lack of identifiability of
C is due to the fact that ε∗ and ε∗∗ share not only their mean vector (0) and covariance
matrix (I), but also the same nonlinear dependence structure.

The purpose of our paper is to propose simple to implement and interpret spec-
ification tests that check the normality of a single element of ε∗ and the potential
cross-sectional dependence among several of them. In very simple terms, our tests
compare the integer (product) moments of the shocks in the sample with their popu-
lation counterparts. Specifically, in the Gaussian tests we compare the marginal third
and fourth moments of a single shock to 0 and 3, respectively. In turn, in the case

1 The same result applies to situations in which dim(ε∗) ≤ dim( y) provided that C has full column rank.
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of two or more shocks, we assess the statistical significance of their second, third
and fourth cross-moments, which should be equal to the product of the corresponding
marginal moments under independence. Many of these moments tests can be formally
justified as Lagrange multiplier tests against specific parametric alternatives [see, e.g.
Mencía and Sentana (2012)], but in this paperwe do not pursue this interpretation. Like
Almuzara et al. (2019), though, we focus on the latent shocks rather than the observed
variables in view of the fact that identifying Assumption 1 is written in terms of ε∗
rather than y.

If we knew the true values of μ and C, μ0 and C0 say, with rank(C0) = N , our
tests would be straightforward, as we could trivially recover the latent shocks from
the observed signals without error. In practice, though, both μ and C are unknown, so
we need to estimate them before computing our tests.

Although many estimation procedures for those parameters have been proposed in
the literature [see, e.g. Moneta and Pallante (2020) and the references therein], in this
paperwe consider the discretemixtures of normals-based pseudo-maximum likelihood
estimators (PMLEs) in Fiorentini and Sentana (2020) for three main reasons. First,
they are consistent for the model parameters under standard regularity conditions
provided that Assumption 1 holds regardless of the true marginal distributions of
the shocks. Second, they seem to be rather efficient, the rationale being that finite
normal mixtures can provide good approximations to many univariate distributions.
And third, the influence functions onwhich they are based are the scores of the pseudo-
log-likelihood, which we can easily compute in closed form. As we shall see, these
influence functions play a very important role in adjusting the asymptotic variances
of the different tests we propose so that they reflect the sampling variability resulting
from computing the shocks with consistent but noisy parameter estimators.

In this respect, we derive computationally simple closed-form expressions for the
asymptotic covariance matrices of the sample moments underlying our tests under the
relevant null adjusted for parameter uncertainty. Importantly, we do so not only for
static Ica model (1) but also for a Svar, which is far more relevant in economics.

In many empirical finance applications of Svars, the number of observations is
sufficiently large for asymptotic approximations to be reliable. In contrast, the limiting
distributions of our tests may be a poor guide for the smaller samples typically used in
macroeconomic applications. For that reason, we thoroughly study the finite sample
size of our tests in several Monte Carlo exercises. We also discuss some bootstrap
procedures that seem to improve their reliability. Finally, we show that our tests have
non-negligible power against a variety of empirically plausible alternatives in which
the cross-sectional independence of the shocks no longer holds.

The rest of the paper is organised as follows. Section 2 discusses the model and
the estimation procedure. Then, we present our general moment tests in Sect. 3 and
particularise them to assess normality and independence in Sect. 4. Next, Sect. 5
contains the results of our Monte Carlo experiments. We present our conclusions and
suggestions for further research in Sect. 6 and relegate some technical material and
additional simulations to several appendices.
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2 Structural vector autoregressions

2.1 Model specification

Consider the following N -variate Svar process of order p:

yt = τ +∑p
j=1 A j yt− j + Cε∗

t , ε∗
t |It−1 ∼ i .i .d. (0, IN ), (2)

where It−1 is the information set, C the matrix of impact multipliers and ε∗
t the

“structural” shocks, which are normalised to have zero means, unit variances and
zero covariances.

Let εt = Cε∗
t denote the reduced form innovations, so that εt |It−1 ∼ i .i .d. (0,�)

with � = CC ′. As we mentioned in introduction, a Gaussian (pseudo) log-likelihood
is only able to identify �, which means the structural shocks ε∗

t and their loadings
in C are only identified up to an orthogonal transformation. Specifically, we can
use the so-called LQ matrix decomposition2 to relate the matrix C to the Cholesky
decomposition of � = �L�′

L as

C = �L Q, (3)

where Q is an N × N orthogonal matrix, which we can model as a function of
N (N − 1)/2 parameters ω by assuming that |Q| = 1.3 Notice that if |Q| = −1
instead, we can change the sign of the i th structural shock and its impact multipliers
in the i th column of the matrix C without loss of generality as long as we also modify
the shape parameters of the distribution of ε∗

i t to alter the sign of all its nonzero odd
moments.

In this context, Lanne et al. (2017) show that statistical identification of both the
structural shocks and C (up to column permutations and sign changes) is possible
under Ica identification Assumption 1, which we maintain in what follows. Popular
examples of univariate non-normal distributions are the Student t and the generalised
error (orGaussian) distribution,which includes normal, Laplace anduniformas special
cases, as well as symmetric and asymmetric finite normal mixtures.

2.2 Pseudo-maximum likelihood estimators

2.2.1 The criterion function

Let θ = [τ ′, vec′(A1), . . . , vec′(Ap), vec′(C)]′ = (τ ′, a′
1, . . . , a

′
p, c

′) = (τ ′, a′, c′),
denote the structural parameters characterising the first two conditional moments of

2 The LQ decomposition is intimately related to the QR decomposition. Specifically, Q′�′
L provides the

QR decomposition of the matrix C ′, which is uniquely defined if we restrict the diagonal elements of �L
to be positive [see, e.g. Golub and van Loan (2013) for further details].
3 See section 10 of Magnus et al. (2021) for a detailed discussion of three ways of explicitly parametrising
a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on N (N − 1)/2
Tait-Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called Cayley
transform of a skew-symmetric matrix; and (iii) by exponentiating a skew-symmetric matrix.
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yt . In addition, we assume ε∗
i t |It−1 ∼ i .i .d. D(0, 1, �i ), where �i is a qi × 1 vector

of variation-free shape parameters, so that in principle different shocks could follow
different distributions. For simplicity of notation, though, we maintain that the uni-
variate distributions of the shocks belong to the same family. We can then collect all
the shape parameters in the q × 1 vector � = (�′

1, . . . ,�
′
N )′, with q = ∑N

i=1 qi , so
that φ = (θ ′, �′)′ is the [N + (p + 1)N 2 + q] × 1 vector containing all the model
parameters.

Given the linear mapping between structural shocks and reduced form innovations,
the contribution to the conditional log-likelihood function from observation yt (t =
1, . . . , T ) for those parameter configurations for which C has full rank will be given
by

l( yt ;φ) = − ln |C| + ln f [ε∗
t (θ); �] = − ln |C| + ln f [ε∗

1t (θ); �1] + · · ·
+ ln f [ε∗

Nt (θ); �N ] = lt (φ), (4)

where f [ε∗
i t (θ); �i ] is the univariate log-likelihood function for the i th structural shock,

ε∗
t (θ) = C−1εt (θ), and εt (θ) = yt − τ − A1 yt−1 − · · · − Ap yt−p are the reduced-

form innovations.

2.2.2 The score vector

Let st (φ) denote the score function ∂lt (φ)/∂φ and partition it into two blocks, sθ t (φ)

and s�t (φ), whose dimensions conform to those of θ and �, respectively. Fiorentini
and Sentana (2021) show that the scores can be written as

sθ t (φ) = [Zlt (θ), Zst (θ)]
[
elt (φ)

est (φ)

]

= Zdt (θ)edt (φ), (5)

s�t (φ) = er t (φ), (6)

where

Zlt (θ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

IN
yt−1 ⊗ IN

...

yt−p ⊗ IN
0N2×N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

C−1′, (7)

Zst (θ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0N×N2

0N2×N2

...

0N2×N2

IN2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(IN ⊗ C−1′), (8)
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elt (φ) = −∂ ln f [ε∗
t (θ); �]

∂ε∗ = −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ ln f [ε∗
1t (θ);�1]

∂ε∗
1
...

∂ ln f [ε∗
Nt (θ);�N ]
∂ε∗

N

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (9)

est (φ) = −vec

{

IN + ∂ ln f [ε∗
t (θ); �]

∂ε∗ · ε∗′
t (θ)

}

= −vec

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + ∂ ln f [ε∗
1t (θ);�1]

∂ε∗
1

· ε∗
1t (θ) . . .

∂ ln f [ε∗
1t (θ);�1]

∂ε∗
1

· ε∗
Nt (θ)

...
. . .

...
∂ ln f [ε∗

Nt (θ);�N ]
∂ε∗

N
· ε∗

1t (θ) . . . 1 + ∂ ln f [ε∗
Nt (θ);�N ]
∂ε∗

N
· ε∗

Nt (θ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10)

and

er t (φ) = ∂ ln f [ε∗
t (θ); �]

∂�
=

⎧
⎪⎪⎨

⎪⎪⎩

∂ ln f [ε∗
1t (θ);�1]

∂�1
...

∂ ln f [ε∗
Nt (θ);�N ]

∂�N

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

er1t (φ)

er2t (φ)
...

erN t (φ)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11)

by virtue of the cross-sectional independence of the shocks, so that the derivatives
involved correspond to the underlying univariate densities.

2.2.3 The asymptotic distribution

For simplicity, we assume henceforth that Svar model (2) generates a covariance
stationary process.4 Consider the reparametrisation C = J
, where 
 is a diagonal
matrix whose elements contain the scale of the structural shocks, while the columns
of J , whose diagonal elements are normalised to 1, measure the relative impact of
each of the structural shocks on all the remaining variables. Proposition 3 in Fiorentini
and Sentana (2020) shows that the parameters ai = vec(Ai ) and j = veco(J) are
consistently estimated regardless of the true distribution.5 As a result, the pseudo-
true values of those parameters will coincide with the true ones, i.e. ai∞ = ai0 and
j∞ = j0. In contrast, τ andψ = vecd(
)will generally be inconsistently estimated,
so τ∞ �= τ 0 and ψ∞ �= ψ0.

Nevertheless, Fiorentini and Sentana (2020) prove that the unrestricted PMLEs of
τ and ψ which simultaneously estimate � will be consistent too when the univariate
distributions used for estimation purposes are discrete mixtures of normals, in which

4 If the autoregressive polynomial (IN − A1L − . . . − ApL p) had some unit roots, yt would be a
(co-) integrated process, and the estimators of the conditional mean parameters would have non-standard
asymptotic distributions, as some of them would converge at the faster rate T . In contrast, the distribution
of the ML estimators of the conditional variance parameters would remain standard [see, e.g. Phillips and
Durlauf (1986)].
5 See Magnus and Sentana (2020) for some useful properties of the veco(.) and vecd(.) operators.
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case θ∞ = θ0 and ε∗
t (θ0) = ε∗

t . For that reason, in what follows we focus on the
finite normal mixtures-based PMLEs of the original parameters θ = (τ ′, a′, c′)′.

Still, the potential misspecification of this distributional assumption implies that
the asymptotic covariance matrix of the corresponding PMLEs must be based on the
usual sandwich formula. Let

A(φ∞;ϕ0) = −E[∂sφt (φ∞)/∂φ′)|ϕ0] (12)

and

B(φ∞;ϕ0) = V [sφt (φ∞)|ϕ0] (13)

denote the (−) expected value of the log-likelihood Hessian and the variance of the
score, respectively, where �∞ are the pseudo-true values of the shape parameters of the
distributions of the shocks assumed for estimation purposes, υ contains the potentially
infinite-dimensional shape parameters of the true distributions of the shocks, and
ϕ = (θ ′,υ ′)′ . The asymptotic distribution of the pseudo-ML estimators of φ , φ̂T ,
under standard regularity conditions will be given by

√
T (φ̂T − φ∞) → N [0,A−1(φ∞;ϕ0)B(φ∞;ϕ0)A−1(φ∞;ϕ0)].

In what follows, we shall make extensive use of the detailed expressions for the
conditional expected value of the Hessian and covariance matrix of the score for finite
normal mixtures-based PMLEs in Amengual et al. (2021b).

3 Specification tests based on integer product moments

3.1 The influence functions

Aswe have stressed earlier, the parametric identification of the structural shocks ε∗
t (θ)

and their impact coefficients C that appear in the Svarmodel (2) critically hinges on
the validity of identifying Assumption 1. As a consequence, it would be desirable that
empirical researchers estimating those models reported specification tests that would
check those assumptions. Given that rank failures in C will be inextricably linked
to singular dynamic systems,6 we focus on testing that at most one of the structural
shocks is Gaussian and that all the structural shocks are indeed independent of each
other.

As iswell known, stochastic independence between the elements of a randomvector
is equivalent to the joint distribution being the product of the marginal ones. In turn,
this factorisation implies lack of correlation between not only the levels but also any
set of single-variable measurable transformations of those elements. Thus, a rather

6 The rationale is as follows. If rank(C0) < N , then rank[V ( yt )] < N , and the same will be true
of the sample covariance matrix. Therefore, sampling variability plays no role in determining whether
rank(C0) = N in model (1). Exactly the same argument applies to the dynamic system (2).
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intuitive way of testing for independence without considering any specific parametric
alternative can be based on individual moment conditions of the form

mh[ε∗
t (θ)] =

N∏

i=1

ε
∗hi
i t (θ) −

N∏

i=1

E[ε∗hi
i t (θ0)], (14)

where h = {h1, ..., hN }, with hi ∈ Z0+, denotes the index vector characterising a
specific productmoment.While the influence function in (14)will generally require the
estimation of E[ε∗hi

i t (θ0)] for some of the shocks, the constant term
∏N

i=1 E[ε∗hi
i t (θ0)]

is either 0 or 1 for the second, third and fourth cross-moments we study in this paper
in view of the standardised nature of the shocks, so we do not need to worry about
it. Amengual et al. (2021b) discuss in detail how to deal with the estimation of the
required E[ε∗hi

i t (θ0)] in the general case.
Although we have motivated (14) as the basis for our tests of independence, by

setting all the elements of h but one to 0, we can also use this expression to look at the
marginal moments of a single shock. In this paper, we focus on hi = 3 and 4 because
most common departures from normality of the shocks will be reflected in coefficients
of skewness or kurtosis different from 0 and 3, respectively.

3.2 Themoment tests

Let m[ε∗
t (θ)] denote a K × 1 vector containing a collection of influence functions

mhk [ε∗
t (θ)] of form (14) for different index vectors h1, . . . , hk, , . . . , hK . The follow-

ing result, which specialises the general expressions in Newey (1985) and Tauchen
(1985) to our context, derives the asymptotic distribution of the scaled sample average
of m[ε∗

t (θ)] when we evaluate the structural shocks at the PMLEs θ̂T rather than at
θ0:

Proposition 1 Under Assumption 1 and standard regularity conditions

√
T

T

∑T

t=1
m[ε∗

t (θ̂T )] → N [0,W(φ∞;ϕ0)],

where

W(φ∞;ϕ0) = V(φ∞;ϕ0)

+J (φ∞;ϕ0)A−1(φ∞;ϕ0)B(φ∞;ϕ0)A−1(φ∞;ϕ0)J ′(φ∞;ϕ0)

+F(φ∞;ϕ0)A−1(φ∞;υ0)J ′(φ∞;ϕ0)

+J (φ∞;ϕ0)A−1(φ∞;ϕ0)F ′(φ∞;ϕ0),

V(φ;ϕ) = V
{
m[ε∗

t (θ)]∣∣ϕ} ,

J (φ;ϕ) = E

{
∂m[ε∗

t (θ)]
∂φ′

∣
∣
∣
∣ϕ

}

,

F(φ;ϕ) = cov

{
∂m[ε∗

t (θ)]
∂φ′ , sφt (φ)

∣
∣
∣
∣ϕ

}
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and A(φ∞;ϕ0) and B(φ∞;ϕ0) are defined in (12) and (13), respectively.

In the next subsections, we provide detailed expressions for V(φ;ϕ), J (φ;ϕ)

and F(φ;ϕ) which exploit that the true shocks are cross-sectionally and serially
independent under the null hypothesis of correct specification of the static Ica model
(1) or the dynamic Svar model (2).

3.2.1 Covariance across influence functions

Consider a generic element of the matrix cov{m[ε∗
t (θ)],m[ε∗

t (θ)]|ϕ}, say

cov{mh[ε∗
t (θ)],mh′ [ε∗

t (θ)]|ϕ} = E{mh[ε∗
t (θ)]mh′ [ε∗

t (θ)]|ϕ}
−E{mh[ε∗

t (θ)]|ϕ}E{mh′ [ε∗
t (θ)]|ϕ}.

If we exploit the cross-sectional independence of the shocks under the null hypoth-
esis, which implies that at the true values

E

(∏N

i=1
ε
∗hi
i t

)

=
∏N

i=1
E(ε∗hi

i t ),

we obtain

cov{mh[ε∗
t (θ0)],mh′ [ε∗

t (θ0)]|ϕ0} =
∏N

i=1
E
[
ε
∗(hi+h′

i )

i t

]
−
∏N

i=1
E(ε

∗hi
i t )E(ε

∗h′
i

i t ).

(15)

3.2.2 The expected Jacobian

Straightforward application of the chain rule implies that

∂mh[ε∗
t (θ)]

∂φ
= ∂mh[ε∗

t (θ)]
∂ε′

∂εt (θ)

∂φ
.

On this basis, the following proposition characterises the expected Jacobian matrix
for any h:

Proposition 2 Suppose that model (2) satisfies Assumption 1. Then, the expected Jaco-
bian matrix of mh[ε∗

t (θ)] evaluated at the true values is given by

jhτ (�∞,ϕ0) = E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∂ε∗
t (θ0)

∂τ ′

∣
∣
∣
∣ϕ0

]

= −E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∣
∣
∣
∣ϕ0

]

C−1
0 ,

jhai (�∞,ϕ0) = E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∂ε∗
t (θ0)

∂a′
i

∣
∣
∣
∣ϕ0

]
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= −E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∣
∣
∣
∣ϕ0

] [
E( y′

t−i

∣
∣ϕ0) ⊗ C−1

0

]

and

jhc(�∞,ϕ0) = E

[
∂mh[ε∗

t (θ0)]
∂ε∗′

∂ε∗
t (θ0)

∂c′

∣
∣
∣
∣ϕ0

]

= −E

{
∂mh[ε∗

t (θ0)]
∂ε∗′

[
εt (θ0) ⊗ C−1

0

]∣∣
∣
∣ϕ0

}

.

As for ∂mh[ε∗
t (θ)]/∂ε∗′, if we denote all the distinct second, third and fourth

moments by

m[ε∗
t (θ)] =

⎛

⎝
mcv[ε∗

t (θ)]
mcs[ε∗

t (θ)]
mck[ε∗

t (θ)]

⎞

⎠ =
⎛

⎝
DN [ε∗

t (θ) ⊗ ε∗
t (θ)]

T N [ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)]

QN [ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ ε∗

t (θ)]

⎞

⎠ ,

(16)

where DN , T N and QN are the duplication, triplication and quadruplication matrices,
respectively [see Meijer (2005) for details], the results we derive in Appendix B.1
provide an easy way to compute all those derivatives recursively.

3.2.3 The covariance with the score

Let �N denote a vector of N ones and I (.) the usual indicator function. The fol-
lowing proposition provides the last ingredient of the adjusted covariance matrix in
Proposition 1.

Proposition 3 Suppose that model (2) satisfies Assumption 1. Then, the covariance
between the influence function mh(·) and the pseudo-log-likelihood scores evaluated
at the (pseudo) true values is given by

cov{mh[ε∗
t (θ0)], sφt (φ∞)|ϕ0} = Fh(φ∞,ϕ0) = E[Fht (φ∞,ϕ0)], (17)

where

Fhl(φ∞,ϕ0) =
⎡

⎣
Fhl(�∞,υ0)

Fhs(�∞,υ0)

Fhr (�∞,υ0)

⎤

⎦

⎡

⎣
Z′
lt (θ0) 0

Z′
s(θ0) 0
0 Iq

⎤

⎦ ,

Fhl(�∞,ϕ0) is a 1 × N vector whose entries are such that for any i with hi > 0,

fhs(i)(�∞,ϕ0) = −cov

{

mh[ε∗
t (θ0)],

∂ ln f [ε∗
i t (θ0); �i∞]
∂ε∗

i

∣
∣
∣
∣ϕ0

}
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and zero otherwise, Fhs(�∞,ϕ0) is a 1 × N 2 vector whose entries are such that for
any i with hi > 0 and i ′ with hi ′ > 0

fhs(i,i ′)(�∞,ϕ0)= − cov

{

mh[ε∗
t (θ0)], I (i=i ′)+∂ ln f [ε∗

i t (θ0); �i∞]
∂ε∗

i
ε∗
i ′t (θ0)

∣
∣
∣
∣ϕ0

}

and zero otherwise, and finally

Fhr (�∞,ϕ0) = F′
hr (φ∞,ϕ0)�N ,

with Fhr (�∞,ϕ0) another block diagonal matrix of order N × q with typical block of
size 1 × qi ,

fhr(i)(�∞,υ0) = cov

{

mh[ε∗
t (θ0)],

∂ ln f [ε∗
i t (θ0); �i∞]
∂�′

i

∣
∣
∣
∣ϕ0

}

and zero otherwise.

4 Particular cases

4.1 Testing normality

As we have mentioned before, we can use (14) to test the null hypothesis that a single
structural shock is Gaussian by comparing its third and fourth sample moments with 0
and 3, respectively, which are the population values of those moments under the null
of normality. Nevertheless, many authors [see, e.g. Bontemps and Meddahi (2005)
and the references therein] convincingly argue that it is generally more appropriate to
look at the sample averages of the third and fourth Hermite polynomials instead. In
particular, one should consider H3(ε

∗
i t ) = ε∗3

i t − 3ε∗
i t and H4(ε

∗
i t ) = ε∗4

i t − 6ε∗2
i t + 3

rather than ε∗3
i t and ε∗4

i t only. The reason is that Hermite polynomials have two main
advantages. First, given that

∂H3(ε
∗
i t )

∂ε∗
i

= 3H2(ε
∗
i t ) and

∂H4(ε
∗
i t )

∂ε∗
i

= 4H3(ε
∗
i t ),

the results in Proposition 2 immediately imply that their expected Jacobians will be 0
under the null of normality, so they are immune to the sampling uncertainty resulting
from using estimated shocks. Second, H3(ε

∗
i t ) and H4(ε

∗
i t ) are orthogonal under the

Gaussian null, which means that the joint test is simply the sum of two asymptotically
independent components: one for skewness and another one for kurtosis.

The properties of the estimators that we use, though, mean that the usual implemen-
tation of the Jarque and Bera (1980) test, which simply looks at the sample averages
of ε∗3

i t (θ̂T ) and ε∗4
i t (θ̂T ), yields numerically the same statistics as the tests based on the

Hermite polynomials despite the fact that it ignores the terms involving ε∗
i t and ε∗2

i t .
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The intuition is as follows. Proposition 1 in Fiorentini and Sentana (2020) states that
the PMLEs of the unconditional mean and variance of a univariate finite mixture of
normals numerically coincide with the sample mean and variance (with denominator
T ) of the observed series. Given that log-likelihood function (4) for any given values
of a and j is effectively the sum of N such univariate log-likelihoods with parameters
that are variation-free, the estimated shocks will be such that

1

T

∑T

t=1
ε∗
i t (θ̂T ) = 0 and

1

T

∑T

t=1
ε∗2
i t (θ̂T ) − 1 = 0 ∀i (18)

regardless of the sample size. This property also has interesting implications for the
independence tests that we will consider in the next section because, in effect, each
estimated shock will be standardised in the sample.

Finally, it is important to emphasise that the non-normality of a single shock does not
guarantee the identification of the model parameters, in the same way as its normality
does not imply they are underidentified. As we shall see in the Monte Carlo section,
though, researchers can get an informative guide to the validity of Assumption 1 by
looking at the normality tests for all the individual shocks.

4.2 Testing independence

At first sight, the arguments in the previous section might suggest that the sample
covariances between the estimated shocks will also be 0 by construction. However,
this is not generally true. The finite normal mixture PMLEs guarantee the univariate
standardisation of each shock, but it does not imply their orthogonality in any given
sample, unlike what would happen with a multivariate Gaussian likelihood function
in which enough a priori restrictions were imposed on C to render the model exactly
identified. Intuitively, the parameter values that maximise (4) are trying to make the
estimated shocks stochastically independent, not merely orthogonal [see Herwartz
(2018)].

For that reason, the first test for independence that we consider will be based on
the second cross-moment condition

E(ε∗
i tε

∗
i ′t ) = 0, i �= i ′. (19)

In other words, we are simply assessing if the sample correlation between the i th and
i ′th estimated shocks is significantly different from zero in the usual statistical sense.

Nevertheless, we can also go beyond linear dependence and look at moments that
characterise the co-skewness across the structural shocks. These can be of two types:

E(ε∗2
i t ε∗

i ′t ) − E(ε∗2
i t )E(ε∗

i ′t ) = E(ε∗2
i t ε∗

i ′t ) = 0, i �= i ′, (20)

and

E(ε∗
i tε

∗
i ′tε

∗
i ′′t ) − E(ε∗

i t )E(ε∗
i ′t )E(ε∗

i ′′t ) = E(ε∗
i tε

∗
i ′tε

∗
i ′′t ) = 0, i �= i ′ �= i ′′, (21)
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depending on whether they involve two or three different shocks.
Finally, we can also look at the different co-kurtosis among the shocks, which may

involve a pair of shocks, namely

E(ε∗2
i t ε∗2

i ′t ) − E(ε∗2
i t )E(ε∗2

i ′t ) = E(ε∗2
i t ε∗2

i ′t ) − 1 = 0, i �= i ′, (22)

and

E(ε∗3
i t ε∗

i ′t ) − E(ε∗3
i t )E(ε∗

i ′t ) = E(ε∗3
i t ε∗

i ′t ) = 0, i �= i ′, (23)

three shocks

E(ε∗2
i t ε∗

i ′tε
∗
i ′′t ) − E(ε∗2

i t )E(ε∗
i ′t )E(ε∗

i ′′t ) = E(ε∗2
i t ε∗

i ′tε
∗
i ′′t ) = 0, i �= i ′ �= i ′′, (24)

and even four shocks

E(ε∗
i tε

∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) − E(ε∗

i t )E(ε∗
i ′t )E(ε∗

i ′′t )E(ε∗
i ′′′t ) = E(ε∗

i tε
∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) = 0,

i �= i ′ �= i ′′ �= i ′′′. (25)

Thus, we substantially expand the set of moments researchers can use to test for the
independence of the components relative to Hyvärinen (2013), who only suggested
looking at the co-kurtosis terms in (22). The above moment conditions also augment
those considered byLanne andLuoto (2021),who focus on (19), (22) and (23), together
with E(ε∗

i t ) = 0 and E(ε∗2
i t ) = 1.

4.2.1 Covariance across influence functions

Next, we derive in detail the nonzero elements of the covariance matrix of the second,
third and fourth moments in (16).

It is easy to see that under the null hypothesis of independence, the only nonzero
elements of the covariance matrix of mcv[ε∗

t (θ)] are

V (ε∗
i tε

∗
i ′t ) = 1.

In turn, in the case of mcs[ε∗
t (θ)] and mck[ε∗

t (θ)], the nonzero elements are

V (ε∗
i tε

∗
i ′tε

∗
i ′′t ) = 1,

V (ε∗2
i t ε∗

i ′t ) = E(ε∗4
i t ),

cov(ε∗2
i t ε∗

i ′t , ε
∗2
i ′t ε

∗
i t ) = E(ε∗3

i t )E(ε∗3
i ′t ),

and

V (ε∗
i tε

∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) = 1,

V (ε∗2
i t ε∗

i ′tε
∗
i ′′t ) = E(ε∗4

i t ),
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V (ε∗3
i t ε∗

i ′t ) = E(ε∗6
i t ),

V (ε∗2
i t ε∗2

i ′t ) = E(ε∗4
i t )E(ε∗4

i ′t ) − 1,

cov(ε∗2
i t ε∗

i ′tε
∗
i ′′t , ε

∗2
i ′t ε

∗
i tε

∗
i ′′t ) = E(ε∗3

i t )E(ε∗3
i ′t ),

cov(ε∗3
i t ε∗

i ′t , ε
∗2
i t ε∗2

i ′t ) = E(ε∗5
i t )E(ε∗3

i ′t ),

cov(ε∗3
i t ε∗

i ′t , ε
∗2
i t ε∗2

i ′t ) = E(ε∗5
i t )E(ε∗3

i ′t ),

cov(ε∗2
i t ε∗

i ′tε
∗
i ′′t , ε

∗2
i ′t ε

∗
i tε

∗
i ′′t ) = E(ε∗3

i t )E(ε∗3
i ′t ),

cov(ε∗2
i t ε∗2

i ′t , ε
∗2
i t ε∗2

i ′′t ) = E(ε∗4
i t ) − 1,

cov(ε∗2
i t ε∗

i ′′t , ε
∗2
i ′t ε

∗
i ′′t ) = 1,

respectively, which can be consistently estimated from ε∗
t (θ̂T ) under standard regu-

larity conditions.
Finally, the nonzero covariance terms across the different elements of mcv(ε∗

t ),
mcs(ε∗

t ) and mck(ε∗
t ) are

cov(ε∗
i tε

∗
i ′t , ε

∗2
i t ε∗

i ′t ) = E(ε∗3
i t ),

cov(ε∗
i tε

∗
i ′t , ε

∗3
i t ε∗

i ′t ) = E(ε∗4
i t ),

cov(ε∗
i tε

∗
i ′t , ε

∗2
i t ε∗2

i ′t ) = E(ε∗3
i t )E(ε∗3

i ′t ),

cov(ε∗2
i t ε∗

i ′t , ε
∗3
i t ε∗

i ′t ) = E(ε∗5
i t ),

cov(ε∗2
i t ε∗

i ′t , ε
∗3
i ′t ε

∗
i t ) = E(ε∗3

i t )E(ε∗4
i ′t ), and

cov(ε∗2
i t ε∗

i ′t , ε
∗2
i t ε∗2

i ′t ) = E(ε∗4
i t )E(ε∗3

i t ).

4.2.2 The expected Jacobian

Straightforward calculations allow us to show that the expected Jacobian of the covari-
ances across shocks in (19) will be given by

jhτ (�∞,ϕ0) = 0, jhak (�∞,ϕ0) = 0 and

jhc(�∞,ϕ0) = −(e′
i ′ ⊗ ci .0 ) − (e′

i ⊗ ci
′.
0 ),

where ei is the i th canonical vector and ci . denotes the i th row of C−1.
Analogously, for the third cross-moments in (20), we will have

jhτ (�i∞,ϕ0) = −ci
′.
0 , jhak (�i∞,ϕ0) = −[E( y′

t−k |ϕ0) ⊗ ci
′.
0 ] and

jhc(�∞,ϕ0) = −E(ε∗3
i t )(e′

i ⊗ ci
′.
0 ),

while for those in (21) we get

jhτ (�∞,ϕ0) = 0, jhak (�∞,ϕ0) = 0 and jhc(�∞,ϕ0) = 0.
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In turn, for the fourth moments in (22), we will have

jhτ (�∞,ϕ0) = 0, jhak (�∞,ϕ0) = 0 and

jhc(�∞,ϕ0) = −2(e′
i ⊗ ci .0 + e′

i ′ ⊗ ci
′.
0 ),

while for (23) we get

jhτ (�∞,ϕ0) = −E(ε∗3
i t )ci

′.
0 , jhak (�∞,ϕ0) = −E(ε∗3

i t )[E( y′
t−k |ϕ0) ⊗ ci

′.
0 ]

and

jhc(�∞,ϕ0) = −3(e′
i ′ ⊗ ci .0 ) − E(ε∗4

i t )(e′
i ⊗ ci

′.
0 ).

Similarly, the expected Jacobian of (24) involves

jhτ (�∞,ϕ0) = 0, jhak (�∞,ϕ0) = 0 and

jhc(�∞,ϕ0) = −(e′
i ′ ⊗ ci

′′.
0 ) − (e′

i ′′ ⊗ ci
′.
0 ).

Finally, when we look at (25), we unsurprisingly end up with

jhτ (�∞,ϕ0) = 0, jhak (�∞,ϕ0) = 0 and

jhc(�∞,ϕ0) = 0.

4.2.3 The covariance with the score

As we have seen before, we need to explicitly compute the expressions in Proposition
3 to obtain (17). Fortunately, some of those expressions simplify considerably for
the cross-moments we use to test independence. Intuitively, the reason is that the
independence of the shocks implies that when h is such that hi = 1, we will have

E

[
∂ ln f (ε∗

i t ; �i∞)

∂ε∗
i

ε
∗hi ′
i ′t ε

∗hi ′′
i ′′t

]

= 0

and

E

[
∂ ln f (ε∗

i t ; �i∞)

∂ε∗
i

ε∗
i tε

∗hi ′
i ′t ε

∗hi ′′
i ′′t

]

= −E(ε
∗hi ′
i ′t )E(ε

∗hi ′′
i ′′t )

for i �= i ′, i ′′.
As a result, (17) will be zero for the second moments E(ε∗

i tε
∗
i ′t ), except for

fhs(i,i ′)(�∞,ϕ0), which will be 1 when i ′ �= i .
In addition, if we exploit the independence between i and i ′ and the fact that

E(ε∗2
i ′t ) = 1, we can easily prove that the only nonzero covariance elements for the
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co-skewness influence functions E(ε∗2
i t ε∗

i ′t ) will be

fhl(i ′)(�∞,ϕ0) = 1, fhs(i,i ′)(�∞,ϕ0) = −E

[
∂ ln f (ε∗

i t ; �i∞)

∂ε∗
i

ε∗2
i t

]

,

fhs(i ′,i)(�∞, ϕ0) = E(ε∗3
i t ),

fhs(i ′,i ′)(�∞,ϕ0) = −E

[
∂ ln f (ε∗

i ′t ; �i∞)

∂ε∗
i ′

ε∗2
i ′t

]

and

fhr(i ′)(�∞,υ0) = E

[
∂ ln f (ε∗

i t ; �i∞)

∂�′
i

ε∗
i t

]

,

while all of them are zero for E(ε∗
i tε

∗
i ′tε

∗
i ′′t ).

Similarly, we can also prove that for the co-kurtosis influence functions E(ε∗2
i t ε∗2

i ′t ),
the only nonzero terms are

fhl(i)(�∞,ϕ0) = −E

[
∂ ln f (ε∗

i t ; �i∞)

∂ε∗
i

ε∗2
i t

]

,

fhs(i,i)(�∞,ϕ0) = −1 − E

[
∂ ln f (ε∗

i t ; �i∞)

∂ε∗
i

ε∗3
i t

]

,

fhs(i,i ′)(�∞,ϕ0) = −E(ε∗3
i ′t )E

[
∂ ln f (ε∗

i t ; �i∞)

∂ε∗
i

ε∗2
i t

]

and

fhr(i ′)(�∞,υ0) = E

[
∂ ln f (ε∗

i t ; �i∞)

∂�′
i

ε∗
i t

]

.

In turn, we end up with

fhl(i ′)(�∞,ϕ0) = E(ε∗3
i t ), fhs(i,i ′)(�∞,ϕ0) = −E

[
∂ ln f (ε∗

i t ; �i∞)

∂ε∗
i

ε∗3
i t

]

,

fhs(i ′,i)(�∞,ϕ0 = E(ε∗4
i t ), fhs(i ′,i ′)(�∞,ϕ0) = −E[ε∗3

i t ]E
[
∂ ln f (ε∗

i ′t ; �i ′∞)

∂ε∗
i ′

ε∗2
i ′t

]

and

fhr(i ′)(�∞,υ0) = E(ε∗3
i t )E

[
∂ ln f (ε∗

i ′t ; �i ′∞)

∂�′
i ′

ε∗
i ′t

]

for the covariances of the co-kurtosis terms E(ε∗3
i t ε∗

i ′t ) with the scores.
In contrast, the only nonzero covariance of the co-kurtosis influence functions

E(ε∗
i tε

∗
i ′tε

∗2
i ′′t ) with the scores will be fhs(i,i ′)(�∞,ϕ0) = 1 when i ′ �= i .

Finally, all the covariances of the scores with E(ε∗
i tε

∗
i ′tε

∗
i ′′tε

∗
i ′′′t ) will be 0 too.
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4.3 Combining our tests

Interestingly, we can use the expressions previously derived to prove that under
the joint null hypothesis of mutually independent shocks and the normality of one of
them, the two separate tests that we have discussed in Sects. 4.1 and 4.2 are asymp-
totically independent, so effectively the joint test would simply be the sum of those
two components.

In addition, we can also prove that a test that jointly assessed the independence
and normality of all the shocks would be asymptotically equivalent under the null
to a multivariate Hermite-based test of multivariate normality [see Amengual et al.
(2021a)] applied to the reduced form residuals once one eliminates the moment condi-
tion related to the covariance of the shocks, whose asymptotic variancewhen evaluated
at the PMLEs would be zero under the null.

5 Monte Carlo analysis

In this section,we assess the finite sample size and power of the normality and indepen-
dence tests discussed in Sects. 4.1 and 4.2 bymeans of several Monte Carlo simulation
exercises. In addition, we provide some evidence on the effects that dependence across
shocks induces on the estimators of the impact multipliers.

5.1 Design and computational details

For the sake of brevity,we focus on the bivariate case in themain text.7 Specifically,
we generate samples of size T from the following bivariate static process

(
y1t
y2t

)

=
(

τ1
τ2

)

+
(
c11 c12
c21 c22

)(
ε∗
1t

ε∗
2t

)

(26)

with τ1 = 1, τ2 = −1, c11 = 1, c12 = .5, c21 = 0 and c22 = 2. However, our PML
estimation procedure does not exploit the restriction that the loading matrix of the
shocks is upper triangular. Importantly, given that we can easily prove from (4) that
the estimated shocks are numerically invariant to affine transformations of the y’s, and
that the same is true of the different test statistics, the results that we report below do
not depend on our choice of τ and C .

We consider both T = 250, which is realistic in most macroeconomic applications
with monthly or quarterly data, and T = 1000, which is representative of financial
applications with daily data. The precise data generating processes (DGPs) that we
consider for the shocks are described in Sect. 5.1.2.

7 Nevertheless, we include simulation results for a trivariate model in Appendix C.
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5.1.1 Estimation details

To estimate the parameters of the model above, we assume that ε∗
1t and ε∗

2t follow
two serially and cross-sectionally independent standardised discrete mixture of two
normals, or ε∗

i t ∼ DMN (δi , κi , λi ) for short, so that

ε∗
i t =

{
N [μ∗

1(�i ), σ
∗2
1 (�i )] with probability λi

N [μ∗
2(�i ), σ

∗2
2 (�i )] with probability 1 − λi

(27)

with

μ∗
1(�i ) = δi (1 − λi ),

μ∗
2(�i ) = −δiλi ,

σ ∗2
1 (�i ) = 1 − λi (1 − λi )δ

2
i

λi + (1 − λi )κi
,

σ ∗2
2 (�i ) = κiσ

∗2
1 (�i ),

and �i = (δi , κi , λi )
′. Hence, we can interpret κi as the ratio of the two variances and

δi as the parameter that regulates the distance between themeans of the two underlying
components.8

As a consequence, the contribution of observation t to pseudo-log-likelihood func-
tion (4) will be

l[ε∗
i t (θ); �i ] = ln{λi · φ[ε∗

i t (θ);μ∗
1(�i ), σ

∗2
1 (�i )]

+(1 − λi ) · φ[ε∗
i t (θ);μ∗

2(�i ), σ
∗2
2 (�i )]},

where φ(ε;μ, σ 2) denotes the probability density function of a Gaussian random
variable with mean μ and variance σ 2 evaluated at ε. Importantly, we maximise the
log-likelihood with respect to the two elements of τ , the four elements of C and the
six shape parameters subject to the nonlinear constraint δ2i < λ−1

i (1 − λi )
−1 , which

we impose to guarantee the strict positivity of σ ∗2
1 (�i ). Without loss of generality, we

also restrict κi ∈ (0, 1] as a way of labelling the components, which in turn ensures
the strict positivity of σ ∗2

2 (�i ). Finally, we impose λi ∈ (0, 1) to avoid degenerate
mixtures.9

We maximise the log-likelihood subject to these three constraints on the shape
parameters using a derivative-based quasi-Newton algorithm, which converges
quadratically in the neighbourhood of the optimum. To exploit this property, we start
the iterations by obtaining consistent initial estimators of τ and C , τ F IC A and CF IC A

say, using the FastICA algorithm of Gävert, Hurri, Särelä, and Hyvärinen.10 In addi-

8 We can trivially extend this procedure to three or more components if we replace the normal random
variable in the first branch of (27) by a k-component normal mixture with mean and variance given byμ∗

1(�)

andσ∗2
1 (�), respectively, so that the resulting randomvariablewill be a (k+1) -componentGaussianmixture

with zero mean and unit variance.
9 Specifically, we impose κi ∈ [κ, 1] with κ = .0001, and λi ∈ [λ, λ] with λ = 2/T and λ = 1 − 2/T .

10 See Hyvärinen (1999) and https://research.ics.aalto.fi/ica/fastica/ for details on the FastICA package.
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tion, we obtain initial values of the shape parameters of each shock by performing 20
iterations11 of the expectation maximisation (EM) algorithm in Dempster et al. (1977)

on each of the elements of ε∗
t,F IC A = C

−1
F IC A

(
yt − τ̄ F IC A

)
.

As we mentioned in Sect. 2.2, Assumption 1 only guarantees the identification of
C up to sign changes and column permutations. Although in empirical applications a
researcher would carefully choose the appropriate ordering and interpretation of the
structural shocks, this leeway may have severe consequences when analysing Monte
Carlo results. For that reason, we systematically choose a unique global maximum
from the different observationally equivalent permutations and sign changes of the
columns of the matrix C using the selection procedure suggested by Ilmonen and
Paindaveine (2011) and adopted by Lanne et al. (2017). In addition, we impose that
diag(C) is positive by simply changing the sign of all the elements of the relevant
columns. Naturally, we apply the same changes to the shape parameters estimates and
the sign of δi .

5.1.2 DGPs under the null and the alternative

The four bivariate DGPs for the standardised shocks that we consider under the null
of independence are:

dgp 1: A normal distribution and a discrete mixture of two normals with kurtosis
coefficient 4 and skewness coefficients equal to −.5, i.e. ε∗

1t ∼ N (0, 1) and
ε∗
2t ∼ DMN (−.859, .386, 1/5).

dgp 1d: The Var(1) model

(
y1t
y2t

)

=
(

τ1
τ2

)

+
(
1/2 1/4
0 1/3

)(
y1t−1
y2t−1

)

+
(
c11 c12
c21 c22

)(
ε∗
1t

ε∗
2t

)

with exactly the same shocks and values of τ and C as in dgp 1.12

dgp 2: Independent discrete mixtures of two normals with kurtosis coefficient 4
and skewness coefficients equal to .5 and −.5, respectively. In other words,
ε∗
1t ∼ DMN (−.859, .386, 1/5) and ε∗

2t ∼ DMN (.859, .386, 1/5).
dgp 3: A Student t with 10 degrees of freedom (and kurtosis coefficient equal to 4),

and an asymmetric t with kurtosis and skewness coefficients equal to 4 and
−.5, respectively, so that β = −1.354 and ν = 18.718 in the notation of
Mencía and Sentana (2012).

The left panels of Fig. 1a–c display the density functions of these distributions over
a range of ±4 standard deviations with the standard normal as a benchmark, while the
right panels zoom in on the left-tail.

In turn, under the alternative of cross-sectionally dependent shocks we simulate
from the following three standardised joint distributions:

11 As is well known, the EM algorithm progresses very quickly in early iterations but tends to slow down
significantly as it gets close to the optimum.After some experimentation, we found that 20 iterations achieve
the right balance between CPU time and convergence of the parameters.
12 Given that Monte Carlo simulations involving a regular bootstrap are very costly in terms of CPU time,
we have only compared the results of a Var(1) with those of a static model for dgp 1.
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Fig. 1 Univariate densities of the independent shocks. Notes: dashed lines represent the standard normal
distribution. a Plots a standardised discrete mixture of two normals with skewness and kurtosis coefficients
of −.5 and 4, respectively (with parameters δ = −.859, κ = .386 and λ = 1/5); b Plots a standardised
symmetric Student t with the same kurtosis (i.e. 10 degrees of freedom), while c plots a standardised
asymmetric t with skewness and kurtosis as the one in (a) [i.e. with β = −1.354 and ν = 18.718, see
Mencía and Sentana (2012) for details]

dgp 4: Bivariate Student t with 6 degrees of freedom.
dgp 5: Bivariate asymmetric t with skewness vector β = −5�2 and degrees of free-

dom parameter ν = 16 [see Mencía and Sentana (2012) for details].
dgp 6: Bivariate mixture of two zero-mean normal vectors with covariance matrices

�1 =
(
1/[λ + κ1(1 − λ)] 0

0 1/[λ + κ2(1 − λ)]
)

,
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Fig. 2 Densities and contours of the bivariate distributions under the alternative hypotheses. Notes: a, b plot
a bivariate Student t with 6 degrees of freedom; c, d a standardised bivariate asymmetric t with β = −5�N
and ν = 16 [see Mencía and Sentana (2012) for details], while e, f plot a standardised mixture of two
bivariate normals with joint mixing Bernoulli with λ = 1/5 and scale parameters κ1 = .1 and κ2 = .2
[see Sect. 5.1.2 and Lanne and Lütkepohl (2010) for details]

�2 =
(

κ1/[λ + κ1(1 − λ)] 0
0 κ2/[λ + κ2(1 − λ)]

)

,

which we denote by DMNLL(κ1, κ2, λ) [see Lanne and Lütkepohl (2010)
for details]. Specifically, we set κ1 = 0.1, κ2 = 0.2 and λ = 1/5.
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The left panels of Fig. 2 display the joint densities for these distributions, while
their contours are presented in the right panels.

To gauge the finite sample size and power of our proposed independence tests, we
generate 20, 000 samples for each of the designs under the null and 5000 for those
under the alternative. Additionally, we evaluate the small sample size and power of
the normality tests presented in Sect. 4.1 using the results from the simulation designs
dgp 1 and 1d (null), and dgp 2 and dgp 3 (alternative).

5.1.3 Bootstrap procedures

The theoretical results in Beran (1988) imply that if the usual Gaussian asymptotic
approximation provides a reliable guide to the finite sample distribution of the sample
version of the moments being tested, the bootstrapped critical values should not only
be valid, but also their errors should be of a lower order of magnitude under additional
regularity conditions that guarantee the validity of a higher-order Edgeworth expan-
sion.13 For that reason, we also analyse the performance of applying the bootstrap to
the testing procedures we have described in Sects. 4.1 and 4.2.

In the case of our tests for independence, for each Monte Carlo sample, we can
easily generate another Nboot bootstrap samples of size T that impose the null with
probability approaching 1 as T increases as follows.14 First, we generate NT draws Ris

from a discrete uniform distribution between 1 and T , which we then use to construct

ỹs = τ̂ T + ĈT ε̃∗
s ,

where ε̃∗
is = ε̂∗

i Ris
and ε̂

∗
t = ε∗

t (θ̂T ) = Ĉ
−1
T

(
yt − τ̂ T

)
are the estimated residuals in

any given sample.
As for the normality tests, whose null hypothesis is that a single shock ε∗

i t is Gaus-
sian, we adopt a partially parametric resampling scheme in which the draws of the i th

shock ε̃∗
is are independently simulated from a N (0, 1) distribution, while the draws for

the remaining shocks ε̃∗
ks (k �= i) are obtained nonparametrically as in the previous

paragraph.
Although these bootstrap procedures are simple and fast for any given sample, they

quickly become prohibitively expensive in a Monte Carlo exercise as T increases.

13 Therefore, if the true shocks had unbounded variance, the bootstrap would not work, but neither would
the asymptotic approximation.
14 To see this, notice that under the null,

E

(∏N

i=1
ε̃
∗ ji
is

)

=
∏N

i=1
E(ε∗ ji

is ),

while under the alternative,

E

(∏N

i=1
ε̃
∗ ji
is

)

= T − 1

T

∏N

i=1
E(ε∗ ji

is ) + 1

T
E

(∏N

i=1
ε
∗ ji
is

)

where the second term in the right-hand side accounts for the probability of sampling contemporaneous
residuals in a sample of size T . Clearly, the second expression converges to the first one as T goes to infinity.
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For this reason, for the designs with T = 1000 we rely on the warp-speed method of
Giacomini et al. (2013).

5.2 Simulation results

5.2.1 Testing normality

Table 1 reports Monte Carlo rejection rates of the normality tests proposed in Sect. 4.1
for dgp 1, 1d, 2 and 3. As can be seen, the null of normality is correctly rejected a
large number of times when it does not hold, even in samples of length 250. The only
possible exception is the skewness component of the Jarque-Bera test when applied
to the symmetric Student t shock in dgp 3. Given that the population third moment is
zero in this case, the only source of power is the fact that the sample variability of H3
is larger for this shock than its theoretical value under Gaussianity.

On the other hand, the first three rows of the panels dgp 1 and 1d, which are the
ones with a Gaussian shock, show that the normality tests tend to be oversized at
the usual nominal levels, especially for samples of length 250.15 For that reason, we
generate NBoot = 399 bootstrap samples at eachMonte Carlo replication, as described
in Sect. 5.1.3. Table 2 shows that the standard bootstrap version of our tests is pretty
accurate for both the third and fourth moment tests. Unlike what we observed in
Table 1, though, the size-adjusted power is slightly lower for dgp 1d than for dgp 1.

However, as mentioned at the end of Sect. 4.1, researches may only get a reliable
guide to the validity of Assumption 1 by looking at the normality tests for all the
individual shocks, the objective being to get at least N − 1 rejections. To shed some
light on this issue, in Table 3 we report contingency tables which fully characterise
the extent to which simultaneous rejections of the individual normality tests occur. As
can be seen, our proposed normality tests tend to be rather informative when used in
this way.

5.2.2 Testing independence

In Tables 4 (T = 250) and 5 (T = 1000) we report the Monte Carlo rejection rates of
the tests we have proposed in Sect. 4.2 under the null of independence. Specifically, we
look at the second, third and fourth moment individual tests inmcv[ε∗

t (θ)],mcs[ε∗
t (θ)]

and mck[ε∗
t (θ)], and also at the joint tests for the two co-skewness moments, the

three co-kurtosis moments and the combined six moments, including the correlation
between the shocks. The left panels of those tables report rejection rates using asymp-
totic critical values, while the right panels show the bootstrap-based ones for T = 250
and the warp-speed bootstrap-based ones for T = 1000.16

15 Given 20,000 Monte Carlo replications, the 95% asymptotic confidence intervals for the Monte Carlo
rejection probabilities under the null are (.86,1.14), (4.70,5.30) and (9.58,10.42) at the 1, 5 and 10% levels,
respectively.
16 All our i .i .d. designs are such that the individual moment tests converge in distribution to a χ2

1 random

variable, and the joint ones to χ2
2 , χ

2
3 and χ2

6 variables, respectively.
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Table 1 Monte Carlo size and power of normality tests

Nominal size Asymptotic critical values

Sample size T = 250 Sample size T = 1000

10% 5% 1% 10% 5% 1%

dgp 1—Shocks: ε∗
1t normal & ε∗

2t DMN

H3(ε
∗
1t ) 13.58 7.70 2.45 11.03 5.96 1.32

H4(ε
∗
1t ) 12.37 6.86 2.85 10.38 5.32 1.38

H3(ε
∗
1t ) & H4(ε

∗
1t ) 13.03 8.17 3.67 10.56 5.76 1.67

H3(ε
∗
2t ) 83.40 77.93 64.27 99.93 99.88 99.50

H4(ε
∗
2t ) 70.78 64.44 51.80 99.26 98.79 96.80

H3(ε
∗
2t ) & H4(ε

∗
2t ) 85.73 81.33 71.52 99.95 99.94 99.90

dgp 1d Var(1)—Shocks: ε∗
1t normal & ε∗

2t DMN

H3(ε
∗
1t ) 15.08 8.83 2.78 11.15 5.65 1.19

H4(ε
∗
1t ) 13.28 7.47 2.94 10.82 5.62 1.50

H3(ε
∗
1t ) & H4(ε

∗
1t ) 14.72 8.96 4.07 11.02 5.91 1.71

H3(ε
∗
2t ) 82.51 77.12 63.70 99.91 99.86 99.60

H4(ε
∗
2t ) 70.17 63.90 51.70 99.29 98.73 96.84

H3(ε
∗
2t ) & H4(ε

∗
2t ) 85.33 80.75 70.99 99.96 99.94 99.89

dgp 2—Shocks: ε∗
1t DMN & ε∗

2t DMN

H3(ε
∗
1t ) 84.36 78.73 64.33 99.88 99.81 99.39

H4(ε
∗
1t ) 70.53 64.07 51.13 99.22 98.63 95.84

H3(ε
∗
1t ) & H4(ε

∗
1t ) 86.54 81.92 71.58 99.98 99.95 99.77

H3(ε
∗
2t ) 85.14 79.63 65.82 99.92 99.84 99.50

H4(ε
∗
2t ) 70.86 64.31 51.46 99.41 98.81 95.97

H3(ε
∗
2t ) & H4(ε

∗
2t ) 87.34 82.88 72.26 100.00 99.98 99.82

dgp 3—Shocks: ε∗
1t asymmetric t & ε∗

2t Student t

H3(ε
∗
1t ) 84.93 79.50 65.37 99.98 99.92 99.76

H4(ε
∗
1t ) 58.58 52.38 42.24 95.10 93.04 87.73

H3(ε
∗
1t ) & H4(ε

∗
1t ) 82.72 77.21 65.27 99.97 99.91 99.69

H3(ε
∗
2t ) 33.97 25.62 14.52 36.43 28.41 16.68

H4(ε
∗
2t ) 60.68 54.21 42.13 96.98 95.35 90.70

H3(ε
∗
2t ) & H4(ε

∗
2t ) 60.83 54.14 42.38 95.77 93.85 88.56

Monte Carlo empirical rejection rates of normality tests; 20,000 replications. DMNdenotes discrete mixture
of two normals. Details on the data generating processes: dgp 1 and 1d, ε∗

1t ∼ N (0, 1) and ε∗
2t ∼

DMN (−.859, .386, 1/5); dgp 2, ε∗
1t ∼ DMN (−.859, .386, 1/5) and ε∗

2t ∼ DMN (.859, .386, 1/5);
and dgp 3, ε∗

1t ∼ At(−1.354, 18.718) and ε∗
2t ∼ t(10) [see Mencía and Sentana (2012) for details].

Asymptotic critical values: H3(·) ∼ χ2
1 , H4(·) ∼ χ2

1 and H3(·) & H4(·) ∼ χ2
2

We can see in Table 4 some small to moderate finite sample size distortion when
T = 250, although in several cases they are corrected by the bootstrap. The only
exceptions seem to be dgp 1 and 1d, in which some small distortions remain even

123



SERIEs (2022) 13:429–474 453

Ta
bl
e
2

M
on
te
C
ar
lo

si
ze

an
d
po
w
er

of
no
rm

al
ity

te
st
s
w
ith

bo
ot
st
ra
p:

sa
m
pl
e
si
ze

T
=

25
0

A
sy
m
pt
ot
ic
cr
iti
ca
lv

al
ue
s

B
oo
ts
tr
ap

(3
99

sa
m
pl
es
)
cr
iti
ca
lv

al
ue
s

N
om

in
al
si
ze

10
%

5%
1%

10
%

5%
1%

d
g
p
1—

Sh
oc
ks
:ε

∗ 1t
no

rm
al
&

ε
∗ 2t

D
M
N

Si
ze

(ε
∗ 1t

no
rm

al
)

H
3
(ε

∗ 1t
)

13
.5
8

7.
70

2.
45

9.
13

4.
59

0.
98

H
4
(ε

∗ 1t
)

12
.3
7

6.
86

2.
85

9.
46

4.
80

1.
18

H
3
(ε

∗ 1t
)
&

H
4
(ε

∗ 1t
)

13
.0
3

8.
17

3.
67

9.
31

4.
70

1.
22

Po
w
er

(ε
∗ 2t

D
M
N
)

H
3
(ε

∗ 1t
)

83
.4
0

77
.9
3

64
.2
7

79
.9
4

73
.3
3

55
.4
7

H
4
(ε

∗ 1t
)

70
.7
8

64
.4
4

51
.8
0

67
.7
5

60
.5
6

38
.2
3

H
3
(ε

∗ 1t
)
&

H
4
(ε

∗ 1t
)

85
.7
3

81
.3
3

71
.5
2

82
.7
6

75
.8
1

53
.7
9

d
g
p
1d

V
a
r(
1)
—

Sh
oc
ks
:ε

∗ 1t
no

rm
al
&

ε
∗ 2t

D
M
N

Si
ze

(ε
∗ 1t

no
rm

al
)

H
3
(ε

∗ 1t
)

15
.0
8

8.
83

2.
80

9.
36

4.
50

0.
91

H
4
(ε

∗ 1t
)

13
.2
8

7.
47

2.
94

9.
22

4.
47

1.
10

H
3
(ε

∗ 1t
)
&

H
4
(ε

∗ 1t
)

14
.7
2

8.
96

4.
07

8.
90

4.
31

1.
04

Po
w
er

(ε
∗ 2t

D
M
N
)

H
3
(ε

∗ 2t
)

82
.5
1

77
.1
2

63
.7
0

77
.2
4

69
.9
3

51
.9
9

H
4
(ε

∗ 2t
)

70
.1
7

63
.9
0

51
.7
0

65
.5
7

57
.5
7

36
.0
0

H
3
(ε

∗ 1t
)
&

H
4
(ε

∗ 1t
)

85
.3
3

80
.7
5

70
.9
9

80
.2
6

72
.7
3

50
.6
3

M
on
te

C
ar
lo

em
pi
ri
ca
l
re
je
ct
io
n
ra
te
s
of

no
rm

al
ity

te
st
s;
20
,0
00

re
pl
ic
at
io
ns
.D

M
N

de
no
te
s
di
sc
re
te

m
ix
tu
re

of
tw
o
no
rm

al
s.
D
at
a
ge
ne
ra
te
d
ac
co
rd
in
g
to

d
g
p
1
an
d
d
g
p

1d
,i
.e
.ε

∗ 1t
∼

N
(0

,
1)

an
d

ε
∗ 2t

∼
D
M
N

(−
.8
59

,
.3
86

,
1/
5)
.T

es
tin

g
fo
r
un

iv
ar
ia
te

no
rm

al
ity

of
ε
∗ 1t

pr
ov
id
es

si
ze

fig
ur
es

w
hi
le

do
in
g
th
e
sa
m
e
bu
t
w
ith

ε
∗ 2t

de
liv

er
s
po
w
er

m
ea
su
re
s.
A
sy
m
pt
ot
ic

cr
iti
ca
l
va
lu
es
:
H
3
(·)

∼
χ
2 1
an
d
H
4
(·)

∼
χ
2 1
.
W
e
pr
es
en
t
th
e
as
ym

pt
ot
ic

di
st
ri
bu
tio

n
of

th
e
te
st
st
at
is
tic
s
in

Se
ct
.
5.
2.
2
an
d
de
sc
ri
be

th
e
sa
m
pl
in
g

pr
oc
ed
ur
e
w
e
us
e
to

im
pl
em

en
tt
he

bo
ot
st
ra
p
in

Se
ct
.5

.1
.3

123



454 SERIEs (2022) 13:429–474

Table 3 Contingency tables of the normality test based on H3(ε
∗
i t ) & H4(ε

∗
i t )

Sample Size T = 250 Sample Size T = 1000
Bootstrap (399 samples) Warp-speed bootstrap

dgp 1—Shocks: ε∗
1tnormal & ε∗

2t DMN

ε∗
2t (Alt.) ε∗

2t (Alt.)

Yes No Yes No

ε∗
1t Yes 2.62 2.08 4.70 ε∗

1t Yes 5.01 0.04 5.05

(Null) No 73.19 22.11 95.30 (Null) No 94.92 0.03 94.95

75.81 24.19 99.93 0.07

dgp 1d Var(1)—Shocks: ε∗
1t normal & ε∗

2t DMN

ε∗
2t (Alt.) ε∗

2t (Alt.)

Yes No Yes No

ε∗
1t Yes 2.27 2.04 4.31 ε∗

1t Yes 4.43 0.05 4.48

(Null) No 70.47 25.23 95.69 (Null) No 95.48 0.04 95.52

72.73 27.27 99.91 0.09

dgp 2—Shocks: ε∗
1tDMN & ε∗

2t DMN

ε∗
2t (Alt.) ε∗

2t (Alt.)

Yes No Yes No

ε∗
1t Yes 55.89 18.40 74.29 ε∗

1t Yes 99.94 0.02 99.96

(Alt.) No 18.97 6.74 25.71 (Alt.) No 0.04 0.00 0.04

74.86 25.14 99.98 0.02

dgp 3—Shocks: ε∗
1t asymmetric t & ε∗

2t Student t

ε∗
2t (Alt.) ε∗

2t (Alt.)

Yes No Yes No

ε∗
1t Yes 28.07 34.51 62.58 ε∗

1t Yes 92.97 6.69 99.66

(Alt.) No 17.74 19.68 37.42 (Alt.) No 0.33 0.01 0.34

45.81 54.19 93.30 6.70

Monte Carlo empirical rejection rates of normality tests; 20,000 replications. Yes/No refers to rejections of
theGaussian null. DMNdenotes discretemixture of two normals. Figures in italics denotemarginal rejection
rates for each shock. Details on the data generating processes: dgp 1 and 1d, ε∗

1t ∼ N (0, 1) and ε∗
2t ∼

DMN (−.859, .386, 1/5); dgp 2, ε∗
1t ∼ DMN (−.859, .386, 1/5) and ε∗

2t ∼ DMN (.859, .386, 1/5);
and dgp 3, ε∗

1t ∼ At(−1.354, 18.718) and ε∗
2t ∼ t(10) [see Mencía and Sentana (2012) for details]. We

describe the sampling procedure we use to implement both the standard bootstrap and Giacomini et al.
(2013)’s warp-speed bootstrap in Sect. 5.1.3
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Table 6 Monte Carlo power of independence moment tests: sample size T = 250

Asymptotic critical values Bootstrap (399 samples) critical values

Nominal size 10% 5% 1% 10% 5% 1%

dgp 4—Joint Student t

E(ε∗
1t ε

∗
2t ) 6.90 3.32 0.68 10.80 5.36 1.28

E(ε∗2
1t ε∗

2t ) 9.80 5.10 1.10 11.42 6.16 1.22

E(ε∗
1t ε

∗2
2t ) 10.02 5.12 1.04 10.94 5.88 1.12

E(ε∗3
1t ε∗

2t ) 8.50 4.84 1.40 11.86 6.00 1.50

E(ε∗
1t ε

∗3
2t ) 8.92 5.18 1.70 11.80 6.66 1.84

E(ε∗2
1t ε∗2

2t ) 12.04 8.18 3.64 15.02 11.26 3.68

Co-skewness 9.98 5.06 1.26 11.64 5.60 1.38

Co-kurtosis 11.82 7.84 4.10 16.22 9.66 3.20

Joint test 11.80 8.08 4.44 15.12 9.32 3.34

dgp 5—Joint asymmetric t

E(ε∗
1t ε

∗
2t ) 16.00 9.18 3.44 19.90 12.60 4.58

E(ε∗2
1t ε∗

2t ) 25.38 16.34 6.54 25.12 16.06 4.56

E(ε∗
1t ε

∗2
2t ) 19.64 12.54 4.58 20.54 12.80 4.56

E(ε∗3
1t ε∗

2t ) 14.46 9.68 3.52 16.94 11.02 3.56

E(ε∗
1t ε

∗3
2t ) 14.14 9.02 3.52 17.90 11.44 4.88

E(ε∗2
1t ε∗2

2t ) 15.42 10.84 5.60 18.80 13.16 5.12

Co-skewness 23.80 16.08 6.16 23.90 15.06 3.94

Co-kurtosis 16.56 11.82 5.98 21.20 13.70 5.50

Joint test 17.92 11.88 5.80 20.22 11.88 4.28

dgp 6—Lanne and Lütkepohl (2010)’s mixture

E(ε∗
1t ε

∗
2t ) 37.12 28.50 15.64 39.78 29.00 14.76

E(ε∗2
1t ε∗

2t ) 25.26 17.34 7.80 26.44 18.16 6.50

E(ε∗
1t ε

∗2
2t ) 28.00 20.26 9.50 29.44 20.22 7.54

E(ε∗3
1t ε∗

2t ) 28.48 21.00 10.92 30.90 20.48 7.46

E(ε∗
1t ε

∗3
2t ) 34.60 26.26 15.26 36.22 25.14 9.14

E(ε∗2
1t ε∗2

2t ) 64.14 54.88 38.18 70.82 61.12 26.42

Co-skewness 33.16 24.48 13.32 35.06 23.58 7.72

Co-kurtosis 62.02 53.98 39.84 64.72 49.34 20.26

Joint test 67.02 58.78 43.84 67.02 52.42 22.28

MonteCarlo empirical rejection rates of independence tests; 5000 replications.Details on the data generating
processes: dgp 4, (ε∗

1t , ε
∗
2t ) ∼ t(0, I2, 6); dgp 5, (ε∗

1t , ε
∗
2t ) ∼ At(0, I2, −5�2, 16) [see Mencía and

Sentana (2012) for details]; and dgp 6, (ε∗
1t , ε

∗
2t ) ∼ DMNLL (.1, .2, 1/5) (see Sect. 5.1.2 for details). We

present the asymptotic distribution of the test statistics in Sect. 5.2.2 and describe the sampling procedure
we use to implement Giacomini et al. (2013)’s warp-speed bootstrap in Sect. 5.1.3
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Table 7 Monte Carlo power of independence moment tests: sample size T = 1000

Nominal size Asymptotic critical values Warp-speed bootstrap critical values

10% 5% 1% 10% 5% 1%

dgp 4—Joint Student t

E(ε∗
1t ε

∗
2t ) 15.72 10.04 2.82 17.36 11.26 3.30

E(ε∗2
1t ε∗

2t ) 16.02 9.10 2.86 16.32 9.82 2.86

E(ε∗
1t ε

∗2
2t ) 15.74 9.44 2.90 15.98 9.74 3.18

E(ε∗3
1t ε∗

2t ) 18.68 12.44 5.42 20.94 13.02 4.96

E(ε∗
1t ε

∗3
2t ) 19.30 12.42 4.94 20.14 12.78 4.48

E(ε∗2
1t ε∗2

2t ) 54.78 44.52 27.08 57.74 46.76 26.12

Co-skewness 18.26 11.22 3.76 18.82 11.34 3.72

Co-kurtosis 46.92 38.26 23.36 50.08 40.38 18.28

Joint test 44.50 35.36 21.40 48.50 37.06 16.22

dgp 5—Joint asymmetric t

E(ε∗
1t ε

∗
2t ) 84.52 81.52 75.24 84.94 81.72 74.14

E(ε∗2
1t ε∗

2t ) 69.28 64.76 56.38 69.78 65.38 55.58

E(ε∗
1t ε

∗2
2t ) 98.72 98.28 96.98 98.72 98.24 96.62

E(ε∗3
1t ε∗

2t ) 56.36 50.28 40.08 57.54 50.08 39.96

E(ε∗
1t ε

∗3
2t ) 65.62 59.52 48.36 66.02 59.62 45.64

E(ε∗2
1t ε∗2

2t ) 88.42 84.16 74.32 90.48 85.66 67.64

Co-skewness 100.00 100.00 99.90 100.00 100.00 99.78

Co-kurtosis 87.32 83.16 74.40 88.00 82.36 66.22

Joint test 100.00 99.94 99.58 100.00 99.94 98.42

dgp 6—Lanne and Lütkepohl (2010)’s mixture

E(ε∗
1t ε

∗
2t ) 58.22 51.60 39.84 59.78 52.52 39.84

E(ε∗2
1t ε∗

2t ) 29.00 20.16 9.72 29.88 20.50 9.12

E(ε∗
1t ε

∗2
2t ) 33.28 24.64 12.68 32.74 23.92 12.02

E(ε∗3
1t ε∗

2t ) 46.70 38.44 26.34 47.42 37.76 23.24

E(ε∗
1t ε

∗3
2t ) 55.76 48.12 34.64 57.80 48.02 28.78

E(ε∗2
1t ε∗2

2t ) 99.98 99.86 99.28 99.98 99.88 98.52

Co-skewness 40.46 30.70 16.82 40.76 29.68 14.82

Co-kurtosis 99.80 99.58 98.22 99.80 99.36 94.46

Joint test 99.48 99.08 97.64 99.42 98.68 92.22

MonteCarlo empirical rejection rates of independence tests; 5000 replications.Details on the data generating
processes: dgp 4, (ε∗

1t , ε
∗
2t ) ∼ t(0, I2, 6); dgp 5, (ε∗

1t , ε
∗
2t ) ∼ At(0, I2, −5�2, 16) [see Mencía and

Sentana (2012) for details]; and dgp 6, (ε∗
1t , ε

∗
2t ) ∼ DMNLL (.1, .2, 1/5) (see Sect. 5.1.2 for details). We

present the asymptotic distribution of the test statistics in Sect. 5.2.2 and describe the sampling procedure
we use to implement Giacomini et al. (2013)’s warp-speed bootstrap in Sect. 5.1.3
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with this procedure. Given that in these designs there is only one non-Gaussian shock,
a plausible explanation is that the identification of C may be weaker, a conjecture we
will revisit in the next section. For the other DGPs, the results in Table 4 clearly show
that the usual bootstrap version of the tests, which is the relevant one in empirical
applications, has much better size properties.

As can be seen in Table 5, finite sample sizes improve considerably for T =
1000. Indeed, the bootstrap versions of the tests seem unnecessary for this sample
size because the empirical rejection rates based on asymptotic critical values become
generally very close to the nominal ones, though the warp-speed version performs
comparably well.

Next, we assess the power of the independence tests for T = 250 and T = 1000
in Tables 6 and 7, respectively. In this respect, we find that the power of our tests
against dgp 4 is disappointingly low. A possible explanation is that when the true
joint distribution is a symmetric Student t , the dependence between the components
is mostly visible in the tails of the distribution. On the other hand, power is mostly
coming from the co-skewness component (20) in the case of the joint asymmetric t .
Still, the test based on the covariance of shocks (19) is also very powerful. Finally,
the co-kurtosis test based on (22) is the most powerful single moment test under the
Lanne and Lütkepohl (2010) alternative in dgp 6, with the joint tests that include this
moment inheriting its power. Nevertheless, the test based on second moment (19) also
has non-negligible power for this design.

In summary, although the rejection rates naturally depend on the type of departure
from the null and the specific influence function used for testing, the joint test that
considers all moments at once seems to be a winner regardless of the sample size.

5.3 Structural parameters estimates

Table 8 reports summary statistics for the Monte Carlo distribution of the PMLEs of
the structural parameters. The first thing we would like to highlight is when one of the
shocks is Gaussian, the sampling variability and the finite sample bias are noticeably
larger than when both shocks are non-Gaussian but independent, which is in line with
the conjecture we expressed in the previous section. Still, even in that case the biases
are usually small and often negligible. In addition, theMonteCarlo standard deviations
of the estimators in Panel B are roughly half those in Panel A, as one would expect.

The situation is completely different when the true shocks are cross-sectionally
dependent. Failure of condition 2 in Assumption 1 results into significant biases,
mostly in the off-diagonal terms of the impact multiplier matrix. In fact, the Monte
Carlo variance of these estimators seems to increase with the sample size. In this
respect, it is important to remember that the elements of the C matrix are no longer
point identified when the joint distribution of the true shocks is either a symmetric or
asymmetric Student t . This is confirmed by the fact that the bias of the estimators is
lower for dgp 6, in which the rotations of the shocks are not observationally equivalent
[see Lanne and Lütkepohl (2010)].
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6 Conclusions and directions for further research

Given that the parametric identification of the structural shocks and their impact coef-
ficients C in the Svar model (2) critically hinges on the validity of the identifying
restrictions in Assumption 1, it would be desirable that empirical researchers esti-
mating those models reported specification tests that checked those assumptions to
increase the empirical credibility of their findings. For that reason, in this paper we
propose simple specification tests for independent component analysis and structural
vector autoregressions with non-Gaussian shocks that check the normality of a sin-
gle shock and the potential cross-sectional dependence among several of them. Our
tests compare the integer (product) moments of the shocks in the sample with their
population counterparts. Importantly, we explicitly consider the sampling variability
resulting from using shocks computed with consistent parameter estimators. We study
the finite sample size of our tests in several simulation exercises and discuss some
bootstrap procedures. We also show that our tests have non-negligible power against
a variety of empirically plausible alternatives.

As we mentioned in introduction, there are many estimators for the parameters of
the static Icamodel (1) in addition to the discretemixture of normals-based PMLEswe
have considered in this paper. For example, even within the same likelihood frame-
work, Fiorentini and Sentana (2020) discuss two other consistent estimators of the
conditional mean and variance parameters of the Svar in (2):

1. The two-step procedure of Gouriéroux et al. (2017), which first estimates the
reduced form parameters τ , a and σ L = vec(�L) by equation-by-equation OLS,
and then the N (N−1)/2 free elementsω of the orthogonal rotation matrix Q in (3)
mapping structural shocks and reduced form innovations by non-Gaussian PML.

2. The two-step estimator a la Fiorentini and Sentana (2019), which replaces the
inconsistent non-Gaussian PMLEs of τ and ψ by the sample means and standard
deviations of pseudo-standardised shocks computed using âT and ĵT .

Although the specifications tests that we have proposed in this paper could also be
applied to shocks computed on the basis of these alternative estimators, the asymptotic
covariancematrices that take into account their sampling variabilitywill differ from the
ones we have derived in this paper. Given that some researchers may prefer to use one
of those two-step estimation methods, obtaining computationally simple expressions
for the adjusted covariance matrix would provide a valuable addition to our results.

In fact, the moment conditions that we consider for testing independence could
form the basis of a GMM estimation procedure for the model parameters θ along
the lines of Lanne and Luoto (2021), although with a larger set of third and fourth
cross-moments. The overidentification restrictions tests obtained as a by-product of
this procedure could be used as a specification test of the assumed independence-like
restrictions.

Our tests for normality tackle a single shock at a time. Although we could in
principle simultaneously test the normality of two or more shocks by combining the
corresponding normality tests, the implicit joint null hypothesis would violate the
second identification condition in Assumption 1. The asymptotic distribution of such
joint tests constitutes a very interesting topic for further research. In addition, we could
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formally study the limiting probability of finding N − 1 rejections of the univariate
normality tests in those circumstances.

Another important research topic would be the limiting behaviour of the PMLEs
of θ when Assumption 1 does not hold, either because two or more of the shocks are
Gaussian or because they are not independent.

Finally, while the integer product moment tests for independence that we have
considered are very intuitive, they may have little power against alternatives in which
the dependence ismostly visible in certain regions of the domain of the random shocks.
With this in mind, in Amengual et al. (2021b) we study moment tests that look at the
product of nonlinear transformations of the shocks, such as I (qαi ≤ εi t ≤ qωi ), where
qαi and qωi are the α andω quantiles of the marginal distribution of the i th shock (with
0 ≤ α < ω ≤ 1), or I (kli ≤ εi t ≤ kui ), where kli < kui are some fixed values, or
indeed εi t I (kli ≤ εi t ≤ kui ). Extending this approach in such a way that it leads to a
consistent test of independence constitutes another promising research avenue.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs

Proposition 1

Under standard regularity conditions [see, e.g. Newey and McFadden (1994)], we can
linearise the vector of influence functions underlying our tests around θ0 so that

√
T
1

T

T∑

t=1

m[ε∗
t (θ̂T )] = √

T
1

T

T∑

t=1

m[ε∗
t (θ0)] + 1

T

T∑

t=1

∂m[ε∗
t (θ0)]

∂θ

√
T (θ̂T − θ0)

+op(1)

= √
T
1

T

T∑

t=1

m[ε∗
t (θ0)] + J (φ∞;ϕ0)

√
T (θ̂T − θ0) + op(1).

But since

√
T (θ̂T − θ0) = A−1(φ∞;ϕ0)

√
T
1

T

T∑

t=1

sφt (φ0) + op(1),
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we can combine both expressions to write

√
T
1

T

T∑

t=1

m[ε∗
t (θ̂T )] = √

T
1

T

T∑

t=1

m[ε∗
t (θ0)]

+J (φ∞;ϕ0)A−1(φ∞;ϕ0)
√
T
1

T

T∑

t=1

sφt (φ0) + op(1),

whence the asymptotic distribution in the proposition follows. 
�

Proposition 2

Fiorentini and Sentana (2021) prove in their Appendix D that

∂ε∗
t (θ)

∂θ ′ = −{Z′
lt (θ) + [ε∗′

t (θ) ⊗ IN ]Z′
st (θ)},

which in our case reduces to

∂ε∗
t (θ)

∂θ ′ = −C−1 ( IN y′
t−1 ⊗ IN . . . y′

t−p ⊗ IN 0N×N2
)

−[ε∗′
t (θ) ⊗ IN ](IN ⊗ C−1)

(
0N2×N 0N2×N2 . . . 0N2×N2 IN2

)

in view of (7) and (8). Therefore, it immediately follows that

∂ε∗
t (θ)

∂τ ′ = −C−1 and
∂ε∗

i t (θ)

∂τ ′ = −ci .,

where

C−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1.

...

ci .
...

cN .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Similarly,

∂ε∗
t (θ)

∂a′
j

= −( y′
t− j ⊗ C−1) and

∂ε∗
i t (θ)

∂a′
j

= −( y′
t− j ⊗ ci .) for j = 1, ..., p.

Finally,

∂ε∗
t (θ)

∂c′
= −[ε∗′

t (θ) ⊗ C−1] and ∂ε∗
i t (θ)

∂c′
= −[ε∗′

t (θ) ⊗ ci .].
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If we combine these expressions with the fact that

∂mh[ε∗
t (θ)]

∂ε∗
i

= I (hi > 0)
hi
ε∗
i t

N∏

i ′=1

ε
∗hi ′
i t ,

we obtain the desired results. 
�

Proposition 3

Expression (17) follows directly from the definition of the scores for θ and � in (5)
and (6) and the law of iterated expectations after exploiting the fact that mh[ε∗

t (θ0)],
elt (φ∞), elt (φ∞) and er t (φ∞) are i .i .d. processes with zero mean under our assump-
tions.

In turn, the more detailed expressions exploit the cross-sectional independence of
the shocks. For example, consider

Fhl(�∞,υ0) = cov

⎧
⎪⎨

⎪⎩
mh(ε

∗
t ),

⎡

⎢
⎣

∂ ln f (ε∗
1t ; �1∞)/∂ε∗

1
...

∂ ln f (ε∗
Nt ; �N∞)/∂ε∗

N

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

θ0,υ0

⎫
⎪⎬

⎪⎭
.

It is clear that row i will be zero if hi = 0 because of the cross-sectional independence
of the shocks and the fact that E[∂ ln f (ε∗

i t ; �i∞)/∂ε∗
i |θ0,υ0] = 0.

The same argument applies to the remaining blocks. 
�

B Additional material

B.1 Some useful results

As mentioned in Sect. 3, the following lemma provides an easy way to recursively
compute some of the ingredients of the independence tests:

Lemma 1 Let [ε∗
t (θ)]⊗k = ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ ... ⊗ ε∗

t (θ)
︸ ︷︷ ︸

k times

denote the kth-order Kro-

necker power of the N × 1 vector ε∗
t (θ). Then, for any k ≥ 2

d{[ε∗
t (θ)]⊗k} = {IN ⊗ [ε∗

t (θ)]⊗k−1}dε∗
t (θ) + [ε∗

t (θ) ⊗ INK−1 ]d{[ε∗
t (θ)]⊗k−1}.

Proof The result follows immediately from the product rule for differentials [see sec-
tion 9.14 in Magnus and Neudecker (2019)] after exploiting the fact that K 1N =
K N1 = IN and

vec(Am×n ⊗ B p×q) = (In ⊗ Kqm ⊗ I p)[vec(Am×n) ⊗ vec(B p×q)]
= {In ⊗ [(Kqm ⊗ I p)[Im ⊗ vec(B p×q)]}vec(Am×n)
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= {[(In ⊗ Kqm)[vec(Am×n) ⊗ Iq ] ⊗ I p}vec(B p×q),(B1)

[see section 3.7 in Magnus and Neudecker (2019)]. 
�
A trivial—but useful—consequence of Lemma 1 that we make extensively use in

this paper is:

Corollary 1 The differentials of the second, third and fourth powers of the structural
shocks will be

d[ε∗
t (θ) ⊗ ε∗

t (θ)] = [IN ⊗ ε∗
t (θ)]dε∗

t (θ) + [ε∗
t (θ) ⊗ IN ]dε∗

t (θ),

d[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)] = [IN ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)]dε∗

t (θ)

+{[IN2 ⊗ ε∗
t (θ)][ε∗

t (θ) ⊗ IN ]}dε∗
t (θ)

+[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ IN ]dε∗
t (θ),

and

d[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ ε∗

t (θ)] = [IN ⊗ ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ)]dε∗

t

+{[I2N ⊗ ε∗
t (θ) ⊗ ε∗

t (θ)][ε∗
t (θ) ⊗ IN ]}dε∗

t (θ)

+{[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ IN2 ][IN ⊗ ε∗
t (θ)]}dε∗

t (θ)

+[ε∗
t (θ) ⊗ ε∗

t (θ) ⊗ ε∗
t (θ) ⊗ IN ]dε∗

t (θ).

Proof To save space, let ε∗
t = ε∗

t (θ). The differential of mcv(ε∗
t ), d(ε

∗
t ⊗ ε∗

t ), follows
directly from Lemma 1.

This lemma also implies that the differential of mcs(ε∗
t ) will be

d(ε∗
t ⊗ ε∗

t ⊗ ε∗
t ) = [d(ε∗

t ⊗ ε∗
t ) ⊗ ε∗

t ] + (ε∗
t ⊗ ε∗

t ⊗ dε∗
t )

= (dε∗
t ⊗ ε∗

t ⊗ ε∗
t ) + (ε∗

t ⊗ dε∗
t ⊗ ε∗

t ) + (ε∗
t ⊗ ε∗

t ⊗ dε∗
t )

Expression (B1) then yields

(dε∗
t ⊗ ε∗

t ⊗ ε∗
t ) = {(K 1N ⊗ IN2)[IN ⊗ vec

(
ε∗
t ⊗ ε∗

t

)]}vec(dε∗
t )

= (IN ⊗ ε∗
t ⊗ ε∗

t )dε
∗
t ,

(ε∗
t ⊗ dε∗

t ⊗ ε∗
t ) = {(K 1N2 ⊗ IN )[IN2 ⊗ vec(ε∗

t )]vec(ε∗
t ⊗ dε∗

t )

= [IN2 ⊗ vec(ε∗
t )]vec(ε∗

t ⊗ dε∗
t )

= [IN2 ⊗ vec(ε∗
t )]{(1 ⊗ K 1N )[vec(ε∗

t ) ⊗ 1]vec(dε∗
t )

= [(IN2 ⊗ ε∗
t )(ε

∗
t ⊗ IN )]dε∗

t

and

(ε∗
t ⊗ ε∗

t ⊗ dε∗
t ) = {(1 ⊗ K 1N2)[vec (ε∗

t ⊗ ε∗
t

)⊗ 1] ⊗ IN }vec(dε∗
t )

= (ε∗
t ⊗ ε∗

t ⊗ IN )dε∗
t
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because K 1N = K N1 = IN .
Finally, Lemma 1 implies that the differential of mck(ε∗

t ) will be

d
(
ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ ε∗

t

) = [d(ε∗
t ⊗ ε∗

t ⊗ ε∗
t ) ⊗ ε∗

t ] + (ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ dε∗

t )

= (dε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ ε∗

t ) + (ε∗
t ⊗ dε∗

t ⊗ ε∗
t ⊗ ε∗

t )

+(ε∗
t ⊗ ε∗

t ⊗ dε∗
t ⊗ ε∗

t ) + (ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ dε∗

t ).

Once again, expression (B1) yields

(dε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ ε∗

t ) = {1 ⊗ (K 1N ⊗ IN3 )[IN ⊗ vec(ε∗
t ⊗ ε∗

t ⊗ ε∗
t )]vec(dε∗

t )

= (IN ⊗ ε∗
t ⊗ ε∗

t ⊗ ε∗
t )dε

∗
t ,

(ε∗
t ⊗ dε∗

t ⊗ ε∗
t ⊗ ε∗

t ) = {1 ⊗ (K 1N2 ⊗ IN2 )[IN2 ⊗ vec(ε∗
t ⊗ ε∗

t )]vec(ε∗
t ⊗ dε∗

t )

= (I2N ⊗ ε∗
t ⊗ ε∗

t )(ε
∗
t ⊗ IN )dε∗

t ,

(ε∗
t ⊗ ε∗

t ⊗ dε∗
t ⊗ ε∗

t ) = [{(1 ⊗ K 1N2 )[vec(ε∗
t ⊗ ε∗

t ) ⊗ 1]} ⊗ I2N ]vec(dε∗
t ⊗ ε∗

t )

= (ε∗
t ⊗ ε∗

t ⊗ IN2 )[1 ⊗ {(K 1N ⊗ IN )[IN ⊗ vec(ε∗
t )]}]vec(dε∗

t )

= (ε∗
t ⊗ ε∗

t ⊗ IN2 )(IN ⊗ ε∗
t )dε

∗
t

and

(ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ dε∗

t ) = [{(1 ⊗ K1N3)[vec (ε∗
t ⊗ ε∗

t ⊗ ε∗
t

)⊗ 1]} ⊗ IN ]vec(dε∗
t )

= (ε∗
t ⊗ ε∗

t ⊗ ε∗
t ⊗ IN )dε∗

t ,

as desired. 
�

B.2 Univariate discrete mixtures of normals

B.2.1 Moments

The parameters δ, κ and λ of the two-component Gaussian mixture we consider in
Sect. 5 determine the higher-order moments of ε∗

t through the relationship

E(ε
∗ j
t |�) = λE(ε

∗ j
t |st = 1; �) + (1 − λ)E(ε

∗ j
t |st = 2; �),

where st ∈ {1, 2} is a Bernoulli random variable with Pr(st = 1) = λ. Specifically,

E(ε∗
t |st = k; �) = μ∗

k(�),

E(ε∗2
t |st = k; �) = μ∗2

k (�) + σ ∗2
k (�),

E(ε∗3
t |st = k; �) = μ∗3

k (�) + 3μ∗
k(�)σ ∗2

k (�),

E(ε∗4
t |st = k; �) = μ∗4

k (�) + 6μ∗2
k (�)σ ∗2

k (�) + 3σ ∗4
k (�).
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Given that E(ε∗
t |�) = 0 and E(ε∗2

t |�) = 1 by construction, straightforward algebra
shows that the skewness and kurtosis coefficients will be given by

E(ε∗3
t |�) = −δ(λ − 1)λ[δ2{λ[2 + λ(κ − 1)] − κ} + 3(κ − 1)]

κ + (1 − λ)κ

and

E(ε∗4
t |�) = 3λ − 2δ2(3 + δ2)λ3 + (6δ2 + 8δ4)λ4 − 9δ4λ5 + 3δ4λ6

[λ + (1 − λ)κ]2

+2δ2(1 − λ)λ[3 − (1 − λ)λ{6 + δ2[2 − 3(1 − λ)λ]}]κ
[λ + (1 − λ)κ]2

+ (1 − λ){3 − δ2(λ − 1)2λ[6 + δ2(−1 + 3λ2)]}κ2

[λ + (1 − λ)κ]2 .

B.2.2 Scores with respect to " and%

Regarding the specific elements that appear in (9) and (10), we have

∂ ln f [ε∗
i t (θ); �i ]

∂ε∗
i t

= − 1

f [ε∗
i t (θ); �i ]

{

λi
φ1i t [ε∗

i t (θ) − μ∗
1(�i )]

σ ∗2
1 (�i )

+(1 − λi )
φ2i t [ε∗

i t (θ) − μ∗
2(�i )]

σ ∗2
2 (�i )

}

= −
{

λiw1i t
[ε∗

i t (θ) − μ∗
1(�i )]

σ ∗2
1 (�i )

+ (1 − λi )w2i t
[ε∗

i t (θ) − μ∗
2(�i )]

σ ∗2
2 (�i )

}

,

where we have defined the posterior probabilities of shock i being drawn from com-
ponent k at time t as wki t = φ[ε∗

i t (θ);μ∗
k(�i ), σ

∗2
k (�i )]/ f [ε∗

i t (θ); �i ] to shorten the
expressions [see Boldea and Magnus (2009)].

As for the derivatives with respect to the shape parameters in (11), we have

eri t (φ) =
[
∂ ln f [ε∗

i t (θ); �i ]
∂δi

,
∂ ln f [ε∗

i t (θ); �i ]
∂κi

,
∂ ln f [ε∗

i t (θ); �i ]
∂λi

]′
,

with

∂ ln f [ε∗
i t (θ); �i ]

∂δi
= λi (1 − λi )

×
{

w1i t

(
δiλi

σ ∗2
1 (�i )[κi + (1 − λi )κi ]

− [1 + δi (1 − λi )εi t ]
1 − δ2i λi (1 − λi )

[εi t − μ∗
1(�i )]

σ ∗2
1 (�i )

)

+ w2i t

(
δi (1 − λi )κi

σ ∗2
2 (�i )[κi + (1 − λi )κi ]

− [1 + δi (1 − λi )εi t ]
1 − δ2i λi (1 − λi )

[ε2t − μ∗
2(�i )]

σ ∗2
2 (�i )

)}

,
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∂ ln f [ε∗
i t (θ); �i ]

∂κi
= λi (1 − λi )

2[κi + (1 − λi )κi ]

×
[{

−w1i t

{
[εi t − μ∗

1(�i )]2
σ ∗2
1 (�i )

− 1

}

+ w2i t

[κi + (1 − λi )κi ]κi

{
[εi t − μ∗

2(�i )]2
σ ∗2
2 (�i )

− 1

}]

,

and

∂ ln f [ε∗
i t (θ); �i ]

∂λi
= w1i t

(

1 + λ{1 − κ + δ2[λ2(κ − 1) + κ − 2λκ]}
2[1 − δ(1 − λ)λ}[λ(1 − κ) + κ]

)

−w2i t

(

1 − (1 − λ){1 − κ + δ2[λ2(κ − 1) + κ − 2λκ]}
2[1 − δ2(1 − λ)λ][λ(1 − κ) + κ]

)

+w1i t
[εi t − μ∗

1(�i )]λ
2[1 − δ2(1 − λ)λ]2 × {δ[1 + 3λ(−1 + κ) − 3κ]

−δ3(λ − 1)[λ(κ − 1) − κ] + εi t (κ − 1) + εi tδ
2[λ2(1 − κ)

−κ + 2λκ]}
+w2i t

[εi t − μ∗
2(�i )](1 − λ)

2[1 − δ2(1 − λ)λ]2κ {εi t (κ − 1 + δ2[λ2 − κ

+2λκ − λ2κ)]
+(δ[2δ2λ2(1 − κ) + δ2λ3(κ − 1) − 2κ + λ(3 + δ2)κ − 3λ]}.

The second derivatives of the log-density with respect to the shape parameters can
be derived using the chain rule for second derivatives from the expressions in Boldea
and Magnus (2009), who obtain them in terms of λ, μ∗

k(�i ) and σ ∗2
k (�i ) (k = 1, 2).

The precise expressions are available on request.

CMonte Carlo results for a trivariate static model

In this appendix, we report finite sample results for a trivariate extension of our bench-
mark dgp 1, which we denote by dgp 1t . Specifically, we generate samples of size
T from

⎛

⎝
y1t
y2t
y3t

⎞

⎠ =
⎛

⎝
1

−1
0

⎞

⎠+
⎛

⎝
1 1/2 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
ε∗
1t

ε∗
2t

ε∗
3t

⎞

⎠ (C2)

As for the shocks, we choose ε∗
1t ∼ N (0, 1), ε∗

2t ∼ DMN (−.859, .386, 1/5) and
ε∗
2t ∼ DMN (.859, .386, 1/5), so that ε∗

2t and ε∗
3t follow discrete mixtures of two

normals with kurtosis coefficients 4 and skewness coefficients equal to −.5 and .5,
respectively.
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Table 9 Monte Carlo size and power of normality tests: trivariate static model

Nominal size T = 250

Asymptotic critical values Bootstrap (399 samples) critical values

10% 5% 1% 10% 5% 1%

Size (ε∗
1t normal)

H3(ε
∗
1t ) 18.32 11.47 4.32 8.52 3.97 0.68

H4(ε
∗
1t ) 17.58 10.30 4.50 8.67 4.22 1.02

H3(ε
∗
1t ) & H4(ε

∗
1t ) 19.25 12.48 6.21 8.36 4.00 0.96

Power (ε∗
2t DMN with negative skewness)

H3(ε
∗
2t ) 81.73 76.37 63.77 73.58 65.53 45.71

H4(ε
∗
2t ) 71.22 64.85 52.56 62.86 53.88 30.68

H3(ε
∗
2t ) & H4(ε

∗
3t ) 85.61 81.26 71.70 77.09 68.14 42.89

Power (ε∗
3t DMN with positive skewness)

H3(ε
∗
3t ) 82.25 77.25 64.50 73.94 65.78 45.16

H4(ε
∗
3t ) 71.33 64.97 53.06 63.22 53.85 29.73

H3(ε
∗
3t ) & H4(ε

∗
3t ) 86.00 81.67 71.81 76.97 67.89 41.66

T = 1000

Asymptotic critical values Warp-speed bootstrap critical values

Nominal size 10% 5% 1% 10% 5% 1%

Size (ε∗
1t normal)

H3(ε
∗
1t ) 12.32 6.61 1.61 9.69 4.76 0.77

H4(ε
∗
1t ) 12.22 6.56 1.84 9.71 4.71 0.93

H3(ε
∗
1t ) & H4(ε

∗
1t ) 12.73 6.91 2.10 9.38 4.83 0.81

Power (ε∗
2t DMN with negative skewness)

H3(ε
∗
2t ) 99.84 99.79 99.50 99.80 99.67 98.84

H4(ε
∗
2t ) 99.32 98.84 97.06 98.75 97.80 92.56

H3(ε
∗
2t ) & H4(ε

∗
3t ) 99.95 99.91 99.83 99.89 99.83 99.39

Power (ε∗
3t DMN with positive skewness)

H3(ε
∗
3t ) 99.91 99.86 99.53 99.87 99.75 98.90

H4(ε
∗
3t ) 99.25 98.69 96.77 98.63 97.64 92.98

H3(ε
∗
3t ) & H4(ε

∗
3t ) 99.98 99.95 99.86 99.94 99.89 99.42

Monte Carlo empirical rejection rates of normality tests; 20,000 replications. dgp 1t—Shocks: ε∗
1t normal,

and ε∗
2t and ε∗

2t discrete mixture of two normals. See Appendix C for details on the data generating process.

Asymptotic critical values: H3(·) ∼ χ2
1 , H4(·) ∼ χ2

1 and H3(·) & H4(·) ∼ χ2
2 . We describe the sampling

procedure we use to implement the bootstrap in Sect. 5.1.3
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Table 9 reports Monte Carlo rejection rates of the normality tests proposed in
Sect. 4.1 for samples of size T = 250 (top panel) and T = 1000 (bottom panel).
The first three columns of those panels report rejection rates using asymptotic critical
values, while the last three columns show the bootstrap-based ones for T = 250 and
the warp-speed bootstrap-based ones for T = 1000. Once again, the normality tests
tend to be oversized at the usual nominal levels, especially for samples of length 250,
while the standard bootstrap version of our tests is much more reliable for both the
third and fourth moment tests. More importantly, the null of normality is correctly
rejected a large number of times when it does not hold, even in samples of length
250. Nevertheless, there is a moderate loss of power relative to Table 2, which may
reflect the need to estimate almost twice as many parameters as in the bivariate case.
In larger dimensions, one might expect a similar pattern, although in general, the
main determinants of the power of our normality test will be the non-normality of the
structural shock under consideration and how precisely identified it is.

Finally, in Table 10 we report the Monte Carlo rejection rates of the tests we have
proposed in Sect. 4.2 under the null of independence for samples of size T = 250
(left panel) and T = 1000 (right panel). As in Table 9, the first (last) three columns
of those panels report rejection rates using asymptotic (bootstrapped) critical values.
As in the bivariate case (cf. Table 4), we can see some small to moderate finite sample
size distortion when T = 250, although in almost all cases they are corrected by the
bootstrap. Finite sample sizes improve considerably for samples of length 1000, as
expected.
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