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1 Introduction

There are several popular identi�cation schemes for structural vector autoregressions (Svar),

including short- and long-run homogenous restrictions (see, e.g., Sims (1980) and Blanchard

and Quah (1989)), sign restrictions (see, e.g., Faust (1998) and Uhlig (2005)), time-varying

heteroskedasticity (Sentana and Fiorentini (2001)) or external instruments (see, e.g., Mertens

and Ravn (2012) or Stock and Watson (2018)). Recently, identi�cation through independent

non-Gaussian shocks has become increasingly popular after Lanne, Meitz and Saikkonen (2017)

and Gouriéroux, Monfort and Renne (2017).1 The signal processing literature on Independent

Component Analysis (Ica) popularised by Comon (1994) shares the same identi�cation scheme.

Speci�cally, if in a static model the N � 1 observed, square-integrable random vector y �the

so-called signals or sensors�is the result of an a¢ ne combination of N unobserved shocks "� �

the so-called components or sources�whose mean and variance we can set to 0 and IN without

loss of generality, namely

y = �+C"�; (1)

then the matrix C of loadings of the observed variables on the latent ones can be identi�ed (up

to column permutations and sign changes) from an i:i:d: sample of observations on y provided

the following assumption holds:2

Assumption 1: ICA Identi�cation
1) the N shocks in (1) are cross-sectionally independent,
2) at least N � 1 of them follow a non-Gaussian distribution, and
3) C is invertible.

Failure of any of the three conditions in Assumption 1 results in an underidenti�ed model.

In particular, suppose that "� follows a non-Gaussian spherically symmetric distribution, such

as the standardised multivariate Student t, so that the marginal distribution of each shock is

also a standardised Student t but there is tail dependence among them. The problem is that

any rotation of the structural shocks generates another set of N shocks "�� = Q"�, where Q is

a special orthogonal matrix, which share not only their mean vector (0), covariance matrix (I)

and margins, but also the same non-linear dependence structure, rendering C underidenti�ed.

In Amengual, Fiorentini and Sentana (2022a), we proposed simple to implement and inter-

pret speci�cation tests that check potential cross-sectional dependence among several shocks by

comparing some integer product moments of those shocks in the sample with their population

counterparts. Speci�cally, we assessed the statistical signi�cance of their second, third and fourth

1See Fiorentini and Sentana (2022a) for a selected list of recent Svar papers that exploit the non-Gaussian
features of the structural shocks.

2The same result applies to situations in which dim("�) � dim(y) provided that C has full column rank.
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cross-moments, which should be equal to the product of the corresponding marginal moments

under independence. Although our Monte Carlo simulation results indicated that the tests we

proposed have non-negligible power against a variety of empirical plausible forms of dependence

among the shocks, tests based on a �xed number of cross-moments are not consistent because it

is possible to create examples of tail-dependent shocks for which all those cross-moments are 0.

The purpose of this paper is to provide alternative moment tests of independence which are

consistent against any alternative to the null hypothesis under the maintained assumptions that

at least N �1 shocks are non-Gaussian and C is invertible. E¤ectively, our proposed procedures

check that the joint cumulative distribution function (cdf) of the shocks is the product of their

marginal cdfs. For pedagogical reasons, we �rst develop our tests for a �nite grid of values of

the arguments of the cdfs, but then we explain how to extend them to the entire range of values

by exploiting a generalisation of the continuum of moments inference procedures put forward by

Carrasco and Florens (2000), which results in a consistent test. Interestingly, we can relate our

discrete grid test to the classical Pearson�s independence test statistic for categorical variables

in contingency tables.

Importantly, though, we focus on the latent shocks rather than the observed variables because

Assumption 1 is written in terms of "� rather than y. If we knew the true values of � and C, �0

and C0 say, with rank(C0) = N , we could trivially recover the latent shocks from the observed

signals without error. In practice, though, both � andC are unknown, and the same is true of the

autoregressive coe¢ cients in the Svar case, so we need to estimate them before conducting our

tests and take into account their sampling variability in computing the asymptotic covariance

matrix of the in�uence functions in the discrete grid case, or its operator counterpart in the

continuous one.

Although many estimation procedures for those parameters have been proposed in the lit-

erature (see, e.g., Moneta and Pallante (2020) and the references therein), in this paper we

consider the discrete mixtures of normals-based pseudo maximum likelihood estimators (PM-

LEs) in Fiorentini and Sentana (2022a) for three main reasons. First, they are consistent for

the model parameters under standard regularity conditions provided that Assumption 1 holds

regardless of the true marginal distributions of the shocks. Second, they seem to be rather

e¢ cient, the rationale being that �nite normal mixtures can provide good approximations to

many univariate distributions. And third, the in�uence functions on which they are based are

the scores of the pseudo log-likelihood, which we can easily compute in closed-form. As is well

known, these in�uence functions play a crucial role in capturing the sampling variability result-

ing from computing the shocks with consistent but noisy parameter estimators. In this respect,
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we derive computationally simple closed-form expressions for the asymptotic covariance matrices

and operators of the sample moments underlying our tests under the null adjusted for parameter

uncertainty. Importantly, we do so not only for the static Ica model (1) but also for a Svar,

which is far more relevant for economic and �nancial time series data.

In many empirical �nance applications of Svars, the number of observations is su¢ ciently

large for asymptotic approximations to be reliable. In contrast, the limiting distributions of our

tests may be a poor guide for the smaller samples typically used in macroeconomic applications.

For that reason, we thoroughly study the �nite sample size of our tests in several Monte Carlo

exercises. We also discuss some resampling procedures that seem to improve their reliability. Fi-

nally, we show that our tests have non-negligible power against a variety of empirically plausible

alternatives in which the cross-sectional independence of the shocks no longer holds.

The rest of the paper is organised as follows. Section 2 discusses the model and the estimation

procedure. Then, we present our moment tests for independence for a �nite number of grid

points in section 3, and a continuum of points in section 4. Next, section 5 contains the results

of our Monte Carlo experiments. Finally, we present our conclusions and suggestions for further

research in section 6, and relegate proofs, auxiliary results and some technical material to the

appendix.

2 Structural vector autoregressions

2.1 Model speci�cation

Consider the following N -variate Svar process of order p:

yt = � +
Pp
j=1Ajyt�j +C"

�
t ; "�t jIt�1 � i:i:d: (0; IN ); (2)

where It�1 is the information set, C the matrix of impact multipliers and "�t the �structural�

shocks, which we normalise to have zero means, unit variances and zero covariances under our

maintained assumption that they are square-integrable.

Let "t = C"�t denote the reduced form innovations, so that "tjIt�1 � i:i:d: (0;�) with

� = CC0. As is well known, a Gaussian (pseudo) log-likelihood is only able to identify �, which

means the structural shocks "�t and their loadings in C are only identi�ed up to an orthogonal

transformation. Speci�cally, we can use the QR matrix decomposition of C0 to relate this matrix

to the Cholesky decomposition of � = �L�
0
L as C = �LQ, where Q is an N �N orthogonal

matrix, which we can model as a function of N(N�1)=2 parameters ! by assuming that jQj = 1

(see e.g. Golub and van Loan (2013)). While �L is identi�ed from the Gaussian log-likelihood,

! is not. In fact, the underidenti�cation of ! would persist even if we assumed for estimation
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purposes that "�t followed an elliptical distribution or a location-scale mixture of normals.

Nevertheless, Lanne et al (2017) show that statistical identi�cation of both the structural

shocks and C (up to column permutations and sign changes) is possible under the Ica identi�-

cation Assumption 1, which we maintain henceforth. Popular choices of univariate non-normal

distributions are the Student t (see Brunnermeier et al (2021)) and the generalised error (or

Gaussian) distribution, which includes normal, Laplace and uniform as special cases.

2.2 Going beyond integer moments

The Lanne et al (2017) identi�cation result, though, critically hinges on the validity of

Assumption 1. As a consequence, it would be desirable that empirical researchers who rely on it

reported speci�cation tests that would check this assumption. In this paper, we focus on testing

that the structural shocks are indeed independent of each other.

As is well known, stochastic independence between the elements of a random vector is equiv-

alent to the joint cdf being the product of the marginal ones. In turn, this factorisation implies

lack of correlation between not only the levels but also any set of single-variable measurable

transformations of those elements. Thus, a rather intuitive way of testing for independence

without considering any speci�c parametric alternative can be based on in�uence functions of

the form

ch("
�
t ) =

NY
i=1

"�hiit �
NY
i=1

E("�hiit ); (3)

where h =fh1; :::; hNg, with hi 2 Z0+, denotes the index vector characterising a speci�c product

moment. This is precisely the approach that we followed in Amengual, Fiorentini and Sentana

(2022a), where we paid particular attention to third and fourth cross-moments. Nevertheless,

this type of moment test su¤ers from two problems. First, standard asymptotic theory provides

poor �nite sample approximations for tests based on higher-order moments, whose estimates

are quite sensitive to outliers. Second, for any choice of h, one can �nd joint distributions

of the shocks for which (3) is zero on average even though the shocks are cross-sectionally

dependent. For example, Figure 1a displays the contours of the copula corresponding to a

spherically symmetric fourth-order Hermite expansion of the bivariate normal such that all

second, third and fourth cross-moments satisfy this condition even though the shocks are not

stochastically independent.

To avoid these criticisms, in what follows we propose to assess the potential cross-sectional

dependence among two or more shocks by comparing their joint empirical cdf to the product of

the marginal empirical cdfs. We do so not only for a discrete grid of values of the arguments

of the joint cdf, which provides the intuition for our approach, but also for a continuous grid of
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values using an extension of the continuum of moments inference procedures in Carrasco and

Florens (2000), which provides a consistent test.

2.3 Consistent parameter estimation

Importantly, we focus on moment conditions for the latent shocks rather than the ob-

served variables because Assumption 1 is written in terms of the "��s instead of the yi�s. Let

� = [� 0; vec0(A1); : : : ; vec0(Ap); vec0(C)]0 = (� 0;a01; : : : ;a
0
p; c

0) = (� 0;a0; c0) denote the structural

parameters characterising the �rst two conditional moments of yt. If we knew the true values

of �0, we could easily recover the true shocks from the observed variables using the expression

"�t (�) = C
�1(yt � � �

Pp
j=1Ajyt�j): (4)

In practice, though, all those mean and variance parameters are unknown, so we need to

both estimate them before computing our tests and take into account that we will be working

with estimated shocks in deriving the asymptotic covariance matrices of the average in�uence

functions underlying them.

Maximum likelihood estimation (MLE) and inference in Svar models with independent

non-Gaussian shocks is conceptually simple: the joint log-likelihood function is the sum of N

univariate log-likelihoods plus the Jacobian term jCj. As is well known, MLE leads to e¢ cient

estimators of all the structural parameters if the assumed univariate distributions are correctly

speci�ed. Unfortunately, while Gaussian pseudo maximum likelihood estimators (PMLE) remain

consistent when the true shocks are not Gaussian, the same is not generally true for other

distributions (see e.g. Newey and Steigerwald (1997)). In this context, though, we cannot use a

Gaussian PMLE because we lose identi�cation.

Fiorentini and Sentana (2022a) showed that if the univariate log-likelihoods are based on an

unrestricted �nite Gaussian mixture, then all conditional mean and variance parameters will be

consistently estimated under standard regularity conditions when Assumption 1 holds and the

shape parameters of the mixtures are simultaneously obtained.3 Let % = (%01; : : : ;%
0
N )

0 denote

those shape parameters, so that � = (�0;%0)0. Appendix C provides detailed expressions not

only for the relevant pseudo log-likelihood function, but also for its score and Hessian, as well as

the conditional variance of the former and the conditional expected value of the latter, on the

basis of which we can obtain closed-form expressions for the asymptotic variances of the PMLEs

of �.

3The rationale is that the discrete normal mixture-based PMLEs of the unconditional mean vector and covari-
ance matrix of a random vector coincide with the corresponding sample moments, just like in the Gaussian case,
as shown by Fiorentini and Sentana (2022b).
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3 Discrete grid tests

For pedagogical reasons, in sections 3.1 and 3.2 we �rst assume that �0 is known but later

explain how to correct the covariance matrix of the relevant in�uence functions for the PML

estimation of these parameters.

3.1 An event-based approach

Our �rst test is based on the joint probability of events de�ned before the sample is observed

that involve two or more elements of "�t , which should coincide with the product of the marginal

probabilities under the null of independence. Speci�cally, we begin by de�ning H points, k1 <

� � � < kh < � � � < kH , so that we can then form a partition of the support of "�it into H + 1

segments, namely kh�1 � "�it � kh for h = 1; :::;H + 1 after suitably de�ning k0 = �1 and

kH+1 = 1.4 We then collect the indices of the shocks involved in the set I = fi; i0; :::; iig,

where i denotes the cardinality of the set I, so that we can test for pairwise independence,

joint independence of the entire vector of structural innovations, and any other intermediate

situation. Next, we de�ne the dummy variables P �iht = 1(kh�1;kh)("
�
it), where 1A(x) denotes the

usual indicator function for x 2 A. Finally, we denote by ��h the di¤erence between

Pr

 \
i2I

�
P �ihit = 1

	!
;

which is the joint probability of the event de�ned by the vector h with typical element hi, and the

product of the marginal probabilities ��ihi = Pr(P
�i
hit
= 1), so that ��(h) = 0 under independence.

Using this notation, we could in principle test the null on the basis of the following in�uence

function:

p�h("
�
t ) =

Y
i2I
P �ihit �

Y
i2I
��ihi � �

�(h): (5)

However, (5) is not computable unless one knows the marginal probabilities, as in Fisher�s (1922)

famous tea cup classi�cation example. Therefore, in practice those probabilities will in turn be

estimated from the exactly identi�ed moment conditions

E[p�hi("
�
it)] = 0; :::; E[p

�
h
iI
("�iIt)] = 0;

where

p�h("
�
it) = P

�i
ht � ��ih , for i 2 I, h = 1; :::;H; (6)

4For notational simplicity, we maintain the assumption that the number of intervals and their limits are
common across shocks. Although this assumption is plausible when a researcher has no prior views on the
marginal distributions of the di¤erent standardised shocks, it would be straightforward to relax it.
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which results in the analogue estimator �̂�ih = 1
T

PT
t=1 P

�i
ht , a fact that we need to take into

account in computing the asymptotic covariance matrix of the feasible version of (5) that ade-

quately re�ects the sampling uncertainty in �̂�ih for all intervals and shocks.

If we then consider an N -dimensional contingency table whose cells are the Cartesian product

of the di¤erent marginal partitions, we will end up with a GMM version of Pearson�s joint (or

multi-way) independence test, which is in fact numerically identical to Pearson�s original test

statistic (see Sentana (2022)).5

3.1.1 A re-interpretation in terms of cdfs

Consider now replacing the partition of the support of "�it into the H+1 segments discussed

above by the sequence of overlapping increments "�it � kh for h = 1; :::;H + 1. Two things are

immediately obvious regardless of the independence between the shocks. First,

Fi(khi) = P ("
�
it � khi) =

hiX
ji=1

P (kji�1 � "�it � kji);

which implies that the �̂�ih will be replaced by the values of the empirical cdf at the chosen grid

points, say ûih. And second, that

Fh(khi ; khi0 ; :::; khii ) = Pr

"\
i2I
f"�it � khig

#
=
X
i2I

hiX
ji=1

Pr

"\
i2I
fkji�1 � "�it � kjig

#
:

In addition, it is also easy to see that under the independence null

Fh(khi ; khi0 ; :::; khii ) = Pr

"\
i2I
f"�it � khig

#
=
Y
i2I

24 hiX
ji=1

Pr(kji�1 � "�it � kji)

35 =Y
i2I
Fi(khi)

because

Pr

"\
i2I
fkji�1 � "�it � kjig

#
=
Y
i2I
Pr(kji�1 � "�it � kji) 8i 2 I and 8kji ; j 2 H:

Thus, the usual Pearson test for independence can be easily re-written in our context as a

moment test of independence of the cdf at a �nite grid of points because the in�uence functions

of the latter are a simple full-rank linear transformation of the former with known coe¢ cients.

This re-interpretation will allow us to extend our tests to a continuous grid in section 4.

5The adding up restrictions of the elements of the contingency table by rows and columns imply that the
information in some of the cells is redundant, so we can avoid using generalised inverses in computing the test
statistic by getting rid of them. We would suggest excluding all the cells involving a speci�c category for each of
the i shocks, but the choice of excluded category for each shock is arbitrary.
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For practical purposes, let us de�ne

P ikt = 1(�1;k)("
�
it);

and

pk("
�
it) = P

i
kt � uik; (7)

where uik = E(P ikt) = Fi(k), as the new dummy variables and marginal in�uence functions,

respectively, which trivially give rise to the analogue estimator

ûik =
1

T

TX
t=1

P ikt: (8)

Let us also de�ne the joint in�uence function

pk("
�
t ) =

Y
i2I
P ikit �

Y
i2I
uiki � �(k); (9)

where k = (ki; ki0 ; : : : ; kii)0, which is such that �(k) = 0 under the independence null.

Importantly, the fact that the estimating moment conditions (7) exactly identify the relevant

uih�s implies that there is no e¢ ciency loss in sequentially estimating the �(k)�s from (9) by

replacing the marginal cdfs by their sample counterparts relative to estimating them jointly

from (7) and (9), which in turn implies that the non-centrality parameters of corresponding

moment tests that impose �(k) = 0 will coincide.

The following proposition is crucial to compute the relevant test statistics:

Proposition 1 If the shocks de�ned by I are stochastically independent, then the asymptotic
covariance of the in�uence functions pk("�t ) and pk0("

�
t ) evaluated at the estimated values of u

i
k

and vik0 in (8), will be given by

Y
i2I
min(uiki ; v

i
k0i
) + (i� 1)

Y
i2I
uikiv

i
k0i
�
X
i2I
min(uiki ; v

i
k0i
)

0@ Y
i02I;i0 6=i

ui
0
ki0

1A0@ Y
i02I;i0 6=i

vi
0

k0
i0

1A ; (10)

where uiki = Fi(khi) and v
i
k0i
= Fi(kh0i).

As we show in the proof of the proposition, expression (10) coincides with the covariance

between versions of the in�uence functions pk("�t ) and pk0("
�
t ) linearised with respect to u

i
k and

vik0 , respectively. This linearised versions are particularly useful when �0 is unknown and has to

be estimated, a topic to which we turn next.

3.1.2 Adjustments for the estimation of �

Let m["�t (�)] denote a vector of in�uence functions that depend on "
�
t (�), a parameter-

dependent transformation of the data given by (4). Similarly, let s�t(�) denote the score vector
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used for simultaneously estimating � and the �nite mixture shape parameters %. Finally, let

'0 = (�00;�
0
0)
0 denote the true values of the parameters characterising the true DGP, and

�1 = (�00;%
0
1)

0 the pseudo-true values of the estimated parameters. We can then use the theory

of moment tests (see Newey (1985) and Tauchen (1985)) to derive the asymptotic covariance

matrix of the (scaled) sample averages of m["�t (�̂)] that appears in Lemma 1 in Appendix B by

combining the joint asymptotic covariance matrix of the (scaled) sample averages of m["�t (�0)]

and s�t(�1) with the limiting expected value of @m["
�
t (�0)]=@�

0.

Let us now apply this general result to pk["�t (�̂)] and pk0 ["
�
t (�̂)]. Speci�cally, if we combine

the expressions in Proposition 1, Lemma 2 and Lemma 3 with the expressions for the covariance

matrix of the pseudo log-likelihood score and the expected value of its Hessian in appendix C,

we can easily obtain the adjusted covariance matrix of these in�uence functions evaluated at

the estimated values of uik and v
i
k0 in (8). Thus, our proposed test will di¤er from Pearson�s

independence test in that it takes into account not only the estimation of the marginal cdfs, as

in Proposition 1, but also because those probabilities will be computed on the basis of estimated

"�t�s that replace �0 with its PMLE �̂.

Unfortunately, the choice of H is crucial for both small sample performance and power

considerations even though the asymptotic distribution under the null is always a �2 with H i

degrees of freedom. Intuitively, a too �ne partition relative to the sample size may introduce

size distortions because the joint probability of some individual cells will be poorly estimated.

Even in large samples, a �ne partition will generate substantial correlation between the in�uence

functions, potentially causing numerical instability, an issue which we will revisit in section 4.

Finally, there is also a power trade-o¤ between the size of the non-centrality parameter and the

number of degrees of freedom of the limiting distribution.6

In turn, the choice of the k�s will also crucially a¤ect power even though it does not a¤ect

the (�rst-order) asymptotic distribution of the test under the null. Therefore, it would be useful

to adapt the grid to the marginal distribution of the shocks. For that reason, in the next section

we suggest a simple way to choose the partition which achieves precisely that goal.

3.2 A copula-based approach

Suppose that, instead of �xing arbitrarily the grid points at which we evaluate the cdfs of

each of the "�i �s, we chose them so that they correspond to speci�c quantiles of the marginal

distributions. Speci�cally, we begin by collecting the relevant indices in I = fi; i0; :::iig as in
6 In principle, we could further deviate from Pearson�s test by not necessarily including all cells in the contin-

gency table, but unless one has a priori knowledge of which speci�c subset of intervals is likely to capture larger
departures from the null, it is not clear that the consequent reduction in degrees of freedom will translate into
power gains.
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section 3.1, and select H probabilities 0 < u1 < � � � < uH < 1.7 Let {i(uh) be the uh-quantile

of "�it for h = 1; :::;H after suitably de�ning u0 = 0 and uH+1 = 1, with {i(0) = �1 and

{i(1) =1. Next, we de�ne the dummy variables

Qiuh("
�
it) = 1(�1;{i(uh))("

�
it)

for each i 2 I. In this notation, a straightforward independence test for the shocks could be

alternatively computed on the basis of the in�uence functions

qu("
�
t ) =

Y
i2I
Qiuh("

�
it)�

Y
i2I
uhi � �(u) (11)

because �u = 0 under the null, where u = (ui; ui0 ; :::; uii). Intuitively, a moment test based on a

collection of such in�uence functions will e¤ectively assess that the copula linking the di¤erent

marginal distributions is �at, which corresponds to the independent one.

However, (11) is not computable unless one knows the marginal quantiles. Therefore, in

practice the quantiles {i(uhi) for the chosen probabilities uh for each i 2 I will usually be

estimated in turn from the exactly identi�ed moment conditions

E[qhi("
�
it)] = 0; :::; E[qhiI ("

�
iIt)] = 0;

where

quhi ("
�
it) = Qiuhi ("

�
it)� uhi for i 2 I, and h = 1; : : : ;H (12)

which yields the sample marginal quantiles of the shocks involved as the natural analogue esti-

mators.

Once again, the fact that the estimating moment conditions (12) exactly identify the relevant

quantiles implies that there is no e¢ ciency loss in sequentially estimating the �(u)�s from (11)

by replacing the marginal quantiles by their sample counterparts relative to estimating them

jointly from (11) and (12), which in turn implies that the non-centrality parameters of the

corresponding moment tests that impose �(u) = 0 will also coincide.

An obvious question at this stage is whether practitioners should rely on the event-based

approach in section 3.1 or the copula-�avoured test in this one. A priori, it might seem that

the former should dominate the latter because the asymptotic variance of the estimators of the

probabilities of an interval only depend on the probability of said interval, while the asymptotic

variance of the estimators of the quantiles depend not only on the quantile probability (directly),

but also on the value of the density at said quantile (inversely). Somewhat surprisingly, though,

7For notational simplicity, we again maintain the assumption that the number of intervals and their limits are
common across shocks even though it would be straightforward to relax it.
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it turns out that

Proposition 2 If the shocks de�ned by I are stochastically independent, then the asymptotic
covariance of the in�uence functions qu("�t ) and qv("

�
t ) evaluated at the estimated values of

{i(uhi) and {i(vh0i) in (12) will be given by (10).

In particular, this means that if we chose the limits of the intervals of the test in section 3.1

so that they exactly matched the theoretical quantiles of the test in the 3.2, or in simpler terms,

so that the two population partitions were identical, the moment tests for independence based

on (9) and (12) would be asymptotically equivalent because the asymptotic covariance matrices

that correct for the estimation of the marginal probabilities or the marginal quantiles would also

be identical.

As we show in the proof of Proposition 2, expression (10) also coincides with the covariance

between versions of the in�uence functions qu("�t ) and qv("
�
t ) linearised with respect to {i(uhi)

and {i(vh0i) when these are in turn linearised with respect to u
i
h and v

i
h0 . Once more, these

linearised versions are particularly useful when �0 is unknown and has to be estimated, a topic

to which we turn next.

3.2.1 Adjusting for the estimation of �

Although in this case we know the marginal probabilities by construction, our proposed test

will once more di¤er from Fisher (1922) exact independence test because it takes into account

not only the estimation of the quantiles of the marginal densities, but also that those quantiles

will be computed on the basis of estimated "�t�s that replace �0 with its PMLE �̂. To do so, we

can again apply Lemma 1 in Appendix B to qu["�t (�̂)] and qv["
�
t (�̂)]. Speci�cally, if we combine

the expressions in Proposition 2, Lemma 4 and Lemma 5 with the expressions for the covariance

matrix of the pseudo log-likelihood score and the expected value of its Hessian in appendix

C, we can obtain the adjusted covariance matrix of these in�uence functions evaluated at the

estimated values of {i(uhi) and {i(vh0i) in (12).

Importantly, it turns out that the sampling variability in estimating the mean parameters

or the diagonal elements of the matrix C, which characterise the scale of the di¤erent shocks,

is totally irrelevant. Intuitively, the reason is that a contingency table based on quantiles is

numerically invariant to a¢ ne linear transformations of each shock because the new quantiles

are the same a¢ ne transformation of the original ones. Therefore, the only parameters whose

sampling variability matter are the o¤-diagonal elements of C.
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4 A continuous grid

Unfortunately, the tests discussed in sections 3.1 and 3.2 are not consistent for any speci�c

�nite partition of the domain of the shocks because one could always �nd joint distributions such

that the probability of each joint interval is exactly the product of the marginal probabilities

even though the shocks are stochastically dependent. In fact, any spherically symmetric bivariate

distribution for the shocks, like the one in Figure 1a, will provide an example of such a situation

if we only considered two equally likely intervals for each shock. More interestingly, Figure 1b

relies on another spherically symmetric Hermite expansion of the bivariate normal to illustrate

the same issue if we considered three equally likely intervals per shock. For that reason, we now

extend our procedures to a continuous grid.

Consistent tests of independence based on comparing the joint cdf to the product of the

marginal cdfs for all possible values of the arguments go back at least to Hoe¤ding (1948), who

considered a Cramér-von Misses type-test based on the integral of the square di¤erences between

the joint cdf and the product of the marginal cdfs, and Blum, Kiefer and Rosenblat (1961), who

also considered Kolmogorov-Smirnov-type tests based on the maximum absolute discrepancy.8

However, those tests rely on speci�c functionals of the di¤erence, while the discrete grid tests

that we studied in the previous section also take into account not only the asymptotic variance

of the in�uence functions for each value of the arguments, like an Anderson-Darling (1961) test

would do, but more importantly, the covariance between those in�uence functions for di¤erent

values of the arguments.

4.1 Moment tests with a continuum of moments

In principle, we could try to �nd the limiting distribution of our discrete grid tests in a

double asymptotic framework in which the partitions get �ner and �ner as the sample size

increases. However, this is really unnecessary because the in�uence functions indexed with

respect to the arguments of the joint cdf over Ri give rise to a continuum of moments in an L2

space. As a result, we can readily extend Carrasco and Florens (2000) and directly construct a

Hansen (1982) overidentifying restrictions-type test based on the same in�uence functions as in

the discrete grid case, but with a covariance operator playing the role of the usual covariance

matrix.
8See Kheifets (2015) for an application of these procedures to the probability integral transforms of the con-

ditionally standardised residuals of a fully parametric univariate time series model for the purposes of testing its
correct speci�cation taking into account the estimated character of those residuals.
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Speci�cally, we can regard (9) under H0 : �(k) = 0 as the sample version of

p(k) = Fh(k)�
Y
i2I
Fi(ki);

which should be identically 0 for all k if and only if the underlying random variables are inde-

pendent for any random vector with continuous joint cdf. In practice, the marginal cdfs Fi(xi)

will typically be unknown, but we can similarly estimate them by regarding the expected value

of (7) as yet another continuum of exactly identi�ed moment conditions, which e¤ectively lead

to the empirical cdf of the ith shock.

Importantly, a straightforward extension of the arguments in section 3.2 implies that the

continuum of moments test that looks at (9) over Ri will be numerically equivalent to the one

that looks at the di¤erence between the empirical copula and the unit hyperplane over the unit

hypercube. For that reason, in what follows we simply focus on the copula-based version of the

moment tests for overidentifying restrictions. In e¤ect, we can do so by transforming "�it into its

empirical uniform rank

��it =
1

T

TX
s=1

1(�1;"�it)("
�
is);

so that 1(�1;{(ui))("
�
it) becomes 1(0;ui)(�it). Thus, we can de�ne

qit(ui) = 1(0;ui)(�
�
it)� ui; (13)

qt(u) =
Y
i2I
1(0;u)(�

�
it)�

Y
i2I
ui; (14)

and

�qT (u) =
1

T

TX
t=1

qt(u): (15)

Let $ be a probability density function with support the unit hypercube. Then, the function

qt(u) may be regarded as a random element of L2 ($), the space of real-valued functions which

are square integrable with respect to the density $. For any functions f and g in L2 ($), the

inner product on this Hilbert space is de�ned as

hf; gi =
Z
[0;1]i

f (u) g(u)$ (u) du:

By the central limit theorem for iid random elements of a separable Hilbert space (see e.g.

proof of Theorem 9 in Rackauskas and Suquet (2006)), we have that under independence, as T

goes to in�nity
p
T �qT (u)) N (0;K)
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in L2 ($), where N (0;K) denotes a Gaussian process of L2 ($) fully characterised by its co-

variance operator K, which is an integral operator from L2 ($) to L2 ($) such that

(Kf) (u) =

Z
[0;1]i

k(u;v)f(v)$ (v) dv (16)

whose kernel k (u;v) = E[pt(u)pt(v)] is given by (10).

As we mentioned before, we are interested in applying an overidentifying restrictions to

our continuum of moments, but replacing the usual covariance matrix by the aforementioned

covariance operator K, which has a countable in�nite number of positive eigenvalues �jk and

associated eigenfunctions �jk. Speci�cally, Blum, Kiefer and Rosenblat (1961) proved that in the

bivariate case, the eigenvalues �jk and the complete set of orthonormal eigenfunctions �jk(u)

of K, which are the solutions to the functional equation

K�jk(u) =

Z 1

0

Z 1

0
K(u;v)�jk(v)dv = �jk�jk(u);

are given by 1=(�4j2k2) and 2(sin�ju1)(sin�ku2) for j; k = 1; 2; : : : :9 This covariance operator

is compact, meaning that its inverse is not bounded. Consequently, its smallest eigenvalues will

converge to zero as j or k go to in�nity, as can be clearly seen in the bivariate case we have just

discussed, so taking the inverse of K is problematic. In terms of the spectral decomposition of

K, the direct analogue to the J test statistic would be written asDp
T �qT ;K

�1�qT
E
=
X
j

X
k

1

�kj

���DpT �qT ; �jkE���2 : (17)

Unfortunately, this expression will blow up because of the division by the small eigenvalues. This

is related to the problem of solving an integral equation Kf = g where g is known and f is the

object of interest. This problem is said to be ill-posed because f is not continuous in g. Indeed,

a small perturbation in g will result in a large change in f . To stabilise the solution, one needs

to use some regularisation scheme (see Kress (1999) and Carrasco, Florens, and Renault (2007)

for various possibilities). As in Carrasco and Florens (2000), we use Tikhonov regularisation,

which consists in replacing K�1g by the regularised solution
�
K2 + �I

��1
Kg where � � 0 is

a regularisation parameter. In what follows, we use the notation (K�)�1 for
�
K2 + �I

��1
K,

which is the operator with eigenvalues �jk(�2jk + �)
�1 and corresponding eigenfunctions �jk,

and (K�)�1=2 for the operator with eigenvalues �1=2jk (�
2
jk + �)

�1=2 and the same eigenfunctions.

9 It is not worth extending their results for i> 2 because they apply to observed variables rather than estimated
shocks.
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Thus, the regularised version of the J-type test will be(K�)�1=2
p
T �qT

2 =X
j

X
k

�jk

�2jk + �

���DpT �qT ; �jkE���2 : (18)

Comparing the expressions (17) and (18), it is easy to see that we have e¤ectively replaced ��1jk

with �jk(�2jk + �)
�1, which is bounded.

For computational reasons, it is convenient to rewrite the test statistic (18), which uses as

eigenvalues and eigenfunctions those of K, in terms of certain matrices and vectors (see Carrasco

et al (2007) for analogous expressions for K under time series dependence). Speci�cally, we use

the following computationally convenient expression for (18):

W0f�IT + [(IT � `T `0T =T )D2(IT � `T `0T =T )]2g�1W (19)

where W is a T � 1 vector whose tth element is wt =
R
qt (u) �qT (u)$ (u) du, D is a T � T

matrix whose (t; s)th element is dts = hqt; qsi =T , and `T is a T � 1 vector of ones. In practice,

only D is needed in order to compute the test statistic since (19) is equivalent to

`0TD(IT � `T `0T =T )f�IT + [(IT � `T `0T =T )D2(IT � `T `0T =T )]2g�1(IT � `T `0T =T )D`T :

The following proposition provides analytical expressions for the elements of the matrix D:

Proposition 3 If the i shocks in I are stochastically independent, then

dts =
1

T

(Y
i2I
[1�max[�it; �is)]�

�
1

2

�iY
i2I
(1� �2it)�

�
1

2

�iY
i2I
(1� �2is) +

�
1

3

�i)
;

for t; s = 1; :::; T .

4.2 Adjusting for the estimation of �

Although in the previous section we have already considered the e¤ects of estimating the

marginal cdfs of the shocks on the covariance operator, in practice we must take again take into

account the sampling variability in estimating � by PML. The only di¤erence with the discrete

grid case is that the expected Jacobian will now be a function of the values of the arguments

of the cdf, and the same will be true of the covariance between the in�uence functions and the

score of the Gaussian PMLE. Otherwise, all the expressions that we have derived in sections

3.1.2 and 3.2.1 continue to be valid. In e¤ect, the only thing we need to do is to apply the

Carrasco and Florens (2000) procedure to the residuals from projecting the in�uence function

(14) on the linear span generated by the in�uence functions de�ning the marginal cdfs and the

scores of the pseudo log-likelihood function for each value of u (see Khmaladze (1981) for an
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analogous transformation). As we explained in section 3.2.1, though, the only parameters whose

sampling variability matter are the o¤-diagonal elements of C.

In this context, we can obtain the adjusted covariance operator by combining the expressions

in Proposition 3 with Lemma 6 in Appendix B. To use this result in practice, though, we need

to replace the integrals in (B20) by sums over the empirical cdfs of the shocks. For example,

if we denote by ��t (�̂) = [��it(�̂); :::; �
�
it(�̂)] the vector containing the empirical ranks of the t

th

observation of each of the estimated shocks that appear in I, we can estimate the scalar C that

appears in Lemma 6 as

bC = TX
� i=1

� � �
TX
� i=1

E

(
@nt[�

�
� i
(�̂); :::; ��� i(�̂)]

@�0

)
A�1(�̂)B(�̂)A�1(�̂)E

(
@nt[�

�
� i
(�̂); :::; ��� i(�̂)]

@�

)
;

where nt(�) denotes the linearised version of (14) that accounts for estimation of the quantiles

through (15), whose explicit expression is given by (A6) in the proof of Lemma 6.

5 Monte Carlo analysis

In this section, we evaluate the �nite sample behaviour of the independence tests discussed

in the previous sections by means of several Monte Carlo simulation exercises. We also compare

the power of our proposed tests to that of the integer moment based tests in Amengual, Fiorentini

and Sentana (2022a).

5.1 Design and computational details

To keep CPU time within bounds, we focus on bivariate and trivariate static models, as the

sampling variability of estimating the Var coe¢ cients is irrelevant for the copula-based tests

that we propose. Speci�cally, we generate samples of size T from the following static processes�
y1t
y2t

�
=

�
1
�1

�
+

�
1 1=2
0 2

��
"�1t
"�2t

�
(20)

and 0@ y1t
y2t
y3t

1A =

0@ 1
�1
0

1A+
0@ 1 1=2 0
0 2 0
0 0 1

1A0@ "�1t
"�2t
"�3t

1A . (21)

Our PML estimation procedure, though, assumes that the matrix of the impact multipliers is

fully unconstrained and does not exploit the restriction that the loading matrix of the shocks

is upper triangular. Importantly, given that we can easily prove that the estimated shocks

are numerically invariant to a¢ ne transformations of the y�s, and that the same is true of the

di¤erent test statistics, our results below do not depend on our choice of � or C.

We consider both T = 250, which is realistic in most macro applications with monthly or
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quarterly data, and T = 1; 000, which is representative of �nancial applications with daily data.

In the next subsection, we describe in detail our estimation method. Next, in section 5.1.2, we

characterise the precise DGPs we consider for the shocks. Finally, we outline the resampling

procedures that we use in section 5.1.3.

5.1.1 Estimation details

To estimate the model parameters, we assume that each shock "�it is serially and cross-

sectionally identically and independently distributed as a standardised discrete mixture of two

normals, or "�it � DMN(�i;{i; �i) for short, so that

"�it =

�
N [��1(%i); �

�2
1 (%i)] with probability �i

N [��2(%i); �
�2
2 (%i)] with probability 1� �i

(22)

where %i = (�i;{i; �i)0,

��1(%i) =
�i(1� �i)q

1 + �2i�i(1� �i)
; ��2(%i) = �

�i�iq
1 + �2i�i(1� �i)

;

��21 (%i) =
1 + �i(1� �i)�2i
�i + (1� �i){i

; and ��22 (%i) = {i��21 (%i):

Thus, we can interpret {i as the ratio of the two variances and �i as the parameter that regulates

the distance between the means of the two underlying components.10

As a consequence, the contribution of observation (i; t) to the pseudo log-likelihood function

will be

l["�it(�);%i] = lnf�i � �["�it(�);��1(%i); ��21 (%i)] + (1� �i) � �["�it(�);��2(%i); ��22 (%i)]g;

where �(";�; �2) denotes the pdf of a Gaussian random variable with mean � and variance

�2 evaluated at ". We maximise the log-likelihood with respect to the N elements of � , the

N2 elements of C, and the 3N shape parameters. Without loss of generality, we also restrict

{i 2 (0;1) which in turn ensures the strict positivity of ��22 (%i). Finally, we impose �i 2 (0; 1)

to avoid degenerate mixtures.11

We maximise the log-likelihood subject to these constraints on the shape parameters using a

derivative-based quasi-Newton algorithm, which converges quadratically in the neighbourhood

of the optimum.12 To exploit this property, we start the iterations by obtaining consistent initial

10We can trivially extend this procedure to three or more components if we replace the normal random variable
in the �rst branch of (22) by a k-component normal mixture with mean and variance given by ��1(%) and �

�2
1 (%),

respectively, so that the resulting random variable will be a (k+1)-component Gaussian mixture with zero mean
and unit variance.
11Speci�cally, we impose {i 2 [{; 1] with { = :0001, and �i 2 [�; �] with � = 2=T and � = 1� 2=T:
12This maximization can be made e¤ectively unconstrained by a suitable reparametrisation. In particular, we

consider � = 2=T + (1 � 4=T )(1 + e�h1��)�1 and { = { + e�h2{
�
where h1 and h2 are arbitrary constants that
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estimators of � and C, �FICA and CFICA say, using the FastICA algorithm of Gävert, Hurri,

Särelä, and Hyvärinen.13 In addition, we obtain initial values of the shape parameters of each

shock by performing 20 iterations of the expectation maximisation (EM) algorithm in Dempster,

Laird and Rubin (1977) on each of the elements of "�t;F ICA = C
�1
FICA (yt � ��FICA).14

Assumption 1 only guarantees the identi�cation of C up to sign changes and column permu-

tations. We systematically choose a unique global maximum from the di¤erent observationally

equivalent permutations and sign changes of the columns of the matrix C using the selection

procedure suggested by Ilmonen and Paindaveine (2011) and adopted by Lanne, Meitz and

Saikkonen (2017). In addition, we impose that diag(C) is positive by simply changing the sign

of all the elements of the relevant columns. Naturally, we apply the necessary changes to the

shape parameters estimates, and in particular to the sign of �i.

5.1.2 DGPs under the null and the alternative

The DGPs for the standardised shocks that we consider under the null of independence are:

dgp 0: In the bivariate case, "�1t follows a Student t with 10 degrees of freedom (and kurtosis

coe¢ cient equal to 4), and "�2t is generated as an asymmetric t with kurtosis and skewness

coe¢ cients equal to 4 and �:5, respectively, so that � = �1:354 and � = 18:718 in

the notation of Mencía and Sentana (2012), while in the trivariate case, "�3t follows an

asymmetric t with the same kurtosis but opposite skewness coe¢ cient as "�2t.

In turn, we simulate from the following three standardised joint distributions under the

alternative of cross-sectionally dependent shocks:

dgp 1: Standardised scale mixture of two zero mean normals with scalar covariance matrices in

which the higher variance component has probability � = 0:2 and the ratio of the two

variances is { = 0:05.

dgp 2: Multivariate discrete mixture of two normals with parameters

�2 =

�
0:5
-0:5

�
and @2 =

�
0:2 0
0:2 0:2

�
, or �3 =

0@ 0:5
-0:5
0

1A and @3 =

0@ 0:2 0 0
0:2 0:2 0
0:2 0:2 0:2

1A
for the bivariate and trivariate cases, respectively. In both cases, the mixing probability is

set to � = 0:7 (see Appendix D in Amengual, Fiorentini and Sentana (2022b) for details).

control the slope of the functions, which we set to 1.
13See Hyvärinen (1999) and https://research.ics.aalto.�/ica/fastica/ for details on the FastICA package.
14As is well known, the EM algorithm progresses very quickly in early iterations but tends to slow down

signi�cantly as it gets close to the optimum. After some experimentation, we found that 20 iterations achieves
the right balance between CPU time and convergence of the parameters.
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dgp 3: Asymmetric Student t with skewness vector � = �10`N and degrees of freedom parameter

� = 12 (see Mencía and Sentana (2012) for details).

Panels A�D of Figure 2 display the contours of the copula densities associated to dgp 0�3

in the bivariate case.

5.1.3 Resampling procedures

The theoretical results in Beran (1988) imply that if the usual Gaussian asymptotic approx-

imation provides a reliable guide to the �nite sample distribution of the sample version of the

moments being tested, critical values obtained by resampling should not only be valid, but also

their errors should be of a lower order of magnitude under additional regularity conditions that

guarantee the validity of a higher-order Edgeworth expansion. For that reason, we explicitly

analyse the performance of applying resampling methods to our proposed tests.

Speci�cally, we follow Matteson and Tsay (2017) and Davis and Ng (2022) in reshu ing

the estimated standardised residuals as follows. For each Monte Carlo sample, we generate

another Nboot samples of size T that impose the null by generating NT draws Ris from random

permutations of the vector (1; : : : ; T ) independently drawn for each shock, which we then use to

construct

~ys = �̂T + ĈT~"
�
s;

where ~"�is = "̂
�
iRis and "̂

�
t = "

�
t (�̂T ) = Ĉ

�1
T (yt � �̂T ) are the estimated residuals in said Monte

Carlo sample.15

5.1.4 Simulation results

To gauge the �nite sample size and power of our proposed independence tests, we generate

5; 000 samples for the designs under the null and 1; 000 for those under the alternative. For each

sample, we also compute Nboot = 99 random permutation samples, as explained in the previous

subsection.

In Table 1 we report the results on the �nite sample size of the independence tests proposed

in sections 3.2.1 and 4.2 for T = 250 and T = 1; 000 in the bivariate case, and T = 250 in

the trivariate one. As can be observed, overall, the size of the tests is quite accurate and the

resampling procedures tend to adjust the slight size distortions of the discrete grid test when

T = 250. In particular, the Monte Carlo rejection rates are not signi�cantly di¤erent from

the nominal ones in all cases, although the continuous grid test with N = 3 and T = 250

15Two implications of this approach is that the marginal empirical cdfs do not include jumps of size bigger than
1/T and that the tails of the shocks are the same in the actual and simulated data.
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is moderately undersized. Interestingly, the size of discrete Q test does not deteriorate when

the dimension of the partition becomes larger. For example, when N = 3 and H = 5, the

size of the test is acceptable when T = 250 even though it is e¤ectively based on H3 = 125

moment conditions. Remarkably, the continuous Q test is not very sensitive to the choice of

the regularization parameter � either, with stable results over the interval of values we have

experimented with, namely � 2 [1e�5; 1e�8]:

In turn, Tables 2, 3 and 4 display the simulation results on �nite sample power for the cases

N = 2; T = 250, N = 3; T = 250, and N = 2; T = 1; 000, respectively. For comparison, we

have also included the power of the integer moment tests based on the in�uence functions (3)

in Amengual, Fiorentini and Sentana (2022a). Once again, we use the resampling procedures

described in the previous subsection to e¤ectively size-adjust the critical values of all tests.

Under dgp 1 (scale mixtures of normals), our contingency table tests with estimated quan-

tiles have substantially more power than the tests based on integer cross-moments of third-

and fourth-order. The discrete grid test is better than the continuous one when H � 3, but it

becomes worse for larger values of H. The tests based on integer cross moments largely fails

to detect the dependence among the structural components when T = 250, and only displays

limited power for T = 1; 000.

When the true distribution is a mixture of two multivariate Gaussian components (dgp 2),

the power of the continuous Q test is very close to 1 in all cases. Still, the discrete grid test

performs very well, especially when H � 3. The integer moment test is again the worst, as it

only has an acceptable power when T = 1; 000.

Under dgp 1 (asymmetric Student t), the integer moment test is the most powerful, with

most of its power coming from the co-skewness component. This is perhaps not surprising given

that the integer moments that this test uses coincide with the ones underlying the LM tests

for copulas in Amengual and Sentana (2020). Nevertheless, the continuous Q test performs

reasonably well and it is better than the discrete grid version. When T = 1; 000, both quantile-

based tests have power close to one.

Finally, notice that the power of the tests is larger in the trivariate case than in the bivariate

one in most cases, a fact that is most evident for the continuous Q test, which on average, is

the best of the three re�ecting its consistency property.

6 Conclusions and directions for further research

Identi�cation of Svar models through independent non-Gaussian shocks is a very power-

ful tool. At the same time, it is not without concerns, as forcefully argued by Montiel-Olea,
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Plagborg-Møller and Qian (2022). In particular, given that the parametric identi�cation of

the structural shocks and their impact coe¢ cients C in the Svar (2) critically hinges on the

validity of the identifying restrictions in Assumption 1, as we illustrated in section 5.3 of Amen-

gual, Fiorentini and Sentana (2022a), it would be desirable that empirical researchers estimating

those models reported speci�cation tests that checked those assumptions to increase the empir-

ical credibility of their �ndings. The speci�cation tests that we propose in this paper can be

very useful in this respect.

Our tests e¤ectively check that the joint distribution function of some or all of the struc-

tural shocks is the product of their marginal distribution functions. We do so �rst for a �nite

grid of values for the arguments of the distribution functions, explicitly relating our proposed

test to Pearson�s test for independence in contingency tables. But then we extend them to a

continuum of values, which results in consistent tests. Importantly, we explicitly consider the

sampling variability resulting from using shocks computed with consistent parameter estima-

tors. We study the �nite sample size of our tests in several simulation exercises and discuss

some resampling procedures. We also show that our tests have non-negligible power against a

variety of empirically plausible alternatives.

An obvious extension of our work would be the calculation of our proposed tests in some of

the increasing number of empirical applications that rely on the cross-sectional independence of

the shocks. Before doing so, though, it is important to remember that most of those applications

rely on two-step estimators for the parameters of the static Ica model (1) or the dynamic Svar

(2) which di¤er from the discrete mixture of normals-based PMLEs we have considered in this

paper. Although the speci�cations tests that we have proposed could also be applied to shocks

computed on the basis of those alternative estimators, the asymptotic covariance matrices that

take into account their sampling variability will di¤er from the ones we have derived.

The moment conditions that we consider for testing independence could also form the basis

of a GMM estimation procedure for the model parameters � along the lines of Lanne and Luoto

(2021), although with either a much larger but �nite set of cross-moments or a continuum of

them. The overidenti�cation restrictions tests obtained as a by product of such procedures could

be used as a speci�cation test of the assumed cross-sectional independence assumption.

Similarly, we could consider related tests of independence that exploit the fact that the

joint characteristic function is the product of the marginal characteristic functions under the

independence null, along the lines of Csörgó (1985), but using an overidenti�cation test for a

continuum of moment conditions, as in Amengual, Carrasco and Sentana (2020), rather than

the Cramér-von Mises and Kolmogorov-Smirno¤ functionals that he used.
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The fact that the only parameters whose sampling variability matter for our discrete or

continuous grid copula-based tests are the o¤-diagonal elements of C suggests that our approach

may be robust (in the statistical sense of the word) to the presence of outliers in shocks with fat

tails, which will a¤ect mostly the estimation of the mean parameters and the scale of the shocks

rather than their quantiles. Studying this issue in more detail along the lines of Davis and Ng

(2022) constitutes an interesting topic for further research.

Another important question is what would happen to our proposed tests in the other extreme

case in which the true joint distribution of the shocks is Gaussian. If the parameters in � were

known, our independence test will continue to work without any problem, as the assumption

of mutually independent shocks will be automatically guaranteed by the combination of multi-

variate normality with the orthogonality of the shocks. However, the parameters in C will no

longer be identi�ed, which will a¤ect the distribution of their estimators, as Hoesch, Lee and

Mesters (2022) have recently shown. The extent to which this will also a¤ect the independence

tests remains unknown.

Finally, it should also be of interest to apply our independence tests to the shocks of Svar

models identi�ed using some of the more traditional methods mentioned in the introduction

even when they have been estimated by Gaussian PMLE because most of the theoretical macro-

economic models that justify those identifying strategies implicitly assume the independence of

the underlying economic shocks. We are currently pursuing some of these interesting research

avenues.
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Appendices

A Proofs of Propositions

A.1 Preliminaries

Given that
@1(�1;k)("

�
it)

@"�it
=
@�k("

�
it)

@"�it
= ��f"�it�kg;

where �f�g denotes the Dirac delta function, we have

E

�
@1(�1;k)("

�
it)

@"�it

�
= �fi(k):

This is due to the fact that 1(�1;k)("�it) is a shifted and �ipped Heaviside step function, i.e. the

indicator function of the one-dimensional positive half-line, whose distributional derivative is

equal to the Dirac delta function. Speci�cally, since 1(0;1)(x) = �(x) andZ 1

�1
�(x)fi(x)dx = fi(0);

then

E0[�f"�it�kg] = fi(k): (A1)

We will also exploit the fact that, analogously,

E0["
�
it�f"�it�kg] = kfi(k): (A2)

Proposition 1

To simplify the notation, let ui = uihi and vi = u
i
h0i
. Linearising the in�uence function (8)

yields
p
T [ûi(khi)� ui] =

p
T

T

TX
t=1

1(�1;khi )("
�
it)� ui + op(1):

Regarding the in�uence function (9), we have that

@

@ui
E[pk("

�
t )] =

@

@ui
E

"Y
i2I
1(�1;khi )("

�
it)�

Y
i2I
ui

#
= �

Y
i02I;i0 6=i

ui0 :

Then, the linearised in�uence function that takes into account the estimation of ui, for i 2 I,

becomes

mt(u) =

"Y
i2I
1(�1;khi )("

�
it)�

Y
i2I
ui

#
�
X
i2I

h
1(�1;khi )("

�
it)� ui

i Y
i02I;i0 6=i

ui0 : (A3)
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Next, we have to compute

E[mt(u)mt(v)] = E
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Regarding the �rst term,
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where the second equality follows from expanding the product, and the last one from the fact

that

E[1(�1;khi )("
�
it)] = ui for i 2 I;

and

E[1(�1;khi )("
�
it)1(�1;kh0

i
)("

�
it)] = min(ui; vi) for i 2 I: (A4)
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Similarly, the second term becomes
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where the �rst equality follows from the fact that
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and the last one from (A4). By symmetry, the third term is equal.
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where we have used (A5) in the �rst equality and (A4) in the second one.

Collecting the four terms, we get the desired result. �

Proposition 2

As in Proposition 1, linearising the in�uence function for {̂i(ui) yields
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Then, the linearised in�uence function that takes into account the estimation of {i becomes
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Similarly, the second term becomes
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where we have used (A5) in the �rst equality and (A4) in the second one.

Collecting the four terms, we get the desired result. �

Proposition 3

Let uI denote the vector containing all the ui�s such that i 2 I. Using the independence

copula as weighting function, so that $(u) = 1 8u, we have to compute

hqt; qsi =
Z
[0;1]i

qt (uI) qs (uI) duI ;

with
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where we have used (14) evaluated at the observations t and s. Next, we have to compute the

integrals for each of the four terms of the right-hand side of (A7). Regarding the �rst term,
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under the independence null,Z
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Next, integrating the fourth term,Z
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Finally, collecting them in dts = d1(�t; �s)� d2(�t)� d2(�s) + d3 delivers the desired result. �

B Lemmata

Lemma 1 Let m["�t (�)] denote a K � 1 vector containing a collection of in�uence functions
and �̂ a consistent estimator of �. Under standard regularity conditions

p
T

T

XT

t=1
m["�t (�̂)]! N [0;W(�1;'0)];

where

W(�1;'0) = V(�1;'0) + J (�1;'0)A�1(�1;'0)B(�1;'0)A�1(�1;'0)J 0(�1;'0)
+F(�1;'0)A�1(�1;�0)J 0(�1;'0) + J (�1;'0)A�1(�1;'0)F 0(�1;'0);

V(�;') = V fm["�t (�)]j'g ;
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F(�;') = cov
�
@m["�t (�)]

@�0
; s�t(�)

����'�
with

A(�1;'0) = �E[@s�t(�1)=@�0)j'0] (B8)

and
B(�1;'0) = V [s�t(�1)j'0]: (B9)

Proof. It follows from applying the same steps as in Proposition 1 in Amengual, Fiorentini and

Sentana (2022a). �

Lemma 2 Suppose that model (2) satis�es Assumption 1. Then, the non-zero elements of the
expected Jacobian matrix of the linearised pk["�t (�)] evaluated at �0 and the estimated values of
uih in (8) are be given by

jphcii0 (%1;'0) = �
X
i2I

X
i02I;i0 6=i

0@ Y
i002I;i00 6=i0 6=i

ui00

1A �ui0f [khi ], for i 6= i0;

where �hi0 = E0["
�
it1(�1;khi )("

�
it)] for i 2 I:

Proof. From (A3), we have that

@mu
t

@�
= E

8<: @

@�

"Y
i2I
1(�1;{(ui))("

�
it)�

Y
i2I
ui

#
� @

@�

8<:X
i2I

�
1(�1;{(ui))("

�
it)� ui

� Y
i02I;i0 6=i

ui0

9=;
9=;

= �
X
i2I

0@ Y
i02I;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

1A�1(�1;{(ui))("�it)� ui� @1(�1;{(ui))("�it)@"�it

@"�it
@�

Moreover, notice that
@"�it(�)

@� 0
= �ci:;

@"�it(�)

@a0j
= �(y0t�j 
 ci:) for j = 1; :::; p.

and
@"�it(�)

@c0
= �["�0t (�)
 ci:]: (B10)

Hence, under the independence null,

E

�
@mu

t

@�i

�
= 0
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except for the o¤-diagonal elements of C, namely,

E

8<:X
i2I

0@ X
i02I;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

1A @1(�1;{(ui))("
�
it)

@"�it

@"�it
@c0

9=;
= �E

8<:X
i2I

0@ X
i0=1;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

1A @1(�1;{(ui))("
�
it)

@"�it
["�0t (�)
 ci:]

�

= �
X
i2I

X
i02I;i0 6=i

E

0@ Y
i002I;i00 6=i0 6=i

1(�1;{(ui00 ))("
�
i00t)

1A
�E[1(�1;{(ui0 ))("

�
i0t)"

�
i0t]E

�
@1(�1;{(ui))("

�
it)

@"�it

�
(e0j 
 ci:)

= �
X
i2I

X
i02I;i0 6=i

0@ Y
i002I;i00 6=i0 6=i

ui00

1A �ui0f [{(ui)]
where the �rst equality uses (B10), the second one follows from cross-sectional independence of

the shocks, and the last one implicitly de�nes �uj = E["
�
jt1(�1;{(uj))("

�
jt)]. �

Lemma 3 Suppose that model (2) satis�es Assumption 1. Then, the non-zero elements of the
covariance matrix between the linearised in�uence function pk["�t (�)] evaluated at at �0 and the
estimated values of uih in (8) and the pseudo log-likelihood scores evaluated at the pseudo true
values �1 is given by

covfpk["�t (�0)]; scii0 t(�1)j�0;�0g = E[Kpht(�1;�0)];

where

Kpkt(�1;�0) =
�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 0
Kpk(%1;�0)

0

35 ;
where Kpk(%1;�0) is a N2 � 1 vector whose entries s = N(i� 1) + i0 for i; i0 = 1; :::; N are

kp;s(%1;�0) = �
X
i2I

X
i02I

0@ Y
i002I;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�khi ) � @ ln f("�it;%i1)@"�i

�����0;�0� ;
for i 6= i0, and zero otherwise.

Proof. We start by computing the covariance of the in�uence functions underlying our testing

procedure with the pseudo log-likelihood scores evaluated at the pseudo true values �1, namely

covfpk["�t (�0)]; s�t(�1)j�0;�0g = Kpk(�1;�0) = E[Kpkt(�1;�0)];

and

covfpk["�t (�0)]; s�t(�1)j�0;�0g = Kpk(�1;�0) = E[Kpkt(�1;�0)];
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where

K�t(�1;�0) =
�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 K�lt(%1;�0)
K�st(%1;�0)
K�rt(%1;�0)

35 ;
Exploiting the cross-sectional independence of the shocks, we get for the mean parameters

kpkl(%1;�0) = �cov
�
pk("

�
t );
@ ln f("�it;%i1)

@"�i

�����0;�0� (B11)

= �E
�
1("�it�khi )

@ ln f("�it;%i1)

@"�i

�����0;�0�
and

kpkl(%1;�0) = �cov
�
pk("

�
t );
@ ln f("�it;%i1)

@"i�

�����0;�0� (B12)

= �

0@ Y
i02I;i0 6=i

ui0

1AE�1("�it�khi )@ ln f("�it;%i1)@"�i

�����0;�0� ;
and zero otherwise.

Similarly, K�s(%1;�0) is a N2 � 1 vector whose entries are such that for i with ji > 0,

kpks1(%1;�0) = �cov
�
pk("

�
t ); 1 +

@ ln f("�it;%i1)

@"�i
� "�it
�����0;�0� (B13)

= �E
�
1("�it�khi )

�
1 +

@ ln f("�it;%i1)

@"�i
� "�it
������0;�0� ;

kpks1(%1;�0) = �cov
�
pk("

�
t ); 1 +

@ ln f("�it;%i1)

@"�i
� "�it
�����0;�0� (B14)

= �

0@ Y
i02I;i0 6=i

�i0

1AE�"�it1("�it�khi ) �
�
1 +

@ ln f("�it;%i1)

@"�i
� "�it
������0;�0� ;

kpks2(%1;�0) = �cov
�
pk("

�
t ); 1 +

@ ln f("�it;%i1)

@"�i
� "�i0t

�����0;�0� (B15)

= �

0@ Y
i002I;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�khi ) � @ ln f("�it;%i1)@"�i

�����0;�0� ;
and zero otherwise.

Kkr(%1;�0) =K0krvecd(In), where Kkr another block diagonal matrix of order N � q with

typical block of size 1� qi,

kpkr(%1;�0) = cov

�
pk("

�
t );
@ ln f("�it;%i1)

@%0i

�����0;�0� (B16)

= E

�
1("�it�khi ) �

@ ln f("�it;%i1)

@%0i

�����0;�0�
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kpkr(%1;�0) = cov

�
pk("

�
t );
@ ln f("�it;%i1)

@%0i

�����0;�0� (B17)

=

0@ Y
i02I;i0 6=i

ui0

1AE�1("�it�khi ) � @ ln f("�it;%i1)@%0i

�����0;�0�

and zero otherwise, again because of the cross-sectional independence of the shocks and the fact

that E[@ ln f("�it;%1)=@"
�
i j�0;�0] = 0.

Next, to obtain the covariance of the in�uence function evaluated at �0 and the estimated

values of uih in (8) and the pseudo log-likelihood scores evaluated at the pseudo true values

�0;�0, we can make use of (A3) to write

covfmu
t ; s�t(�1)j�0;�0g = covfpk("�t ); s�t(�1)j�0;�0g (B18)

�
X
i2I

0@ Y
i02I;i0 6=i

ui0

1A cov fpki("�it); s�t(�1)j�0;�0g :
Then, substituting (B11) and (B12) into (B18), we get

covfmu
t ; s� t(�1)j�0;�0g = 0

and

covfmu
t ; sajt(�1)j�0;�0g = 0, for j = 1; :::; p:

Similarly, substituting (B13) and (B14) into (B18), we get

covfmu
t ; sciit(�1)j�0;�0g = 0, for i = 1; :::; N ;

and substituting (B16) and (B17) into (B18), we get

covfmu
t ; s%it(�1)j�0;�0g = 0, for i = 1; :::; N:

Finally, substituting (B13) and (B15) into (B18), we get result stated in the proposition. �

Lemma 4 Suppose that model (2) satis�es Assumption 1. Then, the non-zero elements of the
expected Jacobian matrix of the linearised in�uence function qu["�t (�)] evaluated at �0 and the
estimated values of {i(ui) evaluated are given by

jqucii0 (%1;'0) = �
X
i2I

X
i02I;i0 6=i

0@ Y
i002I;i00 6=i0 6=i

ui00

1A �ui0f [{i(ui)], for i 6= i0; (B19)

where �ui0 = E0["
�
i0t1(�1;{i0 (ui0 )]("

�
i0t)]:

Proof. The proof is analogous to the one of Lemma 2 by virtue of the symmetry between (A3)

and (A6). �
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Lemma 5 Suppose that model (2) satis�es Assumption 1. Then, the non-zero elements of the
covariance matrix between the linearised in�uence function qu["�t (�)] evaluated at �0 and the
estimated values of {i(uih) and the pseudo log-likelihood scores evaluated at the pseudo true
values �1 is given by

covfqu["�t (�0)]; scii0 t(�1)j�0;�0g = E[Kqut(�1;�0)];

where

Kqut(�1;�0) =
�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 0
Kqu(%1;�0)

0

35 ;
where Kqu(%1;�0) is a N2 � 1 vector whose entries s = N(i� 1) + i0 for i; i0 = 1; :::; N are

kq;s(%1;�0) = �
X
i2I

X
i02I

0@ Y
i002I;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�{i(uih)) � @ ln f("�it;%i1)@"�i

�����0;�0� ;
for i 6= i0, and zero otherwise.

Proof. The proof is analogous to the one of Lemma 3 by virtue of the symmetry between (A3)

and (A6). �

Lemma 6 Suppose that model (2) satis�es Assumption 1. Then, the adjusted covariance oper-
ator that accounts for estimation of � is given by

hqt; qsi =T + C,

where

C =
Z
[0;1]i

E

�
@nt(uI)

@�0

�
T (�̂ � �0)(�̂ � �0)0E

�
@ns(uI)

@�0

�
duI : (B20)

Proof. From 4, the Jacobian of the linearised (with respect to {�s) in�uence function with

respect to � can be written as

E

�
@nt (uI)

@�0

�
= �

X
i2I

X
i02I;i0 6=i

0@ Y
i002I;i00 6=i0 6=i

ui00

1A �ui0f [{(ui)](e0i0 
 ci:):
We are afterZ

[0;1]i

�
nt(uI)� E

�
@nt(uI)

@�

�p
T (�̂ � �0)

��
ns(uI)� E

�
@ns(uI)

@�

�p
T (�̂ � �0)

�
duI :

Let us consider each of the four terms separately. The �rst one, namelyZ
[0;1]i

nt(uI)ns(uI)duI ;

is given in Proposition 2. Next, we have the cross-terms, which are of the form

�
Z
[0;1]i

E

�
@ns(uI)

@�0

�p
T (�̂ � �0)nt(uI)duI :
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If we then use the fact that

p
T (�̂ � �0) =

p
TA�1(�1;'0)s� + op(1) = A�1(�1;'0)

p
T

T

TX
t=1

s�t + op(1);

we can see that

� 1p
T

Z
[0;1]i

E

�
@ns(uI)

@�0

� 
A�1(�1;'0)

TX
�=1

s��

!
nt(uI)duI = op(1)

because of the scaling factor 1=
p
T and the fact that the "�s entering into s�� (�) are asymp-

totically independent of the ones in nt(uI) and E
�
@ns(uI)=@�

0� : Hence, the covariance of the
linearised in�uence function with the pseudo log-likelihood scores evaluated at the pseudo true

values �1 is asymptotically negligible.

Finally, regarding the last term, we obtain (B20), as desired. �

C ML estimators with cross-sectionally independent shocks

In this appendix, we derive analytical expressions for the conditional variance of the score

and the expected value of the Hessian of Svar models with cross-sectionally independent non-

Gaussian shocks when the distributions assumed for estimation purposes may well be misspeci-

�ed, but all the parameters that characterise the conditional mean and covariance functions are

consistently estimated, as in the case of �nite normal mixtures. Fiorentini and Sentana (2022a)

consider the general case.

C.1 Log-likelihood, its score and Hessian

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation t will be given by

lt(yt;') = � ln jCj+ l["�1t(�);%1] + : : :+ l["�Nt(�);%N ]; (C21)

where "�t (�) = C�1(yt � � �A1yt�1 � : : : �Apyt�p) and l("�it;%i) = ln f("�it;%i) is the log of

the univariate density function of "�it, which we assume twice continuously di¤erentiable with

respect to both its arguments, although this is stronger than necessary, as the Laplace example

illustrates.

Let st(�) denote the score function @lt(�)=@�, and partition it into two blocks, s�t(�) and

s%t(�), whose dimensions conform to those of � and %, respectively. Given that the mean vector
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and covariance matrix of (2) conditional on It�1 are

�t(�) = � +A1yt�1 + : : :+Apyt�p; (C22a)

�t(�) = CC0; (C22b)

respectively, we can use the expressions in Supplemental Appendix D.1 of Fiorentini and Sentana

(2021b) with �1=2t (�) = C to show that

@dt(�)

@�
= �@vec

0(C)

@�
vec(C�10) = �

0BBBBB@
0
0
...
0
IN2

1CCCCCA vec(C�10) = �Z0st(�)vec(IN ) (C23)

and

@"�t (�)

@�0
= �C�1@�t(�)

@�0
� ["�0t (�)
C�1]

@vec(C)

@�0
(C24)

= �fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g;

where

Zlt(�) =
@�0t(�)

@�
�
�1=20
t (�) =

0BBBBB@
IN

yt�1 
 IN
...

yt�p 
 IN
0N2�N

1CCCCCAC�10; (C25)

Zst(�) =
@vec0[�t(�)]

@�
[IN 
��1=20t (�)] =

0BBBBB@
0N�N2

0N2�N2

...
0N2�N2

IN2

1CCCCCA (IN 
C�10); (C26)

which con�rms that the conditional mean and variance parameters are variation free. In addition,

st(�) =

�
s�t(�)
s%t(�)

�
=

�
Zlt(�) Zst(�) 0
0 0 Iq

�24 elt(�)
est(�)
ert(�)

35
=

�
Zdt(�) 0
0 Iq

� �
edt(�)
ert(�)

�
= Zt(�)et(�); (C27)

where

elt(�) = �
@ ln f ["�t (�);%]

@"�
= �

26664
@ ln f1["

�
1t(�);%1]=@"

�
1

@ ln f2["
�
2t(�);%2]=@"

�
2

...
@ ln fN ["

�
Nt(�);%N ]=@"

�
N

37775 ; (C28)
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est(�) = �vec
�
IN +

@ ln f ["�t (�);%]

@"�
"�0t (�)

�

= �vec

8>><>>:
1 +

@ ln f1["�1t(�);%1]
@"�1

"�1t(�) : : :
@ ln f1["�1t(�);%1]

@"�1
"�Nt(�)

...
. . .

...
@ ln fN ["

�
Nt(�);%N ]
@"�N

"�1t(�) : : : 1 +
@ ln fN ["

�
Nt(�);%N ]
@"�N

"�Nt(�)

9>>=>>; (C29)

and

ert(�) =
@ ln f ["�t (�);%]

@%
=

8>><>>:
@ ln f1["�1t(�);%1]

@%1
...

@ ln fN ["
�
Nt(�);%N ]
@%N

9>>=>>; =

26664
er1t(�)
er2t(�)
...

erN t(�)

37775 (C30)

by virtue of the cross-sectional independence of the shocks, so that the derivatives involved

correspond to the assumed univariate densities.

Let ht(�) denote the Hessian function @st(�)=@�0 = @2lt(�)=@�@�0. Supplemental Appen-

dix D.1 of Fiorentini and Sentana (2021b) implies that

h��t(�) = Zlt(�)
@elt(�)

@�0
+ Zst(�)

@est(�)

@�0

+
�
e0lt(�)
 IN+(p+1)N2

� @vec[Zlt(�)]
@�0

+
�
e0st(�)
 IN+(p+1)N2

� @vec[Zst(�)]
@�0

; (C31)

where Zlt(�) and Zst(�) are given in (C25) and (C26), respectively. Therefore, we need to obtain

@vec(C�10)=@�0 and @vec(IN 
C�10)=@�0.

Let us start with the former. Given that

dvec(C�10) = �vec[C�10d(C0)C�10] = �(C�1 
C�10)dvec(C0) = �(C�1 
C�10)KNNdvec(C);

where KNN is the commutation matrix (see Magnus and Neudecker (2019)), we immediately

get that
@vec(C�10)

@�0
=
�
0N2�(N+pN2) �(C�1 
C�10)KNN

�
;

so that

@vec[Zlt(�)]

@�0
=

2666664IN 

0BBBBB@

IN
yt�1 
 IN

...
yt�p 
 IN
0N2�N

1CCCCCA

3777775
@vec(C�10)

@�0

=

2666664IN 

0BBBBB@

IN
yt�1 
 IN

...
yt�p 
 IN
0N2�N

1CCCCCA

3777775
�
0N2�(N+pN2) (C�1 
C�10)KNN

�
:

39



Similarly, given that

vec(IN 
C�10) = f[(IN 
KNN )(vec(IN )
 IN )]
 INgvec(C�10)

so that

vec(IN 
C�10) = ((IN 
KNN )(vec(IN )
 IN )
 IN )dvec(C�10)

= �f[(IN 
KNN )(vec(IN )
 IN )]
 INg(C�1 
C�10)KNNdvec(C);

we will have that

@vec[Zst(�)]

@�0
=
@vec

@�0

��
0(N+pN2)�N2

IN2

�
(IN 
C�10)

�
:

But�
IN2 


�
0(N+pN2)�N2

IN2

��
@vec(IN 
C�10)

@�0

= �
�
IN2


�
0(N+pN2)�N2

IN2

��
[ 0 f[(IN
KNN )(vec(IN )
IN )]
INg(C�1
C�10)KNN ]:

In addition,

@elt(�;%)

@�0
= �@

2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
=
@2 ln f ["�t (�);%]

@"�@"�0
fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g (C32)

and

@est(�)

@�0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
�
�
IN 


@ ln f ["�t (�);%]

@"�

�
@"�t (�)

@�0

=

�
["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@"�0
+

�
IN 


@ ln f ["�t (�);%]

@"�

��
�fZ0lt(�) + ["0�t (�)
 IN ]Z0st(�)g: (C33)

The assumed independence across innovations implies that

ln f ["�t (�);%]

@"�@"�0
=

26666664

@2 ln f1["�1t(�);%1]
(@"�1)

2 0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

(@"�N )
2

37777775 ; (C34)

which substantially simpli�es the above expressions.

Moreover,

h�%t(�) = Zlt(�)
@elt(�)

@%0
+ Zst(�)

@est(�)

@%0
;
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where

@elt(�)

@%0
= �@

2 ln f ["�t (�);%]

@"�@%0
;

@est(�)

@%0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@%0
:

with

@2 ln f ["�t (�);%]

@"�@%0
=

2666664
@2 ln f1["�1t(�);%1]

@"�1@%
0
1

0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

@"�N@%
0
N

3777775 (C35)

because of the cross-sectional independence assumption.

As for the shape parameters of the independent margins,

h%%t(�) =
@2 ln f ["�t (�) ;%]

@%@%0
=

2666664
@2 ln f1["�1t(�);%1]

@%1@%
0
1

0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

@%N@%
0
N

3777775 : (C36)

Finally, regarding the Jacobian term � ln jCj, we have that di¤erentiating (C23) once more

yields

�

0BBBBB@
0
0
...
0
IN2

1CCCCCA dvec(C�10) =
0BBBBB@

0
0
...
0
IN2

1CCCCCA (C�1 
C�10)KNNdvec(C);

so

@2dt(�)

@�@�0
=

0BBBBB@
0
0
...
0
IN2

1CCCCCA
�
0N2�(N+pN2) (C�1 
C�10)KNN

�
:

As usual, the pseudo true values of the parameters of a globally identi�ed model, �1,

are the unique values that maximise the expected value of the log-likelihood function over the

admissible parameter space, which is a compact subset of Rdim(�), where the expectation is

taken with respect to the true distribution of the shocks. Under standard regularity conditions

(see e.g., White (1982)), those pseudo true values will coincide with the values of the parameters

that set to 0 the expected value of the pseudo-log likelihood score.

More formally, if we de�ne �0 as the true values of the shape parameters, and '0 = (�0;�0),
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we would normally expect that

E[st(�1)j'0] = 0:

Given that the parameters � , aj = vec(Aj) (j = 1; : : : ; p); j = veco(J) and = vecd(	) are

consistently estimated regardless of the true distribution, et(�1) will be serially independent

and not just martingale di¤erence sequences. Moreover, given that

Z(�) = E[Zt(�)j'0] =

266666664

C�10 0N�N2 0N�q
(�
 IN )C�10 0N2�N2 0N2�q

...
...

...
(�
 IN )C�10 0N2�N2 0N2�q
0N2�N (IN 
C�10) 0N2�q
0q�N 0q�N2 Iq

377777775
=

�
Zd(�) 0
0 Iq

�
(C37)

has full column rank,

E[et(�1)jIt�1;'0] = 0 (C38)

because

0 = E[st(�1)j'0] = EfE[st(�1)jIt�1;'0]j'0g = Z(�)E[et(�1)jIt�1;'0] = Z(�)E[et(�1)j'0]:

Furthermore, the diagonality of 	 means that the pseudo-shocks "�t (�1) will also inherit

the cross-sectional independence of the true shocks "�t . In addition, given that the estimators of

� that we consider are consistent, we will have that under standard regularity conditions

T�1
TP
t=1
"�it(�̂) ! E["�it(�1)j'0] = 0 and (C39)

T�1
TP
t=1
"�2it (�̂) ! E["�

2

it (�1)j'0] = 1; (C40)

where �̂ are the PMLEs of the conditional mean and variance parameters.

C.2 Asymptotic distribution

For simplicity, we assume henceforth that there are no unit roots in the autoregressive

polynomial, so that the Svar model (2) generates a covariance stationary process in which

rank(IN � A1 � : : : � Ap) = N . If the autoregressive polynomial (IN � A1L � : : : � ApLp)

had some unit roots, then yt would be a (co-) integrated process, and the estimators of the

conditional mean parameters would have non-standard asymptotic distributions, as some (linear

combinations) of them would converge at the faster rate T . In contrast, the distribution of the

ML estimators of the conditional variance parameters would remain standard (see, e.g., Phillips

and Durlauf (1986)).

We also assume that the regularity conditions A1-A6 in White (1982) are satis�ed. These

42



conditions are only slightly stronger than those in Crowder (1976), which guarantee that MLEs

will be consistent and asymptotically normally distributed under correct speci�cation. In par-

ticular, Crowder (1976) requires: (i) �0 is locally identi�ed and belongs to the interior of the

admissible parameter space, which is a compact subset of Rdim(�); (ii) the Hessian matrix is

non-singular and continuous throughout some neighbourhood of �0; (iii) there is uniform con-

vergence to the integrals involved in the computation of the mean vector and covariance matrix

of st(�); and (iv) �E�1
�
�T�1

P
t ht(�)

�
T�1

P
t ht(�)

p! Ip+q, where E�1
�
�T�1

P
t ht(�)

�
is positive de�nite on a neighbourhood of �0.

We can use the law of iterated expectations to compute

A(�1;'0) = E[�h��t(�1)j�0;'0] = E [At(�1;'0)]

and

V [s�t(�1)j'0] = B(�1;'0) = E [Bt(�1;')] :

In this context, the asymptotic distribution of the PMLEs of � under the regularity conditions

A1-A6 in White (1982) will be given by

p
T (�̂� �1)! N [0;A�1(�1;'0)B(�1;'0)A�1(�1;'0)]:

As we explained before, analogous expressions apply mutatis mutandi to a restricted PML

estimator of � that �xes % some a priori chosen value to �%. In that case, we would simply

need to replace �1 by �1(�%) and eliminate the rows and columns corresponding to the shape

parameters % from the A and B matrices.

If we write C = J	, then the chain rule for �rst derivatives implies that the gradient with

respect to the parameters in C will be a linear combination of those corresponding to j = vec(J)

and  = vecd(	).

Therefore, we can invoke Proposition 3 in Fiorentini and Sentana (2022a), which shows the

consistency of the Gaussian mixture-based Pseudo MLEs of j and  , to show that

E

�
@ ln f ["�it(�1);%1]

@"�i

�����0;�0� = 0
and

E

�
1 +

@ ln f ["�it(�1);%1]

@"�i
"�it(�1)

�����0;�0� = 0 (C41)

for i = 1; :::; N . Moreover, the maintained assumption of cross-sectional independence of the

shocks also implies that

E

�
@ ln f ["�it(�1);%1]

@"�i
"�jt(�1)

�����0;�0� = 0
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As a consequence,

E[elt(�1)j�0;�0] = 0 and E[est(�1)j�0;�0] = 0:

C.3 Variance of the score

If we maintain that �1 = �0 because of the aforementioned consistency, and adapt Propo-

sition D.2 in Fiorentini and Sentana (2022a) to a PMLE context, we can show that

V [s�t(�1)j�0;�0] = B(�1;�0) = E [Bt(�1;�0)]

where

Bt(�1;�0) = Zt(�1)O(%1;�0)Z0t(�1);

Zt(�) =

�
Zlt(�) Zs(�) 0
0 0 Iq

�
;

and

O(%1;�0) =

24 Oll(%1;�0) Ols(%1;�0) Olr(%1;�0)
O0ls(%1;�0) Oss(%1;�0) Osr(%1;�0)
O0lr(%1;�0) O0sr(%1;�0) Orr(%1;�0)

35 ;
with

Oll(%1;�0) = V [elt(�1)j�0;�0],

Ols(%1;�0) = E[elt(�1)e0st(�1)j�0;�0],

Oss(%1;�0) = V [est(�1)j�0;�0],

Olr(%1;�0) = E[elt(�1)e0rt(�1)j�0;�0],

Osr(%1;�0) = E[est(�1)e0rt(�1)j�0;�0], and

Orr(%1;�0) = V [ert(�1)j�0;�0]:

Oll(%1;�0) will be a diagonal matrix of order N with typical element

oll(%i1;�0) = V
�
@ ln f("�it;%i1)

@"�i

�����0� ;
Ols(%1;�0) =OlsE0N , where E0N is the so-called diagonalization matrix and Ols is a diagonal

matrix of order N with typical element

ols(%i1;�0) = cov
�
@ ln f("�it;%i1)

@"�i
;
@ ln f("�it;%i1)

@"�i
"�it

�����0� ;
Oss(%1;�0) is the sum of the commutation matrix KNN and a block diagonal matrix �

of order N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the
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following structure:

�i(%1;�0) =

266666666664

oll;1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 oll;i�1 0 0 0 0
0 0 0 oss(%i1;�0)� 1 0 0 0
0 0 0 0 oll;i+1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 oll;N

377777777775
;

where oll;i =oll(%i1;�0) to shorten the expressions and

oss(%i1;�0) = V
�
@ ln f("�it;%i1)

@"�i
"�it

�����0� ;
Olr(%1;�0) is an N � q block diagonal matrix with typical diagonal block of size 1� qi

olr(%i1;�0) = �cov
�
@ ln f("�it;%i1)

@"�i
;
@ ln f("�it;%i1)

@%i

�����0� ;
Osr(%1;�0) = ENOsr, where Osr another block diagonal matrix of order N �q with typical

block of size 1� qi

osr(%i1;�0) = �cov
�
@ ln f("�it;%i1)

@"�i
"�it;

@ ln f("�it;%i1)

@%i

�����0� ;
and Orr(%1;�0) is a q � q block diagonal matrix with typical block of size qi � qi

orr(%i1;�0) = V
�
@ ln f("�it;%i1)

@%i

�����0� :
C.4 Expected Hessian

We can also show that

E[�h��t(�1)j�0;�0] = A(�1;�0) = E [At(�1;�0)]

where

At(�1;�0) = Zt(�0)H(%1;�0)Z0t(�0);

H(%1;�0) =

24 Hll(%1;�0) Hls(%1;�0) Hlr(%1;�0)
H0ls(%1;�0) Hss(%1;�0) Hsr(%1;�0)
H0lr(%1;�0) H0sr(%1;�0) Hrr(%1;�0)

35
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with

Hll(%1;�0) = �E
�
@2 ln f("�t ;%1)

@"�@"�0

�����0�
Hls(%1;�0) = �E

�
@2 ln f("�t ;%1)

@"�@"�0
("�0t 
 IN )

�����0�
Hss(%1;�0) = �E

��
["�t 
 IN ]

@2 ln f("�t ;%1)

@"�@"�0
+

�
IN 


@ ln f("�t ;%1)

@"�

��
["0�t 
 IN ]

�����0�
Hlr(%1;�0) = E

�
@2 ln f("�t ;%1)

@"�@%0

�����0�
Hsr(%1;�0) = E

�
["�t 
 IN ]

@2 ln f("�t ;%1)

@"�@%0

�����0�
Hll(%1;�0) will be a diagonal matrix of order N with typical element

hll(%i1;�0) = �E
�
@2 ln f("�it;%i1)

(@"�i )
2

�����0� ;
Hls(%1;�0) =HlsE0N , Hls is a diagonal matrix of order N with typical element

hls(%i1;�0) = �E
�
@2 ln f("�it;%i1)

(@"�i )
2

� "�it
�����0� ;

Given (C41),

�E
���

IN 

@ ln f("�t ;%1)

@"�

��
["0�t 
 IN ]

�����0� = KNN ;

so Hss(%1;�0) will be the sum of the commutation matrix KNN and a block diagonal matrix

� of order N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the

following structure:

�i(%1;�0) =

266666666664

hll;1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 hll;i�1 0 0 0 0
0 0 0 hss(%i1;�0) 0 0 0
0 0 0 0 hll;i+1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 hll;N

377777777775
;

where hll;i =hll(%i1;�0) to shorten the expressions and

hss(%i1;�0) = �E
�
@2 ln f("�it;%1)

(@"2i )
("�it)

2

�����0� :
Hlr(%1;�0) is an N � q block diagonal matrix with typical diagonal block of size 1� qi

hlr(%i1;�0) = E
�
@2 ln f("�it;i1 )

@"�i @%
0
i

�����0� ;
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Hsr(%1;�0) = ENHsr, where Hsr another block diagonal matrix of order N �q with typical

block of size 1� qi
hsr(%i1;�0) = E

�
@2 ln f("�it;%i1)

@"�i @%
0
i

"�i

�����0� ;
and Hrr(%1;�0) is a q � q block diagonal matrix with typical block of size qi � qi

Hrr(%i1;�0) = �E
�
@2 ln f("�it;%i1)

@%i@%
0
i

�����0� :
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Table 1: Monte Carlo size of independence Q tests

Discrete Q tests Continuous Q tests
Asymptotic Bootstrap Bootstrap
critical values critical values critical values
10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: N = 2, T = 250
H = 2 8.3 3.8 0.6 9.2 4.5 0.8 � = 1e�05 9.3 4.7 1.1
H = 3 8.1 4.0 0.7 9.0 4.9 1.1 � = 1e�06 9.6 4.6 1.0
H = 4 8.1 4.1 0.9 9.3 4.8 1.0 � = 1e�07 9.4 4.5 1.0
H = 5 8.4 4.4 0.9 9.9 4.8 0.7 � = 1e�08 9.3 4.6 1.0

Panel B: N = 3, T = 250
H = 2 8.0 3.9 0.6 8.7 4.2 1.0 � = 1e�05 8.4 3.9 0.7
H = 3 8.4 3.9 0.6 9.5 5.0 0.8 � = 1e�06 8.6 4.0 0.7
H = 4 8.6 4.1 0.8 9.2 4.8 0.9 � = 1e�07 8.5 3.9 0.7
H = 5 8.0 3.7 0.8 9.1 4.3 0.8 � = 1e�08 8.6 4.1 0.7

Panel C: N = 2, T = 1; 000
H = 2 9.9 4.2 0.7 10.1 4.8 0.8 � = 1e�05 10.5 5.3 1.2
H = 3 10.2 5.1 0.9 10.6 5.7 1.1 � = 1e�06 10.4 5.6 1.3
H = 4 9.8 4.6 0.9 10.7 5.2 1.1 � = 1e�07 10.7 5.8 1.3
H = 5 9.7 4.9 0.9 10.3 5.6 1.0 � = 1e�08 10.7 5.7 1.3

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 5,000 replications.
Details on the data generating processes: dgp 0: "�1t follows a Student t with 10 degrees of freedom
(and kurtosis coe¢ cient equal to 4), and "�2t is generated as an asymmetric t with kurtosis and skewness
coe¢ cients equal to 4 and �:5, respectively; in addition, in the trivariate case "�3t follows an asymmetric
t with the same kurtosis but opposite skewness coe¢ cient as "�2t. See section 3.2 and 4 for a detailed
description of the Discrete and Continuous Q test statistics, respectively. The asymptotic distribution
of the Discrete Q test statistic is chi-squared with HN degrees of freedom. We describe the sampling
procedure we use to implement the bootstrap for both, Discrete and Continuous Q test statistics, in
section 5.1.3.
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Table 2: Monte Carlo power of bivariate independence moment tests: Sample size T = 250.

dgp 1 dgp 2 dgp 3
Scale mixture Finite normal Asymmetric
of two normals mixture Student t
10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Discrete Q tests
H = 2 69.0 56.8 27.0 71.1 57.1 30.0 31.5 21.3 5.5
H = 3 54.8 41.7 17.9 90.3 83.6 57.5 36.7 24.9 8.5
H = 4 39.2 27.2 7.6 92.4 87.1 64.5 37.1 25.7 8.8
H = 5 38.7 26.2 8.4 91.0 82.9 57.7 34.7 23.6 7.3

Panel B: Continuous Q tests
� = 1e�05 55.4 39.9 16.2 96.9 93.0 75.9 46.7 33.4 13.6
� = 1e�06 51.9 38.9 14.9 96.7 91.8 74.1 46.3 33.5 13.4
� = 1e�07 51.4 37.5 14.6 96.0 91.5 73.5 46.0 33.1 12.7
� = 1e�08 51.1 37.5 14.6 95.8 91.8 73.9 45.9 32.9 12.5

Panel C: Integer moment tests
Co-cov 8.6 4.2 0.8 27.8 20.7 8.1 63.1 56.0 35.6
Co-skew 8.9 4.5 0.7 32.9 22.6 6.8 90.6 83.0 54.0
Co-kurt 14.3 7.0 1.9 29.9 19.0 5.7 61.4 47.3 23.0
Joint 11.6 6.3 1.6 37.6 24.3 7.0 84.8 69.8 25.9

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 1,000 replications.
Details on the data generating processes: dgp 1: Standardised scale mixture of two zero mean normals
�with scalar covariance matrix� in which the higher variance component has probability � = 0:2 and
the ratio of the variances is { = 0:05; dgp 2: Multivariate discrete mixture of two normals with mixing
probability � = 0:7, relative-means di¤erence �2 = (0:5;-0:5)0 and relative-covariance di¤erence such that
@2 is lower triangular with vech(@2) = 0:2`2 (see Appendix D in Amengual, Fiorentini and Sentana
(2022b) for details); and dgp 3: Asymmetric Student t with skewness vector � = �10`2 and degrees of
freedom parameter � = 12 (see Mencía and Sentana (2012) for details). See section 3.2 and 4 for a detailed
description of the Discrete and Continuous Q test statistics, respectively, and Amengual, Fiorentini and
Sentana (2022a) for a description of the Integer moment tests. See section 5.1.3 for a description of
the sampling procedure we use to implement the bootstrap for both, Discrete and Continuous Q test
statistics.
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Table 3: Monte Carlo power of trivariate independence moment tests: Sample size T = 250.

dgp 1 dgp 2 dgp 3
Scale mixture Finite normal Asymmetric
of two normals mixture Student t
10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Discrete Q tests
H = 2 95.7 92.3 75.7 92.1 86.3 65.0 20.2 11.8 3.3
H = 3 95.3 91.8 70.5 99.1 98.1 90.7 23.3 13.2 3.1
H = 4 79.9 67.2 37.6 99.8 99.0 94.4 17.6 9.9 1.8
H = 5 71.3 57.4 29.1 99.3 98.9 87.9 16.1 7.8 1.7

Panel B: Continuous Q tests
� = 1e�05 79.0 66.7 32.9 100.0 99.5 95.1 55.4 42.1 16.1
� = 1e�06 79.2 66.4 32.0 99.9 99.6 94.6 58.2 43.9 18.7
� = 1e�07 78.1 64.7 31.5 99.9 99.6 94.2 60.1 46.3 20.6
� = 1e�08 76.9 62.5 29.2 99.8 99.5 94.2 59.5 45.6 20.8

Panel C: Integer moment tests
Cov 10.1 4.0 0.8 34.7 25.1 11.6 73.8 65.7 43.3
Co-skew 11.8 6.0 0.7 41.5 28.2 11.4 96.0 92.3 65.6
Co-kurt 14.8 8.2 1.6 39.7 25.6 8.3 74.1 61.4 33.2
Joint 13.6 8.4 1.6 48.2 33.3 9.7 89.8 74.9 31.3

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 1,000 replications.
Details on the data generating processes: dgp 1: Standardised scale mixture of two zero mean normals
�with scalar covariance matrix� in which the higher variance component has probability � = 0:2 and
the ratio of the variances is { = 0:05; dgp 2: Multivariate discrete mixture of two normals with mixing
probability � = 0:7, relative-means di¤erence �3 = (0:5;-0:5; 0)0 and relative-covariance di¤erence such
that @3 is lower triangular with vech(@3) = 0:2`6 (see Appendix D in Amengual, Fiorentini and Sentana
(2022b) for details); and dgp 3: Asymmetric Student t with skewness vector � = �10`3 and degrees of
freedom parameter � = 12 (see Mencía and Sentana (2012) for details). See section 3.2 and 4 for a detailed
description of the Discrete and Continuous Q test statistics, respectively, and Amengual, Fiorentini and
Sentana (2022a) for a description of the Integer moment tests. See section 5.1.3 for a description of
the sampling procedure we use to implement the bootstrap for both, Discrete and Continuous Q test
statistics.
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Table 4: Monte Carlo power of bivariate independence moment tests: Sample size T = 1; 000.

dgp 1 dgp 2 dgp 3
Scale mixture Finite normal Asymmetric
of two normals mixture Student t

10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Discrete Q tests
H = 2 100.0 100.0 99.7 100.0 100.0 98.5 88.3 80.7 55.4
H = 3 100.0 99.8 99.2 100.0 100.0 100.0 95.7 91.7 75.2
H = 4 99.9 99.6 96.0 100.0 100.0 100.0 96.9 94.1 80.7
H = 5 100.0 99.7 96.5 100.0 100.0 100.0 97.6 95.3 80.9

Panel B: Continuous Q tests
� = 1e�05 99.3 98.1 91.8 100.0 100.0 100.0 97.2 93.1 77.4
� = 1e�06 97.9 96.4 85.2 100.0 100.0 100.0 95.4 90.5 72.2
� = 1e�07 97.3 94.6 80.8 100.0 100.0 100.0 94.3 89.1 70.7
� = 1e�08 97.2 94.0 79.3 100.0 100.0 100.0 93.8 88.6 70.1

Panel C: Integer moment tests
Cov 11.5 5.8 1.3 32.4 25.5 12.1 86.1 83.3 75.9
Co-skew 11.1 6.3 1.2 87.0 79.7 52.9 100.0 100.0 99.6
Co-kurt 49.1 38.2 14.8 80.1 72.0 41.9 93.8 90.7 70.4
Joint 41.5 28.7 10.7 92.8 85.7 57.3 100.0 100.0 94.9

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 1,000 replications.
Details on the data generating processes: dgp 1: Standardised scale mixture of two zero mean normals
�with scalar covariance matrix� in which the higher variance component has probability � = 0:2 and
the ratio of the variances is { = 0:05; dgp 2: Multivariate discrete mixture of two normals with mixing
probability � = 0:7, relative-means di¤erence �2 = (0:5;-0:5)0 and relative-covariance di¤erence such that
@2 is lower triangular with vech(@2) = 0:2`2 (see Appendix D in Amengual, Fiorentini and Sentana
(2022b) for details); and dgp 3: Asymmetric Student t with skewness vector � = �10`2 and degrees of
freedom parameter � = 12 (see Mencía and Sentana (2012) for details). See section 3.2 and 4 for a detailed
description of the Discrete and Continuous Q test statistics, respectively, and Amengual, Fiorentini and
Sentana (2022a) for a description of the Integer moment tests. See section 5.1.3 for a description of
the sampling procedure we use to implement the bootstrap for both, Discrete and Continuous Q test
statistics.
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Figure 1: Copula contours for spherically symmetric, Hermite polynomial expansions of

bivariate normal

Figure 1a: d2 = 0 and d3 = �0:35

Figure 1b: d2 = 0:61 and d3 = �0:39

Notes: The copula density is given by

c(u1; u2; d2; d3) =
f2[F

�1
1 (u1; d2; d3); F

�1
1 (u2; d2; d3); d2; d3]

f1[F
�1
1 (u1; d2; d3); d2; d3]f1[F

�1
1 (u2; d2; d3); d2; d3]

;

where f1 and f2 denote the densities of spherically symmetric univariate and bivariate Hermite expansions
of univariate and bivariate Gaussian distributions, respectively, which are obtained as Laguerre expansions
of the corresponding generating �2N random variates &, namely

hN (&) =
1

2N=2� (N=2)
&
N=2�1
t exp

�
�1
2
&

�
PN (&), for N = 1 and N = 2;

and where PN (&) =
�
1 + d2pN=2�1;2(&) + d3pN=2�1;3(&)

�
; with pN=2�1;j(:) denoting the generalized La-

guerre polynomial of order j and parameter N=2 � 1 (see Amengual, Fiorentini and Sentana (2013) for
the detailed expressions). In turn, F�11 (u; d2; d3) denotes the corresponding inverse cdf of the univariate
distribution.
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Figure 2: Bivariate copula contours associated to the DGPs in section 5

Figure 2a: Independence (dgp 0) Figure 2b: Scale mixture of normals (dgp 1)

Figure 2c: Mixture of normals (dgp 2) Figure 2d: Asymmetric t (dgp 3)

Notes: Details on the copula densities: dgp 0: "�1t follows a Student t with 10 degrees of freedom
(and kurtosis coe¢ cient equal to 4), and "�2t is generated as an asymmetric t with kurtosis and skewness
coe¢ cients equal to 4 and �:5, respectively; dgp 1: Standardised scale mixture of two zero mean normals
�with scalar covariance matrix�in which the higher variance component has probability � = 0:2 and the
ratio of the variances is { = 0:05; dgp 2: Multivariate discrete mixture of two normals with mixing
probability � = 0:7, relative-means di¤erence �2 = (0:5;-0:5)0 and relative-covariance di¤erence such that
@2 is lower triangular with vech(@2) = 0:2`2 (see Appendix D in Amengual, Fiorentini and Sentana
(2022b) for details); and dgp 3: Asymmetric Student t with skewness vector � = �10`2 and degrees of
freedom parameter � = 12 (see Mencía and Sentana (2012) for details).
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