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Abstract: 

Sheep production systems face numerous challenges, which make decision-making a 

process fraught with risks and uncertainties. Modelling is a helpful tool in this respect, as 

it allows decision-makers to evaluate the behaviour of variables and their 
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interrelationships, in addition to using previous or related information to predict results 

and simulate different scenarios. The advent of prediction models has made it possible to 

monitor the weight of an animal and determine the best time for its sale. Additionally, it 

allows producers to estimate the weights of the carcass and major marketable cuts before 

slaughter. All this information is directly associated with the profitability and success of 

the production activity. Therefore, in view of the different applications of mathematical 

models in production systems, this literature review examines concepts in modelling 

studies and the importance of using prediction models in meat sheep production. 

Furthermore, it addresses the practical application of modelling studies in predicting dry 

matter intake and carcass traits of meat sheep through correlated variables. 

Key words: Biometric measurements, Carcass, Intake prediction, Mathematical 

equations, Meat sheep farming, Tropical pasture.  
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Introduction 
 

 

Sheep farming for meat production in Brazil has expanded in the last decade because of 

the increased demand for this type of meat in the market. Thus, producers have sought 

ways to establish production systems capable of efficiently generating quality meat at a 

low cost(1,2,3). However, the productivity of these animals in Brazil is still incipient due to 

deficiencies in genetic and nutritional management, poor financing, inadequate 

management systems of the various rearing stages, and low ability to properly organize 

the production chain(4). Another relevant fact is that over 50 % of sheep production is 

carried out on natural pastures without management(4). These peculiarities make the 

decision-making process in sheep production systems fraught with risks and 

uncertainties. 

 

Despite being an inherent characteristic of animal production systems, the risk (likelihood 

of occurrence of an event) can be minimized through the adoption of tools that help 

decision-making(5). In this sense, a lack of knowledge will result in the impossibility of 

estimating risk (uncertainty). Some information within and outside the production system 

is essential to reduce uncertainties associated with decision making(6). Outside the 

production system, the producer has little control over the actions that impact the 

profitability of production. In contrast, actions within the farm will directly impact the 

success of the activity. 
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In this context, an adequate methodology for decision-making analysis requires accurate 

information about the problem as well as efficiency in handling the system, so the planned 

goals can be achieved(7). Modelling is a tool that can aid the decision-making process, as 

it allows decision-makers to evaluate the behaviour of variables and their 

interrelationships, in addition to using previous or related information to predict results 

and simulate different scenarios(8). 

 

The use of mathematical models allows producers to estimate some important 

information that would be difficult to obtain in practical terms, e.g., herbage intake using 

correlated variables(9). Modelling also makes it possible to monitor the weight of an 

animal and determine the best time for its sale(10,11). In addition, it allows producers to 

estimate the weight of the carcass and major cuts before slaughter(12,13). All this 

information is directly associated with the profitability and success of the production 

activity. 

 

Thus, because of the different applications of mathematical models in production 

systems, this literature review examines concepts in modelling studies and the importance 

of using predictive models in the production of meat sheep. 

 

 

Mathematical models 
 

 

The use of mathematical models has become an indispensable tool for public 

policymakers and scientists(14). Pool(15) suggested that the act of modelling would become 

a third domain of science, joining the traditional domains of theory and experimentation. 

In this sense, important political decisions, such as the effect of global warming on 

terrestrial biology(16,17), public health, and pandemic management(18), have come to 

depend heavily on modelling studies. In addition, researchers have started to use 

modelling in the most diverse fields of science, e.g. medicine(19), economics(20), 

physics(21), chemistry(22), engineering(23), law(24), animal science(25,26), and many others. 

There are several concepts for mathematical models. Hamilton(14) defined them as the 

expression of theory, which provides a possibility of comparing the theory with data 

obtained in the physical environment. For Tedeschi(25), models are mathematical 

representations of mechanisms that govern natural phenomena that are not fully known, 

controlled, or understood. More recently, Tedeschi and Mendez(8) postulated that 

mathematical models are arithmetic representations of the behaviour of real devices and 

life processes. All these authors also considered that models are an abstraction and a 

representation of reality(8,14,25). 

 

The use or non-use of mathematics defines whether the model is predictive or descriptive, 

respectively. Descriptive models theoretically address the performance of variables and 

their interrelationships. In contrast, predictive models are aimed at using prior 
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information to predict results or simulate different scenarios(8). In this respect, Tedeschi 

and Mendez(8) categorized mathematical (predictive) models into three main classes: in a 

temporal context, models can be classified as static or dynamic; in a natural context, as 

empirical or mechanistic; and, in a behavioural context, as deterministic and stochastic. 

 

Dynamic models are those that describe changes that have occurred and the obtained 

responses as a function of time. The non-linear models used to describe animal growth 

have a dynamic character(27,28). Static models, on the other hand, are those that generate 

a response for a fixed instant, that is, they do not include time as a variable(8). However, 

Tedeschi and Mendez(8) warn that the concept of static versus dynamic depends on the 

time scale used, as a biological phenomenon can be better represented by a dynamic 

model when daily changes occur, but when years are used as a time variant, a static model 

may work better than a dynamic model, since daily changes are irrelevant to the variable 

of interest. 

 

Empirical models are obtained from observational data. These models are applied in 

experimental studies that evaluate dose-response relationships, e.g., the effect of nitrogen 

rates on the crude protein content of forage plants. Thus, it is possible to estimate the 

concentration of a crude protein (variable Y) at any nitrogen rate (variable X) through 

polynomial regression fitting(29). Mechanistic models, on the other hand, consider the 

underlying conceptual mechanisms and the combination of elements from different 

hierarchical levels. The main purpose of these models is to explain how an element at a 

higher level behaves or responds to a range of elements at a lower level. This type of 

model can be better exemplified in the modelling of the herbage accumulation dynamics 

of a given forage plant(30). In this case, the mechanistic model seeks to explain the 

sequence of actions of abiotic factors at the level of molecules, cells, tissues, organs, 

tillers, plants, clumps, and the forage canopy. 

 

Stochastic models are those that associate a risk or probability with the decision. 

Stochasticity is associated with a lack of understanding of the biological phenomenon. 

Accordingly, a greater understanding of the phenomenon would translate into a less 

stochastic model. An example of a stochastic model was developed by Nadal-Roig et al(5) 

to address tactical decisions, plan production, increase flexibility, and improve the 

coordination and overall production of swine under the uncertainty associated with the 

price of animal sales. The authors concluded that the stochastic model was efficient in 

predicting the best scenario for the production system. Furthermore, due to the market 

uncertainty of the sales price for swine, the stochastic version led to more precise and 

realistic results than the deterministic version. 

 

In contrast, deterministic models do not associate any probability with a given estimate(8). 

Therefore, whenever the model is run without changes in the input variables, the same 

output information will be obtained. An example of the use of this type of model was 

proposed by the NRC(31) to estimate dry matter intake by sheep. According to the NRC(31), 

the dry matter intake (kg/day) of sheep is determined by the following input variables: 
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adult body weight (kg), body weight, and standard reference weight, which would 

correspond to an adult animal. If female, it should be considered non-pregnant and non-

lactating, with a body score of 2.5 on a scale of 1 to 5, and having already undergone 

complete skeletal growth. In this way, every time the model is run using the same input 

information, the predicted intake will be the same. However, the model does not give any 

probability that the predicted intake will indeed be observed. 

 

Regardless of the type of model, its basic structure is composed of variables, parameters, 

and constants, but not all models exhibit these three components simultaneously. 

Variables—dependent or independent—are changed according to the individual; 

parameters vary depending on the model, and the constants do not vary in any situation. 

In this sense, two processes are commonly used for the creation of models: 1) Establishing 

ideas and concepts through an in-depth study of the literature and then creating parameters 

for the model variables, or 2) Analyzing experimental data that explain a biological 

phenomenon and then combining them into an equation(25). In both situations, proper 

statistical analysis to assess the fit of the models is an indispensable step. 

 

 

Evaluation of mathematical models 

 

 

There are conceptual differences between the terms ‘validation’, ‘verification’, and 

‘evaluation’ of mathematical models(14,25). However, the term ‘model validation’ was 

frequently questioned by researchers(25,32). Because models are considered an abstraction 

of reality and an approximation of the real system(8,14,25), it is impossible to prove that all 

model components will truly predict the behaviour of a biological system. Tedeschi(25) 

proposed the terms ‘evaluation’ or ‘test’ to indicate the degree of robustness of the model 

based on pre-established criteria. The author also highlighted that mathematical models 

cannot be proved valid, except if they are suitable for the purpose for which they are 

intended, under certain conditions. 

 

In modelling studies, a protocol must be followed to define the best prediction model for 

the established goal. Thus, the process first requires an extensive review of the literature 

on the topic addressed. After a theoretical understanding of the phenomenon to be 

modelled is achieved, the next step is to adjust, evaluate, and compare the defined models 

and, finally, interpret the results and make inferences about the application of the selected 

models. Therefore, it is understood that evaluation is a fundamental step in the adjustment 

of prediction models(25), as this step defines whether the model is suitable for its intended 

purpose. According to Hamilton(14), model evaluation is a comparison of predicted over 

observed data, which uses statistical tools to support conclusions. 

 

Accuracy and precision are two important concepts when evaluating mathematical 

models. Accuracy indicates the proximity of predicted to observed mean values. 

Precision, on the other hand, is the model's ability to consistently predict values(25). 
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Therefore, an accurate but not precise model (situation 1 in Figure 1) estimates an average 

value close to the true average value, but with a high standard deviation. In contrast, a 

model with low accuracy and high precision (situation 4 in Figure 1) predicts a mean 

different from the observed data but denotes a low standard deviation in the predictions. 

In situations 2 and 4 (Figure 1) the models are equally accurate, yet only model 2 shows 

the characteristics of accuracy and precision, as the points are distributed compactly in 

the center of the target.  

 

Figure 1: Schematic representation of precision and accuracy concepts (Adapted(25)) 

 

 
 

The first and simplest assessment of the goodness-of-fit of models (precision and 

accuracy) is moment analysis of predicted and observed data. In this type of assessment, 

a good model is expected to estimate mean, maximum, and minimum values as well as 

data variance and standard deviation close to the observed values(33). Spearman's 

correlation coefficient value has also been used initially to assess the classification of 

predicted and observed data values. This coefficient assesses whether the highest 

predicted value is also the highest observed value, thus creating a classification among 

all data(34). 

 

Linear regression between observed and predicted values is commonly used to evaluate 

models. The hypothesis that the predicted data are equal to the observed data is tested by 

the regression equation Y = β0 + β1 × X, where Y is the observed value; β0 and β1 

represent the intercept and slope of the regression equation, respectively; and X is the 

value predicted by the equations. Model-predicted values are plotted on the X-axis, 

whereas observed values are plotted on the Y-axis(25). In this graph format, the data points 

located above and below the equality line indicate overestimation or underestimation by 

the model, respectively(26). 

 

To test the hypothesis (β0 = 0 and β1 = 1), Dent and Blackie(35) suggested simultaneously 
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evaluating whether the intercept is different from zero and the slope is different from one. 

For this purpose, the simultaneous F test for the identity of the regression parameters 

predicted by observed data was used(36). However, Tedeschi(25) warned that the F test is 

valid only for deterministic models and should not be used for stochastic models. In 

addition, due to the assumption that the data are independent, which is not always 

observed in a modelling study, the simultaneous F test can result in errors of acceptance 

or rejection of the tested hypothesis(36). 

 

After obtaining the linear regression, it is possible to calculate the coefficient of 

determination of the equation (R2). The coefficient of determination indicates the 

percentage of variation in Y that is explained by X. Therefore, R2 evaluates the proximity 

of the data to the fitted regression line. It is noteworthy that the interpretation of the R2 

value is often wrong(33). When used in isolation, this information is not a good indicator 

of the quality of the model, as R2 measures the precision and not the accuracy of the 

equation. Coupled with this is the fact that a high coefficient of determination does not 

necessarily imply that there is a linear relationship between predicted and observed data 

since the relationship can be curvilinear(25). 

 

Another way to evaluate the regression equation is by the mean square error (MSE), 

which evaluates the precision of the adjusted linear regression using the difference 

between the observed values and the values estimated by the regression. Analla(37) 

recommended MSE as the best criterion to select the model with the best fit when 

comparing several models. It should be noted that although several methods are used to 

assess the adequacy of the regression equation, its use may generate ambiguous results 

when data do not show the normal distribution and in cases in which residual errors are 

low(25). In this context, some additional evaluations are carried out. 

 

The MSE is similar to the mean squared error of prediction (MSEP). The fundamental 

difference between the two parameters is that MSEP is the difference between the 

observed values and the values predicted by the model, while MSE, as seen above, is the 

difference between the observed values and the values estimated by the regression. 

Tedeschi(25) considered MSEP the most common and reliable measure to determine the 

predictive accuracy of a model; however, the author warned that its reliability will 

decrease as the number of observations decreases. In addition, the author highlighted that 

MSEP does not provide any information about the precision of the model and that a 

disadvantage of MSEP is that deviations are weighted by their squared values, which 

removes the negative data, thus giving greater emphasis to larger values. 

 

Bunke and Droge(38) proposed a decomposition of MSEP that takes into account the 

source of variation of the parameters. By this fractionation, MSEP is divided into mean 

error, systematic error, and random error. When most errors are attributed to the mean 

error, it means that there is a deficiency in the placement of the equality line, which can 

be corrected with an additive correction factor. Systematic error, on the other hand, 

indicates a fault in line displacement, which can be corrected with a multiplicative 
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correction. 

 

The model's coefficient of determination (CD), which shows the proportion of the total 

variance of observed values that is explained by the predicted data, has long been used to 

evaluate mathematical models. However, the CD has been replaced by the concordance 

correlation coefficient (CCC) in studies of continuous variables(39,40). The CCC 

simultaneously assesses the accuracy and precision of equations, which makes it a 

powerful measure. The CCC value is obtained by an equation of two components: 1) 

Correlation coefficient, which measures precision; and 2) Bias correction factor, which 

indicates accuracy(41). 

 

Numerous statistical techniques are used to assess the precision and accuracy of models. 

However, no technique used in isolation is capable of adequately evaluating model 

performance(25). Therefore, the best way to assess the predictive performance of a model 

is to associate it with a set of statistical methods. It is important to emphasize that this 

review addresses the main methods used in modelling studies predicting the dry matter 

intake and carcass traits of sheep(39,40,42). A further discussion on the evaluation of models 

from a statistical point of view was presented by Neter et al(33) and Tedeschi(25). 

 

 

Application of predictive models in meat sheep production 
 

 

Due to the diverse applications of mathematical models in sheep production systems, this 

literature review will address the application of modelling studies in predicting dry matter 

intake by grazing sheep as well as the body weight and carcass traits of sheep through 

biometric measurements. This information is difficult to obtain under practical 

conditions; however, it is directly associated with the profitability and success of the 

production activity. It is highlighted that the possibilities of using modelling in sheep 

production are as diverse as possible and it would be difficult to summarize all this 

information in a single review. 

 

 

Prediction of dry matter intake by grazing sheep 

 

 

In the case of feedlot animals, the chemical and physical characteristics of ingredients 

that make up the diets and their interactions have a great effect on dry matter intake 

(DMI)(43,44). In short, the animal's energy demand defines the consumption of diets with 

high caloric density(45). On the other hand, when the animal is fed diets of low nutritional 

value and low energy density, the physical capacity of the gastrointestinal tract determines 

the potential for DMI(46). In this respect, Mcdowell(47) mentioned that herbage intake is 

primarily influenced by body size since the size of the animal, is positively correlated 
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with the nutritional requirements of maintenance(42,43,45), followed by energy density and 

the rate of digestion of the diet. Furthermore, the author observed that DMI is positively 

correlated with organic matter digestibility. 

 

The neutral detergent fibre (NDF) content of a diet or herbage is an efficient parameter to 

express the action of these two mechanisms to control dry matter intake, as it is positively 

related to the rumen-fill effect and inversely related to the energy concentration of the 

diet(48). 

 

Animal-related factors such as breed, sex, age, body weight, physiological stage (growth, 

pregnancy, or lactation), and body composition influence the nutrient requirements and 

intake of sheep(45). Mertens(48) suggested that nutrient intake depends on important factors 

related to feeding management (feed availability, linear trough area, feed accessibility, 

frequency of supply, physical form, and processing), in addition to environmental 

conditions and animal welfare related to the energy concentration of the diet(48). 

 

Regarding grazing animals, in addition to all the aforementioned factors acting on dry 

matter intake, the complex interactions between animal and pasture characteristics affect 

the nutrient intake rate(49). Feeding behaviour is known to be the most efficient way to 

demonstrate the interactions between pasture structure and herbage intake(50). 

 

According to a mechanistic view, the daily DMI for grazing sheep is the result of the time 

spent by the animal in searching and prehending the herbage and the intake rate during 

this period(50), which, in turn, is the product of biting rate and bite weight. The rate and 

weight of a bite change when the amount of herbage per bite (bite volume) is changed. 

The bite volume is sensitive to oscillations in bite depth and herbage bulk density, which 

in turn is determined by canopy height and herbage mass (Figure 2). The pasture structure 

(herbage mass, height, etc.) also changes the time spent by the animal on the grazing 

activity(51,52). 
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Figure 2: Schematic representation of the feeding behaviour of grazing animals 

(Adapted53) 

 

 

 
 

To exemplify the relationship between pasture structure, feeding behaviour, and intake, 

one must simply imagine a situation with limitations on the herbage supply. In this 

circumstance, there is a reduction in bite-size, whereas grazing time and biting rate 

increase(52). Therefore, to some extent, it is possible to obtain constant herbage intake in 

pastures with different canopies. Nonetheless, if the herbage allowance is too low, the 

increase in grazing time will not be able to maintain intake due to the reduction in intake 

rate(54). 

 

Thus, because of the existence of several factors influencing the DMI of grazing sheep, 

the modelling of this parameter becomes very complex. For this reason, most sheep DMI 

prediction models are obtained from experiments conducted in feedlot 

conditions(31,42,43,45). This may lead to inconsistencies if they are used to predict the DMI 

of grazing sheep, as they do not consider the characteristics of the pasture and the 

interactions between the animal and the forage plant. 

 

Most models used to predict intake by grazing animals are mechanistic, focusing on the 

digestive process and the selectivity of ingestion under grazing conditions, and they 

mainly consider pasture height or the amount of herbage removed(50,55). Pittroff and 

Kothmann(56) undertook a comparative analysis of quantitative models predicting the feed 

intake of sheep and observed that about 55 % of the equations took into account some 
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pasture trait, with a predominance of herbage availability. The researchers concluded that 

there is a weak conceptual framework in the development of the models. 

 

Of the models presented in the review by Pittroff and Kothmann(56), that developed by 

Freer et al(57) focused more on pasture characteristics. The equation predicts intake by 

sheep as the product of potential feed intake (Imax) and the proportion of that potential 

(relative intake) that the animal can obtain from the available amount of feed. Imax was 

defined as the amount ingested (kg/d of DM) when the animals are allowed unrestricted 

access to feed with a DM digestibility of at least 80 %, which depends on the standard 

weight of an adult animal (standard reference weight) and the ratio between body weight 

and standard reference weight (equation 1). It is noteworthy that in the case of tropical 

grasses, the minimum digestibility of 80 % is hardly reached(58,59,60). 

 

(1) Imax= 0.04 × SRW × Z × (1.7 - Z) 

 

Where SRW= standard reference weight; Z= relative animal size, the ratio of body weight 

to standard reference weight.  

 

Relative intake was described as the product of two feed attributes: relative availability 

and relative ingestibility. For grazing animals, relative availability is mainly predicted 

from the herbage mass, whereas relative ingestibility is predicted from the digestibility of 

the pasture collected by grazing simulation (hand plucking)(57). 

 

To simulate the ruminant intake dynamics during grazing, Baumont et al(50) developed a 

theoretical model of an intake rate that combines the pasture structure and the animal's 

decision to graze or perform other activities. The authors defined dry matter intake as the 

sum of instantaneous intake rates, which, in turn, are determined as a function of potential 

intake rates in grazing horizons, preferences that determine the proportions selected in 

both pasture horizons, and animal satiety levels (equation 2). 

 

(2) IR= (PREFi × PIRi) + (PREFi+1× PIR + 1) / SL 

 

Where IR= intake rate (g DM/min); PREFi and PREFi + 1= relative preference 

determined from a grazing decision sub-model that defines how the animal distributes 

intake between the highest available horizon (i) and the next available horizon (i + 1), 

according to the relative preferences PREFi and PREFi+1; SL= satiety level; PIRi= 

potential intake rate (g DM/min) obtained from the time taken by the animal to perform 

the bite and the weight of that bite in the highest available horizon (i), and the next 

available horizon. 

 

McCall(61) proposed a model to estimate herbage intake in pastures where perennial 

ryegrass is the predominant forage species. The author modelled the actual DMI of sheep 

on pasture as a function of the maximum intake multiplied by the correction factor 

(equation 3). The correction factor is obtained from herbage allowance and the animal's 
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potential intake (equations 4 and 5). Herbage allowance was estimated by harvesting the 

forage contained within 1-m2 metal frames. 

 

(3) HI= Imax × M 

(4) M= A × EXP (-1.016 × EXP (1.0308 × HAM) 

(5) A= 1-1.42 × (-0.00198 × HM), 

 

Where HI= herbage intake (kg/day); Imax= maximum herbage intake (kg/day); M= 

correction factor; EXP= exponential (2.7182); HAM= herbage allowance divided by 

maximum intake; and HM= herbage mass minus dead material (kg/ha). 

 

Medeiros(62) used the model proposed by McCall(61) to estimate the intake of sheep on 

Cynodon spp. under different grazing intensities in a continuous grazing system and 

concluded that the McCall(61) model overestimated the animals’ intake. This 

overestimation indicated by Medeiros could be due to the type of grass since McCall 

worked with a C3 grass that is more digestible than the C4 with which Medeiros worked. 

Thus, Medeiros(62) suggested replacing the green herbage allowance (leaf + stem) in the 

equation with a green leaf allowance. Only then was the estimated intake statistically 

equal to that observed. 

 

Similarly, Gurgel et al(9) evaluated different models predicting DMI in tropical pastures 

using the adjustment factor proposed by McCall(61) and concluded that the equations do 

not accurately predict the DMI of meat sheep and generate overestimated values in 

tropical climate pastures. The authors proposed that the DMI estimate for lambs on 

tropical pasture should consider the following model (equation 6): 

 

(6) DMI (% LW)= 7.16545 - 0.21799 × LW + 0.00273 × LW2 - 0.00688 × GT + 

0.000007 × GT2 + 0.00271 × GHA 

 

Where DMI= dry matter intake (% LW); LW= live weight (kg); GT= grazing time 

(min/day); and GHA= green herbage allowance (kg DM/100 kg LW), which corresponds 

to herbage allowance minus dead material. 

 

Therefore, the models proposed for a temperate climate do not correctly estimate herbage 

intake by sheep on tropical pasture. In this way, studies to estimate intake by sheep in 

tropical regions are necessary, especially in systems that adopt pasture as the primary 

source of nutrients, as this information is of fundamental importance for nutritional 

planning. 
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Prediction of body weight and carcass traits of sheep through 

biometric measurements 

 

 

Body weight is one of the main pieces of information that guides decision-making in 

production systems due to its direct relationship with the nutritional requirements of 

animals(31). In addition, monitoring the growth curve of ruminants makes it possible to 

identify the phases in which the animal is more capable of converting the consumed feed 

into body tissue and the best time for its sale(10,11,63). 

 

Animal growth is evaluated using direct measuring equipment, such as livestock scales. 

However, due to the conditions in which traditional sheep production systems operate(4), 

the direct determination of the animals’ body weight often represents a challenge for 

producers because of the high cost of acquiring and maintaining scales(64,65,66,67). In most 

cases, this causes producers to market animals based on visual scores, which leads to 

errors in the estimation of body weight and affects the profitability of production 

systems(68). 

 

The estimation of body weight by indirect methods can be an easily adopted, low-cost 

alternative. In this sense, biometric measurements are a viable option to predict body 

weight due to the correlation between these traits and the body weight of animals(65,69). 

This method consists of developing mathematical models that allow producers to estimate 

bodyweight using some biometric measurements (Figure 3) from linear and multiple 

regression analyses. These body measurements can be obtained with a horse measuring 

stick and a measuring tape(12,41), easy-to-handle and inexpensive instruments that do not 

require sophisticated periodic maintenance. 

 

The main biometric measurements (Figure 3) evaluated in sheep are as follows(70): withers 

height (WH) – from the highest point of the withers to the ground (1); rump height (RH) 

– the vertical distance from the highest point of the rump to the ground (2); body length 

(BL) – from the scapulohumeral joint to the caudal part of the ischium (3); chest width 

(CW) – the measurement between the tips of the scapulae (4); rump width (RW) – the 

distance between the ischial tuberosities (5); heart girth (HG) – taken around the chest 

cavity (6); abdominal circumference (AC) – taken around the abdominal cavity (7); leg 

length (LL) – taken from the ischial tuberosity to the ground (8); and leg circumference 

(LC) – taken around the middle portion of the thigh (9). 

  



Rev Mex Cienc Pecu 2023;14(1):204-227 
 

217 

Figure 3: Main biometric measurements performed on sheep 

 

 
 

Withers height (1); rump height (2); body length (3); chest width (4); rump width (5); heart girth (6); 

abdominal circumference (7); leg length (8); leg circumference (9). 

 

Some studies were conducted to develop linear and multiple equations to estimate the 

bodyweight of sheep from biometric measurements(65,66,71,72,73). The authors concluded 

that HG is the most important biometric measurement for predicting animal body weight 

(Table 1). In contrast, Canul-Solís et al(66) used RW to estimate the body weight of 

Pelibuey sheep. However, when more than one measurement is used, the predictive 

capacity of the equations increases(68,69,73,74). 
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Table 1: Equations to predict the body weight (BW) of sheep using biometric 

measurements (cm) 

Author Breed Equation R2 

Chay-Canul et 

al(65) 
Pelibuey BW (kg) = -47.97 + 1.07 × HG 0.86 

Canul-Solís et 

al(66) 
Pelibuey BW (kg) = - 19.17 + 3.46 × RW 0.96 

Málková et al(68) 
Charolais; Kent; 

crossbred 
BW = (kg) = -3.997 + 0.225 × HG 0.78 

Málková et al(68) 
Charolais; Kent; 

crossbred 

BW (kg) = -4.672 + 0.243 × CBC + 

0.198 × HG 
0.80 

Gurgel et al(69) Santa Inês 
BW (kg) = 0.45 × HG - 0.58× AC + 

0.005 × AC2 + 0.002 ×RH2 
0.88 

Kumar et al(71) Harnali BW (kg) = -63.72 + 1.23 × HG 0.87 

Worku(73) 
Kebeles; Arsi-

Bale 
BW (kg) = -39.51 + 0.91× HG 0.71 

Worku(73) 
Kebeles; Arsi-

Bale 

BW (kg) = 45.77 + 0.59 × HG + 1.99 × 

CBC + 0.30 × CD + 0.5 × RH 
0.81 

Grandis et al(74)  Texel 
BW = (kg) -107.16 + 1.40 × HG + 0.60 

× WH 
0.88 

HG= heart girth, RW= rump width; CBC= cannon bone circumference; AC= abdominal circumference; 

RH= rump height; CD= chest depth; WH= withers height. 

 

Another way to use biometric measurements to predict the body weight of sheep is from 

body volume, which is obtained by the formula used for calculating the volume of a 

cylinder, including the HG and BL measurements(75): 

 

Radius (cm)= HG / 2π, 

Body volume (dm3)= (π × r2 × BL) / 1000, 

where,  r= radius of the circumference (cm); π= 3.1416; HG= heart girth (cm); and BL= 

body length (cm). 

 

Salazar-Cuytun et al(67) compared three equations (linear, quadratic, and exponential) to 

assess the relationship between body volume and weight in Pelibuey lambs and ewes. The 

authors observed a correlation coefficient of 0.89 between body volume and weight. 

Additionally, the quadratic model was found to have the best performance, according to 

the adequacy assessment. Le Cozler et al(76) reported that body volume is strongly 

correlated with weight in lactating Holstein cows. 

 

In addition to being an efficient method to estimate body weight, biometric measurements 

are used to predict sheep carcass traits(12,40,77). Determining the yield of carcass or major 

cuts before slaughter is valuable information for production systems, as it allows the 

producer to estimate the gross income of the farm. In this regard, the use of biometric 
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measurements taken before slaughter is of greater interest in commercial production 

conditions due to the low additional cost for producers(40,78,79). 

 

Because it is directly related to producer remuneration, the carcass weight has been the 

variable most predicted by biometric measurements, with slaughter weight explaining 

47.0 to 99.0 % of the variation in ruminant carcass weight(79,80). However, when biometric 

measurements are used in association with body weight in linear and multiple equations 

to predict carcass weight, there is an increase in the coefficient of determination(40). In 

this respect, Gurgel et al(81) showed that the measurements of CW, LC, and RW, together 

with body weight, explained 91.0 % of the variation in the carcass weight of Santa Inês 

lambs finished on tropical pasture. For Pelibuey lambs, Bautista-Díaz et al(78) 

recommended an equation to estimate the carcass weight that is associated with the 

measurements of BL, HG, and AC and abdominal width (R2= 0.89). In predicting the hot 

carcass weight of Morada Nova lambs, Costa et al(12) recommended an equation without 

using body weight as an independent variable. According to the authors, the 

measurements of BL, WH, CW, AC, and body condition scores are the most important in 

predicting the carcass weight of the studied sheep (R2= 0.80).  

 

Sheep meat is sold mostly in the form of half carcasses or whole carcasses. Nevertheless, 

one way to add value to the meat is by selling it through cuts obtained by sectioning the 

carcass(82). Thus, the carcass is initially divided into the major cuts of shoulder, neck, loin, 

leg, and rib, which are smaller and facilitate marketing, conservation at home, and 

preparation for consumption(3,82,83). 

 

Biometric measurements are highly correlated with the major cuts of the carcass(2). 

Therefore, studies were developed to test the hypothesis that biometric measurements 

would be efficient in predicting the yield of these cuts. Shehata(13) developed regression 

models to predict the weight of the major cuts of the carcass of Barki lambs from 

biometric measurements and found that HG explained 67.0 % of the variation in leg 

weight, and when HG was associated with BL, this value rose to 72.0 %. In addition, 

Shehata(13) observed that the HG and BL precisely estimate the weights of the loin roast, 

shoulder, and loin chop cuts. Abdel-Moneim(84) indicated BL as an efficient variable to 

predict the shoulder weight of Barki sheep. 

 

The application of biometric measurements is not restricted to predicting carcass weight 

and major cuts. When used in equations, these measurements estimate the amount of 

internal fat and carcass trimmings, ribeye area, and the yield of non-carcass components, 

muscles, bones, and adipose tissue(12,40,77). Thus, the monitoring of biometric 

measurements is a management tool that can help production systems increase revenues 

and shorten the time needed for animals to reach slaughter weight. 

 

It is noteworthy that, for the most part, these measurements are carried out on feedlot-

finished animals and/or in wool sheep, which does not represent the reality of production 

systems in tropical regions, since tropical forage grasses are the food base of small and 
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large ruminants and are responsible for most of the meat produced in the tropics. 

Therefore, modelling studies must be developed to estimate the weight and carcass traits 

of hair sheep finished in tropical pastures through biometric measurements, taking into 

account that genotype, sex, age, rearing system, and health can change carcass traits and 

composition(85,86). 

 

 

Conclusions and implications 
 

 

Despite its low adoption rate, modelling has great potential to help in decision-making in 

meat sheep production. Modelling is a tool capable of predicting the dry matter intake, 

bodyweight, carcass weight, and major marketable cuts of sheep with high precision and 

accuracy, through correlated measurements. These equations can be used by researchers, 

producers, technicians, and the meat industry, thus facilitating activity planning. 

However, further research is warranted to increase the databases so that the equations can 

be applied in the most diverse scenarios. In addition, more studies are needed to predict 

herbage intake using information more easily obtained in practical production conditions. 
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