Skip to main content

Analysis of MOEA/D Approaches for Inferring Ancestral Relationships

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Included in the following conference series:

  • 1371 Accesses

Abstract

Throughout the years, decomposition approaches have been gaining major research attraction as a promising way to solve complex multiobjective optimization problems. This work investigates the application of decomposition-based optimization techniques to address a challenging problem from the bioinformatics domain: the reconstruction of ancestral relationships from protein data. A comparative analysis of different design alternatives for the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) is undertaken. Particularly, MOEA/D variants integrating genetic operators (MOEA/D-GA) and differential evolution (MOEA/D-DE) are studied. Hybrid search mechanisms are included to improve the accuracy of these methods, combining evolutionary strategies with problem-specific heuristics. Experimental results on four real-world problem instances give account of the significance of these techniques, especially when differential evolution approaches are used to conduct the search. As a result, significant multiobjective performance and biological solution quality are accomplished when compared with other methods from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arenas, M.: Trends in substitution models of molecular evolution. Frontiers Genet. 6(319), 1–9 (2015)

    Google Scholar 

  2. Cancino, W., Delbem, A.C.B.: A multi-criterion evolutionary approach applied to Phylogenetic reconstruction. In: New Achievements in Evolutionary Computation, pp. 135–156. InTech (2010)

    Google Scholar 

  3. Coelho, G.P., Silva, A.E.A., Zuben, F.J.V.: An immune-inspired multi-objective approach to the reconstruction of phylogenetic trees. Neural Comput. Appl. 19(8), 1103–1132 (2010)

    Article  Google Scholar 

  4. Deb, K.: Multi-objective evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 995–1015. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_49

    Chapter  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Goloboff, P.A., Catalano, S.A.: TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32(3), 221–238 (2016)

    Article  Google Scholar 

  7. He, D., Fiz-Palacios, O., Fu, C., Fehling, J., Tsai, C., Baldauf, S.L.: An alternative root for the eukaryote tree of life. Curr. Biol. 24(4), 465–470 (2014)

    Article  Google Scholar 

  8. Jayaswal, V., Poladian, L., Jermiin, L.S.: Single- and multi-objective phylogenetic analysis of primate evolution using a genetic algorithm. In: Proceedings of IEEE CEC 2007, pp. 4146–4153. IEEE (2007)

    Google Scholar 

  9. Kovalchuk, A., Kohler, A., Martin, F., Asiegbu, F.O.: Diversity and evolution of ABC proteins in mycorrhiza-forming fungi. BMC Evol. Biol. 15(249), 1–19 (2015)

    Google Scholar 

  10. Lewis, P.O.: Phylogenetic systematics turns over a new leaf. Trends Ecol. Evol. 16(1), 30–37 (2001)

    Article  MathSciNet  Google Scholar 

  11. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  12. Morgenstern, I., et al.: A molecular phylogeny of thermophilic fungi. Fungal Biol. 116(4), 489–502 (2012)

    Article  Google Scholar 

  13. Poladian, L., Jermiin, L.: Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets. Soft. Comput. 10(4), 359–368 (2006)

    Article  Google Scholar 

  14. Price, M.N., Dehal, P.S., Arkin, A.P.: FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3), 1–10 (2010). (e9490)

    Article  Google Scholar 

  15. Rokas, A.: Phylogenetic analysis of protein sequence data using the Randomized Axelerated Maximum Likelihood (RAxML) program. Curr. Protoc. Mol. Biol. 96, 1–14 (2011). 19.11

    Article  Google Scholar 

  16. Ronquist, F., et al.: MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012)

    Article  Google Scholar 

  17. Santander-Jiménez, S., Vega-Rodríguez, M.A.: On the design of shared memory approaches to parallelize a multiobjective bee-inspired proposal for phylogenetic reconstruction. Inf. Sci. 324, 163–185 (2015)

    Article  Google Scholar 

  18. Santander-Jiménez, S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparing different operators and models to improve a multiobjective artificial bee colony algorithm for inferring phylogenies. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, vol. 7505, pp. 187–200. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33860-1_16

    Chapter  MATH  Google Scholar 

  19. Santander-Jiménez, S., Vega-Rodríguez, M.A.: Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference. BioSyst. 114(1), 39–55 (2013)

    Article  Google Scholar 

  20. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 5th edn. Chapman & Hall/CRC, New York (2011)

    MATH  Google Scholar 

  21. Stracke, R., Holtgräwe, D., Schneider, J., Pucker, B., Sörensen, T.R., Weisshaar, B.: Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biol. 14(249), 1–17 (2014)

    Google Scholar 

  22. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2017)

    Google Scholar 

  23. Warnow, T.: Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny Estimation. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  24. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the AEI (State Research Agency, Spain) and the ERDF (European Regional Development Fund, EU), under the contract TIN2016-76259-P (PROTEIN project), as well as Portuguese national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) projects UID/CEC/50021/2019 and PTDC/CCI-COM/31901/2017 (HiPErBio). Sergio Santander-Jiménez is supported by the Post-Doctoral Fellowship from FCT under Grant SFRH/BPD/119220/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Santander-Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santander-Jiménez, S., Vega-Rodríguez, M.A., Sousa, L. (2019). Analysis of MOEA/D Approaches for Inferring Ancestral Relationships. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics