Skip to main content

Advertisement

Log in

Human umbilical cord mesenchymal stem cell-derived exosomes carrying hsa-miRNA-128-3p suppress pancreatic ductal cell carcinoma by inhibiting Galectin-3

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignant tumors of the digestive system. Many patients are diagnosed at an advanced stage and lose eligibility for surgery. Moreover, there are few effective methods for treating pancreatic ductal cell carcinoma. Increasing attention has been given to microRNAs (miRNAs) and their regulatory roles in tumor progression. In this study, we investigated the effects of exosomes extracted from human umbilical cord mesenchymal stem cells (HUCMSCs) carrying hsa-miRNA-128-3p on pancreatic cancer cells.

Methods

Based on existing experimental and database information, we selected Galectin-3, which is associated with pancreatic cancer, and the corresponding upstream hsa-miRNA-128-3p. We extracted HUCMSCs from a fresh umbilical cord, hsa-miRNA-128-3p was transfected into HUCMSCs, and exosomes containing hsa-miRNA-128-3p were extracted and collected. The effect of exosomes rich in hsa-miRNA-128-3p on pancreatic cancer cells was analyzed.

Results

The expression of Galectin-3 in normal pancreatic duct epithelial cells was significantly lower than that in PDAC cell lines. We successfully extracted HUCMSCs from the umbilical cord and transfected hsa-miRNA-128-3p into HUCMSCs. Then we demonstrated that HUCMSC-derived exosomes with hsa-miRNA-128-3p could suppress the proliferation, invasion, and migration of PANC-1 cells in vitro by targeting Galectin-3.

Conclusion

Hsa-miRNA-128-3p could be considered as a potential therapy for pancreatic cancer. We provided a new idea for targeted therapy of PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  2. Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer. Lancet. 2020;395(10242):2008–20. https://doi.org/10.1016/S0140-6736(20)30974-0.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou B, Xu JW, Cheng YG, et al. Early detection of pancreatic cancer: Where are we now and where are we going? Int J Cancer. 2017;141(2):231–41. https://doi.org/10.1002/ijc.30670.

    Article  CAS  PubMed  Google Scholar 

  4. Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17(3):471–94. https://doi.org/10.1007/s10456-014-9420-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Desai PB. Understanding the biology of cancer—has this any impact on treatment. J Cancer Res Clin Oncol. 1994;120(4):193–9. https://doi.org/10.1007/bf01372555.

    Article  CAS  PubMed  Google Scholar 

  6. Cetin I, Topcul M. Cancer stem cells in oncology. Eur Surg Res. 2012;17(4):644–8. https://doi.org/10.1159/000339610.

    Article  CAS  Google Scholar 

  7. Xie X, Wu H, Li M, et al. Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy. 2019;21(5):509–24. https://doi.org/10.1016/j.jcyt.2019.01.001.

    Article  CAS  PubMed  Google Scholar 

  8. Fan CG, Zhang QJ, Zhou JR. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev Rep. 2011;7(1):195–207. https://doi.org/10.1007/s12015-010-9168-8.

    Article  PubMed  Google Scholar 

  9. Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–7. https://doi.org/10.1634/stemcells.2004-0013.

    Article  PubMed  Google Scholar 

  10. Li DR, Cai JH. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chin Med J. 2012;125(24):4504–10. https://doi.org/10.3760/cma.j.issn.0366-6999.2012.24.032.

    Article  CAS  PubMed  Google Scholar 

  11. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36(3):301–12. https://doi.org/10.1007/s10571-016-0366-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khan S, Brougham CL, Ryan J, et al. miR-379 regulates cyclin b1 expression and is decreased in breast cancer. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0068753.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen JS, Li HS, Huang JQ, et al. MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma. Cancer Lett. 2016;375(1):73–83. https://doi.org/10.1016/j.canlet.2016.02.043.

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Shen JX, Chan MTV, et al. MicroRNA-379 suppresses osteosarcoma progression by targeting PDK1. J Cell Mol Med. 2017;21(2):315–23. https://doi.org/10.1111/jcmm.12966.

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien KP, Khan S, Gilligan KE, et al. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene. 2018. https://doi.org/10.1038/s41388-017-0116-9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Ni J, Song D, et al. Regulatory mechanism of microRNA-128 in osteosarcoma tumorigenesis and evolution through targeting SASH1. Oncol Lett. 2018;15(6):8687–94. https://doi.org/10.3892/ol.2018.8397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoyer KK, Pang M, Gui D, et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol. 2004;164(3):893–902. https://doi.org/10.1016/s0002-9440(10)63177-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156(3):899–909. https://doi.org/10.1016/s0002-9440(10)64959-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song SM, Ji BA, Ramachandran V, et al. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0042699.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Merlin J, Stechly L, de Beauce S, et al. Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene. 2011;30(22):2514–25. https://doi.org/10.1038/onc.2010.631.

    Article  CAS  PubMed  Google Scholar 

  21. Yao YL, Zhou LS, Liao WF, et al. HH1–1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway. Carbohydr Polym. 2019;204:111–23. https://doi.org/10.1016/j.carbpol.2018.10.008.

    Article  CAS  PubMed  Google Scholar 

  22. Xie L, Ni WK, Chen XD, et al. The expressions and clinical significances of tissue and serum galectin-3 in pancreatic carcinoma. J Cancer Res Clin Oncol. 2012;138(6):1035–43. https://doi.org/10.1007/s00432-012-1178-2.

    Article  CAS  PubMed  Google Scholar 

  23. Luo G, Jin K, Deng S, et al. Roles of CA19–9 in pancreatic cancer: biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer. 2021;1875(2):188409. https://doi.org/10.1016/j.bbcan.2020.188409.

    Article  CAS  PubMed  Google Scholar 

  24. Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet (London, England). 2016;388(10039):73–85. https://doi.org/10.1016/S0140-6736(16)00141-0.

    Article  CAS  Google Scholar 

  25. Gaida MM, Bach ST, Guenther F, et al. Expression of galectin-3 in pancreatic ductal adenocarcinoma. Pathol Oncol Res. 2012;18(2):299–307. https://doi.org/10.1007/s12253-011-9444-1.

    Article  CAS  PubMed  Google Scholar 

  26. Yi N, Zhao X, Ji J, et al. Serum galectin-3 as a biomarker for screening, early diagnosis, prognosis and therapeutic effect evaluation of pancreatic cancer. J Cell Mol Med. 2020. https://doi.org/10.1111/jcmm.15775.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bieback K, Netsch P. Isolation, culture, and characterization of human umbilical cord blood-derived mesenchymal stromal cells. Methods Mol Biol (Clifton, NJ). 2016;1416:245–58. https://doi.org/10.1007/978-1-4939-3584-0_14.

    Article  CAS  Google Scholar 

  28. Kogure T, Lin WL, Yan IK, et al. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54(4):1237–48. https://doi.org/10.1002/hep.24504.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release Off J Control Release Soc. 2013;172(3):962–74. https://doi.org/10.1016/j.jconrel.2013.09.015.

    Article  CAS  Google Scholar 

  30. Saijo N. Progress in cancer chemotherapy with special stress on molecular-targeted therapy. Jap J Clin Oncol. 2010;40(9):855–62. https://doi.org/10.1093/jjco/hyq035.

    Article  Google Scholar 

  31. Oldham RK, Dillman RO. Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol. 2008;26(11):1774–7. https://doi.org/10.1200/jco.2007.15.7438.

    Article  PubMed  Google Scholar 

  32. Reichert JM, Valge-Archer VE. Outlook—development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov. 2007;6(5):349–56. https://doi.org/10.1038/nrd2241.

    Article  CAS  PubMed  Google Scholar 

  33. Berger M, Shankar V, Vafai A. Therapeutic applications of monoclonal antibodies. Am J Med Sci. 2002;324(1):14–30. https://doi.org/10.1097/00000441-200207000-00004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87. https://doi.org/10.1038/nrc3236.

    Article  CAS  PubMed  Google Scholar 

  35. Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol. 2012. https://doi.org/10.1186/1756-8722-5-70.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lv H, Zhang S, Wang B, et al. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100–9. https://doi.org/10.1016/j.jconrel.2006.04.014.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58. https://doi.org/10.1038/nrg1066.

    Article  CAS  PubMed  Google Scholar 

  38. Harris JM, Martin NE, Modi M. Pegylation—a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001;40(7):539–51. https://doi.org/10.2165/00003088-200140070-00005.

    Article  CAS  PubMed  Google Scholar 

  39. Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012;44(11):2060–4. https://doi.org/10.1016/j.biocel.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  40. van den Boorn JG, Schlee M, Coch C, et al. SiRNA delivery with exosome nanoparticles. Nat Biotechnol. 2011;29(4):325–6. https://doi.org/10.1038/nbt.1830.

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez-Erviti L, Seow YQ, Yin HF, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341-U179. https://doi.org/10.1038/nbt.1807.

    Article  CAS  PubMed  Google Scholar 

  42. Holder B, Jones T, Shimizu VS, et al. Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic. 2016;17(2):168–78. https://doi.org/10.1111/tra.12352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi RJ, Zhao LB, Cai WB, et al. Maternal exosomes in diabetes contribute to the cardiac development deficiency. Biochem Biophys Res Commun. 2017;483(1):602–8. https://doi.org/10.1016/j.bbrc.2016.12.097.

    Article  CAS  PubMed  Google Scholar 

  44. Wang M, Zhao C, Shi H, et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer. 2014;110(5):1199–210. https://doi.org/10.1038/bjc.2014.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsuzaki J, Suzuki H. Role of microRNAs-221/222 in digestive systems. J Clin Med. 2015;4(8):1566–77. https://doi.org/10.3390/jcm4081566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma M, Chen SL, Liu Z, et al. miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. Onco Targets Ther. 2017;10:4161–71. https://doi.org/10.2147/ott.S143315.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Natural Science Foundation of Jiangsu Province (no.BK20211105), the Key Research and Development Plan of Jiangsu Province (no.BE2019692), Postdoctoral Science Foundation of China (Grant No. 2019M661909), The Health Project of Jiangsu Province (Grant No. H2019072), the Social Development Foundation of Nantong City (Grant Nos. MS12020018, MSZ20076, JCZ20065 and MSZ19177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Xiao or B. Bao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Ji, J., Chen, X. et al. Human umbilical cord mesenchymal stem cell-derived exosomes carrying hsa-miRNA-128-3p suppress pancreatic ductal cell carcinoma by inhibiting Galectin-3. Clin Transl Oncol 24, 517–531 (2022). https://doi.org/10.1007/s12094-021-02705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02705-7

Keywords

Navigation