Skip to main content

Advertisement

Log in

MiR-181a promotes cell proliferation and migration through targeting KLF15 in papillary thyroid cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Introduction

Papillary thyroid cancer (PTC) is the predominant histological type of thyroid cancer, accounting for 80% of thyroid cancers. MiR-181a is a novel microRNA that is usually upregulated in multiple cancers. This study aims to explore the role and underlying mechanism of miR-181a in PTC.

Methods

CCK8 and Transwell assays were performed to evaluate cell viability and migration. The mRNA level of miR-181a and KLF15 was calculated by qRT-PCR. The protein level of E-Cadherin, N-Cadherin and GAPDH was evaluated by western blot. Dual luciferase assay was conducted to validate that miR-181a directly targeting the 3′-UTR of KLF15 mRNA in TPC-1 cells.

Results

We observed that miR-181a was overexpressed and KLF15 was low expressed in PTC tissues and cell lines. Upregulation of miR-181a or downregulation of KLF15 predicted poor outcomes in PTC patients. MiR-181a improved cell growth of PTC, migration and epithelial–mesenchymal transition (EMT) in TPC-1 cells. KLF15 was a target gene of miR-181a and its expression was mediated by miR-181a. KLF15 partially reversed the facilitating effect of miR-181a on cell proliferation and migration in TPC-1 cells.

Conclusion

We discovered that miR-181a served as an oncogene downregulating KLF15, thereby inhibiting cell proliferation, migration and the EMT. These findings demonstrate that miR-181a plays a significant role in PTC progression and could be a therapeutic target for PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388(10061):2783–95. https://doi.org/10.1016/S0140-6736(16)30172-6.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  3. Pelizzo MR, Merante BI, Toniato A, et al. Diagnosis, treatment, prognostic factors and long-term outcome in papillary thyroid carcinoma. Minerva Endocrinol. 2008;33(4):359–79.

    CAS  PubMed  Google Scholar 

  4. La Vecchia C, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136(9):2187–95. https://doi.org/10.1002/ijc.29251.

    Article  CAS  PubMed  Google Scholar 

  5. Schneider DF, Chen H. New developments in the diagnosis and treatment of thyroid cancer. CA Cancer J Clin. 2013;63(6):374–94. https://doi.org/10.3322/caac.21195.

    Article  PubMed  Google Scholar 

  6. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  8. Liu H, Chen X, Lin T, Chen X, Yan J, Jiang S. MicroRNA-524-5p suppresses the progression of papillary thyroid carcinoma cells via targeting on FOXE1 and ITGA3 in cell autophagy and cycling pathways. J Cell Physiol. 2019;234(10):18382–91. https://doi.org/10.1002/jcp.28472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu F, Yin R, Chen X, et al. Over-expression of miR-206 decreases the Euthyrox-resistance by targeting MAP4K3 in papillary thyroid carcinoma. Biomed Pharmacother. 2019;114: 108605. https://doi.org/10.1016/j.biopha.2019.108605.

    Article  CAS  PubMed  Google Scholar 

  10. Wang D, Guo C, Kong T, Mi G, Li J, Sun Y. Serum miR-22 may be a biomarker for papillary thyroid cancer. Oncol Lett. 2019;17(3):3355–61. https://doi.org/10.3892/ol.2019.10011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ortiz I, Barros-Filho MC, Dos RM, et al. Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma. Clin Epigenetics. 2018;10(1):144. https://doi.org/10.1186/s13148-018-0579-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei F, Yang S, Wang S. MicroRNAs: a critical regulator under mechanical force. Histol Histopathol. 2018;33(4):335–42. https://doi.org/10.14670/HH-11-924.

    Article  PubMed  Google Scholar 

  13. Sun W, Wang X, Li J, et al. MicroRNA-181a promotes angiogenesis in colorectal cancer by targeting SRCIN1 to promote the SRC/VEGF signaling pathway. Cell Death Dis. 2018;9(4):438. https://doi.org/10.1038/s41419-018-0490-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kozloski GA, Jiang X, Bhatt S, et al. miR-181a negatively regulates NF-kappaB signaling and affects activated B-cell-like diffuse large B-cell lymphoma pathogenesis. Blood. 2016;127(23):2856–66. https://doi.org/10.1182/blood-2015-11-680462.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan R, Liu N, Yang J, Peng J, Liu L, Guo X. The expression and role of miR-181a in multiple myeloma. Medicine (Baltimore). 2018;97(35): e12081. https://doi.org/10.1097/MD.0000000000012081.

    Article  CAS  Google Scholar 

  16. Yu J, Qi J, Sun X, et al. MicroRNA181a promotes cell proliferation and inhibits apoptosis in gastric cancer by targeting RASSF1A. Oncol Rep. 2018;40(4):1959–70. https://doi.org/10.3892/or.2018.6632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Kuscu C, Banach A, et al. miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Res. 2015;75(13):2674–85. https://doi.org/10.1158/0008-5472.CAN-14-2875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uchida S, Tanaka Y, Ito H, et al. Transcriptional regulation of the CLC-K1 promoter by myc-associated zinc finger protein and kidney-enriched Kruppel-like factor, a novel zinc finger repressor. Mol Cell Biol. 2000;20(19):7319–31. https://doi.org/10.1128/mcb.20.19.7319-7331.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Cai L. Does Kruppel like factor 15 play an important role in the left ventricular hypertrophy of patients with type 2 diabetes? EBioMedicine. 2017;20:17–8. https://doi.org/10.1016/j.ebiom.2017.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Kruppel-like transcription factors: a functional family. Int J Biochem Cell Biol. 2008;40(10):1996–2001. https://doi.org/10.1016/j.biocel.2007.07.018.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Tan T, Tian Y, et al. Kruppel-like factor 15 activates hepatitis B virus gene expression and replication. Hepatology. 2011;54(1):109–21. https://doi.org/10.1002/hep.24362.

    Article  CAS  PubMed  Google Scholar 

  22. Ray S, Pollard JW. KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proc Natl Acad Sci USA. 2012;109(21):E1334–43. https://doi.org/10.1073/pnas.1118515109.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yoda T, McNamara KM, Miki Y, et al. KLF15 in breast cancer: a novel tumor suppressor? Cell Oncol (Dordr). 2015;38(3):227–35. https://doi.org/10.1007/s13402-015-0226-8.

    Article  CAS  Google Scholar 

  24. Gao L, Qiu H, Liu J, et al. KLF15 promotes the proliferation and metastasis of lung adenocarcinoma cells and has potential as a cancer prognostic marker. Oncotarget. 2017;8(66):109952–61. https://doi.org/10.18632/oncotarget.21972.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 2017;317(13):1338–48. https://doi.org/10.1001/jama.2017.2719.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim SJ, Myong JP, Jee HG, et al. Combined effect of Hashimoto’s thyroiditis and BRAF(V600E) mutation status on aggressiveness in papillary thyroid cancer. Head Neck. 2016;38(1):95–101. https://doi.org/10.1002/hed.23854.

    Article  PubMed  Google Scholar 

  27. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. https://doi.org/10.1038/nrc1997.

    Article  CAS  PubMed  Google Scholar 

  29. Ji D, Chen Z, Li M, et al. MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF-1. Mol Cancer. 2014;13:86. https://doi.org/10.1186/1476-4598-13-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ge S, Zhang H, Deng T, et al. MiR-181a, a new regulator of TGF-beta signaling, can promote cell migration and proliferation in gastric cancer. Invest New Drugs. 2019. https://doi.org/10.1007/s10637-018-0695-5.

    Article  PubMed  Google Scholar 

  31. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128–34. https://doi.org/10.1038/nrc.2017.118.

    Article  CAS  PubMed  Google Scholar 

  32. Chaffer CL, San JB, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35(4):645–54. https://doi.org/10.1007/s10555-016-9648-7.

    Article  PubMed  Google Scholar 

  33. Parikh A, Lee C, Joseph P, et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun. 2014;5:2977. https://doi.org/10.1038/ncomms3977.

    Article  CAS  PubMed  Google Scholar 

  34. McConnell BB, Yang VW. Mammalian Kruppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337–81. https://doi.org/10.1152/physrev.00058.2009.

    Article  CAS  PubMed  Google Scholar 

  35. Kim YD, Hwang SL, Jeon HJ, et al. B-cell translocation gene 2 enhances fibroblast growth factor 21 production by inducing Kruppel-like factor 15. Sci Rep. 2019;9(1):3730. https://doi.org/10.1038/s41598-019-40359-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang X, He M, Li J, Wang H, Huang J. KLF15 suppresses cell growth and predicts prognosis in lung adenocarcinoma. Biomed Pharmacother. 2018;106:672–7. https://doi.org/10.1016/j.biopha.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  37. Sun C, Ma P, Wang Y, et al. KLF15 inhibits cell proliferation in gastric cancer cells via up-regulating CDKN1A/p21 and CDKN1C/p57 expression. Dig Dis Sci. 2017;62(6):1518–26. https://doi.org/10.1007/s10620-017-4558-2.

    Article  CAS  PubMed  Google Scholar 

  38. Yang L, Wei QM, Zhang XW, et al. MiR-376a promotion of proliferation and metastases in ovarian cancer: potential role as a biomarker. Life Sci. 2017;15(173):62–7. https://doi.org/10.1016/j.lfs.2016.12.007.

    Article  CAS  Google Scholar 

  39. Wang K, Ren Y, Liu Y, et al. miR-4262 promotes proliferation and invasion of human breast cancer cells through directly targeting KLF6 and KLF15. Oncol Res. 2017;25(2):277–83. https://doi.org/10.3727/096504016X14732514133203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Chi.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Ethical approval

The study was approved by the Ethics Committee of Yantaishan Hospital. The study was performed according to the Declaration of Helsinki.

Informed consent

All study actions were performed under the appropriate ethics code, and consent was obtained from all patients within the clinical trial recruited for treatment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C.X., Liu, B.J., Su, Y. et al. MiR-181a promotes cell proliferation and migration through targeting KLF15 in papillary thyroid cancer. Clin Transl Oncol 24, 66–75 (2022). https://doi.org/10.1007/s12094-021-02670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02670-1

Keywords

Navigation