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Abstract 
 

  

We investigate the transmission of natural gas shocks to electricity prices 

under different scenarios of electricity generation for 21 European markets, 

from January 1, 2015 to March 11, 2022, proposing indicators of market 

vulnerability based on the quantile slopes of the regressions of electricity on 

natural gas and the distance between the transmission effects at very high 

and low quantiles of the electricity price distribution. We determine that the 

level of market integration is the main factor underlying national 

differentiation. Denmark, Finland, Sweden, and Germany are the most 

vulnerable markets to natural gas price shocks under distress. Our results 

highlight a source of vulnerability that only emerges during market distress 

scenarios for countries with a small, but non-zero, proportion of natural gas 

in domestic generation mixes under marginal cost-based electricity pricing. 

Further market integration is proposed to increase resilience in European 

electricity markets, based on a different set of regressions. 
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1. Introduction 

Recent historical surges in electricity prices around the world, particularly in Europe during 

2021 and in the first quarter of 2022, have reminded us of the paramount role of electricity 

markets for well-functioning modern societies. Understanding the drivers of electricity prices 

in times of market distress, and particularly how variations of natural gas prices translate into 

households’ and firms’ electricity cost, is a critical concern for all nations, from both economic 

and energy security perspectives. The importance of energy markets for economies, including 

the relationship of energy markets with banking, the real economy, and other commodities, has 

recently been studied by Brown et al. (2021), Maitra et al. (2021), van de Ven & Fouquet 

(2017), and Xiao & Wang (2022), among others. 

In this study we investigate the vulnerability of electricity markets to natural gas price 

variations in 21 European countries, including Belgium, the Czech Republic, Denmark, 

Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, the Netherlands, 

Norway, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, and the United Kingdom 

(UK). Our sample runs from January 1, 2015 to March 11, 2022. The last months of our 

sample contain the most significant market distress period for electricity and natural gas in 

Europe in recent decades, which gives us a unique opportunity to analyze linkages between 

these two markets in times of crisis. We use three indicators to assess different dimensions of 

this vulnerability, which include the size of the transmission effect from natural gas to 

electricity markets at extreme quantiles of electricity price distribution, and two measures of 

the distance between the effect at very high (90th, 95th, and 99th) and low (1st, 5th, 10th) quantiles. 

We also explore the possible determinants of the variation in the vulnerability indicators across 

countries, including market size, electricity exports and imports, generation mix, and level of 

market integration, demonstrating that different levels of market integration explain 

differences across countries more accurately. 

Our study presents a baseline for evaluating market reforms that are likely to occur in Europe 

in the upcoming years, to highlight the necessity of such reforms and provide insights to 

inform their execution. Our comparative focus on European markets and methodological 

approach differentiate us from the previous literature, which restricts the analyses to a few (or 

single) countries at a time and to average effects (i.e., ignoring market distress scenarios) and 
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generally does not consider satisfactory models of energy prices that account for the crucial 

impact of weather on electricity price fluctuation. 

Our contribution fills the gap in the literature regarding the role of natural gas as a primary 

driver of electricity prices in times of crises, particularly under the current market design in 

Europe, in which the last generator in the merit order curve—and hence the less efficient—

determines the price to be paid to all market participants by their generation. A lack of solid 

understanding of the relationship between natural gas and electricity prices in times of distress 

also threatens ambitious plans regarding the European transition to a more sustainable, green, 

and energy-efficient production scheme that has been committed to with renewed urgency.1 

Europe faces the risk of households on the brink of energy poverty and small businesses, both 

of which are dramatically affected by electricity prices, negatively perceiving such energy 

transitions, forcing them to drastically reduce energy consumption, which is already at 

minimum levels. These historically high increases may be a symptom of the system’s inability 

to comply with energy demand from all agents at all times, and could be an early warning sign 

of energy crises and foreseeable energy shortages in the not-so-distant future if current 

geopolitical tensions in Europe further escalate. Finally, electricity prices are a primary 

component of core inflation, and any large incremental growth in the price of power is also 

expected to reflect a similar increment in economies’ general price indices. Subsequently, 

dramatic price surges in power markets also menace economies with destabilizing general price 

dynamics and resurrecting fears of inflation. 

Recent record-high electricity prices are mainly related to parallel increments in the price of 

natural gas. Indeed, the Title Transfer Facility (TTF) and the National Balancing Point (NBP) 

traded in the Netherlands and the UK, respectively, which are the most important natural gas 

reference indices in Europe, multiplied by three from August 2021 to March 2022, and by 20 

from August 2020 to March 2022. At the same time, their volatility also multiplied by six in the 

 
1 See all recent statements and news on the European Commission’s Energy Strategy website, which emphasize 
the European Union’s increasing political commitment to the energy transition to renewable sources (European 
Commission, 2022). See also the documentation produced during and after the recent Climate Change 
Conference (COP26) celebrated in Glasgow in November 2021 (United Nations, 2022). 



 4 

latter period.2 Bottlenecks in the supply of natural gas observed since summer 2021, and the 

recent Russian invasion to Ukraine are the main drivers of these dynamics. 

The relationship between electricity and natural gas is complex since both goods are substitutes 

and complements. Natural gas is an input for electricity generation through combined-cycle 

power plants, whereas electricity and natural gas are substitutes for household heating and 

commercial facilities. As established by Uribe et al. (2018) for the US market (see also Kyritsis 

& Andersson (2019) and Scarcioffolo & Etienne (2021)), in times of scarcity, when power 

generation is costly and both power and gas are closer to maximum price levels, the 

relationship between the price of gas and the price of power is not only positive, but is also 

significantly stronger than at other times when both goods are relatively abundant (i.e., when 

prices are closer to the center of their respective price distributions). In this study, we 

demonstrate that the same results hold for European markets, although important differences 

are revealed across countries, particularly due to different levels of integration in the European 

market network. 

Our empirical strategy relies on quantile regressions (Koenker, 2005), which are known to be 

robust to outliers, which is crucial for modeling electricity prices that are characterized by 

short-lived, but abrupt and generally unanticipated, spikes (see Weron (2014)). Quantile 

regressions are also semi-parametric, so they require minimal distributional assumptions in the 

underlying data generating process. They also offer greater flexibility in the analysis of different 

scenarios in electricity markets, corresponding to both distinctive weather conditions and 

different fuel costs in global markets, in particular natural gas. The simplicity of our indicators 

means that the information revealed can easily be transmitted within different policy circles 

and to the general public. 

The rest of this document is organized as follows: section two presents the literature related to 

our proposal, section three introduces in detail our methodology, section four contains the 

data and sources of information used to guarantee the replicability of the study, in the fifth 

section the results are presented, and section six concludes and presents the policy implications 

of our study. 

 
2 The same pattern can be observed in Asian Liquefied Natural Gas, according to the U.S. Energy Information 
Administration (EIA, 2022). 
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2. Related literature 

Recent literature has emphasized the rapidly developing nexus between natural gas and 

electricity markets (see Alexopoulos (2017), Amirnekooei et al. (2017), Brown & Yücel (2008), 

Chae et al. (2012), Chen et al. (2020), Diagoupis et al. (2016), Ding et al. (2020), He et al. 

(2020), Liu et al. (2021), Mills et al. (2021), Nakajima & Hamori (2013), Ohler et al. (2020), 

Scarcioffolo & Etienne (2021), Wang et al. (2018), Woo et al. (2006), Xia et al. (2020), and 

Yang (2021)). These studies have analyzed the mechanisms by which natural gas prices may 

impact price formation and market clearing in electricity markets. First, natural-gas-fired power 

plants are almost invariantly the last to be included in the merit order curve, determining the 

wholesale electricity rates, thus retail electricity rates, when electricity demand is not satisfied 

by power generation from the cheaper sources. Second, load-serving entities are frequently the 

owners of natural-gas-fired power stations; thus, they can implement a direct pass-through of 

unexpected fuel costs from natural gas to electricity rates onto electricity consumers via 

automatic mechanisms. Third, as emphasized by Woo et al. (2006), there is a demand-pull 

effect that derives from a wider spread between electricity price and natural gas fuel cost, when 

electricity is costly, which raises the demand for natural gas by fostering generators’ 

willingness-to-pay, and inducing less efficient plants to generate. This translates into larger bids 

for spot gas in bilateral trading and higher observed natural gas prices. These mechanisms may 

persist in a way that could even endanger the operation of the entire system, and in the worst 

case scenario, the feedback effects between natural gas and electricity prices establish 

conditions that are more vulnerable to energy crises and energy shortages. 

Another strand in the previous literature quantified the effects of natural gas price variations 

on electricity prices using an averaging scenario, primarily in the US. For instance, Mills et al. 

(2021) demonstrated that a decline in natural gas prices in the US from 2008 and 2017 reduced 

wholesale electricity prices. Ohler et al. (2020) found evidence of Granger-causality from 

natural gas to electricity prices in the US for both commercial and residential consumers. 

Alexopoulos (2017) examined the growing importance of natural gas as a predictor for retail 

electricity prices in the US and its significance for effective policymaking. 

Fewer studies have examined the European case, but these studies focus on the average 

scenario, rather than periods of stress. Four recent studies analyzed European energy markets 

and the relationship between natural gas and electricity markets, including Chuliá et al. (2019), 
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Hirth (2018), Martínez & Torró (2018), and Mosquera-López & Nursimulu (2019). Although 

related, the aim of these studies differs from ours, as none emphasized distress scenarios, and 

the results are based on single markets or a small subset of markets, at most. 

Another recent branch of the literature that is directly connected to our study, emphasized the 

nonlinear nature of price dynamics in electricity markets (see Bunn et al. (2016), Ding et al. 

(2020), Hagfors et al. (2016), Mosquera-López et al. (2017), Scarcioffolo & Etienne (2021), and 

Xia et al. (2020)). These nonlinearities are related to electricity markets’ dependence on 

weather, policy, and economic systems, which are plagued by high uncertainties and 

complexities that make forecasting and understanding price dynamics extremely challenging. 

Some recent studies examined the relationship between natural gas and electricity prices in 

abnormally distressed periods. For instance, Scarcioffolo & Etienne (2021) and Uribe et al. 

(2018) provide evidence of spillovers between natural gas and electricity returns (among other 

energy commodities) under different market conditions, especially at moderate and high return 

quantiles of energy prices. Although these two studies are methodologically close to ours, 

unlike us, they only focused on the US market, conducted bivariate analyses that did not 

consider the crucial role of weather, and did not provide indicators of vulnerability in times of 

distress. 

3. Methodology 

3.1. Modeling the average scenarios of electricity prices with weather factors 

Weather factors have been widely used to model the dynamics of electricity prices (Martinez-

Anido et al., 2016; Kaufmann & Vaid, 2016). Following this reasoning, we begin with a linear 

specification that explains energy prices as a function of weather variables. More formally, 

𝑋𝑡−1 is the vector containing the observations of explanatory variables on a given market day 

𝑡 − 1, and 𝑌𝑡 is the price of electricity one day after 𝑡. Our objective is to estimate a parameter 

vector 𝛽  with the same dimension as the vector of covariates. We present the linear 

combination as 𝑋𝑡−1′𝛽. Finally, 𝜀𝑡 is a random vector that corresponds to the t-th error term. 

In a linear regression framework: 

𝑌𝑡 = 𝑋𝑡−1
′ 𝛽 + 𝜀𝑡,     (1) 

where 𝐸(𝜀𝑖) = 0, then 𝐸(𝑌𝑖|𝑋𝑖) = 𝑋𝑖
′𝛽. We regress the electricity price on the one day lagged 

explanatory variables because today’s electricity spot wholesale prices are formed by the bids of 
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market participants the day before. Weather variables in our model are temperature, wind 

speed, precipitation, and solar irradiance recorded on the Earth’s surface. Wind speed is 

expected to have a negative effect on energy prices, as it constitutes an increasingly relevant 

input for power generation in Europe. Precipitation is expected to have a negative impact on 

energy prices, in principle, as it is an indicator of larger water reservoirs for hydraulic 

generation. Notice, however, that the effect of precipitation is more indirect than that of the 

other weather factors mainly through its influence on reservoirs, so we can expect a less 

pronounced overall effect. On its side, irradiance is also expected to reduce energy prices, 

because greater irradiance is associated with larger power generation capacity by solar cells. 

Finally, temperature is expected to show an average positive effect on electricity prices for 

warmer countries, due to cooling requirements, and the expectation reverts for colder 

countries due to heating needs. Nevertheless, we also expect a nonlinear effect depending on 

the season (summer versus winter) in both sorts of countries. The size of the effects is 

expected to vary widely across countries, since all of them have markedly different generation 

mixes, and also across seasons, due to different heating and cooling requirements, and 

different generation conditions. 

3.2. Modeling tail-risk scenarios by conditional quantile regression 

Conditional quantile regression is a methodology for estimating the conditional quantiles of 

the cumulative distribution of a response variable, in our case electricity prices, given some 

covariates. In these models, based on Koenker & Bassett (1978), a quantile of the response 

variable is presented as a linear combination of right-hand-side variables, and estimating the 

model implies finding the coefficients for that linear combination. Quantile regression allows 

the comparison of the effect of natural gas price changes on electricity prices when electricity 

prices are relatively high (high quantiles) or relatively low (low quantiles). Such different 

quantiles correspond to abnormally high or low electricity prices, and are naturally related with 

scenarios of scarcity and abundance in electricity generation, respectively. We exemplify this as: 

𝑄𝜃(𝑑𝑌𝑡|Xt−1) = Xt−1𝛽(𝜃),     (2) 

where 0 < 𝜃 < 1 and 𝑄𝜃(. |. ) denotes the conditional quantile function for the 𝜃-th quantile 

of the response variable 𝑌𝑡 . 𝛽(𝜃)  is a vector that contains the slope coefficients of the 

quantiles regression associated with the effect of each explanatory variable on the variable 𝑌𝑡. 
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These slope coefficients can be interpreted as rates of change, as in any ordinary linear model. 

Thus, the scalar 𝛽𝑘(𝜃)  corresponds to the rate of variation of the 𝜃 -th quantile of the 

dependent variable distribution per unit of change in the value of the 𝑘-th regressor such that: 

𝛽𝑘 =
 ∂𝑄𝜃(𝑑𝑌𝑡|𝑋𝑡−1)

∂𝑥𝑘𝑡−1
. If we extend 𝑋𝑡−1

′  to include natural gas prices with weather factors, we 

will be particularly interested in the case where k corresponds to natural gas, so we can obtain 

𝛽𝑔𝑎𝑠  at different quantiles of electricity prices. The estimations of the quantile slopes are 

obtained solving a nonlinear problem given by: 

β(θ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝐸[𝜌𝜃(𝑌 − 𝑋𝑖′𝛽)],    (3) 

with asymmetric loss: 

𝜌𝜃(𝑢) = (1 − 𝜃)𝐼{𝑢<0}|u| + θ𝐼{𝑢>0}|u|.   (4) 

3.3. Vulnerability indicators 

3.3.1. Indicator of the strength of dependency under generation distress 

Our first indicator corresponds to the slope quantile coefficient at extremely high quantiles, 

given by: 

𝐼1 ≡ 𝛽𝑔𝑎𝑠(𝜃 = [0.9,0.95,0.99]).    (5) 

The indicator in Equation 5 is interpreted as the effect of natural gas prices on electricity prices 

when electricity prices are abnormally high to directly examine shock transmission under 

generation distress. It can be interpreted as a traditional “beta” (regression slope) in a linear 

regression, but rather than referring to the impact of the explanatory variable on the mean, it 

references the impact on a given (high) quantile of the explained variable. These high quantiles 

correspond to high electricity prices observed during generation distress periods. 

3.3.2. Indicators of asymmetry in the response at extreme quantiles 

Our second and third indicators measure how much the response of electricity to natural gas 

prices changes between extremely high and extremely low quantiles of electricity price 

distribution. The logic of the two indicators is that vulnerability may arise, not only as a 

consequence of the transmission from natural gas to electricity prices itself, but also because 

this transmission may intensify precisely during times of market distress when generation is 

costly and diversification across generation sources is difficult. The first indicator is given by: 
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𝐼2 ≡
𝛽𝑔𝑎𝑠(𝜃=𝜃ℎ𝑖𝑔ℎ) 

𝛽𝑔𝑎𝑠(𝜃=𝜃𝑙𝑜𝑤)
,      (6) 

where an 𝐼2  greater than one indicates that a greater proportion of natural gas price is 

transmitted to the price of electricity when electricity is expensive than when it is cheap. For 

example, if 𝐼2 = 2  for a given country, this indicates that the natural gas price shock is 

transmitted twice as much when the electricity prices are high than when they are low. Despite 

the convenient and straightforward interpretation of 𝐼2, one drawback of this indicator is that 

it is not defined when the transmission at low quantiles is statically equal to zero. For this 

reason, we propose a third indicator of the distance between the transmission of the natural 

gas shocks to electricity at high and low quantiles given by: 

𝐼3 ≡
𝛽𝑔𝑎𝑠(𝜃=𝜃ℎ𝑖𝑔ℎ)−𝛽𝑔𝑎𝑠(𝜃=𝜃𝑙𝑜𝑤) 

2
.    (7) 

The two indicators in Equations 6 and 7 are similar, but convey distinct information. Both 

measure the distance between the transmission effect recorded when electricity is relatively 

expensive (i.e.,., 𝜃ℎ𝑖𝑔ℎ = [0.9, 0.95, 0.99] ), and when it is relatively cheap (i.e.,., 𝜃𝑙𝑜𝑤 =

[0.1,0.05,0.01]). The first is relative, in the sense that the scale of the transmission effect from 

gas to electricity is removed when divided by the low quantile slopes. In contrast, the second 

indicator does not perform such standardization. The greater any of the two indicators, the 

greater the distance between the two regimes of the market, and the more vulnerable the 

market, in the sense that nonlinearities may be unexpected and afflict the market with 

generation distress, making it more difficult for market participants to determine accurate 

expectations of future market dynamics. 

4. Data 

We use data from Bloomberg and ENTOS-E for our set of 21 electricity markets, including 

Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 

Italy, Latvia, Lithuania, the Netherlands, Norway, Portugal, Slovakia, Slovenia, Spain, Sweden, 

Switzerland, and the UK, from January 1, 2015 to March 11, 2022.3 We include all markets for 

which a sample of size of roughly seven years was available. This is important, given our 

 
3 Poland has information from August 1, 2015, but there are many missing values, so we opted to exclude it from 
our research. 
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special focus on very high and very low quantiles; that is, we needed to estimate using a 

relatively large sample size, accounting for sufficient data points in the two tails of electricity 

price distribution. We also used the sample size for all countries, even when we have earlier 

information for some of the markets, with the aim of facilitating meaningful comparisons 

across countries. Notably, our study sample includes clear and historic episodes of market 

distress in European electricity markets from 2021:Q3 to 2022:Q1. 

Our set of variables includes the TTF and the UK NBP, natural gas indices, wholesale 

electricity prices in each country, and weather-related variables, including wind speed, 

temperature, precipitation, and irradiance. The latter was retrieved from the solar radiation 

data, SoDa Service. We use daily data, relying on 1,877 transaction days in our sample period 

for estimations. When there is available information for the prices of more than one zone in a 

given country (as in the case of Norway, Sweden, and Denmark), we use the information 

regarding the largest geographical zone. 

Table 1 presents the summary statistics of our sample variables. There is wide variability across 

countries in terms of both weather and electricity prices. Weather variability translates to price 

variability, not only because it pushes demand in asymmetric ways (i.e., different heating or 

cooling needs), but also because weather directly impacts generation through variable 

renewable energy sources, such as solar panels and wind turbines. We also conducted unit root 

Augmented Dickey Fuller (ADF) tests to ensure the stationarity of our dependent variables 

before estimation that are available upon request. 

Table 1. Descriptive statistics 

Statistic 
Electricity 

Prices 
Temper

ature 
Wind 
Speed 

Precipit
ation 

Irradian
ce 

Electricity 
Prices 

Temper
ature 

Wind 
Speed 

Precipitat
ion 

Irradian
ce 

  Belgium Czech Republic 

Min -133.56 -6.16 1.36 0.00 193.65 -10.24 -8.01 1.41 0.00 195.54 

Mean 57.22 11.22 7.20 223.25 3,072.06 53.76 10.62 4.28 492.50 3,192.90 

Max 461.95 29.32 23.01 6,366.18 8,460.75 487.41 27.69 16.06 25,225.00 8,476.60 

Sds 48.70 6.31 3.38 443.40 2,193.96 46.71 7.46 1.86 955.37 2,273.85 

Skewness 3.63 0.09 1.01 5.03 0.55 4.05 0.12 1.57 10.57 0.49 

Kurtosis 17.16 -0.60 1.17 43.03 -0.84 21.05 -0.99 3.52 241.12 -0.97 

  Denmark Estonia 

Min -3.93 -7.34 2.19 0.00 132.49 5.86 -20.56 1.59 0.00 81.17 

Mean 44.94 9.84 9.87 265.08 2,809.01 50.20 6.93 8.19 266.20 2,605.14 
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Max 464.54 25.18 24.04 4,494.28 8,338.59 469.03 27.16 20.58 4,562.05 8,271.84 

Sds 38.88 6.34 3.78 431.46 2,244.00 35.11 8.18 3.14 434.27 2,361.13 

Skewness 4.75 0.10 0.65 3.03 0.64 4.63 -0.09 0.64 3.33 0.73 

Kurtosis 33.02 -0.94 0.03 13.52 -0.78 33.91 -0.54 0.05 16.65 -0.73 

  Finland France 

Min 2.99 -25.87 2.04 0.00 72.37 3.68 -3.38 2.40 0.00 219.34 

Mean 43.64 5.37 7.39 295.52 2,615.27 57.22 13.21 7.08 337.77 3,270.65 

Max 469.03 25.15 17.48 3,813.50 8,234.59 540.66 30.12 17.32 8,313.32 8,438.24 

Sds 29.75 8.81 2.63 429.62 2,374.07 52.57 6.37 2.21 551.17 2,257.91 

Skewness 6.04 -0.22 0.68 2.83 0.69 3.83 0.12 0.82 5.01 0.50 

Kurtosis 62.23 -0.32 0.30 11.14 -0.80 18.12 -0.89 0.74 45.13 -0.94 

  Germany Greece 

Min -42.24 -9.40 2.46 0.00 152.04 15.79 -0.99 2.02 0.00 406.96 

Mean 49.28 10.37 6.99 214.35 2,992.16 68.58 17.65 6.50 159.70 4,787.72 

Max 487.57 28.14 22.57 2,719.73 8,358.23 426.90 33.75 18.02 3,910.59 8,665.93 

Sds 44.61 7.06 2.70 268.53 2,291.55 47.70 7.17 2.41 367.42 2,306.82 

Skewness 4.29 0.08 1.33 2.38 0.53 3.39 0.05 0.79 4.45 0.00 

Kurtosis 24.33 -0.83 2.35 9.48 -0.93 12.63 -1.08 0.60 27.24 -1.29 

  Hungary Italy 

Min 7.44 -10.50 1.49 0.00 226.47 10.66 -0.59 2.76 0.00 312.35 

Mean 61.47 11.57 6.24 269.50 3,615.35 67.70 15.81 5.55 269.77 4,459.97 

Max 544.73 29.94 18.91 7,577.17 8,422.91 587.67 29.59 14.94 13,799.70 8,654.48 

Sds 50.58 8.69 2.77 575.77 2,338.64 53.36 6.80 1.55 558.58 2,356.21 

Skewness 3.69 -0.03 1.09 5.09 0.30 3.69 0.16 1.25 10.34 0.13 

Kurtosis 17.17 -0.98 1.35 40.95 -1.20 16.79 -1.19 2.40 202.00 -1.32 

  Latvia Lithuania 

Min 5.86 -19.00 1.24 0.00 108.09 10.21 -18.53 0.29 0.00 136.59 

Mean 53.12 7.95 6.98 190.27 2,695.33 61.15 7.78 6.84 211.74 2,738.91 

Max 469.03 27.19 17.63 3,870.80 8,464.63 643.29 27.70 19.76 5,940.40 8,427.66 

Sds 35.87 8.41 2.88 363.31 2,252.68 43.69 8.13 2.81 434.82 2,203.40 

Skewness 4.56 -0.13 0.65 4.02 0.68 5.11 -0.08 0.84 5.09 0.68 

Kurtosis 32.04 -0.51 0.19 23.37 -0.71 43.07 -0.54 0.81 40.08 -0.67 

  Netherlands Norway 

Min 5.15 -6.28 2.30 0.00 148.70 0.94 -11.22 2.43 0 82.37 

Mean 54.24 11.06 8.47 268.28 2,955.96 37.81 6.64 7.37 452.95 2621.9 

Max 443.32 29.29 24.47 5,167.85 8,434.68 387.45 23.81 18.19 3274.94 8414.03 

Sds 45.60 6.04 3.72 421.91 2,224.24 31.99 6.75 2.43 452.07 2315.72 

Skewness 3.90 0.09 1.04 3.16 0.59 3.13 -0.08 1.03 1.84 0.71 

Kurtosis 18.86 -0.58 1.22 17.43 -0.82 16.14 -0.77 1.21 4.47 -0.72 

  Portugal Slovakia 

Min 2.02 4.74 2.56 0.00 415.17 -21.00 -10.82 1.97 0 212.82 
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Mean 62.38 16.16 7.57 197.34 4,817.50 56.44 10.56 6.52 292.11 3538.12 

Max 542.78 30.67 20.30 4,267.41 8,814.76 541.51 28.06 20.03 5739.29 8595.17 

Sds 48.67 4.42 2.43 472.03 2,281.02 49.03 8.44 2.54 525.48 2390.47 

Skewness 3.63 0.16 0.99 3.63 0.06 3.82 -0.01 1.14 3.63 0.35 

Kurtosis 17.12 -0.58 1.55 15.85 -1.28 19.54 -0.99 1.7 19.6 -1.2 

  Slovenia Spain 

Min -7.30 -12.43 0.75 0.00 269.31 2.19 2.06 2.3 0 437.83 

Mean 62.67 10.33 3.25 387.30 3,622.33 62.36 16.13 5.99 174.58 4784.1 

Max 561.96 27.70 12.47 7,755.09 8,647.34 544.98 29.42 17.14 2791.85 8921.29 

Sds 52.35 8.17 1.41 813.53 2,392.11 48.66 6.35 1.9 297.06 2390.41 

Skewness 3.76 -0.02 1.54 3.39 0.37 3.64 0.18 1.44 3.51 0.09 

Kurtosis 17.64 -1.03 4.64 14.79 -1.18 17.23 -1.15 3.01 18.01 -1.29 

  Sweden Switzerland 

Min 1.64 -14.63 2.40 0.00 77.07 -5.79 -11.02 1.84 0 200.22 

Mean 38.38 6.91 8.06 224.29 2,684.96 59.08 10.10 6.48 258.42 3535.37 

Max 413.48 24.81 19.50 3,481.76 8,256.65 574.54 28.40 19.52 3790.51 8765.21 

Sds 28.48 7.49 2.61 329.04 2,336.14 53.60 7.98 2.6 450.86 2365.6 

Skewness 4.65 -0.02 0.88 2.93 0.66 3.94 0.03 1.12 3.36 0.47 

Kurtosis 37.54 -0.72 0.98 12.37 -0.80 19.58 -0.89 1.4 14.77 -1.03 

  United Kingdom TTF  NBP        

Min -10.13 -3.86 2.22 0.00 149.56 3.00 7.25       

Mean 58.74 10.92 7.95 253.51 2,918.00 22.62 55.98       

Max 460.96 25.83 21.34 2,773.34 8,549.24 220.80 512.00       

Sds 47.51 5.17 2.90 335.74 2,112.54 21.89 52.11       

Skewness 3.87 0.09 0.91 2.48 0.63 3.87 3.75       

Kurtosis 18.45 -0.68 1.08 8.68 -0.67 18.99 17.88       

Note: Units of electricity prices are EUR/Mwh, except for the UK, which is in GBP/MWh. Units of weather 

variables include temperature in degrees Celsius, wind speed in m/s, precipitation in an integer in 100th mm, and 

irradiance in Wh/m2. Lastly, the TTF natural gas prices are in EUR/MWh, and NBP natural gas prices are in 

GBP/therm. 

Figure 1 presents the generation mix for each of the countries in our dataset, and Figure 2 

shows the electricity price dynamics compared to natural gas prices. The generation mix 

reveals heterogeneity in electricity production. The various mixes are also related to different 

market structures and characterized by divergent levels of market competition in the provision 

of power. These heterogeneities in generation, and differences in the physical transmission of 

power between countries, translate into different price dynamics. Nevertheless, Figure 2 

indicates that all prices spiked when natural gas prices increased in the last year of our sample. 
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Figure 1. Generation mix in percentage, year 2020 

 

Note: Authors’ own elaboration with data retrieved from ourworldindata.org for the year 2020.
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Figure 2. Electricity (black) and natural gas (red) prices 
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Note: The left vertical axis corresponds to electricity prices, and the right vertical axis corresponds to TTF natural 

gas prices. 

5. Results and discussion 

Table 2 presents the slope coefficients associated with the effect of natural gas prices and 

weather variables on electricity prices at two extreme quantiles of the conditional distribution 

of electricity prices (i.e., 𝜃 = 0.95 in Panel A and 𝜃 = 0.05 in Panel B), alongside respective 

standard errors. To facilitate meaningful and direct comparisons of the effects across countries 

and between different covariates (e.g., gas vs. weather), prior to estimation, all the variables in 

our data set were standardized to have zero mean and unit variance. Thus, these can be 

understood as “beta-coefficient” models, in the sense that they are used in traditional linear 

regression, according to which we analyze the effect of a one-standard deviation shock of the 

explanatory variable on a given quantile of electricity prices. At the bottom of each panel, we 

also present the statistic of goodness of fit proposed by He & Zhu (2013), in which the null 

hypothesis refers to a linear specification of the quantile regression. 

Table 2 yields five important insights. i) Natural gas prices (TTF) clearly exert a larger effect on 

electricity prices than weather variables. ii) The effect of natural gas dramatically rises for the 

high quantiles (right tail) of the electricity price distribution when electricity is expensive. iii) 

The effect of weather factors is greater, in terms of statistical significance, for the low quantiles 

(left tail) of electricity price distribution, which is consistent with marginal cost-based pricing. 

iv) Heterogeneous effects of weather variables are evident across countries in both tails, 

according to the generation mix of each country. v) There is an expected negative sign (or 
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zero) effect of wind speed, irradiance, and precipitation for all countries, while the effect of 

temperature has different signs depending on the country. 

First, the dominance of natural gas as a determinant of electricity prices is exemplified by the 

position of natural gas as the only variable that is consistently significant for all countries at the 

two tails of the electricity price distribution, with any traditional confidence level, as well as the 

magnitude of the effect of natural gas being several orders greater than fundamental weather 

factors. To illustrate this point, let us focus on the case of Denmark, which according to Figure 

1, has the greatest share of wind generation in its generation mix (57.66%), while natural gas 

only amounted to 4.57% of the generation. When electricity is expensive (Panel A) (i.e., in a 

scenario of system distress), the effect of natural gas on Danish electricity prices equals 1.31, 

while the effect of wind is −0.04. Subsequently, the effect of natural gas is approximately 32 

times larger than the effect of wind speed. The circumstance differs for low quantiles (Panel B) 

when electricity is less expensive. In this case, the first two numbers are, respectively, 0.17 and 

−0.05. Even in this case, the effect of natural gas is approximately three times that of wind 

speed. This occurs in Denmark and in all the other countries in our sample. There is no single 

weather factor in any market or generation scenario, which is a match for natural gas prices as 

a fundamental driver of electricity prices. This is due to current market design in which the 

costliest generation technology (by general rule, natural gas, in our recent sample period) 

determines the price of all electricity traded in the market. In this way, the market design 

manages to revert the importance of natural gas as the least important factor for generation 

(see Figure 1) to the most important price driver. 

Second, our finding that the effect of natural gas prices on the higher quantiles of electricity 

prices is always larger than the effect on the lower quantiles for all the countries in our sample 

(see Figure 3 as well). This larger effect is particularly notable in Slovakia, Finland, Denmark, 

Germany, and the Netherlands, and it is considerably smaller for Italy, Spain, and Portugal. 

This suggests that in times of distress, the volatility of natural gas transmits to electricity prices 

much more when electricity prices are high than when they are low. For instance, in the case of 

Germany, the effect of natural gas at the high quantile (Panel A) is 1.26, while it is 0.33 at the 

low quantile (Panel B). This result holds for all countries in our sample.  

Third, the significance of weather variables is clearly higher at lower quantiles, corresponding 

to scenarios of less expensive electricity than at higher quantiles. Indeed, for countries like the 
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Czech Republic, Germany, Italy, Slovenia, Spain, and the UK, wind speed moves from 

insignificant to significant in statistical terms, when from Panel A to Panel B. The same occurs 

for irradiance in Estonia, Finland, France, Germany, Hungary, Latvia, Lithuania, the 

Netherlands, Slovenia, and Spain, and for precipitation in the Czech Republic, Estonia, and 

France. Overall, weather becomes considerably more relevant when electricity is relatively 

cheap than when it is more expensive and the system is under pressure. 

Our fourth point also relates to the effect of weather on electricity prices; that is, countries’ 

generation mix influences the size of the estimated effect. For instance, focusing on Panel A, 

in the case of Denmark, the effect of wind speed (as previously noted, wind power amounts to 

57.66% of Danish generation) is −0.044, whereas those of irradiance and precipitation are 

insignificant. This is because the proportion of generation using solar cells in Denmark is only 

4.30% and the hydroelectric generation is 0.07%. Notice that the share of generation by solar 

cells does not significantly differ from the share of natural gas in Denmark, yet renewables are 

never the costliest generation technologies under distress, so their impact on electricity price 

formation is null in times of crises, unlike the impact of natural gas. As Denmark represents an 

extreme case, we next consider Belgium. In Belgium, 5.73% of the generation corresponds to 

solar cells, and 14.45% to wind turbines, presenting a much more balanced example. This 

reflects in estimates of the effects of −0.106 for wind speed and −0.096 for irradiance when 

prices are soaring (Panel A), and virtually the same effect of both sources when electricity is 

cheap (Panel B), equal to −0.066. Similar analyses can be conducted in other countries, such as 

Greece and Italy, with considerable generation via both variable renewable technologies. 

Our final point relates to the unambiguous effects of weather factors (excluding temperature) 

on electricity prices; that is, higher wind speed, irradiance, or precipitation indicate that larger 

amounts of green energy can be generated and electricity will be cheaper (recall that in some 

cases the effect is insignificant for the reasons noted previously regarding market design). The 

case of temperature differs because, although it impacts generation, temperature fluctuation 

primarily impacts prices by affecting the demand for heating or cooling, which considerably 

varies across countries and seasons (summer versus winter). The effect of temperature on 

prices is negligible at both tails of the price distribution for only three countries in our sample, 

Belgium, France, and Slovakia. The effect is positive at low quantiles of electricity prices (i.e., 

summer season, non-distress periods) for most countries, indicating that the need for greater 
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cooling that emerges when temperature increases significantly pushes up electricity prices. In 

contrast, the effect disappears for most of the countries when we move to Panel A, which 

references the expensive electricity periods that are predominantly observed during the winter. 

Interestingly, the effect continues to be positive and significant at the high quantiles for only 

the Czech Republic, Germany, Greece, Italy, and the UK. Notably, only Norway records a 

negative effect of temperature at both tails of the price distribution. This can be explained with 

two facts. During the winter season, hydroelectric power generation may be halted due to 

frozen water reservoirs when temperatures drop below zero degrees Celsius, resulting in less 

efficient technologies producing electricity. This is indeed a very relevant concern for Norway, 

which generates more than 92% of its electricity using hydropower, as shown by Mosquera-

López et al. (2018). Conversely, during the summer season (associated with the low quantiles), 

freezing is no longer a concern, but greater temperatures might still trigger electricity prices 

due to increased cooling requirements. Indeed, the effect of temperature on electricity prices is 

also negative for other countries, such as Finland, Sweden, and Switzerland, in the same low 

quantiles (Panel B). 

Table 2. Effect of natural gas prices and weather variables on quantile 0.95 and 0.05 of 
electricity prices 

Panel A. 0.95 electricity prices quantile 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

Intercept 
0.494*** 0.553*** 0.750*** 0.714*** 0.909*** 0.519*** 0.597*** 

(0.029) (0.026) (0.037) (0.031) (0.048) (0.019) (0.023) 

TTF 
1.094*** 1.218*** 1.313*** 1.112*** 1.167*** 1.166*** 1.261*** 

(0.050) (0.058) (0.087) (0.072) (0.109) (0.028) (0.052) 

Temperature 
-0.038 0.049*** 0.050* 0.011 -0.028 -0.038 0.041* 

(0.033) (0.018) (0.030) (0.031) (0.052) (0.024) (0.023) 

Wind Speed 
-0.106*** -0.009 -0.044* -0.086*** -0.137*** -0.033* -0.021 

(0.028) (0.019) (0.024) (0.021) (0.040) (0.019) (0.019) 

Precipitation 
-0.034* -0.002 0.038*** -0.008 0.008 0.020 -0.048** 

(0.018) (0.021) (0.011) (0.009) (0.043) (0.019) (0.021) 

Irradiance 
-0.096*** -0.033* 0.003 0.010 0.020 0.010 -0.021 

(0.033) (0.018) (0.030) (0.030) (0.053) (0.024) (0.023) 

GOF-t 0.006 0.004 0.003 0.002 0.005 0.003 0.004 

P-value 0.000 0.070 0.080 0.240 0.010 0.030 0.080 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 

Intercept 
0.590*** 0.577*** 0.386*** 0.663*** 0.739*** 0.426*** 0.613*** 

(0.012) (0.022) (0.015) (0.056) (0.062) (0.015) (0.021) 

TTF 1.204*** 1.151*** 1.137*** 1.176*** 1.176*** 1.190*** 1.130*** 
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(0.025) (0.027) (0.019) (0.119) (0.127) (0.026) (0.042) 

Temperature 
0.096*** 0.033 0.094*** 0.035 0.012 0.028 -0.060*** 

(0.015) (0.031) (0.018) (0.036) (0.031) (0.019) (0.020) 

Wind Speed 
-0.019** -0.048** 0.010 -0.110*** -0.113*** -0.018 -0.047*** 

(0.009) (0.023) (0.016) (0.028) (0.018) (0.016) (0.015) 

Precipitation 
-0.023 -0.044*** 0.007 -0.035* -0.036*** -0.005 -0.030*** 

(0.021) (0.008) (0.019) (0.020) (0.012) (0.014) (0.010) 

Irradiance 
-0.052*** -0.043 -0.066*** -0.034 0.036 -0.009 -0.011 

(0.016) (0.031) (0.018) (0.030) (0.028) (0.019) (0.019) 

GOF-t 0.011 0.003 0.004 0.002 0.003 0.006 0.009 

P-value 0.000 0.200 0.030 0.250 0.150 0.000 0.000 

Country Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

Intercept 
0.343*** 0.714*** 0.515*** 0.341*** 0.806*** 0.435*** 0.380*** 

(0.009) (0.038) (0.015) (0.010) (0.039) (0.018) (0.032) 

TTF 
1.088*** 1.257*** 1.105*** 1.099*** 1.226*** 1.145*** 1.201*** 

(0.017) (0.080) (0.019) (0.021) (0.082) (0.037) (0.066) 

Temperature 
-0.011 0.022 0.037 0.016 -0.051 -0.007 0.027** 

(0.008) (0.040) (0.023) (0.011) (0.042) (0.019) (0.013) 

Wind Speed 
-0.012 -0.040 -0.028* -0.001 -0.121*** -0.029* -0.047*** 

(0.008) (0.025) (0.016) (0.011) (0.020) (0.017) (0.012) 

Precipitation 
-0.018** -0.029 0.004 0.012* 0.016 0.003 0.007 

(0.007) (0.026) (0.016) (0.007) (0.022) (0.007) (0.015) 

Irradiance 
0.019* -0.071* -0.037 0.007 -0.025 -0.034* -0.029* 

(0.010) (0.039) (0.023) (0.012) (0.036) (0.020) (0.017) 

GOF-t 0.006 0.002 0.003 0.004 0.003 0.002 0.002 

P-value 0.010 0.240 0.050 0.240 0.080 0.320 0.210 

Panel B. 0.05 electricity prices quantile 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

Intercept 
-0.445*** -0.466*** -0.702*** -0.554*** -0.776*** -0.467*** -0.535*** 

(0.026) (0.021) (0.024) (0.014) (0.029) (0.033) (0.023) 

TTF 
0.494*** 0.480*** 0.167*** 0.372*** 0.187*** 0.453*** 0.327*** 

(0.056) (0.039) (0.048) (0.028) (0.069) (0.066) (0.050) 

Temperature 
0.003 0.066*** -0.026 0.033*** -0.063** -0.011 0.035** 

(0.014) (0.013) (0.026) (0.012) (0.027) (0.012) (0.017) 

Wind Speed 
-0.066*** -0.065*** -0.052*** -0.032*** -0.047** -0.022** -0.079*** 

(0.017) (0.007) (0.020) (0.011) (0.020) (0.010) (0.015) 

Precipitation 
-0.013 0.021* -0.037 0.022*** 0.000 -0.037** -0.009 

(0.032) (0.011) (0.029) (0.008) (0.016) (0.017) (0.009) 

Irradiance 
-0.066*** -0.043*** -0.012 -0.036*** -0.050* -0.056*** -0.037** 

(0.017) (0.009) (0.029) (0.013) (0.028) (0.009) (0.016) 

GOF-t 0.004 0.005 0.006 0.002 0.008 0.003 0.004 

P-value 0.040 0.010 0.010 0.310 0.000 0.020 0.080 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 
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Intercept 
-0.387*** -0.479*** -0.32*** -0.519*** -0.562*** -0.341*** -0.603*** 

(0.011) (0.013) (0.012) (0.014) (0.015) (0.023) (0.011) 

TTF 
0.628*** 0.510*** 0.720*** 0.451*** 0.435*** 0.575*** 0.684*** 

(0.023) (0.031) (0.023) (0.030) (0.025) (0.046) (0.015) 

Temperature 
0.048*** 0.030*** 0.053*** 0.112*** 0.121*** 0.031*** -0.181*** 

(0.011) (0.011) (0.007) (0.011) (0.015) (0.006) (0.015) 

Wind Speed 
-0.018*** -0.020*** -0.019** -0.022*** -0.014 -0.043*** -0.023** 

(0.006) (0.005) (0.008) (0.007) (0.009) (0.008) (0.012) 

Precipitation 
-0.007 -0.004 -0.007 -0.008 -0.017 0.004 0.005 

(0.006) (0.014) (0.009) (0.008) (0.029) (0.007) (0.009) 

Irradiance 
-0.022** -0.026** -0.048*** -0.039*** -0.051*** -0.066*** 0.022 

(0.010) (0.010) (0.008) (0.011) (0.017) (0.008) (0.017) 

GOF-t 0.003 0.004 0.004 0.002 0.002 0.005 0.009 

P-value 0.200 0.160 0.020 0.350 0.220 0.010 0.000 

Country Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

Intercept 
-0.411*** -0.597*** -0.443*** -0.418*** -0.848*** -0.396*** -0.331*** 

(0.028) (0.021) (0.019) (0.029) (0.022) (0.013) (0.011) 

TTF 
0.711*** 0.364*** 0.600*** 0.708*** 0.235*** 0.564*** 0.594*** 

(0.061) (0.043) (0.042) (0.046) (0.044) (0.027) (0.023) 

Temperature 
0.122*** 0.024 0.034** 0.172*** -0.111*** -0.075*** 0.014*** 

(0.020) (0.016) (0.015) (0.012) (0.018) (0.009) (0.002) 

Wind Speed 
-0.023 -0.003 -0.060*** -0.069*** -0.022 0.004 -0.023*** 

(0.018) (0.012) (0.010) (0.014) (0.016) (0.009) (0.002) 

Precipitation 
-0.070** 0.009 -0.003 -0.004 -0.017 -0.008** 0.001 

(0.031) (0.008) (0.006) (0.009) (0.015) (0.004) (0.002) 

Irradiance 
-0.030 -0.048*** -0.030** -0.034** -0.010 -0.049*** -0.005** 

(0.026) (0.016) (0.012) (0.016) (0.016) (0.008) (0.002) 

GOF-t 0.002 0.001 0.003 0.008 0.007 0.003 0.006 

P-value 0.510 0.490 0.040 0.020 0.000 0.040 0.000 

Note: This table presents the slopes and associated bootstrapping standard errors of transmission from gas prices 

and weather to electricity prices at high (𝜃 = 0.95) and low quantiles (𝜃 = 0.05). It also presents He & Zhu’s 

(2013) statistic and p-value. Bold numbers indicate that the null hypothesis of linearity on a given quantile cannot 

be rejected at conventional confidence level. 

Regarding the goodness of fit of our models, the last two rows of Panels A and B of Table 2, 

show He & Zhu’s (2013) statistic, which considers the null hypothesis of linearity in the 

quantile regression on a given quantile. As can be observed when 𝜃 = 0.95 and 𝜃 = 0.05, the 

null hypothesis is not rejected for 17 of the 21 countries examined; hence, the linear quantile 

regression seems appropriate as a benchmark for our analysis. We present two additional 

statistics in Table 3, including a Wald test of the hypothesis of equal slopes across the quantiles 

and Pseudo R2 (see Koenker & Machado (1999)), which measures the degree of fit of the 
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quantile regression models. The Wald test indicates that the null hypothesis is rejected for 

natural gas at any traditional confidence level for all countries in our sample. The results for 

the weather variables are mixed, as it seems that some effects could still be modeled in linear 

terms without significant loss for some countries. Finally, the Pseudo R2 indicates the model 

adjustment across the whole density, modeling the quantiles of electricity independently. This 

number falls between a minimum value of 0.36 for Finland and a maximum of 0.76 for Italy. 

The most typical values are between 0.6 and 0.7, including countries like Belgium, the Czech 

Republic, France, Greece, Hungary, Portugal, the Netherlands, Norway, Slovenia, Spain, 

Sweden, Switzerland, and the UK. Overall, we can conclude that the model fit is adequate. 

Finally, given that the variables in our models are observed prices and meteorological variables, 

and both are measured with a high level of precision, measurement error is not a concern. In 

case it was, an alternative sieve quantile estimation provided by Hausman et al. (2021) would 

be in order. 

Table 3. Wald test and Pseudo R2 of the quantile regressions 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

TTF 42.949*** 108.196*** 117.184*** 100.819*** 61.276*** 35.466*** 68.433*** 

Temperature 1.519 3.768*** 7.899*** 0.833 1.350 4.052*** 2.259** 

Wind Speed 0.924 1.686 0.943 3.809*** 1.601 0.996 1.857* 

Precipitation 0.997 0.395 4.003*** 2.071* 1.008 1.523 2.199* 

Irradiance 0.769 0.287 0.397 1.338 0.560 2.329** 1.699 

Pseudo-R2 0.662 0.655 0.499 0.504 0.360 0.680 0.616 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 

TTF 81.159*** 73.377*** 135.262*** 50.967*** 20.859*** 49.505*** 31.596*** 

Temperature 5.866*** 0.877 2.697** 1.862* 3.772*** 0.566 7.605*** 

Wind Speed 3.664*** 3.024*** 1.622 4.656*** 13.276*** 1.585 4.088*** 

Precipitation 2.766** 22.579*** 1.080 0.723 2.081* 0.553 1.889* 

Irradiance 5.627*** 1.464 5.016*** 1.285 1.976* 2.992** 1.312 

Pseudo-R2 0.696 0.647 0.762 0.536 0.478 0.728 0.607 

Country Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

TTF 268.976*** 107.331*** 84.085*** 25.324*** 142.34*** 75.45*** 31.958*** 

Temperature 26.504*** 0.461 1.890* 23.913*** 3.065*** 4.836*** 2.121* 

Wind Speed 0.612 1.512 3.079*** 6.312*** 3.800*** 3.433*** 1.838 

Precipitation 1.440 3.54*** 1.384 1.314 2.252** 10.904*** 0.376 

Irradiance 3.247*** 0.266 2.123* 4.106*** 1.561 4.774*** 2.725** 

Pseudo-R2 0.748 0.572 0.672 0.741 0.422 0.718 0.684 
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Note: This table presents the Wald statistic for all the regressions estimated at different quantiles of electricity 

prices distribution to test the hypothesis of equal slopes across the quantiles. The table also shows the Pseudo R2 

of the degree of fit of the models. 

Now we turn to our first indicator of vulnerability, 𝐼1, which corresponds to the slope, beta, of 

electricity on natural gas, at very high quantiles. In Figure 3, we present the indicator when 𝜃 =

0.95 , and 𝜃 = 0.05 . The variability of the quantile slope is greater at the left tail of the 

electricity price distribution than at the right tail, indicating that generation distress is a 

generalized fact in the markets, rather than being entirely related to market idiosyncrasies. 

Cases wherein the quantile slope is greater than one mean that the natural gas shock induces a 

more than proportional response in electricity price quantile, and the opposite holds for slopes 

lower than one. 

Figure 3. 𝑰𝟏 indicator 

 

Note: This figure presents the beta estimates of regression slopes for 0.95 (𝐼1 indicator) and 0.05 quantile. 

Regarding the other indicators of vulnerability, we compute the ratio of transmission described 

in Equation 6, and the distance indicator presented in Equation 7, corresponding to 𝐼2 and 𝐼3, 

respectively, for each country in our sample, setting 𝜃 = 0.95 for the high quantiles and 𝜃 =

0.05 for the low quantiles, then conduct extensive robustness exercises, some of which can be 

found in the Appendix. In our robustness checks, we change the quantiles at which the 

statistics are constructed (i.e., 𝜃ℎ𝑖𝑔ℎ = 0.99, 0.90 and 𝜃𝑙𝑜𝑤 = 0.01,0.10). We also change the 

natural gas prices reference index to NBP in the UK. In all the cases, virtually identical results 
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are obtained, and the ranking of vulnerability constructed based on our indicator remains 

unaltered. 

The two indicators are plotted in Figure 4; 𝐼2 on the left and 𝐼3 on the right. A number greater 

than one in 𝐼2 indicates that the price of natural gas is transmitted to the price of electricity at a 

greater proportion when electricity is expensive than when it is cheap. For example, the 

indicator 𝐼2 for Denmark is equal to 7.86, which is the result of dividing the effect of natural 

gas on electricity when the price of electricity is high by the effect when electricity has a low 

price (see Table 2). The 𝐼3 indicator for Denmark is 0.57. Both cases clearly indicate that price 

is transmitted more upwards (when prices tend to be high) than downwards (when prices tend 

to be low). 

The effects are less pronounced for the third indicator than for the second, but the rankings 

remain similar. For instance, the top and bottom five countries, which correspond to the most 

and least vulnerable, respectively, are the same according to both indicators; namely, Denmark, 

Finland, Sweden, Germany, and Slovakia are the most vulnerable, whereas Portugal, Spain, 

Italy, Norway, and Slovenia are the least vulnerable. There are some notable differences in the 

middle of the cross-sectional distribution of the countries’ indicators, whether considering the 

second or the third. For instance, on the left of Figure 4, the Czech Republic and the UK 

move two positions downward, while Switzerland and Belgium move upward. Movement is 

not greater than two positions in any case. Such variations can be explained by the fact that 𝐼2 

factors out the magnitude of the effect of the transmission because it is a ratio, whereas 𝐼3 

does not. 
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Figure 4. 𝑰𝟐 and 𝑰𝟑 indicators 

𝑰𝟐 𝑰𝟑 

  

Note: This figure shows the indicators 𝐼2 (left side) and 𝐼3 (right side) of the transmission from gas to electricity 

prices at high quantiles (𝜃 = 0.95) over low quantiles (𝜃 = 0.05), respectively. 

Overall, our two indicators emphasize the nonlinear transmission of natural gas prices to 

electricity prices, which affects national European markets in diverse ways. Denmark and 

Finland present higher ratios, and are therefore the most vulnerable to natural gas price shocks 

such as those observed in 2021 and the beginning of 2022. Asymmetric resilience in terms of 

𝐼2 in the electricity markets of our sample account for heterogeneities in power generation 

sources and level of market integration. Note that Denmark and Finland are not countries with 

a large dependence on natural gas, which implies that the generation mix is not determining 

countries’ resilience to natural gas shocks (see Figure 1). 

Figure 5 presents the effect of natural gas prices on the total distribution of electricity prices, 

and the effect of the weather variables for the two countries that exhibit the lowest 

transmission of natural gas price shocks (Spain and Portugal), and the two countries with the 

highest ratios of transmission (Denmark and Finland). In all the cases, we find clearly 

increasing effects from lower to higher quantiles, although at very different paces in the four 
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countries. For instance, in Finland, the effect increases at a stable and low step for most of the 

distribution and then jumps at extremely high quantiles. 

Figure 5. The effect of natural gas prices and weather covariates on electricity prices at 
different quantiles of price distribution for Portugal, Spain, Finland, and Denmark 
 

Portugal Spain 

  

Finland Denmark 

  

Note: The horizontal axis presents the quantiles of electricity prices (5th and 95th), while the vertical axis is the 

effect of the explanatory variable. The dotted black lines are the varying influences across quantiles, alongside 
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95% confidence intervals. The red solid line is the effect at the mean of the price distribution, with associated 

confidence intervals. The explanatory variables are GAS through the TTF, TEMP is the average temperature, 

WIND is the average wind speed, PREC is the average precipitation, and IRRA is the irradiance of the capital of 

the respective country. 

 

We now investigate the factors underlying the cross-sectional heterogeneities regarding our 

proposed vulnerability indicators. Table 4 presents the results of the regressions using 𝐼2 (Panel 

A) or 𝐼3 (Panel B) as the dependent variables and several explanatory variables. This set of 

regressors include an indicator of market (des)integration, the proportion of generation 

attributable to natural gas, hydro, wind, and solar generation, and the total exports and imports 

for each country. A note of caution must be shared at this point. We use only 21 observations 

(one per country) to conduct these regressions, severely limiting the number of explanatory 

regressors that can be simultaneously included in our exercise. 

We construct our own indicator of market integration referencing previous research in 

international economics (see, for instance, Rangvid et al. (2016) or Uribe & Chuliá (2021)); that 

is, we estimate a general factor of electricity prices, as the first principal component of our 

series of 21 electricity prices, then regress each price series on this general factor to obtain the 

residuals. Our estimate of market integration is the average of the absolute value of the residual 

series for each country. The higher the indicator, the less integrated a market. Recent examples 

in the literature that also employ statistics of market integration based on energy prices include 

Böckers & Heimeshoff (2014), Nitsche et al. (2010), and Robinson (2007). A recent alternative 

approach, explored by Batalla-bejerano et al. (2019), is estimating a gravity model as in 

international trade. Although attractive, it is unclear how to apply the model to obtain 

individual estimates of disintegration, as required by this inquiry. 

Our general electricity factor accounts for 87.9% of the total variability of idiosyncratic country 

prices, which is a considerably large fraction. According to Table 4, the indicator of market 

(des)integration is the only variable that remains significant across all explanatory regressions in 

the table, and also has a larger magnitude in comparison to the other covariates. Once again, 

this set of regressions was conducted after standardizing the right-hand-side variables to have 

zero mean and unit variance; thus, it is a beta-coefficient model and the magnitudes are 

comparable between the various explanatory variables. Notice that the effect of market 

(des)integration is consistently very close to or above unity in Panel A, and is greater than all 
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other effects in the two panels. It is also notable that model adjustment, as measured by the R2 

of the regressions, significantly increases when we include market (des)integration within the 

set of explanatory variables. Our models explain up to 60% of the variability in Panel A, and 

close to 70% in Panel B. 

Our results regarding market integration are congruent with classical trade theory, according to 

which larger markets allocate resources in a more efficient manner, satisfying the demands of 

the various integrated markets more efficiently. Greater integration also allows greater 

international consumption risk-sharing, which minimizes single country’s consumption risks. 

In the absence of international market integration, shocks cannot be diversified-away through 

trade. It seems that in addition to these classical arguments, we can also add that more 

integrated markets lead to a greater stability concerning the transmission effects of natural gas 

prices on domestic electricity prices. 

We next analyze the effect of the proportion of natural gas in the generation mix. When this 

effect is significant, it has a negative sign, indicating that the greater the electricity generation 

via natural gas, the smaller the vulnerability indicators. This is revealed because our statistics 

focus on the relative strength of the transmission from gas to electricity under different 

scenarios of distress, emphasizing systems’ exacerbated vulnerability during costly generation 

periods. The nonlinearities that we identify put the system at risk precisely because they are 

unexpected by market participants and regulators. Markets that are more accustomed to 

regularly managing a high transmission from natural gas to electricity prices can potentially 

navigate unexpected shocks to international fuel markets more effectively than those that are 

relatively isolated from these market dynamics during periods of unconstrained and regular 

operation. 
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Table 4. Determinants of market vulnerability 

Panel A. 𝐼2 indicator 

Specification (1) (2) (3) (4) (5) (6) 

Intercept 
2.887*** 2.887*** 2.887*** 2.887*** 2.887*** 2.887*** 

(0.281) (0.334) (0.283) (0.227) (0.228) (0.205) 

(Des)integration  
1.075***   0.948*** 0.991** 1.294*** 1.343*** 

(0.288)   (0.324) (0.373) (0.289) (0.254) 

Natural Gas 
  -0.707* -0.283 -0.584* -0.319 -0.453* 

  (0.343) (0.324) (0.277) (0.301) (0.242) 

Hydro 
      -0.586* -0.843*** -0.716*** 

      (0.294) (0.261) (0.237) 

Wind 
      0.436     

      (0.298)     

Solar 
      0.107     

      (0.346)     

Exports 
        0.344   

        (0.267)   

Imports 
          0.560** 

          (0.229) 

Adjusted-R2 0.392 0.140 0.384 0.601 0.598 0.677 

Panel B. 𝐼3 indicator 

Specification (1) (2) (3) (4) (5) (6) 

Intercept 
0.342*** 0.342*** 0.342*** 0.342*** 0.342*** 0.342*** 

(0.019) (0.021) (0.019) (0.015) (0.012) (0.013) 

(Des)Integration  
0.061***   0.053** 0.068** 0.085*** 0.080*** 

(0.019)   (0.022) (0.026) (0.016) (0.016) 

Natural Gas 
  -0.042* -0.018 -0.035* -0.013 -0.032* 

  (0.022) (0.022) (0.019) (0.016) (0.015) 

Hydro 
      -0.060** -0.065*** -0.055*** 

      (0.020) (0.014) (0.015) 

Wind 
      0.002     

      (0.020)     

Solar 
      0.001     

      (0.024)     

Exports 
        0.041**   

        (0.014)   

Imports 
          0.034** 

          (0.015) 

Adjusted-R2 0.300 0.115 0.289 0.521 0.699 0.662 

       
Note: This table presents regressions of market vulnerability on possible determinants and standard errors. ***, 
**, and * indicate statistical significance at 99%, 95%, and 90% confidence levels, respectively. 
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6. Conclusions and policy implications 

Our results contribute to a more comprehensive understanding of price formation 

mechanisms in electricity markets during abnormally high-stress periods. Although the price 

setting mechanisms are similar across the various European markets overall, considerable 

variations are revealed in terms of system transmission from natural gas to electricity prices. 

Denmark, Finland, Sweden, and Germany present the highest indicators of transmission from 

natural gas to electricity prices, which are significantly and consistently larger than the other 

markets in our sample, particularly Southern European markets. Spain, Italy, Portugal, and 

Norway present the lowest vulnerability indicators; however, even in these cases, the price 

increments of natural gas that occur when electricity price is high are not expected to be offset 

by future natural gas price reductions when electricity generation is less expensive. 

Our results inform the recent efforts of the European Commission (EC) to mitigate the 

soaring price of electricity in the EU (European Commission, 2021). The EC acknowledges 

the theoretical convenience of the current price setting mechanism, while also calling for an 

urgent debate regarding novel pricing and regulatory mechanisms to make the system more 

resilient to the kind of shocks observed in 2021 and 2022. In particular, the EC highlights the 

need to isolate the European system from the great uncertainty implied by the variability of 

fossil fuel markets, particularly natural gas, and more importantly, from an energy security 

perspective, to gain independence from geopolitical aspirations external to the EU (European 

Commission, 2021). We provide quantitative information to support these claims. 

From a medium-run perspective, our results emphasize the convenience of greater market 

integration across European countries, which is based on both geographic and economic 

interconnections. Market integration is fundamental to the future of the European electricity 

market. In fact, ENTSO-E’s System Needs Study (TYNDP, 2020) finds that 128 GW of 

additional cross-border transmission capacity must be reinforced to achieve European energy 

transition goals by 2040. Consequently, we highlight the importance of further studies on the 

level of Europe’s power market integration dynamics, shedding some light on the different 

potential roadmaps and requirements for each country to invest in networks, storage, 

transmission, and distribution grids. Lastly, other market determinants such as tightness or 

competitiveness levels may be explored by future literature. 
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Appendix A. Effect of natural gas prices and weather variables on quantile 0.99 and 

0.01 of electricity prices 

Panel A. 0.99 electricity prices quantile 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

Intercept 
0.973*** 0.751*** 1.164*** 1.392*** 1.711*** 0.794*** 0.933*** 

(0.078) (0.028) (0.080) (0.274) (0.425) (0.038) (0.043) 

TTF 
1.191*** 1.265*** 1.551*** 1.777*** 2.033** 1.233*** 1.438*** 

(0.032) (0.012) (0.183) (0.597) (0.792) (0.047) (0.052) 

Temperature 
-0.137** -0.002 0.006 -0.066 -0.044 -0.126*** -0.046 

(0.057) (0.027) (0.075) (0.208) (0.116) (0.038) (0.038) 

Wind Speed 
-0.127 -0.041** -0.066 -0.129 -0.236*** -0.016 -0.033* 

(0.078) (0.020) (0.058) (0.106) (0.087) (0.032) (0.019) 

Precipitation 
-0.074 -0.009 0.008 -0.020 0.064 -0.015 -0.021 

(0.053) (0.024) (0.019) (0.094) (0.106) (0.025) (0.035) 

Irradiance 
-0.168*** -0.039 0.040 0.053 0.060 0.033 0.034 

(0.063) (0.024) (0.080) (0.172) (0.105) (0.035) (0.036) 

GOF-t 0.001 0.000 0.001 0.000 0.001 0.001 0.001 

P-value 0.170 0.370 0.270 0.420 0.140 0.200 0.120 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 

Intercept 
0.783*** 0.891*** 0.611*** 1.394*** 1.670*** 0.756*** 0.924*** 

(0.028) (0.044) (0.047) (0.254) (0.348) (0.050) (0.148) 

TTF 
1.228*** 1.174*** 1.226*** 1.853*** 1.780** 1.413*** 1.194*** 

(0.026) (0.015) (0.104) (0.575) (0.707) (0.114) (0.328) 

Temperature 
0.114*** 0.017 0.177*** -0.070 -0.309 0.019 -0.118* 

(0.023) (0.061) (0.044) (0.213) (0.248) (0.043) (0.062) 

Wind Speed 
0.041* -0.020 0.048* -0.208* -0.205 -0.066** -0.123*** 

(0.023) (0.025) (0.028) (0.120) (0.135) (0.029) (0.023) 

Precipitation 
-0.076* -0.081*** -0.004 -0.062 -0.071 0.025 -0.067 

(0.046) (0.026) (0.044) (0.074) (0.517) (0.043) (0.043) 

Irradiance 
-0.137*** -0.094 -0.131*** 0.104 0.416* -0.042 -0.084** 

(0.027) (0.059) (0.042) (0.203) (0.228) (0.042) (0.038) 

GOF-t 0.001 0.001 0.000 0.000 0.000 0.000 0.001 

P-value 0.350 0.300 0.380 0.750 0.440 0.400 0.140 

Country Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

https://doi.org/10.1016/j.energy.2021.122517
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Intercept 
0.489*** 1.137*** 0.834*** 0.502*** 1.504*** 0.658*** 1.294*** 

(0.015) (0.067) (0.068) (0.024) (0.154) (0.039) (0.277) 

TTF 
1.12*** 1.379*** 1.032*** 1.127*** 1.748*** 1.171*** 2.200*** 

(0.007) (0.041) (0.048) (0.012) (0.322) (0.021) (0.605) 

Temperature 
-0.065*** -0.008 0.158* -0.049* -0.013 -0.101*** 0.133 

(0.013) (0.098) (0.084) (0.025) (0.147) (0.032) (0.168) 

Wind Speed 
-0.005 -0.008 -0.061** 0.026** -0.239*** -0.013 -0.056 

(0.010) (0.074) (0.029) (0.012) (0.059) (0.017) (0.116) 

Precipitation 
-0.017 -0.053 -0.022 -0.008 -0.021 0.004 0.012 

(0.020) (0.068) (0.041) (0.009) (0.034) (0.018) (0.114) 

Irradiance 
0.041** -0.080 -0.238*** 0.019 -0.029 0.003 -0.092 

(0.018) (0.101) (0.082) (0.024) (0.167) (0.020) (0.168) 

GOF-t 0.002 0.000 0.000 0.001 0.000 0.001 0.001 

P-value 0.030 0.720 0.360 0.180 0.490 0.260 0.250 

Panel B. 0.01 electricity prices quantile 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

Intercept 
-0.704*** -0.818*** -0.903*** -0.750*** -1.120*** -0.641*** -0.770*** 

(0.059) (0.054) (0.017) (0.038) (0.032) (0.039) (0.091) 

TTF 
0.263** 0.463*** 0.056** 0.326*** 0.035 0.389*** 0.265** 

(0.114) (0.055) (0.024) (0.015) (0.043) (0.076) (0.127) 

Temperature 
-0.033 0.265*** -0.058*** 0.062* -0.061* 0.038 0.058 

(0.035) (0.067) (0.008) (0.037) (0.033) (0.023) (0.094) 

Wind Speed 
-0.059** -0.051 -0.029*** -0.080** -0.043* -0.051*** -0.034 

(0.025) (0.063) (0.008) (0.034) (0.025) (0.019) (0.052) 

Precipitation 
-0.003 0.033 -0.015*** 0.037* 0.032** -0.036 0.002 

(0.022) (0.072) (0.003) (0.019) (0.014) (0.064) (0.046) 

Irradiance 
-0.062 -0.088 -0.002 -0.092* -0.036 -0.095*** 0.022 

0.044 0.065 0.01 0.048 0.042 0.026 0.091 

GOF-t 0.001 0.002 0.001 0.000 0.000 0.000 0.001 

P-value 0.060 0.000 0.120 0.470 0.280 0.410 0.420 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 

Intercept 
-0.512*** -0.653*** -0.445*** -0.697*** -0.792*** -0.509*** 

-
0.7751*** 

(0.056) (0.043) (0.021) (0.041) (0.029) (0.026) (0.068) 

TTF 
0.583*** 0.302*** 0.609*** 0.323*** 0.223*** 0.392*** 0.676*** 

(0.103) (0.087) (0.008) (0.042) (0.060) (0.049) (0.150) 

Temperature 
0.114*** 0.049*** 0.036** 0.149*** 0.074*** 0.050** -0.146*** 

(0.025) (0.009) (0.016) (0.036) (0.014) (0.022) (0.054) 

Wind Speed 
-0.021 -0.034*** -0.033*** -0.027** 0.028*** -0.033*** -0.052*** 

(0.015) (0.012) (0.011) (0.013) (0.009) (0.007) (0.020) 

Precipitation 
-0.034 -0.017 0.005 -0.014 0.007 -0.012 0.001 

(0.027) (0.038) (0.025) (0.009) (0.008) (0.014) (0.025) 

Irradiance 
-0.047 -0.013 -0.021 -0.084* -0.044*** -0.072*** 0.024 

(0.030) (0.009) (0.015) (0.047) (0.012) (0.020) (0.028) 
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GOF-t 0.001 0.000 0.000 0.000 0.001 0.000 0.003 

P-value 0.130 0.770 0.260 0.590 0.080 0.520 0.000 

  Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

Intercept 
-0.672*** -0.799*** -0.618*** -0.709*** -1.098*** -0.573*** -0.429*** 

(0.047) (0.042) (0.033) (0.045) (0.012) (0.033) (0.033) 

TTF 
0.545*** 0.321*** 0.463*** 0.452*** 0.070*** 0.388*** 0.445*** 

(0.014) (0.027) (0.026) (0.087) (0.018) (0.067) (0.066) 

Temperature 
0.138*** 0.054 0.110*** 0.249*** -0.074*** -0.034*** 0.014 

(0.019) (0.049) (0.035) (0.031) (0.017) (0.013) (0.010) 

Wind Speed 
-0.036** 0.045* -0.012 -0.067*** -0.052*** -0.011 -0.044*** 

(0.015) (0.024) (0.020) (0.020) (0.010) (0.013) (0.011) 

Precipitation 
-0.114 0.006 0.006 -0.031 -0.001 -0.016 0.005 

(0.116) (0.041) (0.018) (0.070) (0.004) (0.010) (0.007) 

Irradiance 
0.011 -0.073 -0.065*** -0.042 -0.013 -0.087*** -0.033 

(0.025) (0.047) (0.024) (0.032) (0.015) (0.013) (0.023) 

GOF-t 0.000 0.000 0.000 0.001 0.002 0.000 0.000 

P-value 0.590 0.370 0.640 0.480 0.000 0.480 0.700 

Note: This table presents the slopes and associated bootstrapping standard errors of transmission from gas prices 

and weather to electricity prices at high (𝜃 = 0.99) and low quantiles (𝜃 = 0.01). It also presents He & Zhu’s 

(2013) statistic and p-value. Bold numbers indicate that the null hypothesis of linearity on a given quantile cannot 

be rejected at conventional confidence level. 

Appendix B. Effect of natural gas prices and weather variables on quantile 0.90 and 

0.10 of electricity prices 

Panel A. 0.90 electricity prices quantile 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

Intercept 
0.342*** 0.414*** 0.558*** 0.556*** 0.674*** 0.370*** 0.448*** 

(0.015) (0.019) (0.019) (0.019) (0.026) (0.020) (0.020) 

TTF 
1.102*** 1.097*** 1.195*** 1.112*** 1.111*** 1.086*** 1.166*** 

(0.021) (0.044) (0.042) (0.036) (0.047) (0.045) (0.046) 

Temperature 
-0.013 0.039** 0.061*** 0.050** -0.012 -0.044** 0.050** 

(0.018) (0.016) (0.020) (0.025) (0.033) (0.021) (0.023) 

Wind Speed 
-0.078*** -0.031** -0.055*** -0.096*** -0.114*** -0.047*** -0.018 

(0.011) (0.012) (0.017) (0.017) (0.019) (0.017) (0.017) 

Precipitation 
-0.023** 0.000 0.031 0.012* 0.004 0.030 -0.043*** 

(0.011) (0.017) (0.023) (0.007) (0.015) (0.023) (0.007) 

Irradiance 
-0.081*** -0.028* -0.020 0.006 0.018 -0.011 -0.033 

(0.017) (0.015) (0.022) (0.024) (0.031) (0.021) (0.023) 

GOF-t 0.006 0.012 0.007 0.009 0.010 0.004 0.011 

P-value 0.020 0.000 0.020 0.000 0.000 0.100 0.020 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 
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Intercept 
0.472*** 0.433*** 0.286*** 0.484*** 0.510*** 0.303*** 0.512*** 

(0.017) (0.017) (0.012) (0.019) (0.029) (0.018) (0.014) 

TTF 
1.155*** 1.099*** 1.126*** 1.088*** 1.032*** 1.117*** 1.075*** 

(0.038) (0.035) (0.024) (0.036) (0.061) (0.042) (0.030) 

Temperature 
0.118*** 0.055** 0.057*** 0.045** 0.021 0.036** -0.054*** 

(0.021) (0.023) (0.014) (0.021) (0.032) (0.015) (0.015) 

Wind Speed 
0.007 -0.042*** -0.003 -0.102*** -0.091*** -0.028** -0.045*** 

(0.012) (0.013) (0.011) (0.015) (0.014) (0.013) (0.011) 

Precipitation 
-0.042*** -0.036*** 0.012 -0.054** -0.025 0.001 -0.028** 

(0.012) (0.003) (0.015) (0.025) (0.026) (0.016) (0.012) 

Irradiance 
-0.098*** -0.062*** -0.029* -0.003 0.037 -0.019 -0.007 

(0.021) (0.023) (0.014) (0.019) (0.031) (0.016) (0.013) 

GOF-t 0.022 0.015 0.011 0.009 0.009 0.009 0.014 

P-value 0.000 0.000 0.000 0.030 0.030 0.010 0.000 

Country Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

Intercept 
0.272*** 0.524*** 0.366*** 0.275*** 0.640*** 0.330*** 0.235*** 

(0.010) (0.024) (0.017) (0.009) (0.020) (0.011) (0.014) 

TTF 
1.064*** 1.175*** 1.070*** 1.065*** 1.174*** 1.105*** 1.084*** 

(0.021) (0.049) (0.033) (0.018) (0.039) (0.018) (0.031) 

Temperature 
0.009 0.042 0.046* 0.015 -0.018 -0.028* 0.007 

(0.009) (0.032) (0.024) (0.012) (0.024) (0.015) (0.013) 

Wind Speed 
-0.015* -0.033* -0.036** -0.016 -0.094*** -0.042*** -0.030*** 

(0.008) (0.019) (0.015) (0.010) (0.014) (0.010) (0.009) 

Precipitation 
-0.018* -0.037*** 0.000 0.015 0.029 0.008 0.008 

(0.010) (0.009) (0.019) (0.011) (0.020) (0.009) (0.010) 

Irradiance 
0.007 -0.074** -0.019 0.013 -0.038* -0.036** 0.007 

(0.010) (0.031) (0.024) (0.012) (0.022) (0.016) (0.012) 

GOF-t 0.009 0.004 0.011 0.006 0.012 0.007 0.006 

P-value 0.070 0.150 0.000 0.310 0.000 0.070 0.130 

Panel B. 0.10 electricity prices quantile 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

Intercept 
-0.325*** -0.379*** -0.557*** -0.463*** -0.580*** -0.332*** -0.409*** 

(0.017) (0.016) (0.020) (0.014) (0.024) (0.016) (0.015) 

TTF 
0.599*** 0.536*** 0.241*** 0.437*** 0.315*** 0.640*** 0.428*** 

(0.034) (0.031) (0.047) (0.032) (0.050) (0.037) (0.033) 

Temperature 
0.005 0.037*** 0.002 0.029*** -0.013 -0.036*** 0.063*** 

(0.007) (0.004) (0.014) (0.006) (0.018) (0.009) (0.016) 

Wind Speed 
-0.058*** -0.063*** -0.051*** -0.024*** -0.065*** -0.033*** -0.068*** 

(0.006) (0.006) (0.011) (0.004) (0.017) (0.006) (0.014) 

Precipitation 
0.000 0.020*** -0.017* 0.018*** 0.018 -0.030** -0.020* 

(0.004) (0.006) (0.009) (0.005) (0.018) (0.013) (0.011) 

Irradiance 
-0.059*** -0.038*** -0.009 -0.015* -0.035 -0.047*** -0.058*** 

(0.007) (0.005) (0.016) (0.008) (0.026) (0.008) (0.015) 
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GOF-t 0.008 0.010 0.008 0.003 0.008 0.006 0.004 

P-value 0.010 0.000 0.010 0.300 0.040 0.000 0.450 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 

Intercept 
-0.326*** -0.379*** -0.268*** -0.430*** -0.468*** -0.259*** -0.515*** 

(0.009) (0.018) (0.011) (0.015) (0.011) (0.015) (0.013) 

TTF 
0.680*** 0.637*** 0.742*** 0.525*** 0.445*** 0.689*** 0.713*** 

(0.017) (0.035) (0.026) (0.033) (0.021) (0.034) (0.025) 

Temperature 
0.035*** 0.042*** 0.057*** 0.108*** 0.117*** 0.025*** -0.170*** 

(0.006) (0.008) (0.004) (0.008) (0.012) (0.003) (0.016) 

Wind Speed 
-0.011** -0.036*** -0.013*** -0.030*** -0.026*** -0.029*** -0.016* 

(0.005) (0.003) (0.003) (0.004) (0.007) (0.002) (0.009) 

Precipitation 
-0.015*** 0.006*** -0.019*** -0.015*** -0.005 0.000 -0.009 

(0.003) (0.002) (0.004) (0.005) (0.007) (0.002) (0.011) 

Irradiance 
-0.021*** -0.033*** -0.064*** -0.033*** -0.035*** -0.043*** 0.011 

(0.007) (0.008) (0.005) (0.008) (0.011) (0.005) (0.017) 

GOF-t 0.010 0.013 0.009 0.004 0.005 0.006 0.020 

P-value 0.090 0.010 0.010 0.390 0.180 0.040 0.000 

Country Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

Intercept 
-0.284*** -0.478*** -0.354*** -0.290*** -0.692*** -0.300*** -0.277*** 

(0.014) (0.019) (0.016) (0.016) (0.025) (0.019) (0.009) 

TTF 
0.811*** 0.443*** 0.661*** 0.813*** 0.273*** 0.689*** 0.655*** 

(0.029) (0.038) (0.033) (0.027) (0.054) (0.038) (0.016) 

Temperature 
0.112*** 0.011 0.045*** 0.148*** -0.062** -0.063*** 0.004 

(0.011) (0.011) (0.009) (0.011) (0.029) (0.010) (0.002) 

Wind Speed 
-0.022** -0.004 -0.035*** -0.052*** -0.044** 0.003 -0.022*** 

(0.011) (0.006) (0.005) (0.011) (0.019) (0.006) (0.003) 

Precipitation 
-0.071*** -0.003 -0.015*** -0.003 -0.051*** -0.031*** -0.001 

(0.019) (0.006) (0.005) (0.007) (0.018) (0.004) (0.005) 

Irradiance 
-0.038*** -0.056*** -0.035*** -0.052*** -0.067** -0.056*** -0.012*** 

(0.014) (0.009) (0.010) (0.011) (0.028) (0.008) (0.004) 

GOF-t 0.008 0.002 0.007 0.025 0.021 0.010 0.020 

P-value 0.070 0.760 0.000 0.000 0.000 0.000 0.000 

Note: This table presents the slopes and associated bootstrapping standard errors of transmission from gas prices 

and weather to electricity prices at high (𝜃 = 0.90) and low quantiles (𝜃 = 0.10). It also presents He & Zhu’s 

(2013) statistic and p-value. Bold numbers indicate that the null hypothesis of linearity on a given quantile cannot 

be rejected at conventional confidence level. 
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Appendix C. 𝑰𝟏 indicator for 0.99 quantile 

 

Note: This figure presents the beta estimates of regression slopes for 0.99 (𝐼1 indicator) and 0.01 quantile. 

Appendix D. 𝑰𝟏 indicator for 0.90 quantile 

 

Note: This figure presents the beta estimates of regression slopes for 0.90 (𝐼1 indicator) and 0.10 quantile. 
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Appendix E. 𝑰𝟐 and 𝑰𝟑 for 0.99 and 0.01 quantiles 

𝑰𝟐 𝑰𝟑 

  

Note: This figure shows the indicators 𝐼2 (left side) and 𝐼3 (right side) of the transmission from gas to electricity 

prices at high quantiles (𝜃 = 0.99) over low quantiles (𝜃 = 0.01), respectively.  

Appendix F. 𝑰𝟐 and 𝑰𝟑 for 0.90 and 0.10 quantiles 

𝑰𝟐 𝑰𝟑 

  

Note: This figure shows the indicators 𝐼2 (left side) and 𝐼3 (right side) of the transmission from gas to electricity 

prices at high quantiles (𝜃 = 0.90) over low quantiles (𝜃 = 0.10), respectively. 
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Appendix G. 𝑰𝟏 indicator for 0.95 quantile with NBP gas prices 

 

Note: This figure presents the beta estimates of regression slopes for 0.95 (𝐼1 indicator) and 0.05 quantile of the 

regressions with NBP gas prices. 

Appendix H. 𝑰𝟐 and 𝑰𝟑 indicators for 0.95 and 0.05 quantiles with NBP gas prices 

𝑰𝟐 𝑰𝟑 

  

Note: This figure shows the indicators 𝐼2 (left side) and 𝐼3 (right side) of the transmissions from NBP gas prices 

to electricity prices at high quantiles (𝜃 = 0.95) over low quantiles (𝜃 = 0.05), respectively. 
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Appendix I. Effect of NBP natural gas prices and weather covariates on electricity 

prices at different quantiles of the price distribution for Portugal, Spain, Finland, and 

Denmark 

Portugal Spain 

  

Finland Denmark 

  

Note: The horizontal axis presents the quantiles of electricity prices (5th and 95th), while the vertical axis is the 

effect of the explanatory variable. The dotted black lines are the varying influences across quantiles, alongside 

95% confidence intervals. The red solid line is the effect at the mean of the price distribution, with associated 

confidence intervals. The explanatory variables are GAS through the NBP, TEMP is the average temperature, 
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WIND is the average wind speed, PREC is the average precipitation, and IRRA is the irradiance of the capital of 

the respective country. 

Appendix J. Wald test and Pseudo R2 of the quantile regressions with NBP natural gas 

prices 

Country Belgium 
Czech 

Republic Denmark Estonia Finland France Germany 

NBP 35.743*** 56.158*** 67.19*** 96.340*** 33.18*** 46.348*** 66.046*** 

Temperature 1.132 6.842*** 6.411*** 1.029 1.229 3.077*** 0.610 

Wind Speed 0.377 3.901*** 0.701 6.752*** 1.103 0.517 2.154* 

Precipitation 1.303 0.433 2.000* 0.388 0.924 4.329*** 2.478** 

Irradiance 1.680 1.718 0.642 1.598 0.885 2.453** 1.104 

Pseudo-R2 0.670 0.666 0.514 0.521 0.375 0.694 0.631 

Country Greece Hungary Italy Latvia Lithuania Netherlands Norway 

NBP 76.089*** 40.776*** 32.447*** 36.515*** 45.881*** 38.300*** 37.043*** 

Temperature 2.670** 0.087 1.379 1.951* 3.180*** 4.696*** 5.886*** 

Wind Speed 2.119* 0.768 1.412 4.908*** 15.466*** 0.840 3.064*** 

Precipitation 10.784*** 6.851*** 0.607 0.598 1.485 3.714*** 1.302 

Irradiance 4.057*** 0.812 1.208 1.255 3.081*** 3.949*** 3.693*** 

Pseudo-R2 0.698 0.657 0.774 0.537 0.488 0.739 0.619 

Country Portugal Slovakia Slovenia Spain Sweden Switzerland 
United 

Kingdom 

NBP 29.023*** 65.583*** 198.014*** 77.377*** 132.798*** 40.030*** 30.124*** 

Temperature 13.236*** 0.936 3.035*** 18.845*** 1.849* 5.379*** 1.854* 

Wind Speed 0.486 1.040 0.966 5.534*** 3.126*** 2.032* 1.380 

Precipitation 1.417 3.962*** 0.633 0.152 2.847** 1.632 0.088 

Irradiance 1.347 0.453 4.057*** 1.116 1.043 1.586 0.382 

Pseudo-R2 0.748 0.593 0.681 0.749 0.445 0.725 0.724 

Note: This table presents the Wald statistic for all the regressions estimated at different quantiles of electricity 

prices distribution to test the hypothesis of equal slopes across the quantiles. The table also shows the Pseudo R2 

of the degree of fit of the models. 



 


