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1 Introduction

Following the path-breaking work by Sims (1980), vector autoregressions (Vars) have become

one of the most commonly employed tools by empirical macroeconomists in academia, central

banks and research departments of financial institutions. Their ability to capture dynamic

relationships between multiple variables makes them particularly apt for short- and medium-

run economic analysis, either on their own or in combination with structural macroeconomic

models (see Canova (2007) for a textbook treatment). In fact, Vars have become the forecasting

benchmark to beat, thereby replacing the univariate Arima models in vogue in the 1970’s and

80’s.

Unlike those univariate models, though, Vars are hardly ever subject to a battery of speci-

fication tests. Part of the reason is that specification testing does not fit well with the Bayesian

approach to inference predominant among macroeconometricians. But the scarcity of specifica-

tion tests for those models also plays an important role. The purpose of our paper is precisely

to apply the information matrix test of White (1982) to Vars.

Our choice of specification test is far from random. The neglected heterogeneity interpreta-

tion of the information matrix test in Chesher (1984) provides a very relevant justification in

macroeconomic applications, in which changes in the structure of the economy are a first-order

concern (see e.g. Perron (1989)). There is, in fact, a long tradition of autoregressive models

with time-varying parameters, which are sometimes called Random Coeffi cient Autoregressions

(Rcas) in the time series literature (see e.g. Nicholls and Quinn (1982) for an earlier treat-

ment, and Regis, Serra and van den Heuvel (2021) for a recent survey). Moreover, in recent

years the macroeconometric literature has paid considerable attention to models in which not

only the parameters governing the conditional mean change over time, but also the parameters

corresponding to the variances and covariances of the innovations may also time-vary (see e.g.

Primiceri (2005) or D’Agostino, Gambetti and Giannone (2013)).

Several tests for constant versus random coeffi cients in autoregressive models already exist

in the literature, mostly in the univariate case (see e.g. Lee (1998), Akharif and Hallin (2003),

Horváth and Trapani (2019), or Chen et al (2020)). Some of them use a likelihood framework,

but they tend to focus on the classical triad of Wald, Likelihood Ratio and Lagrange Multiplier

(LM) tests, which have a somewhat non-standard distribution under the null. There is also a

huge literature on structural break tests, as well as on testing for recurrent regime switches (see,

respectively, Hansen (2001) and Carrasco, Hu and Ploberger (2014), and the references therein).

Our information matrix test, though, has two main advantages: (i) unlike many of those

tests, the test statistic has an asymptotic chi-square distributions under the null when the
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autoregressive process is covariance stationary, and (ii) it can be additively decomposed into

four easily interpretable orthogonal components: a) a test for conditional heteroskedasticity of

the innovations, b) a test for conditional asymmetry of those innovations, c) a test for their

unconditional skewness, and d) a test for their unconditional kurtosis. These four tests can be

combined into other easily interpretable tests. For example, the sum of b) and c) assesses the

null hypothesis of zero covariance between the mean and variance parameters. Similarly, the

sum of c) and d) checks the multivariate normality of the innovations.

An additional advantage of the information matrix test is that it can capture multiple types

of deviations from constant coeffi cients even though it is not specifically designed for them. For

that reason, we conduct an extensive Monte Carlo exercise in which we study the power of the

test against three types of random coeffi cient variation: i.i.d. coeffi cients, as in Rcas, persistent

but stationary coeffi cients, and finally regime switching models. In all cases, we calibrate the

designs so that the unconditional variances of the coeffi cients is the same across these three

alternatives, and compute critical values under the null using the bootstrap.

Finally, we apply our procedures to test the parameter constancy of a Var in an important

empirical context. Specifically, we study the dynamic relationship between the equally weighted

average of the growth rates of the expenditure and income measures of US Gross Domestic Prod-

uct (GDP) produced by the Bureau of Economic Analysis, and the statistical discrepancy, which

is the difference between the (log) levels of those two measurements. Thus, we follow Almuzara,

Amengual and Sentana (2019) and Almuzara, Fiorentini and Sentana (2021) in imposing coin-

tegration between the Gross Domestic Expenditure (GDE) and Gross Domestic Income (GDI)

measures. The empirical results that we obtain with our proposed information matrix tests con-

firm time-variation in both the autoregressive coeffi cients and the residual covariance matrix of

the innovations, but they fail to detect any covariance between those two groups of coeffi cients.

The rest of the paper is organised as follows. In section 2, we derive the information matrix

test for a multivariate linear regression model, while in section 3 we specialise it to Vars. We

then present the results of our simulation experiments on its size and power properties in section

4, and apply it to US GDE and GDI in section 5. Our conclusions appear in section 6, followed

by appendices that contain proofs together with some additional material.

2 Information matrix tests of the multivariate regression model

Consider the following multivariate normal regression model

yt = Bxt + Ω1/2ε∗t , (1)
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where the vector of dependent variables yt is N × 1, the vector of regressors xt, which often

includes a constant, is M × 1, the matrix of regression coeffi cients B is N ×M , the residual

covariance matrix Ω is N ×N symmetric and positive definite, and the vector of standardised

innovations ε∗t follows a spherical normal distribution conditional on the regressors and the past

values of the observed variables. Thus, the conditional mean vector and covariance matrix of

yt will be µt(θ) = Bxt and Σt(θ) = Ω, respectively, where θ = (b′,ω′)′, b = vec(B) and

ω = vech(Ω).

Given these assumptions, the contribution from a single observation to the log-likelihood

function is

−N
2

ln(2π)− 1

2
ln |Ω| − 1

2
(yt −Bxt)

′Ω−1(yt −Bxt) = −N
2

ln(2π)− 1

2
ln |Ω| − 1

2
ςt(θ),

where ςt(θ) = ε∗′t (θ)ε∗t (θ), ε∗t (θ) = Ω−1/2εt(θ) and εt(θ) = yt −Bxt.

The maximum likelihood estimators of the model parameters are known in closed form

without the need to conduct any numerical optimisation. Specifically,

B̂ =

(
T∑
t=1

ytx
′
t

)(
T∑
t=1

xtx
′
t

)−1
and

Ω̂ =
1

T

[
T∑
t=1

(yt − B̂xt)(yt − B̂xt)
′

]
.

Nevertheless, we need expressions for the score and Hessian matrix to be able to derive the

information matrix test.

To compute the score, we first differentiate µt(θ) and Σt(θ) with respect to the q = MN +

N(N + 1)/2 model parameters in θ. Specifically, the first derivatives are given by

∂µt(θ)

∂b′
= x′t ⊗ IN

∂vec[Σt(θ)]

∂ω′
= DN ,

where DN is the duplication matrix of order N (see Magnus and Neudecker (2019)). Thus, the

log-likelihood score is

st(θ) = Zlt(θ)ε∗t (θ) + Zst(θ)vec[ε∗t (θ)ε∗′t (θ)− IN ],

where

Zlt(θ) =

[
xt ⊗Ω−1/2′

0

]
,

Zst(θ) =

[
0

1
2D
′
N (Ω−1/2′ ⊗Ω−1/2′)

]
.
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As a result, the scores will be

sbt(θ) = [xt ⊗Ω−1/2′ε∗t (θ)] = [xt ⊗Ω−1(yt −Bxt)]

= vec[Ω−1(yt −Bxt)x
′
t] (2)

and

sωt(θ) =
1

2
D′N (Ω−1/2′ ⊗Ω−1/2′)vec[ε∗t (θ)ε∗′t (θ)− IN ]

=
1

2
D′Nvec[Ω

−1(yt −Bxt)(yt −Bxt)
′Ω−1 −Ω−1]. (3)

Consequently, the outer product of the scores will be

sbt(θ)s′bt(θ) = [xtx
′
t ⊗Ω−1/2′ε∗t (θ)ε∗′t (θ)Ω−1/2]

= [xtx
′
t ⊗Ω−1(yt −Bxt)(yt −Bxt)

′Ω−1],

sωt(θ)s′bt(θ) =
1

2
D′N (Ω−1/2′ ⊗Ω−1/2′)vec[ε∗t (θ)ε∗′t (θ)− IN ][x′t ⊗ ε∗′t (θ)Ω−1/2]

=
1

2
D′Nvec[Ω

−1(yt −Bxt)(yt −Bxt)
′Ω−1 −Ω−1][x′t ⊗ (yt −Bxt)

′Ω−1]

and

sωt(θ)s′ωt(θ) =
1

4
D′N (Ω−1/2′ ⊗Ω−1/2′)vec[ε∗t (θ)ε∗′t (θ)− IN ]

×vec′[ε∗t (θ)ε∗′t (θ)− IN ](Ω−1/2′ ⊗Ω−1/2′)DN

=
1

4
D′Nvec[Ω

−1(yt −Bxt)(yt −Bxt)
′Ω−1 −Ω−1]

×vec′[Ω−1(yt −Bxt)(yt −Bxt)
′Ω−1 −Ω−1]DN .

To compute the Hessian, it is convenient to use the general expressions for elliptical distrib-

utions in Supplementary Appendix C of Fiorentini and Sentana (2021), namely

hθθt(φ) =
∂2dt(θ)

∂θ∂θ′
+
∂2g [ςt(θ),η]

(∂ς)2
∂ςt(θ)

∂θ

∂ςt(θ)

∂θ′
+
∂g [ςt(θ),η]

∂ς

∂2ςt(θ)

∂θ∂θ′
,

where

∂2dt(θ)/∂θ∂θ′ = 2Zst(θ)Z′st(θ)− 1

2

{
vec′

[
Σ−1t (θ)

]
⊗ Iq

}
∂vec

{
∂vec′ [Σt(θ)] /∂θ

}
/∂θ′

and

∂2ςt(θ)/∂θ∂θ′ = 2Zlt(θ)Z′lt(θ) + 8Zst(θ)[IN ⊗ ε∗t (θ)ε∗′t (θ)]Z′st(θ)

+4Zlt(θ)[ε∗′t (θ)⊗ IN ]Z′st(θ) + 4Zst(θ)[ε∗t (θ)⊗ IN ]Z′lt(θ)

−2[ε∗′t (θ)Σ
− 1
2
′

t (θ)⊗ Iq]∂vec[∂µ
′
t(θ)/∂θ]∂θ′

−{vec′[Σ−
1
2

t (θ)ε∗t (θ)ε∗′t (θ)Σ
− 1
2
′

t (θ)]⊗ Iq}∂vec{∂vec′[Σt(θ)]/∂θ}/∂θ′.
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In the case of model (1), dt(θ) = −12 ln |Ω| and

∂2dt(θ)/∂θ∂θ′ =
1

2

[
0 0
0 D′N (Ω−1 ⊗Ω−1)DN

]
.

Similarly, we have that g [ςt(θ),η] = −12 ςt(θ) under normality, so that ∂g [ςt(θ),η] /∂ς = −12
and ∂2g [ςt(θ),η] /(∂ς)2 = 0. Finally,

∂2ςt(θ)/∂θ∂θ′ = 2

(
xtx
′
t ⊗Ω−1 0

0 0

)
+2

{
0 0

0 D′N (Ω−1/2′ ⊗Ω−1/2′)[IN ⊗ ε∗t (θ)ε∗′t (θ)](Ω−1/2 ⊗Ω−1/2)DN

}
+2

{
0 (xt ⊗Ω−1/2′)[ε∗′t (θ)⊗ IN ](Ω−1/2 ⊗Ω−1/2)DN

0 0

}
+2

{
0 0

D′N (Ω−1/2′ ⊗Ω−1/2′)[ε∗t (θ)⊗ IN ](x′t ⊗Ω−1/2) 0

}
= 2

{
(xtx

′
t ⊗Ω−1) [xt(yt −Bxt)

′Ω−1 ⊗Ω−1]DN

D′N [Ω−1(yt −Bxt)x
′
t ⊗Ω−1] D′N [Ω−1 ⊗Ω−1(yt −Bxt)(yt −Bxt)

′Ω−1]DN

}
,

where we have exploited the fact that the second derivatives of the conditional mean and co-

variance functions with respect to the model parameters are all 0.

Therefore, we can write the Hessian matrix as

−
{

(xtx
′
t ⊗Ω−1) [xt(yt −Bxt)

′Ω−1 ⊗Ω−1]DN

D′N [Ω−1(yt −Bxt)x
′
t ⊗Ω−1] D′N{Ω−1 ⊗ [Ω−1(yt −Bxt)(yt −Bxt)

′Ω−1 − 1
2Ω
−1]}DN

}
The sum of the outer product of the score and the Hessian yields the following three terms:

bb : [xtx
′
t ⊗Ω−1(yt −Bxt)(yt −Bxt)

′Ω−1]− (xtx
′
t ⊗Ω−1), (4)

ωb :
1

2
D′Nvec[Ω

−1(yt −Bxt)(yt −Bxt)
′Ω−1 −Ω−1][x′t ⊗ (yt −Bxt)

′Ω−1]

−D′N [Ω−1(yt −Bxt)x
′
t ⊗Ω−1], (5)

and

ωω:
1

4
D′Nvec[Ω

−1(yt −Bxt)(yt −Bxt)
′Ω−1 −Ω−1]

× vec′[Ω−1(yt −Bxt)(yt −Bxt)
′Ω−1 −Ω−1]DN

−D′N{Ω−1 ⊗ [Ω−1(yt −Bxt)(yt −Bxt)
′Ω−1 − 1

2
Ω−1]}DN . (6)

When xt = 1, these formulas coincide with those in Amengual, Fiorentini and Sentana

(2021), who re-write the ωb and ωω expressions in terms of multivariate Hermite polynomials

of orders 3 and 4, respectively.1 We can generalise their results for any xt as follows. As in

1At the end of this section, we explicitly relate the test we propose to this multivariate normality test.
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Barndorff-Nielsen and Petersen (1979), define the (centred) multivariate Hermite polynomials

of ε of order k = k1 + . . .+ kN ≥ 0 as

H
1k1...1...NkN... N

(ε,∆) · e−
1
2
ε′∆ε = (−1)k

∂k

(∂ε1)k1 . . . (∂εN )kN

(
e−

1
2
ε′∆ε

)
, (7)

where ∆ = Ω−1 is the inverse covariance matrix of ε. As is well known, when model (1) is

correctly specified: i) the expected value of any multivariate Hermite polynomial of positive

degree k conditional on the regressors and the past values of the observed variables is 0; and ii)

the conditional and unconditional covariance matrices of those polynomials coincide.

Let

Hk(ε; ∆) =


Hk,0,··· ,0(ε; ∆)
Hk−1,1,··· ,0(ε; ∆)

...
H0,··· ,0,k(ε; ∆)


denote the

(
N+k−1

k

)
× 1 vector that contains all the non-redundant multivariate Hermite poly-

nomials of order k, which we will simply denote by Hk(ε
∗
t ) for the special case of ∆ = IN .

Similarly, let

mht(θ) = H2[ε
∗
t (θ)]⊗ vech(xtx

′
t), (8)

mat(θ) = H3[ε
∗
t (θ)]⊗ xt, (9)

mkt(θ) = H4[ε
∗
t (θ)], (10)

which effectively span (4), (5) and (6), respectively. Finally, let

m̄lT (θ) =
1

T

T∑
t=1

mlt(θ) for l = h, a, k.

We can then state our main result:

Proposition 1 Assume xt has finite fourth moments. Then, the information matrix test that
compares the outer product of the score with the Hessian of the multivariate regression model
(1) evaluated at the Gaussian maximum likelihood estimators θ̂T = (b̂′T , ω̂

′
T )′ is asymptotically

equivalent under the null hypothesis of correct specification to the sum of the following three
moment tests:

hhT = T · m̄′hT (θ̂T )V̂ +[mht(θ̂T )]m̄hT (θ̂T ), (11)

haT = T · m̄′aT (θ̂T )V̂ −1[mat(θ̂T )]m̄aT (θ̂T ), (12)

and
hkT = T · m̄′kT (θ̂T )V̂ −1[mkt(θ̂T )]m̄kT (θ̂T ), (13)
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where + denotes the Moore-Penrose generalised inverse,

lim
T→∞

V [
√
Tm̄hT (θ̂T )] = V {H2[ε

∗
t (θ)]} ⊗ V

[
vech(xtx

′
t)
]
, (14)

lim
T→∞

V [
√
Tm̄aT (θ̂T )] = V {H3[ε

∗
t (θ)]} ⊗ E(xtx

′
t), and (15)

lim
T→∞

V [
√
Tm̄kT (θ̂T )] = V {H4[ε

∗
t (θ)]},

which converge in distribution to three independent chi-square random variables whose degrees
of freedom are

(
N+1
2

)
rank{V [vech(xtx

′
t)]},

(
N+2
3

)
M and

(
N+3
4

)
, respectively.

Note that if xt contains either a constant or a set of dummy variables that linearly span a

constant term, then V [vech(xtx
′
t)] will be singular with nullity 1, which explains the generalised

inverse in (11). Given that the diagonal covariance matrices of Hk(ε
∗
t ) for k = 2, 3, 4 do not

depend on any unknown quantities under the null of correct specification,2 under standard reg-

ularity conditions we can consistently estimate (14) and (15) by simply replacing V [vech(xtx
′
t)]

and E(xtx
′
t) by their sample counterparts.

The relationship between information matrix tests and the general class of moment tests of

Newey (1985) and Tauchen (1985) is well known (see White (1994)). What is perhaps less known

among macroeconometricians is that Chesher (1984) proved that the information matrix test can

be viewed as a Lagrange multiplier test against parameter variation. Thus, we can interpret the

moment test statistic (13) that looks at the unconditional mean of the fourth-order multivariate

Hermite polynomials as a test of neglected heterogeneity in ω, which are the parameters that

characterise the covariance matrix of the innovations. Similarly, the test statistic (12) that

looks at the conditional mean of the third-order polynomials effectively assesses dependence

in the neglected heterogeneity of the mean and covariance parameters b and ω. Finally, the

test statistic (11) that looks at the conditional mean of the second-order multivariate Hermite

polynomials can be understood as a test of neglected heterogeneity in the b parameters that

determine the conditional mean of the observations. In this respect, the additive decomposition

in Proposition 1 provides a multivariate generalisation of Hall (1987).3 In particular, (11) can

be regarded as the multivariate counterpart to White’s (1980) heteroskedasticity test, while (12)

is a multivariate version of what Bera and Lee (1993) called a test for “heterocliticity”, and (13)

the multivariate analogue to the Kiefer and Salmon (1983) version of the kurtosis component of

the Jarque and Bera (1980) test.

2Specifically, the diagonal elements of V [H2(ε
∗)] are V (ε∗2i -1) = 2 and V (ε∗i ε

∗
i′) = 1, for i′ 6= i, while those

of V [H3(ε
∗)] are V (ε∗3i -3ε

∗
i ) = 6, V (ε∗2i ε

∗
i′ -ε
∗
i′) = 2 for i′ 6= i and V (ε∗i ε

∗
i′ε
∗
i′′) = 1 for i′′ 6= i′ 6= i. Finally, the

diagonal elements of V [H4(ε
∗)] are V [(ε∗2i -3ε

∗
i )
2-6] = 24, V (ε∗2i ε

∗2
i′ -ε

∗2
i -ε

∗2
i′ +1) = 4 for i

′ 6= i, V (ε∗3i ε∗i′ -3ε∗i ε∗i′) = 6
for i′ 6= i, V (ε∗2i ε

∗
i′ε
∗
i′′ -ε

∗
i′ε
∗
i′′) = 2 for i′′ 6= i′ 6= i, and V (ε∗i ε

∗
i′ε
∗
i′′ε
∗
i′′′) = 1 for i′′′ 6= i′′ 6= i′ 6= i (see Amengual,

Fiorentini and Sentana (2021) for further details).
3See Bera and Lee (1993) for a related result in univariate regression models with serially correlated residuals.
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Importantly, if we consider the full-rank affi ne transformation of the dependent variables zt =

c+Dyt with |D| 6= 0, we can show that the information matrix test statistic is always numerically

invariant to the value of D, as well as to the value of c when the regressors include a constant

term. This numerical invariance provides a very fast numerical procedure for computing the test

statistics in Proposition 1 since we can work with the standardised innovations ε∗t (θ̂) without

loss of generality, whose sample mean and covariance matrix will be 0 and IN , respectively,

when the regressors include a constant term.

In fact, when x′t = (1, z′t), with dim(zt) = m so that M = m + 1, E(zt) = µz and V (zt) =

Σzz > 0 in the positive definite sense, we can further additively decompose (12) as follows:

Proposition 2 Assume zt has finite second moments. Then, the component of the information
matrix test that compares the off-diagonal block of the outer product of the score with the Hessian
of the multivariate regression model (1) evaluated at the Gaussian maximum likelihood estimators
θ̂T = (b̂′T , ω̂

′
T )′ is asymptotically equivalent under the null hypothesis of correct specification to

the sum of the following two moment tests:

hasT = T · m̄′asT (θ̂T )V̂ −1[mast(θ̂T )]m̄asT (θ̂T ), (16)

hadT = T · m̄′adT (θ̂T )V̂ −1[madt(θ̂T )]m̄adT (θ̂T ), (17)

where

mast(θ) = H3[ε
∗
t (θ)], (18)

madt(θ) = H3[ε
∗
t (θ)]⊗ (zt − µz), (19)

lim
T→∞

V [
√
Tm̄asT (θ̂T )] = V {H3[ε

∗
t (θ)]},

lim
T→∞

V [
√
Tm̄adT (θ̂T )] = V {H3[ε

∗
t (θ)]} ⊗Σzz, (20)

which converge in distribution to two independent chi-square random variables whose degrees of
freedom are

(
N+2
3

)
and

(
N+2
3

)
m, respectively.

In practice, we must simply replace µz and Σzz by their sample counterparts to evaluate

(16) and consistently estimate (20).

It is easy to see that (16) assesses the asymmetry of the unconditional distribution of the

regression residuals εt = yt−α−Bzzt, where α and Bz are the regression intercepts and slopes,

respectively. Not surprisingly, it coincides with the skewness component of the aforementioned

multivariate normality test in Amengual, Fiorentini and Sentana (2021) applied to εt. In turn,

(17) can be regarded as a test against pure conditional “heterocliticity”. If we re-write the

multivariate regression model (1) in deviation from the means form as

yt = µy + Bz(zt − µz) + Ω1/2ε∗t ,

then (16) is simply testing for dependence between random coeffi cient variation in the uncon-

ditional mean of the regressands µy and the covariance matrix of the residuals Ω, while (17)

8



checks the dependence between the elements of this covariance matrix and the slope coeffi cients

Bz.

Despite appearances, an analogous decomposition is not available for the test statistic (11)

because the first-order conditions of the estimators of θ̂T ensure that the sample mean of

H2[ε
∗
t (θ̂T )] is 0 when the regression contains an intercept, as explained after Proposition 1.

As a result, the conditional homoskedasticity test will have no power to detect time-variation in

the constant terms of the multivariate regression which is uncorrelated to the variation in any

other of the model parameters.

We can further exploit the additive decompositions in Propositions 1 and 2 to obtain ad-

ditional tests. For example, the sum of (11) and (17) may be interpreted as a test of random

coeffi cient variation and covariation in the slope coeffi cients Bz. Similarly, the sum of (16) and

(13) coincides with the multivariate Hermite-based normality test in Amengual, Fiorentini and

Sentana (2021) applied to the regression residuals εt.

In the next section, we study in detail Vars, which are such that xt = (1,y′t−1, . . . ,y
′
t−p)

′. In

particular, we derive theoretical expressions for V [vech(xtx
′
t)] and E(xtx

′
t) that can be evaluated

at the Gaussian maximum likelihood estimators as an alternative way of implementing our tests

under the maintained assumption of covariance stationarity of yt.

3 Testing parameter constancy in vector autoregressions

Let us now focus on the important special case of the multivariate regression model (1)

given by the following N -variate Var(p) process with drift:

yt = τ +
∑p

j=1Ajyt−j + Ω1/2ε∗t with ε∗t |It−1 ∼ N(0,Ω). (21)

In the next subsections we shall look at the additive components of the moment tests in

Proposition 1 and 2, providing a simple regression interpretation for each of them. Like in the

case of standard LM tests, these interpretations may prove particularly useful for the purposes

of indicating in which specific directions our modelling efforts to enrich the Gaussian Var model

in (21) should focus.4

3.1 Interpretation of the influence functions

3.1.1 Conditional heteroskedasticity

Consider the multivariate regression of H2(ε
∗
t ) onto 1, y1t−1, ..., yNt−p, y

2
1t−1, y1t−1y2t−1, ...,

y2Nt−p. Given that (8) effectively contains the normal equations of this regression evaluated under

4 In Appendix B we illustrate the results in this section with a simple Ar(1) model, which provides simpler
and more intuitive expressions.

9



the null, it is straightforward to see that the test statistic (11) numerically coincides with the LM

test of zero slopes in the aforementioned auxiliary regression (see Hall (1987) for an analogous

result in the univariate case). As a consequence, if (21) generates a covariance stationary process,

then the quadratic form in (11) will be asymptotically distributed as a chi-square random variable

with
[
N +

(
N+1
2

)]
p
(
N+1
2

)
degrees of freedom. Importantly, the regression intercepts do not add

any degrees of freedom because H2[ε
∗
t (θ̂T )] = 0 from the first order conditions for ω, so they are

only included to purge the remaining normal equations from the effects of sampling uncertainty

resulting from the estimation of the covariance parameters. On the other hand, rejections of

the null hypothesis clearly suggest the need for models with time-variation in the autoregressive

coeffi cients, which in turn give rise to eitherArch- orQarch-type conditional heteroskedasticity

depending on whether or not they are correlated with the intercepts, as explained by Hall (1987)

and Bera and Lee (1993) in the univariate case, and Sentana (1995) in the multivariate one.

3.1.2 Conditional and unconditional asymmetry

Consider now the multivariate regression of H3(ε
∗
t ) onto 1, y1t−1, ..., yNt−p. Given that (9)

effectively contains the normal equations of this auxiliary multivariate regression evaluated under

the null, it is again easy to notice that the test statistic (12) numerically coincides with the LM

test of zero intercepts and slopes in the aforementioned auxiliary regression. Therefore, if (21)

generates a covariance stationary process, then the quadratic form in (12) will be asymptotically

distributed as a chi-square random variable with
(
N+2
3

)
(1+Np) degrees of freedom. Unlike in the

previous subsection, though, the intercepts provide additional degrees of freedom in this case.

On the other hand, rejections of the null hypothesis clearly indicate models with correlation

between the random coeffi cients in the conditional mean vector and those in the covariance

matrix, which in turn generate what Bera and Lee (1993) called heterocliticity in the univariate

case.

Consider now the closely related auxiliary multivariate regressions of H3(ε
∗
t ) on a constant

on the one hand, and the demeaned values of y1t−1, ..., yNt−p on the other. Given that (18)

and (19) effectively provide the normal equations of these two regressions evaluated under the

null, it is straightforward to see that (16) and (17) numerically coincide with the LM test of

zero means and zero slopes, respectively, in these auxiliary regressions. In this respect, (16)

converges in distribution to a chi-square random variable with
(
N+2
3

)
degrees of freedom, while

(17) will converge to an independent chi-square with
(
N+2
3

)
Np degrees of freedom when (21)

generates a covariance stationary process.
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3.1.3 Unconditional kurtosis

Finally, consider the multivariate regression of H4(ε
∗
t ) on a constant. Given that (10)

effectively contains the normal equations of this regression evaluated under the null, it is once

more straightforward to prove that the quadratic form (13) numerically coincides with the

LM test of zero intercepts in this auxiliary regression. Therefore, this test statistic will be

asymptotically distributed as a chi-square random variable with
(
N+3
4

)
degrees of freedom under

the null. On the other hand, rejections of the null hypothesis clearly suggest the need for models

with time-variation in the parameters of the residual covariance matrix, which yield excess

kurtosis, as explained by Hall (1987) in the univariate case.

3.2 Covariance matrices of the influence functions

We have already explained in section 2 that under standard regularity conditions we can

consistently estimate (14) and (15) by simply replacing V [vech(xtx
′
t)] and E(xtx

′
t) by their

sample counterparts. The purpose of this section is to explain how to fully exploit the structure

of (21) to compute those expressions. Let us start with the Var(1) case. We can then prove

the following result:

Proposition 3 Assume yt follows a covariance stationary Gaussian Var(1) with E(yt) = µ ≡
(IN−A)−1τ and vec[V (yt)] = vec(Υ) ≡ (IN2−A⊗A)−1vec(Ω). Then, the relevant population
quantities required to obtain (14) and (15) are

E(yt−1y
′
t−1) = Υ + µµ′, (22)

E[(yt−1 ⊗ yt−1)y
′
t−1] = µ⊗Υ+vec(Υ)µ′ + (µ⊗ µ)µ′ + (µ⊗ IN )Υ (23)

and

E[(yt−1 ⊗ yt−1)(y
′
t−1 ⊗ y′t−1)] = (IN2 + KN ) (Υ⊗Υ + Υ⊗ µµ′ + µµ′ ⊗Υ)

+vec(Υ)(µ⊗ µ)′ + (µ⊗ µ)vec′(Υ) (24)

+vec(Υ)vec′(Υ) + (µ⊗ µ)(µ⊗ µ)′.

As is well known, we can always write theN -variateVar(p)model for yt in (21) in companion

form as the following Var(1) for an augmented vector process of dimension pN :

Yt = ν + ΦYt−1 + Ut

with Y′t = (y′t, . . . ,y
′
t−p+1),

ν =

(
τ

0N(p−1)

)
, Φ =

(
A1, A2 · · · Ap

IN(p−1) 0N(p−1)×N

)
and V (Ut|It−1) =

(
Ω 0
0 0

)
.
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Therefore, we can easily obtain the Var(p) analogues to (22), (23) and (24) by selecting the

relevant elements of those expressions with

E(Yt−1) ≡ ζ = [I2N −Φ]−1
(
τ
0

)
and

vec[V (Yt−1)] ≡ Ψ = [I4N2 −Φ⊗Φ]−1 vec

[(
Σ 0
0 0

)]
.

3.3 A recursive-design bootstrap procedure

The theoretical results in Beran (1988) imply that if the usual Gaussian asymptotic ap-

proximation provides a reliable guide to the finite sample distribution of the sample version of

the moments being tested, then the bootstrapped critical values should not only be valid, but

also their errors should be of a lower order of magnitude under additional regularity conditions

that guarantee the validity of a higher-order Edgeworth expansion. For that reason, we also

analyse the performance of applying the bootstrap to the testing procedures we have described

in sections 2 and 3.

Specifically, given an observed sample on yt for t = 1 − p, . . . , 0, 1, . . . , T , we can follow

Bose (1988)’s recursive-design procedure and generate Nboot bootstrap samples by simulating

in each of them T independent draws of ε∗t (t = 1, . . . , T ) from an N -variate spherical normal

distribution, which we then use to construct

ỹs = τ̂T + Â1T ỹs−1 + · · ·+ ÂpT ỹs−p + Ω̂
1
2
T ε
∗
is, s = 1, . . . T,

with ỹs = ys for s = 1− p, . . . , 0.5

4 Monte Carlo analysis

In this section, we assess the finite sample size and power of the testing procedures discussed

in section 3 by means of an extensive Monte Carlo analysis. Given that standard bootstrap

procedures within such a simulation exercise are extremely time consuming, we focus on bivariate

and trivariate models with either one or two lags. Nevertheless, our results provide relevant

insights that can be extrapolated to more general designs.

5Under the assumption of covariance stationary of (21), in principle we could use the estimated values of
τ̂T ,Â1T ,..., ÂpT and Ω̂T to simulate the initial conditions ỹs for s = 1 − p, . . . , 0 from their joint stationary
distribution, which might work better for short sample periods. Given the sample sizes involved, and the fact
that we use OLS to estimate the model parameters, we do not explore this possibility in section 4.
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4.1 Design

We generate samples of size T from various special cases of the following general time-

varying coeffi cients Var process

yt = τ t + A1tyt−1 + A2tyt−2 + Ω
1
2
t ε
∗
t , (25)

where ε∗t is drawn from a serially independent multivariate standard normal, Ωt = JtΨtJ
′
t, Ψt

is a diagonal matrix whose elements contain the scale of the shocks, and Jt is a unit lower

triangular matrix, so that in effect we introduce time-variation in the covariance matrix of the

residuals through the LDL version of its Cholesky decomposition, as in Primiceri (2005). To

simplify the calibration of the different data generating processes (DGPs), we also assume that

the true Ajt’s are lower triangular, although we do not impose this restriction in estimation.

For those designs that satisfy the null hypothesis of correct specification, we consider both

T = 250, which is a realistic sample size in most macro applications with monthly or quarterly

data, and T = 1, 000, which is representative of financial applications with daily data. To avoid

too many rejection rates close to 1, though, we focus on samples of length T = 250 to study

power. The precise DGPs that we consider under the alternative hypothesis are described in

section 4.1.2.

To gauge the finite sample size and power of our proposed independence tests, we generate

10, 000 samples for the DGPs that satisfy the null hypothesis and 2, 500 for the rest. Finally,

we also compute non-asymptotic critical values by implementing the recursive-design bootstrap

procedure described in section 3.3 with 999 samples.

4.1.1 DGPs and estimation under the null

For the bivariate processes, we generate samples of size T from (25) with

A1t = A1 =

(
1/2 0
1/4 1/3

)
, Ωt = Ω = I2 ∀t, (26)

and A2t either 0 or 1
2A1 depending on the number of lags we consider. Similarly, for the

trivariate ones we consider

A1t = A1 =

 1/2 0 0
1/4 1/3 0
1/6 1/8 1/4

 , Ωt = Ω = I3 ∀t, (27)

and again A2t either 0 or 12A1 depending on the specification.
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4.1.2 DGPs under the alternatives

As mentioned in the introduction, we study the power of our testing procedures against

three types of random coeffi cient variation in Var(1) models: i.i.d. coeffi cients, persistent but

stationary coeffi cients, and recurring regime switching models. For the first two types of alter-

native hypotheses, it is convenient to introduce some additional notation.

Let θt = [τ ′, vech′(At), vecd
′(Ψt), vecl

′(Jt)]
′= (τ ′t,a

′
t, j
′
t,ψ

′
t) denote the parameters charac-

terising the stochastic process for yt in (25). We generate variation in τ t, at, jt and ψt as

follows:
τ t
at
ψt
jt

 =


τ̄
ā
ψ̄
j̄

 (1− ρ) + ρ


τ t−1
at−1
ψt−1
jt−1

+


ητ t
ηat

ηψt
ηjt

 ,


ητ t
ηat

ηψt
ηjt

 ∼ iid N(0,Λ),

Λ =


λτ IN 0 0 0

0 λaIN(N+1)/2 0 0

0 0 λψIN 0
0 0 0 λjIN(N−1)/2

+ `2N+N2`′2N+N2λcov,

where `K is a K × 1 vector of ones, so that the hyperparameters are υ = (ā′, τ̄ ′, j̄′, ψ̄
′
,λ′, ρ)′,

with λ = (λτ , λa, λψ, λj, λcov)
′.

In this context, we consider:

dgp 1: i.i.d. time variation for the parameters.

(a) Time variation in τ t and at only, with jt and ψt constant for all t. In particular, we

set λτ = .105, λa = .026 and λψ = λj = ρ = 0.

(b) Time variation in jt and ψt only, with τ t and at constant for all t. Specifically, we

set λψ = λj = .105 and λτ = λa = ρ = 0.

(c) Time variation in all parameters. In this case, we set λτ = λψ = λj = .105, λa = .026,

λcov = −.001 and ρ = 0.

dgp 2: Ar(1) dynamics for the model parameters.

(a) Time variation in τ t and at only, with jt and ψt constant for all t. In particular, we

set λτ = .02, λa = .005, λψ = λj = 0 and ρ = .9.

(b) Time variation in jt and ψt only, with τ t and at constant for all t. Specifically, we

set λψ = λj = .02, λτ = λa = 0 and ρ = .9.

(c) Time variation in all parameters. In this case, we set λτ = λψ = λj = .02, λa = .005,

λcov = −.001 and ρ = .9.
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Importantly, we have calibrated the designs (a), (b) and (c) in dgp 2 so that the uncon-

ditional variances of the Var coeffi cients are the same as in the corresponding designs of dgp

1.

Finally, we model persistent but recurrent time variation in the model parameters through

the following:

dgp 3: Regime-switching model for the parameters.

We assume that there exists a latent variable st ∈ {0, 1} that follows a (homogeneous and

irreducible) first-order Markov chain whose temporal evolution is fully characterised by

Pr(st = 0|st−1 = 0) = p00 and Pr(st = 1|st−1 = 1) = p11, with the usual constraints on p00

and p11. This state variable drives the time variation in the parameters of the model as

τ t =

{
τ 0 if st = 0
τ 1 if st = 1

at =

{
a0 if st = 0
a1 if st = 1

ψt =

{
ψ0 if st = 0
ψ1 if st = 1

and jt =

{
j0 if st = 0
j1 if st = 1

.

As in the previous two designs, we consider the following three possibilities:

(a) Time variation in τ t and at only, with jt and ψt constant for all t, so that υ =

(τ ′0, τ
′
1,a
′
0,a
′
1, ψ̄

′
, j̄′, p00, p11)′.

(b) Time variation in jt and ψt only, with τ t and at constant for all t, so that υ =

(τ̄ ′, ā′,ψ′0,ψ
′
1, j
′
0, j
′
1, p00, p11)

′.

(c) Time variation in all parameters, which is the combination of the previous two cases,

so that υ = (τ ′0, τ
′
1,a
′
0,a
′
1,ψ

′
0,ψ

′
1, j
′
0, j
′
1, p00, p11)

′.

We set p00 = p11 = .95 to generate the same autocorrelation for the random coeffi cients

as in dgp 2. Moreover, we set the remaining hyperparameters so that the unconditional

variances of the Var coeffi cients in designs (a), (b) and (c) coincide once again with the

corresponding ones in dgp 1. In particular, we choose

τ̄ =

(
1
−1

)
, τ 0 =

(
1.3245
−1.3245

)
, τ 1 =

(
.6755
−.6755

)
,

ā =

 1/2
1/4
1/3

 , a0 =

 .662
.412
.496

 , a1 =

 .338
.088
.171

 ,

ψ̄
′
= `2, ψ0 = 1.325`2, ψ1 = .675`2, j̄′ = 0, j0 = .325 and j1 = −.325.
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4.2 Simulation results

4.2.1 Size properties

Table 1 reports Monte Carlo rejection rates under the null of the information matrix tests

proposed in section 3 for Var models of orders one and two. Panels A and B present results

for sample sizes of 250 and 1,000, respectively. In turn, left panels rely on asymptotic critical

values while right panels on bootstrap-based ones. As can be seen, asymptotic critical values

do not seem to be reliable for samples of size T = 250, while the bootstrap offers improvements

in the right direction. Interestingly, all the models we consider do well in terms of bootstrap-

based size figures even in samples of T = 250, despite the Var(2) tests involving a significantly

larger number of degrees of freedom.6 On the other hand, rejection rates based on asymptotic

critical values become quite reliable for moderately large samples (T = 1, 000), with the possible

exception of the tests at the 1% level, which are somewhat oversized. Once again, the bootstrap

tends to correct most of the remaining size distortions in those cases.

Interestingly, the comparison of the rejection rates of the tests that use the sample counter-

part of the second and fourth unconditional moments of yt with those that rely on the theoretical

expression in Proposition 3 shows no clear winner. It depends on whether one compares the con-

ditional heteroskedasticity tests or the conditional asymmetry ones, as well as on the significance

level chosen.

In turn, Table 2 reports the corresponding figures for trivariate Var models. As can be

observed, the same qualitative results apply. In particular, the comparison of asymptotic with

bootstrapped critical values leads to analogous conclusions. Similarly, the finite sample size of

the tests does not noticeably deteriorate when we move from a specification with one lag to

another with two. These findings are remarkable because the number of degrees of freedom for

the different chi-square limiting distributions under the null is substantially larger in trivariate

models than in bivariate ones, as can be seen from the second columns of Tables 1 and 2.

4.2.2 Power of the tests

Next, we assess the power of our tests in samples of T = 250 in Tables 3 (bivariate) and 4

(trivariate). Panels A in those tables clearly indicate that the power of our tests against dgp

1 is quite good, which is not very surprising given Chesher’s (1984) re-interpretation of the

information matrix test as an LM test against this type of parameter variation.

Nevertheless, our tests also have substantial power to detect both persistent but stationary

Ar coeffi cients, as can be seen from panels B of Tables 3 and 4, and regime switching parameters,

6Given the number of Monte Carlo replications, the 95% asymptotic confidence intervals for the rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1, 5 and 10% levels, respectively.
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as shown in panels C. In fact, in several instances the power to detect these other types of time-

variation in the model parameters is larger than in the i.i.d. case despite the different DGPs

generating the same unconditional variances for the coeffi cients.

Finally, a comparison of Tables 3 and 4 indicates that the same conclusions hold for the two

cross-sectional dimensions that we consider.

5 An application to aggregate output measures

In theory, the expenditure (GDE) and income (GDI) measures of output should be equal,

but in practice they differ because they are calculated from different sources. Traditionally, the

difference between them, offi cially known as the “statistical discrepancy”(see Grimm (2007)),

was regarded by many academic economists as a curiosity in the US National Input and Product

Accounts (NIPA) elaborated by the Bureau of Economic Analysis (BEA) of the Department of

Commerce. However, the Great Recession substantially renewed interest in this discrepancy

(see e.g. Nalewaik (2010, 2011)), and in fact nowadays the BEA routinely reports an equally

weighted average of the growth rates of GDE and GDI as an improved measurement.

In this section, we first fit a Var to a suitable stationary transformation of these two aggre-

gate output measures, and then study the constancy of its coeffi cients by means of the tests we

have developed in section 3. In this respect, we follow Almuzara, Amengual and Sentana (2019)

and Almuzara, Fiorentini and Sentana (2021) in imposing cointegration (in logs) between GDE

and GDI, with cointegrating vector (-1,1). Given the non-stationary nature of those two out-

put measures, the absence of cointegration between them would imply an implausible diverging

statistical discrepancy.

Specifically, we consider the following dynamic bivariate model:

yt = τ +

p∑
j=1

Ajyt−j + εt, (28)

εt|It−1 ∼ i.i.d. N(0,Ω),

where y1t is the difference between the logs of GDE and GDI, while y2t is the (arithmetic)

average of the (geometric) quarterly rates of growth of these two output measures.

Following Almuzara, Amengual and Sentana (2019), our sample period starts in 1952Q1,

soon after the Treasury—Federal Reserve Accord whereby the Fed stopped its wartime pegging

of interest rates, and finishes at 2015Q2, for a total of 254 observations. This sample contains

the so-called Great Moderation, a longer period prior to it which includes the turbulences in

the late 1970s and early 1980s, as well as the Great Recession. Figure 1a displays the temporal
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evolution of the statistical discrepancy, which shows a persistent but stationary pattern whose

movements are unrelated to the business cycle. In turn, Figure 1b reports the average of the

growth rates of GDE and GDI, which is also noticeably stationary but serially correlated.

To determine the number of lags p in (28), we initially rely on the BIC-Schwarz criterion,

which selects a single lag. Nevertheless, when inspecting the residuals of the estimated Var(1),

we find evidence of residual autocorrelation, which we formally assess through a Lagrange multi-

plier test of multivariate white noise against a Var(1) for εt (see Fiorentini and Sentana (2015)).

In contrast, the analogous test applied to the residuals of a Var(2) fails to reject at the usual

5% level, although it has a relatively small p—value, and the same is true of the likelihood ratio

test of Var(2) versus Var(3).

In view of this mixed evidence, in Panel A of Table 5 we report the OLS estimates and

their standard errors for p = 1 and p = 2. Interestingly, the estimated residuals of the two

models are quite similar, as can be seen from Figure 2. Indeed, the correlation of the estimated

residuals of the statistical discrepancy for the specifications with one and two lags is .982 while

the corresponding figure for the average GDE-GDI growth is .988.

Panel B of Table 5 contains the results of applying our information matrix tests to assess

the constancy of the mean and variance parameters of the two Var models. As can be seen, the

null hypotheses of conditional homoskedasticity and mesokurtosis are strongly rejected for both

specifications. However, the null hypotheses of conditional and unconditional symmetry are not

rejected. Therefore, our proposed information matrix tests indicate time-variation in both the

autoregressive coeffi cients and the residual covariance matrix of the innovations, but they fail to

detect any covariation between those two groups of coeffi cients.

To inspect whether there are specific periods leading to the rejection, in Figure 3 we report

the contribution of observation t to each of the test statistics for the Var(2) specification. Specif-

ically, we plot the fourth root of T ·m′lt(θ̂T )V̂ −1[mlt(θ̂)]mlt(θ̂T ) for l = h, a, k to “normalise”

these quadratic forms, a transformation proposed by Hawkins and Wixley (1986) for chi-square

distributed variables. Those plots suggest that the oil crises in the seventies and the recession

of the early 2000s are events that generate high values for those quantities.

6 Conclusions and directions for further research

We propose the information matrix test to assess the constancy of mean and variance para-

meters in vector autoregressions. We additively decompose this test into four easily interpretable

orthogonal components which check conditional heteroskedasticity and asymmetry of the inno-

vations, as well as their unconditional skewness and kurtosis. We also conduct extensive Monte
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Carlo simulations to study the finite size and power properties of these tests against i.i.d. co-

effi cients, persistent but stationary ones, and regime switching. Finally, our procedures detect

time-variation in the autoregressive coeffi cients and residual covariance matrix of a Var for the

US GDP growth rate and the statistical discrepancy, but they fail to detect any covariation

between those two sets of coeffi cients.

If the autoregressive polynomial (IN −A1L− . . .−ApL
p) had some unit roots, yt would be

a (co-) integrated process, and the estimators of the conditional mean parameters would have

non-standard asymptotic distributions, as some of them would converge at the faster rate T . In

contrast, the distribution of the usual OLS estimators of the residual variance parameters would

remain standard (see, e.g., Phillips and Durlauf (1986)). Presumably, the asymptotic distribu-

tion of the sample averages of the multivariate Hermite polynomials of the regression residuals

evaluated at the maximum likelihood estimators would also remain standard. Therefore, the

complication would arise because the second and fourth moments of the yt’s that appear in

Propositions 1 and 2 would diverge. The study of the properties of our proposed tests in those

circumstances constitutes an interesting avenue for research.

Macroeconomists may also be interested in assessing the constancy of the mean and variance

parameters of model (21) without maintaining the Gaussianity of its shocks. While it makes no

sense to robustify the kurtosis test (13) when the shocks are not normal, one could easily use

robust versions of (11) and (12) under the maintained assumption of conditional independence

of ε∗t given xt. In practice, a researcher would simply need to replace the theoretical expressions

for the covariance matrix of the corresponding vector of multivariate Hermite polynomials that

appear in (14) and (15) by either their sample second moment matrix or their covariance matrix,

both of which are consistent under the null. In fact, one could also consider more robust versions

of these moment test statistics that do not exploit the Kronecker structure in (14) and (15).

However, as Gonçalves and Killian (2004) forcefully argue for the case of the mean coeffi cients,

the bootstrap procedure discussed in section 3.3 will not work in these more general contexts,

so extending it provides another promising research avenue.
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Appendices

A Proofs

Proposition 1

Given that the random vectors Hk(ε
∗
t ) for k = 2, 3, 4 are not only mean independent from

the regressors xt under the null, but also their conditional covariance matrices are constant, it

is easy to see that

V [mht(θ)] = V (H2t)⊗ E
[
vech(xtx

′
t)
]
,

V [mat(θ)] = V (H3t)⊗ E(xtx
′
t)

and

V [mkt(θ)] = V (H4t),

where —to shorten the expressions—Hkt denotes Hk[ε
∗
t (θ)].

In practice, though, we must evaluate the influence functions at the Gaussian maximum

likelihood estimators θ̂T = (b̂′T , ω̂
′
T )′, so to correct for sampling uncertainty we need to find

their residual covariance matrices after projecting them onto the linear span of the scores sbt(θ)

and sωt(θ). In this respect, it is easy to see that we can re-write (2) and (3) as

sbt(θ) = (IM ⊗Ω−1/2′)(xt ⊗H1t),

sωt(θ) =
1

2
D′N (Ω−1/2′ ⊗Ω−1/2′)DNH2t,

which means that we only have to consider the projection of mht(θ) onto the linear span of

sωt(θ).

Given that

E{[H2t ⊗ vech(xtx
′
t)]s
′
ωt(θ)} = {V (H2t)⊗ E[vech(xtx

′
t)]}

1

2
D′N (Ω−1/2 ⊗Ω−1/2)DN

and

V [sωt(θ)] =
1

2
D′N (Ω−1/2′ ⊗Ω−1/2′)DNV (H2t)

1

2
D′N (Ω−1/2 ⊗Ω−1/2)DN ,
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the residual covariance matrix will be

{V (H2t)⊗ E
[
vech(xtx

′
t)
]
} − [V (H2t)⊗ vech(xtx

′
t)]

1

2
D′N (Ω−1/2 ⊗Ω−1/2)DN

×
[

1

2
D′N (Ω−1/2′ ⊗Ω−1/2′)DNV {H2t)

1

2
D′N (Ω−1/2 ⊗Ω−1/2)DN

]−1
×1

2
D′N (Ω−1/2′ ⊗Ω−1/2′)DN{V (H2t)⊗ E[vech(xtx

′
t)]}

= {V (H2t)⊗ E
[
vech(xtx

′
t)
]
} − [V (H2t)⊗ vech(xtx

′
t)]

1

2
D′N (Ω−1/2 ⊗Ω−1/2)DN

×2D+
N (Ω1/2 ⊗Ω1/2)D+′

N V
−1(H2t)2D+

N (Ω1/2′ ⊗Ω1/2′)D+′
N

×1

2
D′N (Ω−1/2′ ⊗Ω−1/2′)DN{V (H2t)⊗ E[vech(xtx

′
t)]}

= {V (H2t)⊗ E
[
vech(xtx

′
t)vech

′(xtx
′
t)
]
}

−{V (H2t)⊗ E[vech(xtx
′
t)]}V −1(H2t){V (H2t)⊗ E[vech′(xtx

′
t)]}

= V (H2t)⊗ V
[
vech(xtx

′
t)
]
,

where we have used Theorem 3.13 in Magnus and Neudecker (2019). This expression simply

reflects the fact that the projection residual is effectively

H2t ⊗ {vech(xtx
′
t)− E

[
vech(xtx

′
t)
]
}.

Given that multivariate Hermite polynomials of different orders are uncorrelated (see Holmquist

(1996)), this adjusted influence function is orthogonal to both mat(θ) and mkt(θ), which in

turn are orthogonal to each other. Therefore, the joint moment test will be sum of the three

components. �

Proposition 2

Consider the unconditional moment conditions

E

[
H3t ⊗

(
1
zt

)]
= 0, (A1)

which result from the conditional moment restrictions E(H3t|zt) = 0.

Under the maintained assumption that E(H3tH
′
3t|zt) = E(H3tH

′
3t), we will have that

V

[
H3t ⊗

(
1
zt

)]
= E

[
H3tH

′
3t ⊗

(
1 z′t
zt ztz

′
t

)]
= E

[
E(H3tH

′
3t|zt)⊗

(
1 z′t
zt ztz

′
t

)]
=

[
V (H3t)⊗

(
1 µ′z
µz µzµ

′
z + Σzz

)]
.
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Therefore, the moment test that uses the asymptotic covariance matrix will be given by

T

(
1

T

T∑
t=1

[H′3t ⊗ ( 1 z′t )]

)[
V (H3t)⊗

(
1 µ′z
µz µzµ

′
z + Σzz

)]−1(
1

T

T∑
t=1

[
H3t ⊗

(
1
zt

)])

=
1

T

(
T∑
t=1

[H′3t ⊗ ( 1 z′t )]

)[
V −1(H3t)⊗

(
1 µ′z
µz µzµ

′
z + Σzz

)−1]( T∑
t=1

[
H3t ⊗

(
1
zt

)])

= T

(
1

T

T∑
t=1

[H′3t ⊗ ( 1 z′t )]

)[
V −1(H3t)⊗

(
1 + µ′zΣ

−1
zz µz −µ′zΣ−1zz

−Σ−1zz µz Σ−1zz

)]

×
(

1

T

T∑
t=1

[
H3t ⊗

(
1
zt

)])
. (A2)

Let us now project H3t ⊗ zt onto the linear span of H3t ⊗ 1 = H3t. We end up with the

following projection residuals

H3t ⊗ zt − [V (H3t)⊗ µz]
[
V −1(H3t)⊗ 1

]
(H3t ⊗ 1) = H3t ⊗ (zt − µz),

whose asymptotic covariance matrix is

V (H3t)⊗ (µzµ
′
z + Σzz)− [V (H3t)⊗ µz]

[
V −1(H3t)⊗ 1

] [
V (H3t)⊗ µ′z

]
= V (H3t)⊗Σzz.

In addition, these projection residuals are orthogonal to (H3t ⊗ 1) by construction.

Hence, we can re-write the quadratic form (A2) as

1

T

[
T∑
t=1

{H′3t ⊗ [ 1 zt − E(z′t) ]}
]{

V −1(H3t)⊗
[

1 0
0 V −1(zt)

]}[ T∑
t=1

{
H3t ⊗

[
1

zt − E(zt)

]}]

= T

(
1

T

T∑
t=1

H′3t

)
V −1(H3t)

(
1

T

T∑
t=1

H3t

)

+T

[
1

T

T∑
t=1

{H′3t ⊗ [z′t − µ′z]}
] [
V −1(H3t)⊗Σ−1zz

] [ 1

T

T∑
t=1

{H3t ⊗ [zt − µz)]}
]
.

Effectively, what we are doing is to premultiply the original moment conditions (A1) by(
1 0′

−µz IN

)
and adjust the covariance matrix accordingly. �

Proposition 3

Since E(xt−1) = µ ≡ (IN −A)−1τ and vec[V (yt)] = vec(Υ) ≡ (IN2 −A⊗A)−1vec(Ω),

we trivially have that E(xt−1x′t−1) = Υ + µµ′. Next, we can use Theorem 4.3 (i) and (i.v)

in Magnus and Neudecker (1979) to compute E[vech(xt−1x′t−1)vech
′(xt−1x′t−1)]. Thus, we can
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show that

V (xt−1 ⊗ xt−1) = (IN2 + KN ) (Υ⊗Υ + Υ⊗ µµ′ + µµ′ ⊗Υ),

which together with

E(xt−1 ⊗ xt−1) = vec(Υ) + µ⊗ µ

and

E[(xt−1 ⊗ xt−1)(xt−1 ⊗ xt−1)
′] = V (xt−1 ⊗ xt−1) + E(xt−1 ⊗ xt−1)E(xt−1 ⊗ xt−1)

′

imply the stated result.

Finally, we can combine the fact that

0 = E{[(xt−1 − µ)⊗ (xt−1 − µ)](xt−1 − µ)′]}

= E{[(xt−1 − µ)⊗ (xt−1 − µ)]x′t−1]} − E[(xt−1 − µ)⊗ (xt−1 − µ)]µ′

= E{[(xt−1 − µ)⊗ (xt−1 − µ)]x′t−1]} − vec(Υ)µ′

and

(xt−1 − µ)⊗ (xt−1 − µ) = xt−1 ⊗ xt−1 − µ⊗ xt−1 − xt−1 ⊗ µ+ µ⊗ µ

to obtain the stated result for E[(xt−1 ⊗ xt−1)x′t−1] because

E[(xt−1 ⊗ µ)x′t−1] = E[vec(µx′t−1)x
′
t−1] = (IN⊗µ)E(xt−1x

′
t−1) = (IN⊗µ)Υ

and E[(µ⊗ xt−1)x′t−1] = µ⊗ E[xt−1x′t−1] = µ⊗Υ. �

B The special case of an AR(1)

Consider the simplest possible univariate version of model (21):

yt = τ + αyt−1 + ut, where ut ∼ i.i.d. N(0, ω2), (B3)

so that under the null the conditional mean and variance functions will be µt(θ) = τ + αyt−1

and σ2t (θ) = ω2, respectively, with θ =(τ , α, ω2)′. The first derivatives of these functions are

∂µt(θ)

∂θ
= (1, yt−1, 0)′,

∂σ2t (θ)

∂θ
= (0, 0, 1)′,

while the second ones are
∂µt(θ)

∂θ∂θ′
= 0 and

∂σ2t (θ)

∂θ∂θ′
= 0.
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As a consequence, the outer product of the score is

∂ ln f(ε∗t )

∂θ

∂ ln f(ε∗t )

∂θ′
=

1

ω2

 ε∗2t ε∗2t yt−1 ε∗t (ε
∗2
t − 1)/(2ω)

ε∗2t yt−1 ε∗2t y
2
t−1 ε∗t (ε

∗2
t − 1)yt−1/(2ω)

ε∗t (ε
∗2
t − 1)/(2ω) ε∗t (ε

∗2
t − 1)yt−1/(2ω) (ε∗2t − 1)2/(4ω2)

 ,
while the Hessian is

ht(θ) =
∂2 ln f(ε∗t )

∂θ∂θ′
= − 1

ω2

 1 yt−1 ε∗t /ω
yt−1 y2t−1 ε∗t yt−1/ω
ε∗t /ω ε∗t yt−1/ω (2ε∗2t − 1)/(2ω2)

 .
Therefore, the expression for the sum of these two matrices reduces to

− 1

ω2

 ε∗2t − 1 (ε∗2t − 1)yt−1 (ε∗3t − 3ε∗t )/(2ω)
(ε∗2t − 1)yt−1 (ε∗2t − 1)y2t−1 (ε∗3t − 3ε∗t )yt−1/(2ω)

(ε∗3t − 3ε∗t )/(2ω) ε∗t (ε
∗2
t − 1)yt−1/(2ω) (ε∗4t − 6ε∗2t + 3)2/(4ω2)

 .
In terms of Hermite polynomials, these expressions are proportional to H2(ε

∗
t ) H2(ε

∗
t )yt−1 H3(ε

∗
t )/(2ω)

H2(ε
∗
t )yt−1 H2(ε

∗
t )y

2
t−1 H3(ε

∗
t )yt−1/(2ω)

H3(ε
∗
t )/(2ω) H3(ε

∗
t )yt−1/(2ω) H4(ε

∗
t )/(4ω

2)

 .
On this basis, we can provide the following interpretation of the different asymptotically

independent test statistics in Propositions 1 and 2:

Conditional heteroskedasticity: This is obtained by regressing H2[ε∗t (θ̂T )] onto 1, yt−1

and y2t−1. The associated influence functions are

mht(θ) =

 1
H2tyt−1
H2ty

2
t−1

 ,
whose covariance matrix under the null is

2

 1 E(yt−1) E(y2t−1)
E(yt−1) E(y2t−1) E(y3t−1)
E(y2t−1) E(y3t−1) E(y4t−1)

 .
Since the intercept appears only to adjust the test statistic for the parameter uncertainty in

estimating ω2, the resulting test statistic will be asymptotically distributed as a chi-square

random variable with two degrees of freedom. This can be seen more clearly by noticing that

the asymptotic covariance matrix of
√
Tm̄hT (θ̂T ) under the null will be

2

 0 0 0
0 V (yt−1) cov(yt−1, y2t−1)
0 cov(yt−1, y2t−1) V (y2t−1)

 ,
which explains why it is not possible to detect random variation in the intercept τ uncorrelated

to the random variation in α or ω2.
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Conditional and unconditional asymmetry: This is obtained by regressing H3[ε∗t (θ̂T )]

onto 1 and yt−1. The associated influence functions are

mat(θ) =

[
H3t

H3tyt−1

]
,

whose covariance variance under the null is

6

[
1 E(yt−1)

E(yt−1) E(y2t−1)

]
.

The resulting test statistic will be asymptotically distributed as a chi-square random variable

with two degrees of freedom.

As explained in Proposition 2, this test can in turn be additively decomposed into two

asymptotically orthogonal components: one obtained by regressing H3[ε∗t (θ̂T )] onto a constant,

and another one which regresses this Hermite polynomial on the demeaned value of yt−1. The

residual variances of those regressions are 6 and 6V (yt−1), respectively.

Kurtosis: This is obtained by regressing H4[ε∗t (θ̂T )] onto a constant. The relevant influence

function is

mkt(θ) = H4t,

whose variance is 24 under the null. The resulting test statistic will be asymptotically distributed

as a chi-square random variable with one degree of freedom.

Finally, if we impose the Gaussian null in full, we can replace the unconditional moments of

yt−1 in the above expressions with the following terms

E(yt) =
τ0

1− α0
,

E(y2t ) =
ω20

1− α20
+

(
τ0

1− α0

)2
,

E(y3t ) = 3
ω20

1− α20
τ0

1− α0
+

(
τ0

1− α0

)3
,

and

E(y4t ) = 3

(
ω20

1− α20

)2
+ 6

ω20
1− α20

(
τ0

1− α0

)2
+

(
τ0

1− α0

)4
.
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Table 1: Monte Carlo size of random coeffi cient variation tests: Bivariate models.

Asymptotic critical Bootstrap (999 samples)
values critical values

df 10% 5% 1% 10% 5% 1%

Panel A: Var(1), T = 250

hShT 15 8.82 4.94 1.55 9.74 4.71 0.96
hThT 15 9.66 5.57 2.20 9.70 4.58 0.94
hSaT 12 10.72 6.53 2.29 10.26 5.10 0.97
hTaT 12 10.87 6.68 2.35 10.27 5.18 0.95
hkT 5 9.05 5.67 2.48 10.10 4.98 0.86

Panel B: Var(2), T = 250

hShT 42 9.37 5.71 2.05 9.57 4.82 1.01
hThT 42 10.55 7.02 3.23 9.53 4.86 0.87
hSaT 20 11.09 7.27 3.04 10.13 4.91 0.99
hTaT 20 11.38 7.42 3.12 10.02 4.85 0.98
hkT 5 8.89 5.82 2.50 10.07 5.06 0.82

Panel C: Var(1), T = 1, 000

hShT 15 10.09 5.30 1.49 10.34 5.11 1.02
hThT 15 10.22 5.80 1.81 10.05 5.21 1.09
hSaT 12 10.77 5.83 1.57 10.29 5.13 1.00
hTaT 12 10.81 5.86 1.58 10.30 5.08 0.99
hkT 5 9.72 5.20 1.63 10.06 4.74 0.98

Panel D: Var(2), T = 1, 000

hShT 42 10.51 5.84 1.54 10.24 5.23 1.02
hThT 42 11.11 6.48 1.93 9.98 5.16 1.05
hSaT 20 10.80 5.89 1.52 9.81 4.72 0.83
hTaT 20 10.83 5.96 1.51 9.81 4.66 0.81
hkT 5 9.77 5.21 1.64 9.95 4.67 0.96

Notes: Results based on 10,000 samples of size T = 250 and 1, 000 from bivariate Var(1) and Var(2)
models. Left panels report the rejection rates based on the asymptotic critical values while the right ones
do the same but conducting the bootstrap explained in section 3.3. The row labels hhT , haT , and hkT
refer to the moment tests in Propositions 1. In the cases of hhT and haT , the additional superscript S
refers to using the sample analogues of (14) and (15), while the superscript T denotes those that rely on
the population covariance in Proposition 3 evaluated at the OLS estimators.
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Table 2: Monte Carlo size of random coeffi cient variation tests: Trivariate models.

Asymptotic critical Bootstrap (999 samples)
values critical values

df 10% 5% 1% 10% 5% 1%

Panel A: Var(1), T = 250

hShT 54 10.16 6.33 2.35 10.09 5.26 1.02
hThT 54 11.13 7.31 3.39 9.75 5.11 0.88
hSaT 40 11.47 7.60 3.10 10.09 5.09 0.97
hTaT 40 11.81 7.81 3.19 10.11 5.10 0.98
hkT 15 11.16 7.61 3.71 10.18 5.07 1.06

Panel B: Var(2), T = 250

hShT 162 10.28 6.77 2.82 9.81 5.18 1.01
hThT 162 12.12 8.35 4.22 9.42 4.65 0.99
hSaT 70 12.77 8.97 4.20 10.30 5.22 1.08
hTaT 70 13.27 9.27 4.34 10.22 5.14 1.06
hkT 15 11.31 7.80 3.73 10.32 5.25 1.04

Panel C: Var(1), T = 1, 000

hShT 54 10.73 5.80 1.41 10.38 5.08 1.00
hThT 54 11.61 6.67 2.00 10.50 5.32 1.10
hSaT 40 11.50 6.70 1.95 10.50 5.18 1.02
hTaT 40 11.60 6.75 1.97 10.52 5.17 1.02
hkT 15 10.72 6.39 2.09 9.80 5.01 0.98

Panel D: Var(2), T = 1, 000

hShT 162 11.12 6.02 1.94 10.25 4.92 1.02
hThT 162 12.03 7.13 2.72 9.82 5.02 1.10
hSaT 70 12.01 6.71 2.30 9.99 4.72 1.05
hTaT 70 12.16 6.75 2.33 10.09 4.70 1.08
hkT 15 10.89 6.32 2.16 10.03 5.00 0.97

Notes: Results based on 10,000 samples of size T = 250 and 1, 000 from trivariate Var(1) and Var(2)
models. Left panels report the rejection rates based on the asymptotic critical values while the right ones
do the same but conducting the bootstrap explained in section 3.3. The row labels hhT , haT , and hkT
refer to the moment tests in Propositions 1. In the cases of hhT and haT , the additional superscript S
refers to using the sample analogues of (14) and (15), while the superscript T denotes those that rely on
the population covariance in Proposition 3 evaluated at the OLS estimators.
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Table 5: A bivariate model for GDE-GDI measures.

Panel A: OLS estimates

Var(1)
τ vec(A1)

Param. Est. Std.Err. Param. Est. Std.Err.
τ1 .046 .034 a1 .872 .032
τ2 .425 .037 a2 −.011 .059

a3 −.001 .064
a4 .445 .056

Var(2)
τ vec(A1) vec(A2)

Param. Est. Std.Err. Param. Est. Std.Err. Param. Est. Std.Err.
τ1 .038 .036 a1 .707 .034 a5 .190 .115
τ2 .397 .066 a2 −.245 .066 a6 .271 .059

a3 .012 .034 a7 −.019 .114
a4 .445 .062 a8 .014 .059

Panel B: Testing for random coeffi cients

Sample covariance Theoretical covariance
p-value p-value

Test df Stat. Asym. Boot. Stat. Asym. Boot.

Var(1)
hhT 15 27.526 .025 .034 33.474 .004 .024
haT 12 15.626 .209 .174 15.260 .228 .186
hsaT 4 6.408 .171 .141 6.408 .171 .141
hdaT 8 9.218 .324 .265 9.053 .338 .271
hkT 5 34.462 .000 .002 34.462 .000 .002
hsaT & hkT 9 40.870 .000 .003 40.870 .000 .003

Var(2)
hhT 42 78.417 .001 .003 89.308 .000 .004
haT 20 19.074 .517 .411 18.703 .541 .425
hsaT 4 6.706 .152 .131 6.706 .152 .131
hdaT 16 12.368 .718 .588 12.159 .733 .597
hkT 5 37.036 .000 .001 37.036 .000 .001
hsaT & hkT 9 43.742 .000 .001 43.742 .000 .001

Notes: Data: Quarterly real GDE and GDI from 1952Q1 to 2015Q2. y1t is the difference between the
logs of GDE and GDI, while y2t is the (arithmetic) average of the (geometric) quarterly rates of growth
of these two output measures. The row labels hhT , haT , and hkT refer to the moment tests in Proposition
1, while hsaT and hdaT to those in Proposition 2. In the cases of hhT , haT and hdaT , “Sample covariance”
refers to using the sample analogues of (14) and (15), while “Theoretical covariance”refers to those that
rely on the population covariance in Proposition 3 evaluated at the OLS estimators.
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Figure 1: Data

Figure 1a: Statistical discrepancy
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Figure 1b: Average GDE-GDI growth rate
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Notes: Data: Quarterly real GDE and GDI from 1952Q1 to 2015Q2.
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Figure 2: Estimated innovations: Var(1) and Var(2)

Figure 2a: Statistical discrepancy
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Figure 2b: Average GDE-GDI growth rate
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Notes: Data: Quarterly real GDE and GDI from 1952Q1 to 2015Q2. The blue continuous line depicts
the OLS residuals from the Var(1) while the red dotted one correspond to the Var(2) ones.
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Figure 3: Contribution of observation t to the different tests: Var(2)

Figure 3a: Conditional heteroskedasticity
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Figure 3b: Conditional skewness
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Figure 3c: Unconditional kurtosis
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Notes: In this figure we report the contribution of observation t to each of the test statistics we
consider for the vector autoregression of order two. For the influence functions based on the second and
third multivariate Hermite polynomials, we report results from estimating the covariance matrix of the
moments through its sample analogue. Specifically, the contribution of observation t to the test statistic
j is simply T ·m′jt(θ̂T )V̂ −1[mjt(θ̂)]mjt(θ̂T ) for j = h, a, k̇, the expression for mjt(θ) and V [mjt(θ)] can
be found in section 3. In order to “normalise”these figures, which tend to have huge spikes occasionally
and almost no action the rest of the time, we follow Hawkins and Wixley (1986) so that we plot the
fourth root of these quantities.
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