Skip to main content

Advertisement

Log in

A novel tumor suppressor CECR2 down regulation links glutamine metabolism contributes tumor growth in laryngeal squamous cell carcinoma

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glutamine plays an important role in tumor metabolism and progression. This research aimed to find out how Gln exert their effects on laryngeal squamous cell carcinoma (LSCC).

Methods

Cell proliferation was measured by CCK8 and EdU assay, mitochondrial bioenergetic activity was measured by mitochondrial stress tests. Gene expression profiling was revealed by RNA sequencing and validated by RT-qPCR. In LSCC patients, protein expression in tumor and adjacent tissues was examined and scored by IHC staining. RNAi was performed by stably expressed shRNA in TU177 cells. In vivo tumor growth analysis was performed using a nude mouse tumorigenicity model.

Results

Gln deprivation suppressed TU177 cell proliferation, which was restored by αKG supplementation. By transcriptomic analysis, we identified CECR2, which encodes a histone acetyl-lysine reader, as the downstream target gene for Gln and αKG. In LSCC patients, the expression of CECR2 in tumors was lower than adjacent tissues. Furthermore, deficiency of CECR2 promoted tumor cell growth both in vitro and in vivo, suggesting it has tumor suppressor effects. Besides, cell proliferation inhibited by Gln withdrawal could be restored by CECR2 depletion, and the proliferation boosted by αKG supplementation could be magnified either, suggested that CECR2 feedback suppressed Gln and αKG’s effect on tumor growth. Transcriptomic profiling revealed CECR2 regulated the expression of a series of genes involved in tumor progression.

Conclusion

We confirmed the Gln-αKG-CECR2 axis contributes to tumor growth in LSCC. This finding provided a potential therapeutic opportunity for the use of associated metabolites as a potential treatment for LSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

References

  1. Lionello M, Staffieri A, Marioni G. Potential prognostic and therapeutic role for angiogenesis markers in laryngeal carcinoma. Acta Otolaryngol. 2012;132(6):574–82. https://doi.org/10.3109/00016489.2011.652308.

    Article  CAS  PubMed  Google Scholar 

  2. Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82. https://doi.org/10.1038/nrc.2018.11.

    Article  CAS  PubMed  Google Scholar 

  3. Yokota T, Homma A, Kiyota N, Tahara M, Hanai N, Asakage T, et al. Immunotherapy for squamous cell carcinoma of the head and neck. Jpn J Clin Oncol. 2020;50(10):1089–96. https://doi.org/10.1093/jjco/hyaa139.

    Article  PubMed  Google Scholar 

  4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.

  5. Qureshi MM, Oladeru OT, Lam CM, Dyer MA, Mak KS, Hirsch AE, et al. Disparities in laryngeal cancer treatment and outcomes: an analysis by hospital safety-net burden. Laryngoscope. 2021. https://doi.org/10.1002/lary.29416.

    Article  PubMed  Google Scholar 

  6. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34. https://doi.org/10.1038/nrc.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith B, Schafer XL, Ambeskovic A, Spencer CM, Land H, Munger J. Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells. Cell Rep. 2016;17(3):821–36. https://doi.org/10.1016/j.celrep.2016.09.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bott AJ, Shen J, Tonelli C, Zhan L, Sivaram N, Jiang YP, et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep. 2019;29(5):1287-98.e6. https://doi.org/10.1016/j.celrep.2019.09.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123(9):3678–84. https://doi.org/10.1172/jci69600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009;69(20):7986–93. https://doi.org/10.1158/0008-5472.Can-09-2266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dang CV. Links between metabolism and cancer. Genes Dev. 2012;26(9):877–90. https://doi.org/10.1101/gad.189365.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669–76.

    Article  CAS  PubMed  Google Scholar 

  14. Cacace A, Sboarina M, Vazeille T, Sonveaux P. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism. Oncogene. 2017;36(15):2074–84. https://doi.org/10.1038/onc.2016.364.

    Article  CAS  PubMed  Google Scholar 

  15. TeSlaa T, Chaikovsky AC, Lipchina I, Escobar SL, Hochedlinger K, Huang J, et al. α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 2016;24(3):485–93. https://doi.org/10.1016/j.cmet.2016.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017;18(9):985–94. https://doi.org/10.1038/ni.3796.

    Article  CAS  PubMed  Google Scholar 

  17. Tran TQ, Hanse EA, Habowski AN, Li H, Gabra MBI, Yang Y, et al. α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. Nat Cancer. 2020;1(3):345–58. https://doi.org/10.1038/s43018-020-0035-5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Morris JPt, Yashinskie JJ, Koche R, Chandwani R, Tian S, Chen CC, , et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573(7775):595–9. https://doi.org/10.1038/s41586-019-1577-5.

    Article  CAS  Google Scholar 

  19. Wang X, Liu R, Qu X, Yu H, Chu H, Zhang Y, et al. α-Ketoglutarate-activated NF-κB signaling promotes compensatory glucose uptake and brain tumor development. Mol Cell. 2019;76(1):148-62.e7. https://doi.org/10.1016/j.molcel.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  20. Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, et al. Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer. 2011;117(13):2926–38. https://doi.org/10.1002/cncr.25868.

    Article  CAS  PubMed  Google Scholar 

  21. Dawe CE, Kooistra MK, Fairbridge NA, Pisio AC, McDermid HE. Role of chromatin remodeling gene Cecr2 in neurulation and inner ear development. Dev Dyn. 2011;240(2):372–83. https://doi.org/10.1002/dvdy.22547.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson PJ, Norton KA, Niri FH, Dawe CE, McDermid HE. CECR2 is involved in spermatogenesis and forms a complex with SNF2H in the testis. J Mol Biol. 2012;415(5):793–806. https://doi.org/10.1016/j.jmb.2011.11.041.

    Article  CAS  PubMed  Google Scholar 

  23. Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, et al. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum Mol Genet. 2005;14(4):513–24. https://doi.org/10.1093/hmg/ddi048.

    Article  CAS  PubMed  Google Scholar 

  24. Park SG, Lee D, Seo HR, Lee SA, Kwon J. Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci Rep. 2020;10(1):16330. https://doi.org/10.1038/s41598-020-73500-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun. 2017;8(1):949. https://doi.org/10.1038/s41467-017-00906-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. GammaH2AX and cancer. Nat Rev Cancer. 2008;8(12):957–67. https://doi.org/10.1038/nrc2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee SK, Park EJ, Lee HS, Lee YS, Kwon J. Genome-wide screen of human bromodomain-containing proteins identifies Cecr2 as a novel DNA damage response protein. Mol Cells. 2012;34(1):85–91. https://doi.org/10.1007/s10059-012-0112-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCrimmon A, Domondon M, Sultanova RF, Ilatovskaya DV, Stadler K. Comprehensive assessment of mitochondrial respiratory function in freshly isolated nephron segments. Am J Physiol Renal Physiol. 2020;318(5):F1237–45. https://doi.org/10.1152/ajprenal.00031.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beirowski B. Measuring bioenergetic signatures of peripheral nerve segments by extracellular flux analysis. Methods Mol Biol. 2020;2143:191–203. https://doi.org/10.1007/978-1-0716-0585-1_15.

    Article  CAS  PubMed  Google Scholar 

  30. Luz AL, Smith LL, Rooney JP, Meyer J. Seahorse Xfe 24 extracellular flux analyzer-based analysis of cellular respiration in Caenorhabditis elegans. Curr Protoc Toxicol. 2015;66:25.7.1-15. https://doi.org/10.1002/0471140856.tx2507s66.

    Article  Google Scholar 

  31. Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, et al. Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer. 2020;147(10):2879–90. https://doi.org/10.1002/ijc.33192.

    Article  CAS  PubMed  Google Scholar 

  32. Pan M, Reid MA, Lowman XH, Kulkarni RP, Tran TQ, Liu X, et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol. 2016;18(10):1090–101. https://doi.org/10.1038/ncb3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun N, Liang Y, Chen Y, Wang L, Li D, Liang Z, et al. Glutamine affects T24 bladder cancer cell proliferation by activating STAT3 through ROS and glutaminolysis. Int J Mol Med. 2019;44(6):2189–200. https://doi.org/10.3892/ijmm.2019.4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–5. https://doi.org/10.1038/nature12040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518(7539):413–6. https://doi.org/10.1038/nature13981.

    Article  CAS  PubMed  Google Scholar 

  36. Chen PH, Shen WL, Shih CM, Ho KH, Cheng CH, Lin CW, et al. The CHAC1-inhibited Notch3 pathway is involved in temozolomide-induced glioma cytotoxicity. Neuropharmacology. 2017;116:300–14. https://doi.org/10.1016/j.neuropharm.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  37. Joo NE, Ritchie K, Kamarajan P, Miao D, Kapila YL. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012;1(3):295–305. https://doi.org/10.1002/cam4.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Funding

This study was supported by National Natural Science Foundation of China (No. 81971240 to Liu F., No. 81770988 and 81970869 to Yi H.L., No. 81770987 to Guan J.); Shanghai Municipal Commission of Science and Technology (No.18DZ2260200). Jinan Science and Technology Development Program (No. 201907018 to Zhang N.) and Shandong Provincial Key Research and Development Program (No. 2017G006037 to Zhang N.)

Author information

Authors and Affiliations

Authors

Contributions

X.T.W., H.L.Y., J.G. and F.L. designed experiments. X.T.W., C.X. performed experiments and analyzed data. S.M.W., W.J.H. and Y.N.L. contributed to data collection, data interpretation. N.N.L., Z.F.G., F.W. and N.Z. contributed to protocol development. X.T.W., H.L.Y and F.L. prepared the figures and wrote the manuscript.

Corresponding authors

Correspondence to Hongliang Yi or Feng Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The experimental protocol was established, according to the ethical guidelines of the Declaration of Helsinki (1964) and was approved by Chinese Clinical Trial Registry. The approval number is ChiCTR2000040554.

Consent to participate

Informed consents were obtained from all patients for the use of their samples.

Consent for publication

All authors have read and approved this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12094_2021_2603_MOESM1_ESM.png

Supplementary file1 Supplementary Fig. 1 Expression of relevant genes in single cell RNA(scRNA) sequencing in LSCC. a t‐SNE plot of the LSCC cell clusters in global view and the identification of cell‐class composition. bf Expression of key enzymes, including IDH1 (b), IDH2 (c), GLS (d), PPAT (e) and GLS2 (f), required for Gln and αKG in LSCC. gi Expression of candidate genes, CHAC1 (g), ULBP1 (h) and SLFN5 (i), in LSCC. (PNG 514 KB)

Supplementary file2 (DOCX 17 KB)

Supplementary file3 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, C., Wang, S. et al. A novel tumor suppressor CECR2 down regulation links glutamine metabolism contributes tumor growth in laryngeal squamous cell carcinoma. Clin Transl Oncol 23, 1942–1954 (2021). https://doi.org/10.1007/s12094-021-02603-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02603-y

Keywords

Navigation