Skip to main content

Advertisement

Log in

Mutations in chronic myelomonocytic leukemia and their prognostic relevance

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy that overlaps with myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) and tends to transform into acute myeloid leukemia (AML). Among cases of CMML, > 90% have gene mutations, primarily involving TET2 (~ 60%), ASXL1 (~ 40%), SRSF2 (~ 50%), and the RAS pathways (~ 30%). These gene mutations are associated with both the clinical phenotypes and the prognosis of CMML, special CMML variants and pre-phases of CMML. Cytogenetic abnormalities and the size of genome are also associated with prognosis. Meanwhile, cases with ASXL1, DNMT3A, NRAS, SETBP1, CBL and RUNX1 mutations may have inferior prognoses, but only ASXL1 mutations were confirmed to be independent predictors of the patient outcome and were included in three prognostic models. Novel treatment targets related to the various gene mutations are emerging. Therefore, this review provides new insights to explore the correlations among gene mutations, clinical phenotypes, prognosis, and novel drugs in CMML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  2. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767. https://doi.org/10.1038/ncomms10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patnaik MM, Tefferi A. Chronic Myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95(1):97–115. https://doi.org/10.1002/ajh.25684.

    Article  CAS  PubMed  Google Scholar 

  4. Coltro G, Mangaonkar AA, Lasho TL, Finke CM, Pophali P, Carr R, et al. Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)-a study of 1084 patients. Leukemia. 2020;34(5):1407-21. https://doi.org/10.1038/s41375-019-0690-7.

    Article  CAS  PubMed  Google Scholar 

  5. Patel BJ, Przychodzen B, Thota S, Radivoyevitch T, Visconte V, Kuzmanovic T, et al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia. 2017;31(12):2815–23. https://doi.org/10.1038/leu.2017.164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peng J, Zuo Z, Fu B, Oki Y, Tang G, Goswami M, et al. Chronic myelomonocytic leukemia with nucleophosmin (NPM1) mutation. Eur J Haematol. 2016;96(1):65–71. https://doi.org/10.1111/ejh.12549.

    Article  CAS  PubMed  Google Scholar 

  7. Itzykson R, Fenaux P, Bowen D, Cross NCP, Cortes J, De Witte T, et al. Diagnosis and treatment of chronic myelomonocytic leukemias in adults: recommendations from the European hematology association and the European leukemianet. Hemasphere. 2018;2(6):e150. https://doi.org/10.1097/HS9.0000000000000150.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patnaik MM, Barraco D, Lasho TL, Finke CM, Hanson CA, Ketterling RP, et al. DNMT3A mutations are associated with inferior overall and leukemia-free survival in chronic myelomonocytic leukemia. Am J Hematol. 2017;92(1):56–61. https://doi.org/10.1002/ajh.24581.

    Article  CAS  PubMed  Google Scholar 

  9. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118(14):3932–41. https://doi.org/10.1182/blood-2010-10-311019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128(4):735–45. https://doi.org/10.1016/j.cell.2007.02.009.

    Article  CAS  PubMed  Google Scholar 

  11. Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28(11):2206–12. https://doi.org/10.1038/leu.2014.125.

    Article  CAS  PubMed  Google Scholar 

  12. Elena C, Galli A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408–17. https://doi.org/10.1182/blood-2016-05-714030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patnaik MM, Vallapureddy R, Lasho TL, Hoversten KP, Finke CM, Ketterling R, et al. EZH2 mutations in chronic myelomonocytic leukemia cluster with ASXL1 mutations and their co-occurrence is prognostically detrimental. Blood Cancer J. 2018;8(1):12. https://doi.org/10.1038/s41408-017-0045-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zheng L, Xu L, Xu Q, Yu L, Zhao D, Chen P, et al. Utx loss causes myeloid transformation. Leukemia. 2018;32(6):1458–65. https://doi.org/10.1038/s41375-018-0011-6.

    Article  CAS  PubMed  Google Scholar 

  15. Thieme S, Gyarfas T, Richter C, Ozhan G, Fu J, Alexopoulou D, et al. The histone demethylase UTX regulates stem cell migration and hematopoiesis. Blood. 2013;121(13):2462–73. https://doi.org/10.1182/blood-2012-08-452003.

    Article  CAS  PubMed  Google Scholar 

  16. Ungerstedt JS. Epigenetic modifiers in myeloid malignancies: the role of histone deacetylase inhibitors. Int J Mol Sci. 2018;19(10). https://doi.org/10.3390/ijms19103091.

  17. Lasho TL, Vallapureddy R, Finke CM, Mangaonkar A, Gangat N, Ketterling R, et al. Infrequent occurrence of TET1, TET3, and ASXL2 mutations in myelodysplastic/myeloproliferative neoplasms. Blood Cancer J. 2018;8(3):32. https://doi.org/10.1038/s41408-018-0057-8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705–12. https://doi.org/10.1182/blood-2014-06-582809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121(12):2186–98. https://doi.org/10.1182/blood-2012-06-440347.

    Article  CAS  PubMed  Google Scholar 

  20. Itzykson R, Solary E. An evolutionary perspective on chronic myelomonocytic leukemia. Leukemia. 2013;27(7):1441–50. https://doi.org/10.1038/leu.2013.100.

    Article  CAS  PubMed  Google Scholar 

  21. Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A, et al. Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine. 2018;31:174–81. https://doi.org/10.1016/j.ebiom.2018.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zeidan AM, Hu X, Long JB, Wang R, Ma X, Podoltsev NA, et al. Hypomethylating agent therapy use and survival in older patients with chronic myelomonocytic leukemia in the United States: a large population-based study. Cancer. 2017;123(19):3754–62. https://doi.org/10.1002/cncr.30814.

    Article  PubMed  Google Scholar 

  23. Patnaik MM, Lasho TL, Vijayvargiya P, Finke CM, Hanson CA, Ketterling RP, et al. Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6(1):e385-e. https://doi.org/10.1038/bcj.2015.113.

    Article  Google Scholar 

  24. Coston T, Pophali P, Vallapureddy R, Lasho TL, Finke CM, Ketterling RP, et al. Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. Am J Hematol. 2019;94(7):767–79. https://doi.org/10.1002/ajh.25488.

    Article  CAS  PubMed  Google Scholar 

  25. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28(24):3858–65. https://doi.org/10.1200/JCO.2009.27.1361.

    Article  CAS  PubMed  Google Scholar 

  26. Mondesir J, Willekens C, Touat M, de Botton S. IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J Blood Med. 2016;7:171–80. https://doi.org/10.2147/JBM.S70716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang YI, You X, Kong G, Ranheim EA, Wang J, Du J, et al. Loss of Dnmt3a and endogenous Kras(G12D/+) cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis. Leukemia. 2015;29(9):1847–56. https://doi.org/10.1038/leu.2015.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muller J, Verrijzer P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev. 2009;19(2):150–8. https://doi.org/10.1016/j.gde.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  29. Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120(15):3080–8. https://doi.org/10.1182/blood-2012-01-404863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patnaik MM, Lasho TL, Finke CM, Hanson CA, Hodnefield JM, Knudson RA, et al. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol. 2013;88(3):201–6. https://doi.org/10.1002/ajh.23373.

    Article  CAS  PubMed  Google Scholar 

  31. Patnaik MM, Wassie EA, Padron E, Onida F, Itzykson R, Lasho TL, et al. Chronic myelomonocytic leukemia in younger patients: molecular and cytogenetic predictors of survival and treatment outcome. Blood Cancer J. 2015;5:e270. https://doi.org/10.1038/bcj.2014.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurtovic-Kozaric A, Przychodzen B, Singh J, Konarska MM, Clemente MJ, Otrock ZK, et al. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia. 2015;29(1):126–36. https://doi.org/10.1038/leu.2014.144.

    Article  CAS  PubMed  Google Scholar 

  33. Kar SA, Jankowska A, Makishima H, Visconte V, Jerez A, Sugimoto Y, et al. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica. 2013;98(1):107–13. https://doi.org/10.3324/haematol.2012.064048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9. https://doi.org/10.1038/nature10496.

    Article  CAS  PubMed  Google Scholar 

  35. Itzykson R, Duchmann M, Lucas N, Solary E. CMML: clinical and molecular aspects. Int J Hematol. 2017;105(6):711–9. https://doi.org/10.1007/s12185-017-2243-z.

    Article  PubMed  Google Scholar 

  36. Patnaik MM, Pophali PA, Lasho TL, Finke CM, Horna P, Ketterling RP, et al. Clinical correlates, prognostic impact and survival outcomes in chronic myelomonocytic leukemia patients with the JAK2V617F mutation. Haematologica. 2019;104(6):e236-e9. https://doi.org/10.3324/haematol.2018.208082.

    Article  CAS  Google Scholar 

  37. Tefferi A, Nicolosi M, Mudireddy M, Szuber N, Finke CM, Lasho TL, et al. Driver mutations and prognosis in primary myelofibrosis: Mayo-Careggi MPN alliance study of 1,095 patients. Am J Hematol. 2018;93(3):348–55. https://doi.org/10.1002/ajh.24978.

    Article  CAS  PubMed  Google Scholar 

  38. Gur HD, Loghavi S, Garcia-Manero G, Routbort M, Kanagal-Shamanna R, Quesada A, et al. Chronic myelomonocytic leukemia with fibrosis is a distinct disease subset with myeloproliferative features and frequent JAK2 pV617F mutations. Am J Surg Pathol. 2018;42(6):799–806. https://doi.org/10.1097/pas.0000000000001058.

    Article  PubMed  Google Scholar 

  39. Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, et al. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev. 2017;31(10):1007–23. https://doi.org/10.1101/gad.297135.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schnittger S, Bacher U, Alpermann T, Reiter A, Ulke M, Dicker F, et al. Use of CBL exon 8 and 9 mutations in diagnosis of myeloproliferative neoplasms and myelodysplastic/myeloproliferative disorders: an analysis of 636 cases. Haematologica. 2012;97(12):1890–4. https://doi.org/10.3324/haematol.2012.065375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V, et al. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia. 2013;27(6):1401–3. https://doi.org/10.1038/leu.2013.35.

    Article  CAS  PubMed  Google Scholar 

  42. Padron E, Garcia-Manero G, Patnaik MM, Itzykson R, Lasho T, Nazha A, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;5:e333. https://doi.org/10.1038/bcj.2015.53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daver N, Strati P, Jabbour E, Kadia T, Luthra R, Wang S, et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88(1):56–9. https://doi.org/10.1002/ajh.23345.

    Article  CAS  PubMed  Google Scholar 

  44. Jenkins C, Luty SB, Maxson JE, Eide CA, Abel ML, Togiai C, et al. Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Sci Signal. 2018;11(539):eaao5617. https://doi.org/10.1126/scisignal.aao5617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017;31(4):798–807. https://doi.org/10.1038/leu.2017.30.

    Article  CAS  PubMed  Google Scholar 

  46. Vallapureddy R, Lasho TL, Hoversten K, Finke CM, Ketterling R, Hanson C, et al. Nucleophosmin 1 (NPM1) mutations in chronic myelomonocytic leukemia and their prognostic relevance. Am J Hematol. 2017;92(10):E614–8. https://doi.org/10.1002/ajh.24861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quesada AE, Routbort MJ, DiNardo CD, Bueso-Ramos CE, Kanagal-Shamanna R, Khoury JD, et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol. 2019;94(7):757–66. https://doi.org/10.1002/ajh.25486.

    Article  CAS  PubMed  Google Scholar 

  48. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36. https://doi.org/10.1056/NEJMoa1605949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Valent P, Orazi A, Savona MR, Patnaik MM, Onida F, van de Loosdrecht AA, et al. Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica. 2019;104(10):1935–49. https://doi.org/10.3324/haematol.2019.222059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi K, Pemmaraju N, Strati P, Nogueras-Gonzalez G, Ning J, Bueso-Ramos C, et al. Clinical characteristics and outcomes of therapy-related chronic myelomonocytic leukemia. Blood. 2013;122(16):2807–11. https://doi.org/10.1182/blood-2013-03-491399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Subari S, Patnaik M, Alfakara D, Gangat N, Elliott M, Hogan W, et al. Patients with therapy-related CMML have shorter median overall survival than those with de novo CMML: Mayo clinic long-term follow-up experience. Clin Lymphoma Myeloma Leuk. 2015;15(9):546–9. https://doi.org/10.1016/j.clml.2015.06.002.

    Article  PubMed  Google Scholar 

  52. Patnaik MM, Vallapureddy R, Yalniz FF, Hanson CA, Ketterling RP, Lasho TL, et al. Therapy related-chronic myelomonocytic leukemia (CMML): molecular, cytogenetic, and clinical distinctions from de novo CMML. Am J Hematol. 2018;93(1):65–73. https://doi.org/10.1002/ajh.24939.

    Article  CAS  PubMed  Google Scholar 

  53. Geyer JT, Tam W, Liu Y-C, Chen Z, Wang SA, Bueso-Ramos C, et al. Oligomonocytic chronic myelomonocytic leukemia (chronic myelomonocytic leukemia without absolute monocytosis) displays a similar clinicopathologic and mutational profile to classical chronic myelomonocytic leukemia. Mod Pathol. 2017;30(9):1213–22. https://doi.org/10.1038/modpathol.2017.45.

    Article  CAS  PubMed  Google Scholar 

  54. Patnaik MM, Rangit V, Lasho TL, Hoversten KP, Finke CM, Ketterling RP, et al. A comparison of clinical and molecular characteristics of patients with systemic mastocytosis with chronic myelomonocytic leukemia to CMML alone. Leukemia. 2018;32(8):1850–6. https://doi.org/10.1038/s41375-018-0121-1.

    Article  PubMed  Google Scholar 

  55. Lasho TL, Finke CM, Zblewski D, Patnaik M, Ketterling RP, Chen D, et al. Novel recurrent mutations in ethanolamine kinase 1 (ETNK1) gene in systemic mastocytosis with eosinophilia and chronic myelomonocytic leukemia. Blood Cancer J. 2015;5:e275. https://doi.org/10.1038/bcj.2014.94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cargo C, Cullen M, Taylor J, Short M, Glover P, Van Hoppe S, et al. The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood. 2019;133(12):1325–34. https://doi.org/10.1182/blood-2018-08-867333.

    Article  CAS  PubMed  Google Scholar 

  57. Palomo L, Ibanez M, Abaigar M, Vazquez I, Alvarez S, Cabezon M, et al. Spanish guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2020;188(5):605–22. https://doi.org/10.1111/bjh.16175.

    Article  PubMed  Google Scholar 

  58. Hwang SM, Kim SM, Nam Y, Kim J, Kim S, Ahn YO, et al. Targeted sequencing aids in identifying clonality in chronic myelomonocytic leukemia. Leuk Res. 2019;84:106190. https://doi.org/10.1016/j.leukres.2019.106190.

    Article  CAS  PubMed  Google Scholar 

  59. Tang G, Zhang L, Fu B, Hu J, Lu X, Hu S, et al. Cytogenetic risk stratification of 417 patients with chronic myelomonocytic leukemia from a single institution. Am J Hematol. 2014;89(8):813–8. https://doi.org/10.1002/ajh.23751.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wassie EA, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89(12):1111–5. https://doi.org/10.1002/ajh.23846.

    Article  CAS  PubMed  Google Scholar 

  61. Such E, Cervera J, Costa D, Sole F, Vallespi T, Luno E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96(3):375–83. https://doi.org/10.3324/haematol.2010.030957.

    Article  PubMed  Google Scholar 

  62. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6(2):e393. https://doi.org/10.1038/bcj.2016.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Palmo L, Xicoy B, Garcia O, et al. Impact of SNP array karyotyping on the diagnosis and the outcome of chronic myelomonocytic leukemia with low risk cytogenetic features or no metaphases. Am J Hematol. 2016;91(2):185-92. https://doi.org/10.1002/ajh.24227.

    Article  CAS  Google Scholar 

  64. Shen W, Paxton CN, Szankasi P, Longhurst M, Schumacher JA, Frizzell KA, et al. Detection of genome-wide copy number variants in myeloid malignancies using next-generation sequencing. J Clin Pathol. 2018;71(4):372–8. https://doi.org/10.1136/jclinpath-2017-204823.

    Article  CAS  PubMed  Google Scholar 

  65. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98. https://doi.org/10.1056/NEJMoa1408617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ganguly BB, Kadam NN. Mutations of myelodysplastic syndromes (MDS): an update. Mutat Res Rev Mutat Res. 2016;769:47–62. https://doi.org/10.1016/j.mrrev.2016.04.009.

    Article  CAS  PubMed  Google Scholar 

  67. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36. https://doi.org/10.1200/jco.2012.47.3314.

    Article  CAS  PubMed  Google Scholar 

  68. Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: an international study of 466 patients. Leukemia. 2015;15:S234. https://doi.org/10.1016/j.clml.2015.04.122.

    Article  Google Scholar 

  69. Feinberg AP, Koldobskiy MA, Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17(5):284–99. https://doi.org/10.1038/nrg.2016.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Manero G, Sekeres MA, Egyed M, Breccia M, Graux C, Cavenagh JD, et al. A phase 1b/2b multicenter study of oral panobinostat plus azacitidine in adults with MDS, CMML, or AML with p 30% blasts. Leukemia. 2017;31(12):2799–806. https://doi.org/10.1038/leu.2017.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sebert M, Renneville A, Bally C, Peterlin P, Beyne-Rauzy O, Legros L, et al. A phase II study of guadecitabine in higher-risk myelodysplastic syndrome and low blast count acute myeloid leukemia after azacitidine failure. Haematologica. 2019;104(8):1565–71. https://doi.org/10.3324/haematol.2018.207118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fujii T, Khawaja MR, DiNardo CD, Atkins JT, Janku F. Targeting isocitrate dehydrogenase (IDH) in cancer. Discov Med. 2016;21(117):373–80.

    PubMed  Google Scholar 

  73. Assi R, Kantarjian HM, Garcia-Manero G, Cortes JE, Pemmaraju N, Wang X, et al. A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. Am J Hematol. 2018;93(2):277–85. https://doi.org/10.1002/ajh.24972.

    Article  CAS  PubMed  Google Scholar 

  74. Padron E, Dezern A, Andrade-Campos M, Vaddi K, Scherle P, Zhang Q, et al. A multi-institution phase I trial of Ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin Cancer Res. 2016;22(15):3746–54. https://doi.org/10.1158/1078-0432.CCR-15-2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, et al. Dual FLT3 inhibitors: against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem. 2019;178:468–83. https://doi.org/10.1016/j.ejmech.2019.06.002.

    Article  CAS  PubMed  Google Scholar 

  76. Asati V, Mahapatra DK, Bharti SK. K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur J Med Chem. 2017;125:299–314. https://doi.org/10.1016/j.ejmech.2016.09.049.

    Article  CAS  PubMed  Google Scholar 

  77. Akutagawa J, Huang TQ, Epstein I, Chang T, Quirindongo-Crespo M, Cottonham CL, et al. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia. 2016;30(6):1335–43. https://doi.org/10.1038/leu.2016.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Padron E, Painter JS, Kunigal S, Mailloux AW, McGraw K, McDaniel JM, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121(25):5068–77. https://doi.org/10.1182/blood-2012-10-460170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Radia DH, Green A, Oni C, Moonim M. The clinical and pathological panoply of systemic mastocytosis. Br J Haematol. 2020;188(5):623–40. https://doi.org/10.1111/bjh.16288.

    Article  PubMed  Google Scholar 

  80. Romano M, Della Porta MG, Galli A, Panini N, Licandro SA, Bello E, et al. Antitumour activity of trabectedin in myelodysplastic/myeloproliferative neoplasms. Br J Cancer. 2017;116(3):335–43. https://doi.org/10.1038/bjc.2016.424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Modi Y, Shaaban H, Gauchan D, Maroules M. Successful treatment of severe thrombocytopenia with the use of thrombopoeitin receptor agonist eltrombopag in a patient with chronic myelomonocytic leukemia. J Oncol Pharm Pract. 2015;21(1):74–5. https://doi.org/10.1177/1078155214544076.

    Article  PubMed  Google Scholar 

  82. Gao Y, Gong M, Zhang C, Kong X, Ma Y. Successful eltrombopag treatment of severe refractory thrombocytopenia in chronic myelomonocytic leukemia. Medicine (Baltimore). 2017;96(43):e8337. https://doi.org/10.1097/MD.0000000000008337.

    Article  Google Scholar 

  83. Ramadan H, Duong VH, Al Ali N, Padron E, Zhang L, Lancet JE, et al. Eltrombopag use in patients with chronic myelomonocytic leukemia (CMML): a cautionary tale. Clin Lymphoma Myeloma Leuk. 2016;16(Suppl):S64–6. https://doi.org/10.1016/j.clml.2016.02.009.

    Article  PubMed  Google Scholar 

  84. Hunter AM, Zhang L, Padron E. Current management and recent advances in the treatment of chronic myelomonocytic leukemia. Curr Treat Options Oncol. 2018;19(12):67. https://doi.org/10.1007/s11864-018-0581-6.

    Article  PubMed  Google Scholar 

  85. Mikkael A, Sekeres MO, Alan F. List, Olatoyosi Odenike, randomized phase II study of Azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol. 2017;35(24):2745-53. https://doi.org/10.1200/JCO10.1200/JCO.2015.

    Article  Google Scholar 

  86. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–8. https://doi.org/10.1038/nature08240.

    Article  CAS  PubMed  Google Scholar 

  87. Dunbar AJ, Gondek LP, O’Keefe CL, Makishima H, Rataul MS, Szpurka H, et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res. 2008;68(24):10349–57. https://doi.org/10.1158/0008-5472.CAN-08-2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reindl C, Quentmeier H, Petropoulos K, Greif PA, Benthaus T, Argiropoulos B, et al. CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res. 2009;15(7):2238–47. https://doi.org/10.1158/1078-0432.CCR-08-1325.

    Article  CAS  PubMed  Google Scholar 

  89. Malcovati L, Papaemmanuil E, Ambaglio I, Elena C, Galli A, Della Porta MG, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124(9):1513–21. https://doi.org/10.1182/blood-2014-03-560227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Itzykson R, Kosmider O, Renneville A, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36.

    Article  CAS  PubMed  Google Scholar 

  91. Santini V, Allione B, Zini G, Gioia D, Lunghi M, Poloni A, et al. A phase II, multicentre trial of decitabine in higher-risk chronic myelomonocytic leukemia. Leukemia. 2018;32(2):413–8. https://doi.org/10.1038/leu.2017.186.

    Article  CAS  PubMed  Google Scholar 

  92. Alfonso A, Montalban-Bravo G, Takahashi K, Jabbour EJ, Kadia T, Ravandi F, et al. Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. Am J Hematol. 2017;92(7):599–606. https://doi.org/10.1002/ajh.24735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Symeonidis A, van Biezen A, de Wreede L, Piciocchi A, Finke J, Beelen D, et al. Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Br J Haematol. 2015;171(2):239–46. https://doi.org/10.1111/bjh.13576.

    Article  PubMed  Google Scholar 

  94. de Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753–62. https://doi.org/10.1182/blood-2016-06-724500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Ma or B. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, J., Qiao, Y., Li, Y. et al. Mutations in chronic myelomonocytic leukemia and their prognostic relevance. Clin Transl Oncol 23, 1731–1742 (2021). https://doi.org/10.1007/s12094-021-02585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02585-x

Keywords

Navigation