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Resumen

Association rules have proved to be useful in
building both partial and complete classifica-
tion models. This paper analyzes alternative
measures which could replace confidence in or-
der to evaluate the suitability of a given asso-
ciation rule with respect to the classification
problem we try to solve when building a clas-
sification model.

1. Introduction

Association rules [1] [2] add statistical mea-
sures, such as support and confidence, to the
classic rules in Propositional Logic. In order to
make that difference obvious, their representa-
tion uses = instead of the classic —.

An association rule is an implication X=Y
where X and Y are itemsets with empty in-
tersection (i.e. sets with no items in common).
The intuitive meaning of such a rule is that
when X appears, Y also tends to appear.

The confidence of an association rule X=Y
is the proportion of the transactions contai-
ning X which also contain Y. The support of
the rule is the fraction of the database which
contains both X and Y.

Classification models can be directly built
from traditional association rules, using asso-
ciation rules where the class appears in their
right-hand side. In the following Section, we
describe some of the approaches followed to
build classification models from association ru-
les. Afterwards, we will analyze the use of al-
ternative measures to evaluate the suitability

of association rules for classification models.
Such a study is important in order to choo-
se the best association rules what will become
part of the classification model.

2. Association rules in classification

Some fundamental differences exist between
classification and association rule discovery
[11]. Association rules do not involve predic-
tion, nor do they provide any mechanism to
avoid underfitting and overfitting apart from
the crude minimum support user-specified th-
reshold. In classification problems, an induc-
tive bias is also needed to solve classification
problems, i.e. a basis for favoring one hypot-
hesis over another (e.g. Occam’s razor). This
bias, like any other bias, must be domain-
dependent. Association rules have, however,
been used to solve classification problems di-
rectly.

In [3], association rules are used to build
partial classification models in domains whe-
re conventional classifiers would be ineffective.
For example, traditional decision trees are pro-
blematic when many values are missing and al-
so when the class distribution is very skewed.

In [23], a tree of rules is built from an ar-
bitrary set of association rules without using
an ad-hoc minimum support threshold. The
authors have observed that predictivity often
depends on high confidence, and rules of high
support tend to have low confidence, so the
minimum support pruning is not suitable for
their classification purposes.

CBA, Classification Based on Associations

Actasdéd |11 Taller Nacional de Mineria de Datosy Aprendizaje, TAMIDAZ2005, pp.135-144

| SBN: 84-9732-449-8 © 2005 L os autores, Thomson



136

[15], builds complete classification models. All
“class association rules.?re extracted from the
available training dataset (i.e. all the asso-
ciation rules containing the class attribute in
their consequent), and the most adequate ru-
les are selected to build an “associative clas-
sification model", which uses a default class
to make it complete. This classifier builder
uses a brute-force exhaustive global search,
and yields excellent results when compared
to C4.5 [20]. In [18], CBA performance was
“improved.?llowing multiple minimum support
thresholds for the different problem classes
and reverting to traditional TDIDT classifiers
when no accurate rules are found.

A similar strategy to that of CBA is used to
classify text documents into topic hierarchi-
es in [24]. All the generalized association rules
with the class attribute in their consequent are
extracted, these rules are ranked, and some of
them are selected to build a classifier which ta-
kes context into account, since class proximity
is important when classifying documents into
topics.

Other classification models inspired by the
association rule mining process have been sug-
gested in the literature.

LB [19], which stands for “Large Bayes", is
an extended Naive Bayes classifier which uses
an Apriori-like frequent pattern mining algo-
rithm to discover frequent itemsets with their
class support. This class support is an estima-
te of the probability of the pattern occurring
with a certain class. The proposed algorithm
achieves good results. However, it lacks the un-
derstandability of symbolic models such as de-
cision trees.

Emerging patterns are itemsets whose sup-
port increases significantly from one dataset to
another [9]. They have been used to build clas-
sifiers following the LB philosophy. For exam-
ple, CAEP [10] finds all the emerging patterns
meeting some support and growth rate thres-
holds for each class. It then computes an ag-
gregated differentiating score to determine the
most suitable class for a given instance. This
computation allows the algorithm to perform
well when the class populations are unbalan-
ced, although it gives no further insight into
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the data.

Liu, Hu and Hsu [16] propose the use of a
hierarchical representation consisting of gene-
ral rules and exceptions in order to replace
the usual flat representation model where too
many association rules hamper the understan-
ding of the underlying data. The same approa-
ch is followed in [17] in order to obtain a good
summary of the knowledge contained in an ar-
bitrary set of rules.

CMAR, Classification based on Multiple As-
sociation Rules [14], extends the FP-growth
[12] frequent pattern mining algorithm to ob-
tain and compactly store rules for classifica-
tion in a CR-tree. Instead of relying on a sin-
gle rule to classify data, CMAR considers sets
of related rules, taking into account that the
most confident rule might not always be the
best choice to classify data. Given a data ob-
ject, CMAR retrieves all the rules matching
the object and assigns a label class to the ob-
ject according to a weighted x? measure which
indicates the “combined effect” of the rules.

CPAR, Classification based on Predictive
Association Rules [25], avoids generating the
large number of candidate rules of CMAR and
generates candidate rules directly from the
training data using ideas taken from traditio-
nal rule-based classification methods such as
Quinlan’s FOIL [21].

Finally, ART [5] can be viewed as a dege-
nerate, polythetic decision tree, hence its na-
me, which stands for Association Rule Tree.
ART can also be viewed as a decision list lear-
ner, since it is a generalized “Separate and
Conquer” algorithm, in contrast to the stan-
dard “Divide and Conquer” algorithms used to
build decision trees. ART is faster than gene-
ral decision list and rule inducers which need
to discover rules one at a time and, as decision
tree learners, ART is able to build classifica-
tion models in an efficient and scalable way.
ART classifiers, however, tend to be smaller
than the decision trees generated by standard
TDIDT approaches.
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3. Rule evaluation

Even though accurate classification models
can be built using standard association rules
[5] [25], it is clear that confidence is not the
best measure for a classification rule. Alter-
native rule evaluation measures might provide
better insight into the capability of a given as-
sociation rule to classify data.

Before delving into the details of existing
measures, we should review what we consider
a good classification rule. An association rule
A = C will be useful in classification problems
when the logical implication A — C' is valid:

e (' happens more often when A holds.
e —(C should be less frequent when A holds.

We might also be interested in verifying the
validity of =C' — —A, which is mathematica-
lly equivalent to A — C. Hence, a potentially
useful rule should also verify the following pro-
perties:

e — A happens more often when —C.

e A should occur less frequently when C
does not hold.

Although the latter two properties might be
interesting from a logical point of view, they do
not directly affect classification accuracy, whe-
re we are interested only in determining the
class C given A. Even then, those properties
might be desirable to improve the understan-
dability of the classification model obtained.

The following paragraphs discuss some ru-
le evaluation measures and their properties in
the context of classification problems.

3.1. Confidence

Even when the rule support might be of in-
terest during the association discovery process
from a purely tactical point of view, the rule
confidence is what finally determines the rule
validity. Its meaning is easy to grasp, and it
can be defined as follows:

P(ANCQC)

conf(A=C)=P(C|A) = PlA)

Confidence is used to measure the associa-
tion between the antecedent A and the conse-
quent C: the higher the confidence of A = C,
the lower the confidence of A = —=C, since
P(C|A) + P(-C|A) = 1.

However, the rule confidence cannot be used
to establish a causality relationship between
antecedent and consequent. It cannot be used
to perform inferences since it does not take
into account the validity of =C = —A. A va-
riation of the confidence does, hence its name:
Causal confidence [13].

3.2. Causal confidence

The causal confidence measure considers the
confidence of the rule A — C and the confi-
dence of its counterpart =C' — —A:

O feausat(4 = C) = 5 (P(ClA)+P(-4]-C))

The average is used just to normalize the
measure so that its values are always in the
interval [0, 1].

Unfortunately, this measure could have a
high value even when the implication A — C
does not have a representative support but its
counterpart -C' — —A does. Therefore, cau-
sal confidence is not adequate for classification
problems.

3.3. Causal support

The idea of causal confidence can also be ap-
plied to the support measure in order to obtain
the causal support:

Supporteausal(A = C) =

=P(ANC)+ P(—mAN-0C)

As before, even when P(ANC) is really low,
P(=AN~=C) can be high, causing causal sup-
port to be high (even when the rule might not
be too useful in a classification problem). Con-
sequently, causal support is not a good choice
to evaluate rules in classification problems.

3.4. Confirmation

Another measure, called confirmation, ta-
kes into account when the antecedent holds
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but not its consequent, what might be used to
highlight a rule depending on the commonness
of its antecedent.

K(A=C)=P(ANC)—P(AN-C)

Since P(AN—-C) = P(A)—P(ANC), confir-
mation is reduced to P(ANC)—P(AN-C) =
2P(ANC)— P(A). Since P(ANC) is the rule
support and P(A) is the support of the ante-
cedent, confirmation is no more than

K(A = C) = support(A = C) — support(A)
Hence
K(A = C) < support(A = C) (1)

The second term just penalizes the support
of the rule according to the support of the
antecedent. In other words, given two equa-
lly common rules, confirmation would select
as most interesting the rule whose antecedent
is less common. That might be useful in the
knowledge discovery process, although it does
not help in classification problems because it
does not take into account relationship be-
tween the rule antecedent and the rule con-
sequent.

This measure has been used to obtained th-
ree new criteria to evaluate rules:

e Causal confirmation, takes into ac-
count -C' — —A and can be reduced to:

Kequsat(A=C) =
supportequsal (A = C)
—support(A)
+support(C)

(2)

As the standard confirmation, this measu-
res varies depending upon the support of
A. On the other hand, the more common
the class C' is, the higher causal confirma-
tion the rule will have, what certainly ma-
kes classification difficult (especially when
the class distribution is skewed). Apart
from this fact, causal support is not sui-
table for classification problems.
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e Confirmed confidence is obtain from
the standard confidence when we try to
measure the quality of the rule A = —-C
(that is, when the antecedent holds but
not the consequent):

COnfconfirmed(A = C) =
= P(C|A) — P(~C|A)

However, since P(—~C|A) = 1 — P(C|A),
confirmed confidence can be reduced to

Confconfirmed(A = C) =
=2-conf(A=0C)-1

Therefore, if we are using this measu-
re just to rank the candidate rules whi-
ch might be part of a classification mo-
del, the rule confirmed confidence is com-
pletely equivalent to the rule confidence
(only that the confirmed confidence is de-
fined over the [—1, 1] interval).

e Even a causal confirmed confidence
can be concocted from the two previous
measures, but no interesting results can
be expected when dealing with classifica-
tion problems.

3.5. Conviction

Conviction [6] was introduced as an alter-
native to confidence to mine association rules
in relational databases (implication rules using
their authors’ nomenclature).

P(A)P(=C)

conviction(A = C) = P(AN-C)

Similar in some sense to confirmation, con-
viction focuses on A = —~C"

support(—C)

CO’I’LU?;Ct?:OTZ(A = C) = m

3)
The lower P(A N —C), the higher the ru-

le conviction, what makes conviction ideal for

discovering rules for uncommon classes.
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However, the conviction domain is not
bounded and it is hard to compare conviction
values for different rules. This constrains the
usability of the conviction measure in classifi-
cation models such as ART [5], since no heu-
ristics to automatically settle a conviction th-
reshold can be devised.

Later in this paper, another bounded mea-
sure will be analyzed which is completely equi-
valent to conviction in the situations of in-
terest for classification problems: the well-
known Shortliffe and Buchanan’s certainty fac-
tors. When there are at lest two classes (i.e.
support(C) < 1) and the rule improves classi-
fier accuracy (i.e. CF(A = C) > 0), certainty
factors can be defined as

1
conviction(A = C)

CFA=C)=1-

This allows us to substitute conviction for
another measure whose domain is bounded.
Further properties of the certainty factor will
be discusses in 3.9.

3.6. Interest

A rule interest measure was defined in [22]
as
P(ANC)

. . _ P(C|A)
interest(A=C) = BPAPC) ~ PO)

The more common A and C, the less interest
the rule will have, which is certainly useful to
guide the knowledge discovery process.

Among its properties, its symmetry stands
out: the interest of A = C' equals to the inter-
est of C'= A.

As happened with conviction, its domain is
not bounded, what might make its interpreta-
tion harder in a classification model.

In some sense, it can be considered com-
plementary to conviction if we take into ac-
count the following equality and compare it
with equation 3, although interest focuses on
the association A = C while conviction focu-
ses on A = —C'":

con fidence(A = C)

interest(A = C) = support(C)

3.7. Dependency

The following measure is the discrete equi-
valent of correlation in continuous domains:

dependency(A = C) = |P(C|A) — P(C)|

In classification problems, it is not suitable
since its value is high for common classes even
when the corresponding rule confidence is mi-
nimum:

dependency(A = C) =

= |conf(A = C) — support(C)|

A causal variation [13] of this measure can
also be defined as follows, although it is not
useful in classification problems either.

Bhandari’s attribute focusing measure is al-
so derived from the dependency measure abo-
ve, as the following expression shows

Bhandari(A = C) =

= support(A) - dependency(A = C)
Therefore, it is of no use in classification pro-
blems.
3.8. Hellinger’s divergence

Hellinger’s divergence was devised to mea-
sure the amount of information a rule provides
[7] and it can be viewed as a distance measure
between a priori and a posteriori class distri-
butions:

H(A = C)=+/P(A)
[(v/P(ANC) —/P(C))
~(/1-P(ANC) - /1 - P(C))’]

This measure has been used in classifiers be-
fore and will be evaluated in Section 4.

3.9. Certainty factors

Certainty factors were introduced by
Shortliffe and Buchanan to represent uncer-
tainty in the MYCIN expert system. Its use
in association rule mining has been proposed
in [4].
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The certainty factor of a rule A = C' is de-
fined as
conf(A = C) — support(C)

CF(A=0)= 1 — support(C)

when conf(A = C) > support(C),

conf(A = C) — support(C)

CF(A=0) = support(C)

when conf(A = C) < support(C), and
CF(A=C)=0

when conf(A = C) = support(C).

This rule evaluation measure can be viewed
as the variation degree of the probability of C
when A holds. The larger a positive certainty
factor, the smaller the decrease of the proba-
bility of C' not being when A holds.

In extreme situations, the rule confidence
determines its certainty factor:

conf(A=C)=1=CFA=C)=1

conf(A=C)=0=CF(A=C)=-1

Certainty factor take into account the pro-
bability of C' apart from the rule confidence.
They also verify an interesting property when
they are positive (which is when the rules are
useful for classification):

CF(A= C)=CF(-C = -4)  (5)

In classification problems, we could face dif-
ferent situations where certainty factors beha-
vior are at their best:

1. If our problem includes a skewed class dis-
tribution, and two candidate rules hold
the same confidence value but correspond
to classes of different frequency, the ru-
le corresponding to the less common class
has a higher certainty factor:

conf(A=C)=conf(B=D)<1

support(C') > support(D)
!
CF(A=C)<CF(B= D)
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2. Under some circumstances, comparing
certainty factors is equivalent to compa-
ring confidence values:

CF(A= Ci)>CF(B = ()
can be reduced to
conf(A = C1) > conf(B = Cs)

when

e Both rules refer to the same class c.

e Both rules correspond to classes with
the same probability: support(ci) =
support(cz).

3. Finally, there exist situations where
higher certainty factors do not correspond
to a higher confidence values. Given two
rules so that

CF(A= C)>CF(B= D)

e When C is more common than D:

conf(A=C) > K -conf(B= D)

K support(—C) <1

support(—D)

e When C is less common than D:

conf(A=C)>conf(B=D)—-A

support(D) — support(C)

A= >0

support(—C)

In summary, even though certainty factors
are intimately linked to confidence values, a
higher certainty factor does not imply a higher
confidence value:

CF(A= C)>CF(B= D)
=

confianza(A = C) > confianza(B = D)

The relative frequency of each class deter-
mines the higher certainty factors.



111 Taller Nacional de Mineria de Datosy Aprendizaje, TAMIDA2005 141

Let us suppose that we we have two associa-
tion rules: A = ¢; with 2% support and 50 %
confidence, and B = c2 with 50 % support and
95 % confidence. The certainty factors of such
rules would be 3/8 and 3/4 if ¢; has a 20%
support and ¢z has a 80 % support. However,
if the class distribution varies, being now 10 %
of ¢; and 90% of ce, when certainty factors
would be 4/9 and 1/2, keeping their relative
order. However, if the class distribution is in-
verted and now c¢; has a 94 % support while
c2 only has a 6 % support, when certainty fac-
tors would become 46/94 and 1/6, being the
second lower than the first!

Situations such as the one described in the
paragraph above should be used a a warning
sign when comparing certainty factors to choo-
se the rules to include in a classification model.
Sometimes they might be useful, as when they
prefer rules corresponding to uncommon clas-
ses, although you should also expect shocking
difference between classification models when
class distributions change.

3.10. Just a matter of usefulness

Certainty factor properties suggest an addi-
tional pruning step when considering associa-
tion rules in order to build classification mo-
dels. When you build such models, only as-
sociation rules with a positive certainty factor
are really useful, since they increase our know-
ledge and improve classifier accuracy.

By definition, a positive certainty factor is
obtained for a rule A = C' when

conf(A = C) > support(C)

This constraint indicates that the use of the
rule A = C improves the classification model
which would result from using a default class
(at least with respect to C' in the training set).

That idea can be used to prune association
rules which do not verify the above require-
ment, which can be expressed as

P(ANC) > P(A)N P(C)

That rule pruning can be viewed as a ‘use-
fulness criterion’ which reduces the number of
candidate association rules which can become
part of the classification model

4. Experimental results

Some experiments have been perform to
check the influence of the rule evaluation mea-
sure on the process of building a classifica-
tion model. We have tested different criteria
using the ART [5] classification model as a test
bed, since ART does not requires any specific
measure to evaluate the rules the ART classi-
fier is built from. Our experiments try to esti-
mate the suitability of the measures proposed
in the previous section, using 10-folded cross
validation and the same datasets which were
used in [5]. In all our experiments with ART,
we used a 5% minimum relative support th-
reshold and the automatic threshold selection
heuristics described in [5]. Table 1 summarizes
our results.

The following observations can be made
from the results we have obtained:

e The usefulness criterion proposed in 3.10
consistently improves ART classification
accuracy. Moreover, it improves accuracy
without modifying the evaluation measu-
re used during the association rule mi-
ning process (that is, the rule confidence).
However, this increased accuracy comes
at a cost: the increased complexity of
the resulting classifier. The resulting ART
tree has more leaves and, therefore, trai-
ning time is somewhat higher since the
training dataset must be scanned more ti-
mes to build the classifier. This result is
just an incarnation of the typical trade-off
between classifier accuracy and classifier
complexity.

e Certainty factors do not improve ART
overall performance, probably due to so-
me of their counterintuitive properties
(see section 3.9).

e As we could expect from the properties
analyzed in the previous section, the use
of conviction achieves results which are si-
milar to the results obtained by using cer-
tainty factors. From a classification point
of view, conviction and certainty factors
are equivalent when it is interesting to in-
clude a given association rule in the clas-
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Dataset Records  Attr  Classes
AUDIOLOGY 226 70 24
CAR 1728 7 4
CHESS 3196 36 2
HAYES-ROTH 160 5 3
LENSES 24 6 3
LUNG CANCER 32 57 3
MUSHROOM 8124 23 2
NURSERY 12960 9 5
SOYBEAN 683 36 19
SPLICE 3175 61 3
TICTACTOE 958 10 2
TITANIC 2201 4 2
VOTE 435 17 2

Table 2: Datasets used in our experiments
(from the UCI Machine Learning Repository).

sification model, as was mentioned in sec-
tion 3.5.

e The use of the interest measure (section
3.6) leads to the results we could expect in
ART: since this measure is not bounded,
the automatic threshold selection crite-
rion in ART does not work properly. Per-
haps, the additive tolerance margin might
be replaced by a multiplicative toleran-
ce factor. Even then, the definition of the
interest measure makes it difficult to es-
tablish an initial desirable interest value.
Such value might depend on the particu-
lar problem and, therefore, the use of the
interest measure is not practical in ART.
Bounded measures, such as confidence or
certainty factors, will be preferred.

e The same rationale applies to Hellinger’s
divergence (section 3.8). Even when its
range is bounded, the interpretation and
comparison of Hellinger’s divergence va-
lues make this measure impractical in
classification models such as ART. In fact,
no acceptable classification models were
built by ART because it is hard to esta-
blish an initial desirable value for Hellin-
ger’s divergent (a prerequisite to make use
of ART automatic parameter setting).
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5. Conclusions

In summary, from all the measures we dis-
cussed above, only certainty factors and the
so-called usefulness criterion are good alterna-
tives to confidence when building ART classi-
fication models. Conviction also achieves good
results, although certainty factors are prefe-
rred since they are equivalent to conviction
in the cases the classification process is more
interested in (and certainty factors are boun-
ded).

Despite the experimental results, it should
be noted that all rule evaluation criteria ha-
ve their home grounds and their use might be
suitable depending on what the user intends
to obtain. The availability of a wide variety of
rule evaluation measures is a good signal, since
it provides us a toolkit to draw on.

Moreover, the use of a measure or another
does not affect the computational cost of the
rule discovery process. When building classifi-
cation models such as ART, that cost is pro-
portional to the classification model comple-
xity. Therefore, the study of alternative rule
evaluation measures keeps its interest. Such
measures are just criteria at our disposal which
can be used to guide the knowledge discovery
process according to the particular goals and
needs of a given problem.
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