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Abstract

We investigate several important inference issues for factor models with
dynamic heteroskedasticity in the common factors. First, we show that such
models are identi…ed if we take into account the time-variation in the vari-
ances of the factors. Our results also apply to dynamic versions of the APT,
dynamic factor models, and vector autoregressions. Secondly, we propose a
consistent two-step estimation procedure which does not rely on knowledge
of any factor estimates, and explain how to compute correct standard errors.
Thirdly, we develop a simple preliminary LM test for the presence of arch
e¤ects in the common factors. Finally, we conduct a Monte Carlo analysis of
the …nite sample properties of the proposed estimators and hypothesis tests.



1 Introduction

In recent years, increasing attention has been paid to modelling the observed

changes in the volatility of many economic and …nancial time series. By and

large, though, most theoretical and applied research in this area has concentrated

on univariate series. However, many issues in …nance, such as tests of asset pric-

ing restrictions, asset allocation, performance evaluation or risk management, can

only be fully addressed within a multivariate framework. Unfortunately, the appli-

cation of dynamic heteroskedasticity in a multivariate context has been hampered

by the sheer number of parameters involved.

Given that there are many similarities between this problem and that of mod-

elling the unconditional covariance matrix of a large number of asset returns, it is

perhaps not surprising that one of the most popular approaches to multivariate

dynamic heteroskedasticity is based on the same idea as traditional factor analysis.

That is, in order to obtain a parsimonious representation of conditional second

moments, it is assumed that each of several observed variables is a linear combi-

nation of a smaller number of common factors plus an idiosyncratic noise term,

but allowing for dynamic heteroskedasticity-type e¤ects in the underlying factors.

The factor garch model of Engle (1987) and the conditionally heteroskedastic

latent factor model introduced by Diebold and Nerlove (1989) and extended by

King, Sentana and Wadhwani (1994) are the best known examples. Such models

also have the advantage of being compatible with standard factor analysis based

on unconditional covariance matrices. Furthermore, they are particularly appeal-

ing in …nance, where there is a long tradition of factor or multi-index models (see

e.g. the Arbitrage Pricing Theory of Ross (1976)).

Although many properties of these models have already been studied in detail,

either for the general class or for some of its members (see e.g. Bollerslev and

Engle (1993), Engle, Ng and Rothschild (1990), Gourieroux, Monfort and Renault
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(1991), Harvey, Ruiz and Sentana (1992), Kroner (1987), Lin (1992), or Nijman

and Sentana (1996)), some very important inference issues have not been fully

investigated yet. The purpose of the paper is to address four such remaining

issues

The …rst issue is in what sense, if any, the identi…cation problems of traditional

factor models are altered by the presence of dynamic heteroskedasticity in the fac-

tors. This has important implications for empirical work related to the Arbitrage

Pricing Theory (APT), as in static factor models individual risk premia compo-

nents are only identi…able up to an orthogonal transformation. Furthermore, it

also has some bearing upon the interpretation of common trend and dynamic

factor models, and on the identi…cation of fundamental disturbances and their

dynamic impact in vector autoregressions.

Another important aspect is the development of alternative estimation meth-

ods. Traditionally, the preferred method of estimation for such models has been

full information maximum likelihood. Unfortunately, this involves a very time

consuming procedure, which is disproportionately more so as the number of series

considered increases. Although using the EM algorithm combined with derivative

based methods signi…cantly reduces the computational burden (see Demos and

Sentana (1996b)), it would be interesting to have simpler estimation procedures,

which are nevertheless based on …rm statistical grounds.

It is also of some interest to have a simple preliminary test for the presence of

arch e¤ects in the common factors. Moreover, since the way in which standard

errors are usually computed in static factor models is only valid under conditional

homoskedasticity, it is convenient to have a model diagnostic to assess the validity

of such a maintained assumption.

Finally, given that the justi…cation of such estimators and hypothesis tests is

asymptotic in nature, it is useful to investigate their …nite sample properties by
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means of simulation methods.

The rest of the paper is organized as follows. We formally introduce the model

in section 2, and relate it to the most common conditional variance parametrisa-

tions. Identi…cation issues are discussed in detail in section 3. Then, in section 4.1,

we propose a simple two-step consistent estimator. We also derive an LM test for

arch in the common factors in section 4.2. Finally, we carry out a Monte Carlo

analysis in section 5. Proofs and auxiliary results are gathered in appendices.

2 Conditionally Heteroskedastic Factor Models

Consider the following multivariate model:

xt = Cf t +wt (1)
0
B@
ft

wt

1
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2
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where xt is a N £ 1 vector of observable random variables, ft is a k £ 1 vector

of unobserved common factors, C is the N £ k matrix of factor loadings, with

N ¸ k and rank (C) = k, wt is a N £ 1 vector of idiosyncratic noises, which are

conditionally orthogonal to ft, ¡ is a N £N positive semide…nite (p.s.d.) matrix

of constant idiosyncratic variances, ¤t is a k £ k diagonal positive de…nite (p.d.)

matrix of (possibly) time-varying factor variances, which generally involve some

extra parameters, Ã, and Xt¡1 is an information set that contains the values of

xt up to, and including time t¡ 1.
Our assumptions imply that the distribution of xt conditional on Xt¡1 is nor-

mal with zero mean, and covariance matrix §t = C¤tC0+¡. For this reason, we

shall refer to the data generation process speci…ed by (1-2) as a multivariate con-

ditionally heteroskedastic factor model. Note that the diagonality of ¤t implies

that the factors are conditionally orthogonal.
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Such a formulation nests several models widely used in the empirical litera-

ture. In particular, it nests the conditionally heteroskedastic latent factor model

introduced by Diebold and Nerlove (1989) and extended by King, Sentana and

Wadhwani (1994), and the factor arch model of Engle (1987). These models typ-

ically assume that the unobserved factors follow univariate dynamic heteroskedas-

tic processes, but di¤er in the exact parametrisation of ¤t and ¡.

For instance, in the conditionally heteroskedastic latent factor model, the idio-

syncratic covariance matrix is assumed diagonal, and the variances of the factors

are parametrised as univariate arch models, but taking into account that the val-

ues of the factors are unobserved. In particular, for the gqarch(1,1) formulation

of Sentana (1995),

¸jj;t = 'j0 + 'j1fjt¡1jt¡1 + ®j1(f
2
jt¡1jt¡1 + ¸jj;t¡1jt¡1) + ¯j1¸jj;t¡1 (3)

where ftjt = E(ftjXt) and ¤tjt = V (ftjXt), which can be easily evaluated via the

Kalman …lter (see Harvey, Ruiz and Sentana (1992)). Note that the measurability

of ¸jj;t with respect to Xt¡1 is achieved in this model by replacing the unobserved

factors by their best (in the conditional mean square error sense) estimates, and

including a correction in the standard arch terms which re‡ects the uncertainty

in the factor estimates.

Similarly, the factor garch(p,q) model can also be written as a particular

case of (1-2), with ¡ non-diagonal, and the conditional variances of the factors

given by:

¸jj;t =
qX

s=1

®js _x
2
jt¡s +

pX

r=1

¯jr¸jj;t¡r (4)

where _xt = D0xt and D = (d1j : : : jdk) is a N £ k matrix of full column rank

satisfying D0C = Ik (see Sentana (1997a)). Note that the measurability of ¸jj;t

with respect to Xt¡1 is achieved here by making the time-variation in second

moments a function of k linear combinations of xt.
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Finally, if ft is conditionally homoskedastic, which usually corresponds to

Ã = 0, (1-2) reduces to the static orthogonal factor model (see e.g. Johnson

and Wichern (1992)). But even if ft is conditionally heteroskedastic, provided

that it is covariance stationary, the assumption of constant factor loadings implies

an unconditionally orthogonal k factor structure for xt. That is, the unconditional

covariance matrix of xt, § =E(§t), can be written as:

§ = C¤C0+¡ (5)

where ¤ =V (ft) = E(¤t). This property makes the model considered here com-

patible with traditional factor analysis.

3 The E¤ects of Modelling Conditional Hetero-

skedasticity on Identi…cation

3.1 Identi…cation of Idiosyncratic Factors

The most distinctive feature of factor models is that they provide a parsi-

monious speci…cation of the (dynamic) cross-sectional dependence of a vector of

observable random variables. In our case, the factor structure allows us to decom-

pose the conditional covariance matrix §t into two parts: one which is common

but of reduced rank k, §ct = C¤tC
0, and one which is speci…c, §st = ¡. Un-

fortunately, without further restrictions on ¡, or on the constant part of ¤t, we

cannot separately identify one from the other. The reason is twofold. On the one

hand, we are not able to di¤erentiate the contribution to the conditional variance

of conditionally homoskedastic common factors (see Engle, Ng and Rothschild

(1990)). On the other, we may be able to transfer unconditional variance from

the idiosyncratic terms to the common factors. For instance, if ¡ is non-singular,

we can take §ct() = C(¤t + )C
0, and §st() = ¡ ¡CC0, where  is any
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k £ k p.s.d. diagonal matrix such that the eigenvalues of C0¡¡1C are less than

or equal to 1 (see Sentana (1997a)).

The most common assumption made to di¤erentiate common from idiosyn-

cratic e¤ects is that ¡ is diagonal (see e.g. Diebold and Nerlove (1989) or King,

Sentana and Wadhwani (1994)). In this case, we say that the conditional fac-

tor structure is exact. However, in some applications, diagonality of ¡ may be

thought to be too restrictive. For that reason, Chamberlain and Rothschild (1983)

introduced the concept of approximate factor structures, in which the idiosyn-

cratic terms may be mildly correlated. Their de…nition is asymptotic in N , and

amounts to the largest eigenvalue of V [(w1t; w2t; : : : ; wNt)0] remaining bounded as

N increases (as in band-diagonal matrices).1 In practice, the eigenvalues of ¡ are

always bounded as N is …nite, and it is di¢cult to come up with realistic models

that ensure such an asymptotic restriction.

An alternative way to di¤erentiate common from idiosyncratic e¤ects is to

assume that ¡ has reduced rank.2 In some cases, in fact, it may be necessary

to assume that ¡ is both diagonal and of reduced rank. As a trivial example,

consider an exact conditionally homoskedastic single factor model with N = 2

and ¸11 = 1. Its covariance matrix can be written as
0
B@
c¤211 + °

¤
11 c¤11c

¤
21

c¤221 + °
¤
22

1
CA

with c¤11 =
q
c211 + °11 ¡ °¤11; c¤21 = c21c11=c

¤
11 and °¤22 = °22 + c

2
21 [1¡ (c11=c¤11)2]

for any °¤11 2 [0; °11 + c
2
11°22=(c

2
21 + °22)]. Note that the extreme values of this

range correspond to the two possible Heywood (i.e. singular) cases.
1This suggests an intuitive interpretation by analogy with univariate time series: if yt is a

covariance stationary and ergodic process (e.g. an ma model), then all the eigenvalues of the
intertemporal covariance matrix V [(y1; y2; : : : yT )0] remain bounded as T ! 1. Unlike in a time
series framework, though, there is generally no natural ordering for the variables in xt:

2The rank of ¡ is related to the observability of the factors. If rank(¡) = N ¡ k the factors
would be fully revealed by the xt variables; otherwise they are only partially revealed (see King,
Sentana and Wadhwani (1994))
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3.2 Identi…cation of Common Factors

But the most fundamental identi…cation issue in factor models relates to the

decomposition of §ct into C and ¤t. Since the scaling of the factors is usually

irrelevant, then in the case of constant variances, it is conventional to impose the

assumption that the variance of each factor is unity, that is ¤t= I; 8t. By analogy,

we may impose here the same scaling assumption on the factors unconditional

variances.3

Suppose that we were to ignore the time-variation in the conditional vari-

ances and base our estimation in the unconditional covariance matrix of xt in

(5). As is well known from standard factor analysis theory, it would then be

possible to generate an observationally equivalent (o.e.) model up to uncondi-

tional second moments as xt= C¤f¤t +wt, where C¤= CQ0, f ¤t = Qf t, and Q is

an arbitrary orthogonal k £ k matrix, since the unconditional covariance matrix,

§ = C¤C¤0+¡ = CC0+¡, remains unchanged.

Hence, some restrictions would be needed on C. One way to impose them

would be to use Dunn’s (1973) set of su¢ciency identi…cation conditions for the

homoskedastic factor model with orthogonal factors. These conditions are zero-

type restrictions that guarantee that C is locally identi…able up to column sign

changes. For instance, when C is otherwise unrestricted, imposing cij = 0 for

j > i; i = 1; 2; : : : k (i.e. C lower trapezoidal) ensures identi…cation.4 Although

such restrictions are often arbitrary, the factors can be orthogonally rotated to

simplify their interpretation once the model has been estimated. In some other

3If the unconditional variance is unbounded, as in Integrated garch-type models, other
scaling assumptions can be made. For instance, we can …x the constant part of the conditional
variance of each factor, or the norm of each column of C.

4Other alternative sets of su¢cient local identi…ability restrictions have been suggested. For
example, Jennrich (1978) proves that when C is otherwise unrestricted, …xing not necessarily to
zero the k(k ¡ 1)=2 supra-diagonal coe¢cients of (a permutation of) C also guarantees identi…-
ability. From a computational point of view, though, the most convenient uniqueness condition
in the unrestricted case is C0¡¡1C diagonal (see e.g. Johnson and Wichern (1992)).
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cases, identi…ability can be achieved by imposing plausible a priori restrictions.

For example, if in a two factor model it is believed that the second factor only

a¤ects a subset of the variables (say the …rst N1, with N1 < N , so that ci2 = 0

for i = N1 + 1; : : : ; N) the non-zero elements of C will always be identi…able.

However, when time variation in ¤t is explicitly recognized in estimation, the

set of admissibleQmatrices is substantially reduced, as the conditional covariance

matrix of the transformed factors f ¤t = Qf t has to remain diagonal 8t. In this

context, the following result can be stated:

Proposition 1 Let ¸t = vecd(¤t) denote the k£1 vector containing the diagonal
of ¤t. If the stochastic processes in ¸t are linearly independent, in the sense
that there is no vector ® 2Rk;® 6= 0; such that ®0¸t = 0; 8t, C is unique under
orthogonal transformations other than column permutations and sign changes.

Notice the generality of Proposition 1 since it has been obtained without as-

suming any particular parametrisation for the dynamic heteroskedasticity; it re-

lies only on the conditional orthogonality of the factors, the linearly independent

time-variation of their variances, and the constancy of C. One possible way to

gain some intuition on this result is to recall that parameter identi…ability can

be obtained in many econometric models by looking at higher order moments.

Since conditional normality with changing variances is incompatible with uncon-

ditional normality, but at the same time implies autocorrelation in vech(xtx0t),

Proposition 1 provides an example in which identi…ability comes from considering

dynamic fourth-order, as opposed to second order, moments.

If the processes in ¸t were linearly dependent, though, identi…cation problems

would re-appear. Given the parametrisations used in empirical work (see section

2.1), it is di¢cult to envisage situations in which this will be the case, unless two or

more factor variances are constant. Nevertheless, consider as an example a model

in which for all time periods, a group of k2 factors (1 < k2 < k) is characterized by

a scalar covariance matrix ¸kk;tIk2 , while the others have an unrestricted diagonal
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covariance matrix ¤1t. If we partition C conformably as C = (C1 j C2), where

C1 and C2 are N £ k1 and N £ k2 respectively, with k1 + k2 = k, the following

result can be stated:

Proposition 2 Let ¸1t = vecd(¤1t). If the stochastic processes in (¸01t; ¸kk;t) are
linearly independent, C1 is unique under orthogonal transformations other than
column permutations and sign changes.

For practical purposes, Proposition 2 could be re-stated so that it would refer

only to the empirically relevant case in which ¸kk;t = 1;8t. However, in its present

form it makes it clear that the lack of identi…ability comes from the factors having

common, rather than constant, variances.

Finally, note that the imposition of unnecessary restrictions on C by anal-

ogy with standard factor models may produce misleading results. An important

implication of our results is that if such restrictions were nevertheless made, at

least they could then be tested. However, the accuracy that can be achieved in

estimating C depends on how much linearly independent variability there is in ¤t,

for if the elements of this matrix are essentially constant, identi…ability problems

will reappear.

3.3 Extensions

Proposition 1 can also be applied to other closely related models, and in par-

ticular to the model in Harvey, Ruiz and Sentana (1992). Theirs is a general state

space formulation for xt, with unrestricted mean dynamics, in which some unob-

servable components show dynamic conditional heteroskedasticity. In this section,

we shall explicitly consider the application of Proposition 1 to some well-known

special cases which are empirically relevant.
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3.3.1 Conditionally Heteroskedastic in Mean Factor Models

Several recent studies based on dynamic versions of the APT have estimated

conditionally heteroskedastic factor models in which the variances of the common

factors a¤ect the mean of xt (see e.g. Engle, Ng and Rothschild (1990), King,

Sentana and Wadhwani (1994), or Ng, Engle and Rothschild (1992)). The models

typically considered in those studies can be expressed as:

xt= C¤t¿ +Cf t+wt

where ¿ is a k £ 1 vector of “price of risk” coe¢cients. Notice that if ¿ = 0;

we return to the previous case. Since the proof of Proposition 1 is based on the

diagonality of the conditional variance of ft, it is straightforward to show that

the columns of C and ¿ 0 corresponding to factors with linearly independent time-

varying variances are identi…able (up to sign changes and permutations).

3.3.2 Conditionally Heteroskedastic Dynamic Factor Models

The formulation considered in section 2 is also a special case of the so-called

dynamic factor model, which constitutes a popular speci…cation for multivariate

time series applications because of its plausibility and parsimony (see e.g. Engle

and Watson (1982) or Peña and Box (1987)). For simplicity, we shall just consider

here the case in which the factor dynamics can be captured by a var(1) process.

Speci…cally,

xt= Cyt+wt; yt= Ayt¡1+f t

where yt is a k £ 1 vector of dynamic factors, A is the matrix of var coe¢cients

and ft and wt are de…ned as in (1-2). If A = 0, we go back to the traditional

(i.e. static) factor model. On the other hand, when A = I we have the com-

mon trends model (see e.g. Harvey (1989) or Stock and Watson (1988)). If ft

is conditionally homoskedastic, it is well known that an o.e. model (up to un-
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conditional second moments) can be obtained by orthogonally rotating yt. That

is, for any orthogonal matrix Q, the model xt= C¤y¤t+wt; y
¤
t= A

¤y¤t¡1+f
¤
t where

y¤t= Qyt; f
¤
t= Qf t;C

¤= CQ0 and A¤= QAQ0, is o.e. Again, Proposition 1 im-

plies that linearly independent time-variability in the conditional variances of ft

will eliminate the nonidenti…ability of the matrix C.

3.3.3 Vector Autoregressive Moving Average Models

Our results also apply to models withN common factors, no idiosyncratic noise

and linear mean dynamics, such as varma(r; s) models. Again, for simplicity

consider the following var(1):

xt= Axt¡1+ut; ut= Cf t

where ft; a N £ 1 vector de…ned as in (1-2), could perhaps be better understood

in this context as conditionally orthogonal “fundamental” shocks a¤ecting the

process xt. Given that ft is white noise, we can estimate this model without

taking into account the time-variation in conditional variances. But then C is

not identi…able without extra restrictions. This problem is well known and has

received substantial attention in macroeconometrics. To solve it, some authors

impose short run restrictions such as C lower triangular (cf. the discussion in sec-

tion 3.2). More recently, Blanchard and Quah (1989) have achieved identi…ability

by means of restrictions on some elements of the long run multipliers (I¡A)¡1C.

But suppose that some elements of ft have time-varying conditional variances and

this is explicitly recognized in estimation. Then Proposition 2 implies that the

columns of C associated with those disturbances are identi…able.

In this context, we can perhaps shed more light on Proposition 1 by re-

interpreting it as a uniqueness result for the disturbances, ft. Given the way in

which the model is de…ned, we know that there is a set of disturbances, condition-

ally uncorrelated with each other, that can be written as a (time-invariant) linear

11



combination of the innovations in xt, namely, ft= C¡1ut. If k2·1, Proposition 2

then says that there is only one such set.5

3.3.4 Oblique Factor Models with Constant Conditional Covariances

So far we have assumed that the factors are conditionally orthogonal, since this

has been a maintained assumption in all existing empirical applications. However,

as the following proposition shows, it turns out that most of the identi…ability

is coming from the fact the conditional covariances of conditionally orthogonal

factors are (trivially) constant over time

Proposition 3 Let ¤t be a k£ k positive de…nite matrix of (possibly) time-
varying factor variances but constant conditional covariances, and let ¸t = vecd(¤t).
If the stochastic processes in (¸0t; 1) are linearly independent, C is unique under
orthogonal transformations other than column permutations and sign changes

Notice that the main di¤erence with Proposition 1 is that identi…cation prob-

lems reappear in oblique factor models when a single factor has constant condi-

tional variance. The reason is that we can transfer unconditional variance from

the conditionally homoskedastic factor to the others. This is not possible if the

factors have to remain conditionally orthogonal.

Factor models with constant conditional covariances arise more commonly than

it may appear. For instance, the factor arch model of Engle (1987) is o.e. to

a whole family of oblique factor models with constant conditional covariances,

whose limiting cases are the conditionally orthogonal factor model in (4), and a

model with a singular idiosyncratic covariance matrix (see Sentana (1997a) for

details). In fact, we can always express any conditionally heteroskedastic factor

model as an oblique factor model with constant conditional covariances and a

5However, it is important to emphasize that Proposition 1 is not an existence result, in that
it does not say whether or not such disturbances exist to begin with. Rather, it takes them as
given.
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singular idiosyncratic covariance matrix, since:

xt = Cf
G
t +w

G
t

0
B@
fGt

wG
t

1
CA j Xt¡1 » N

2
64

0
B@
0

0

1
CA ;

0
B@
¤t + (C

0¡¡1C)
¡1

0

0 ¡¡C (C0¡¡1C)¡1C0

1
CA

3
75

where fGt = (C0¡¡1C)¡1C0¡¡1xt are the Generalized Least Squares (GLS) es-

timates of the common factors (see Gourieroux, Monfort and Renault (1991)).

These factor scores are di¤erent from the minimum (conditional) mean square

error estimates, but closely related as fGt =
h
I+ (C0¡¡1C)¡1¤¡1t

i
ftjt.

4 Estimation and Testing

In model (1-2), the parameters of interest, Á0=(c0;° 0;Ã0), where c =vec(C)

and ° =vech(¡) or vecd(¡), are usually estimated jointly from the log-likelihood

function of the observed variables, xt. Ignoring initial conditions, the log-likelihood

function of a sample of size T takes the form LT (Á) =
PT
t=1 lt(Á), where:

lt(Á) =¡ N

2
ln 2¼ ¡ 1

2
ln jC¤tC0 + ¡j ¡ 1

2
x0t (C¤tC

0 + ¡)
¡1
xt (6)

and ¤t=diag [¸t(Á)], which allows the conditional variances of the factors to de-

pend not only on Ã, but also on the static factor model parameters c and °.

Since the …rst order conditions are particularly complicated in this case (see

appendix B), a numerical approach is usually required. Unfortunately, the ap-

plication of standard quasi-Newton optimisation routines results in a very time

consuming procedure, which is disproportionately more so as the number of series

considered increases. In this respect, Demos and Sentana (1996b) show that using

the EM algorithm combined with derivative-based methods signi…cantly reduces

the computational burden. Nevertheless, it is still of some interest to have simpler

alternative estimation procedures.
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4.1 Two-step consistent estimation procedures

Most empirical applications of the factor garch model have been carried out

using a two-step univariate garch method under the assumption that the ma-

trix D is known. First, univariate models are …tted to _xjt = d0jxt; j = 1; 2; : : : ; k.

Then, the estimated conditional variances are taken as data in the estimation

of N univariate models for each xit; i = 1; 2; : : : ;N . However, such a procedure

ignores cross-sectional correlations and parameter restrictions, and thus sacri…ces

e¢ciency. For that reason, Demos and Sentana (1996b) proposed an EM-based re-

stricted maximum likelihood estimator which exploits those restrictions but main-

tains the assumption of known D. In the general case, an equivalent assumption

would be that the matrix D0 = (C0¡¡1C)¡1C0¡¡1 is known, which is tantamount

to fGt being observed. Under such a maintained assumption, it is possible to prove

that consistent estimates of C;¡ and Ã can be obtained by combining the esti-

mates of the marginal model for fGt with the estimates from the OLS regression of

each xit on fGt (see Sentana (1997b) for details). Unfortunately, the consistency

of such restricted ML estimators crucially depends on the correct speci…cation of

the factor scores (see Lin (1992) for the factor garch case).

Here, we shall develop a two-step consistent estimation procedure which does

not rely on knowledge of fGt for those cases in which the idiosyncratic covariance

matrix is diagonal. For clarity of exposition, we initially assume that the matrix

C is identi…able even if we ignore the time-variation in ¤t.

The rationale for our proposed two-step estimator is as follows. We saw in

section 2 that if ft and wt are covariance stationary, the unconditional covariance

matrix, §, inherits the factor structure (cf. (5)). As our …rst step, therefore, we

can estimate the unconditional variance parameters c and ° by pseudo-maximum

likelihood using a standard factor analytic routine. Note that such estimators

satisfy (ĉ; °̂) = argmaxc;° LT (c;°;0). It is easy to see that (ĉ; °̂) are root-T
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consistent, as the expected value of the score of the estimated model evaluated

at the true parameter values is 0 under our assumptions. However, since the …rst

derivatives are proportional to vech(xtx0t) (see appendix B), the score does not

preserve the martingale di¤erence property when there are arch e¤ects in the

common factors, and it is necessary to compute robust standard errors which take

into account its serial correlation.

Having obtained consistent estimates of c and °, we can then estimate the

conditional variance parameters by maximizing (6) with respect to Ã keeping c

and ° …xed at their pseudo-maximum likelihood estimates. That is, our second

step estimator is Ã̂ =argmaxÃ LT (ĉ; °̂;Ã). On the basis of well-known results

from Durbin (1970), it is clear that Ã̂ is also root-T consistent. However, since the

asymptotic covariance matrix is not generally block-diagonal between static and

dynamic variance parameters (see appendix B), standard errors will be underes-

timated by the usual expressions. Asymptotically correct standard errors can be

computed from an estimate of the inverse information matrix corresponding to (6)

evaluated at the two-step estimators ĉ; °̂ and Ã̂ (see Lin (1992) for an analogous

correction in the factor GARCH case).

When C is not identi…able from the unconditional covariance matrix, °̂ re-

mains consistent, but ĉ is only consistent up to an orthogonal transformation. As

discussed in section 3.2, the reason is that by assuming unconditional normality

in estimation, we are neglecting very valuable information in dynamic fourth or-

der moments. One possibility would be to replace the Gaussian quasi-likelihood

in the …rst-step by an alternative objective function which took into account the

autocorrelation in vech(xtx0t). Unfortunately, the evidence from univariate arch

models suggests that the resulting estimators are likely to be rather ine¢cient.

In any case, note that if we were to iterate our proposed two step procedure and

achieved convergence, we would obtain fully e¢cient maximum likelihood esti-
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mates of all model parameters. Such an iterated estimation procedure is closely

related to the zig-zag estimation method suggested in Demos and Sentana (1992),

which combined the EM algorithm to estimate the static factor parameters condi-

tional on the values of the conditional variance parameters, followed by the direct

maximization of (6) with respect to Ã holding c and ° …xed.

4.2 A simple LM test for ARCH in the common factors

Despite the simplicity of the two-step procedure, the numerical maximization

of (6) with respect to Ã in models such as (3) still involves the use of the Kalman

…lter to produce estimates of fjt¡1jt¡1 and ¸jj;t¡1jt¡1 once per parameter per iter-

ation. Therefore, it is of some interest to have a simple preliminary test for the

presence of arch e¤ects in the common factors. Moreover, since the way in which

standard errors are usually computed in static factor models is only valid under

conditional homoskedasticity, it is convenient to have a model diagnostic to assess

the validity of such a maintained assumption.

If the factors were observable, we could easily carry out standard LM tests

for arch on each of them. For the arch(1) case, for instance, that would entail

regressing 1 on (f 2jt¡1)(f 2jt¡1¡1), or equivalently f 2jt¡1 on f 2jt¡1¡1: Unfortunately,

the factors are generally unobserved. Nevertheless, we can derive similar tests

using some factor estimates instead. Under conditional normality, ftjt, the Kalman

…lter based estimates of the underlying factors, satisfy:

ftjtjXt¡1 » N
h
0;¤tjt

i
(7)

where ¤tjt =
h
¤¡1t + (C0¡¡1C)¡1

i¡1
. As a result, ftjt will be conditionally ho-

moskedastic if and only if ¤t is constant over time. Hence, had we data on ftjt, we

could test whether or not the moment condition cov
h
f 2jtjt; f

2
jt¡1jt¡1

i
= 0 holds for

j = 1; : : : ; k. Importantly, the aggregation results in Nijman and Sentana (1996)

imply that linear combinations of multivariate factor models like (1-2), whose
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weights are not orthogonal to C; will follow weak garch processes. Therefore,

such moment tests will have non-trivial power since under the alternative fjtjt will

show serial correlation in the squares.

In practice, we must base the tests on ftjt evaluated at the parameter estimates

under the null. In particular, we will use

f̂tjt = ¤̂tjtĈ
0¡̂¡1xt

where

¤̂tjt =
·
I+ (Ĉ0¡̂¡1Ĉ)

¡1
¸¡1

8t

It turns out that the presence of parameter estimates does not a¤ect the as-

ymptotic distribution of such tests, as the information matrix is block diagonal

between Ã and (c;°) under the null (see appendix B). Furthermore, we also prove

in appendix B that our proposed moment test is precisely the standard LM test

for conditional homoskedasticity in the common factors based on the score of

(6) evaluated under H0. Therefore, we can compute a two-sided Â21 test against

arch(1) in each common factor as T times the uncentred R2 from the regression

of either 1 on (f̂ 2jtjt + ^̧jj;tjt ¡ 1) times (f̂ 2jt¡1jt¡1 + ^̧jj;t¡1jt¡1 ¡ 1) (outer-product

version), or (f̂ 2jtjt + ^̧jj;tjt ¡ 1) on (f̂2jtjt + ^̧jj;tjt ¡ 1) (Hessian-based version). In

fact, more powerful variants of these tests can be obtained by taking the one-sided

nature of the alternative hypothesis into account through the sign of the relevant

regression coe¢cient (see Demos and Sentana (1996a)).

5 Monte Carlo Evidence

In a recent paper, Lin (1992) analyzes di¤erent estimation methods for the

factor garch model of Engle (1987) by means of a detailed Monte Carlo analy-

sis. In this section, we shall conduct a similar exercise for the conditionally het-

eroskedastic latent factor model in (3). Unfortunately, given that the estimation
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of these models is computationally rather intensive, we are forced to consider here

a smaller number of series than in many empirical applications. Nevertheless, we

select the parameter values, and in particular the signal-to-noise ratio, so as to

re‡ect empirically relevant situations.

5.1 A single factor model

We …rst generated 8000 samples of 240 observations each (plus another 100 for

initialization) of a trivariate single factor model using the NAG library G05DDF

routine. Such a sample size corresponds roughly to twenty years of monthly data,

…ve years of weekly data or one year of daily data. Since the performance of

the di¤erent estimators depends on C and ¡ mostly through the scalar quantity

(C0¡¡1C), the model considered is:

xit = cift + wit (i = 1; 2; 3)

with c = (1; 1; 1)0; ¸t = (1¡®¡¯)+®(f 2t¡1jt¡1+¸t¡1jt¡1)+¯¸t¡1 and ¡ =°I. Two

values of ° have been selected, namely 2 or 1=2, corresponding to low and high

signal to noise ratios, and three pairs of values for ® and ¯, namely (0; 0); (:2; :6)

and (:4; :4); which represent constant variances, persistent but smooth garch

behaviour, and persistent but volatile conditional variances respectively. It is

worth mentioning that the pair ® = :2; ¯ = :6 matches roughly what we tend to

see in the empirical literature. In order to minimize experimental error, we use

the same set of underlying random numbers in all designs. Maximization of the

log-likelihood (6) with respect to c;°; ® and ¯ was carried out using the NAG

library E04JBF routine. Initial values of the parameters were obtained by means

of the EM algorithm in Demos and Sentana (1996b).

For scaling purposes, we use c21 + c
2
2 + c

2
3 = 1, and leave the constant part of

the conditional variance free. In order to guarantee the positivity and stationarity

restrictions 0 · ¯ · 1 ¡ ® · 1; we use the re-parametrisation ® = sin2(µ1)
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and ¯ = sin2(µ2)(1 ¡ ®). Similarly, we used °i = (°¤i )
2: We also set ¸1 to the

unconditional variance of the common factor to start up the recursions. But since

this implies that ¯ is not identi…ed if ® = 0; we set ¯ = 0 whenever ® = 0.

In this respect, it is important to mention that when ® and/or ¯ are 0, the

parameter values lie on the boundary of the admissible range. The distribution of

the ML estimator and associate tests in those situations has been studied by Self

and Liang (1987) and Wolak (1989). When ® = 0; for instance, we could use the

result in case 2, theorem 2 of Self and Liang (1987), to show that the asymptotic

distribution of the ML estimators of (¯; ®; c0;° 0) should be a (1
4
; 1
2
; 1
4
) mixture of a)

the usual asymptotic distribution, b) the asymptotic distribution of a restricted

ML estimator which sets ® = ¯ = 0, and c) the asymptotic distribution of a

restricted ML estimator which only sets ¯ = 0. We take into account these results

in order to compute standard errors.

It is also important to mention that joint estimates are always at least as

e¢cient as two-step estimates in this context, since the information matrix is

block-diagonal between unconditional and conditional variance parameters under

the null of no arch.

Table 1 presents mean biases and standard deviations across replications for

joint and two-step maximum likelihood estimates of the static factor model para-

meters c and °. For simplicity of exposition, only averages across equations are

included (in particular, c = (c1+ c2 + c3)=3 and ° = (°1 + °2+ °3)=3). Note that

all estimates are very mildly downward biased. At the same time, it seems that

the more variability there is in conditional variances, the better joint estimates

are relative to two-step estimates. Nevertheless, the di¤erences are minor, at least

for the sample sized used.

Given the large number of parameters involved, we summarize the performance

of the estimates of the asymptotic covariance matrix of these estimators by com-
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puting the experimental distribution of some simple test statistics. In particular,

we test c1 = c2 = c3; and °1 = °2 = °3: Both tests should have asymptotic Â22

distributions under the null. Standard errors for joint ML estimates are computed

from the Hessian. On the other hand, the usual sandwich estimator with a 4-lag

triangular window is employed for two-step estimates of the static factor parame-

ters. The results, which are not reported for conciseness, suggest that the size

distortions are not very large.

Our experimental design also allows us to analyze the performance of the

di¤erent LM test for arch under the null, and under two alternatives. In order

to evaluate their size properties, we employ the p-value discrepancy plots

proposed by Davidson and MacKinnon (1996), which are plots of the di¤erence

between actual and nominal test size versus nominal test size for all possible

test sizes. If the asymptotic distribution is correct, p-value discrepancy plots

should be close to the x axis. Figure 1 shows such plots for the one-sided and

two-sided versions of the outer-product and Hessian-based forms of the LM test.

As expected, the outer-product versions have much larger distortions than the

Hessian-based ones, whose sizes are fairly accurate.

In order to display the simulation evidence on the power of the di¤erent tests,

we employ the size-power curves of Davidson and MacKinnon (1996), which

are plots of test power versus actual test size for all possible test sizes. The main

advantage of size-power plots is that they allow us to see immediately the e¤ect

on power of di¤erent parameter values, as well as to compare the relative powers

of test statistics that have di¤erent null distributions. Figure 2 presents such plots

for the Hessian-based one-sided and two-sided tests. As can be seen, power is an

increasing function of both the value of ®, and the signal-to-noise ratio. Also, our

results con…rm that one-sided versions are always more powerful than two-sided

ones, although not overwhelmingly so (cf. Demos and Sentana (1996a)).
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Table 2 presents the proportion of estimates of ® and ¯ which are at the

boundary of the parameter space. Asymptotically, the proportions of ® = ¯ = 0

and ® 6= 0; ¯ = 0 should be (1
2
; 1
4
) under the null of no arch, and (0; 0) under

the alternative. However, the results show that ® = 0; and especially ¯ = 0

occur more frequently than what the asymptotic distribution would suggest. This

is particularly true when the signal-to-noise ratio is small. These results are

con…rmed in Table 3, which presents mean biases and standard deviations across

replications for joint and two-step maximum likelihood estimates of ® and ¯: In

this respect, it is important to mention that since ¯ is not identi…ed when ® = 0;

the reported values for ¯ correspond to those cases in which ® is not estimated

as 0. Note that the ®0s obtained are rather more accurate than the ¯0s: Also

note that the biases for the joint estimates of ® are smaller than for the two-step

ones, although the latter have smaller Monte Carlo variability. In contrast, the

downward biases in ¯ are larger for joint ML estimates. To some extent, these

biases re‡ect the larger proportion of zero ¯ 0s in Table 2.

5.2 A two factor model

We have also simulated the following six-variate model with two factors:

xit = ci1f1t + ci2f2t + wit

with ¸11;t = (1¡®¡¯)+®(f 21t¡1jt¡1+¸11;t¡1jt¡1)+¯¸11;t¡1, ¸22;t = 1 and ¡ =°I.

Please note that according to Proposition 1, the parameters in C are identi…ed

without further restrictions, provided that ® 6= 0 and we take into account the

time-variation in conditional second moments.

Two sets of values for C have been selected, c0=(0; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 0)

and c0= (1
4
; 1
4
; 1
4
; 1; 1; 1; 1; 1; 1; 1

4
; 1
4
; 1
4
). The …rst design corresponds to two trivari-

ate single factor models like the one considered in the previous subsection put

together, while the second design introduces “correlation” in the columns of C.
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For each value of c, two values of ° have been selected, namely 2 and 1=2, cor-

responding to low and high signal to noise ratios. Then for each of the four

combinations, we consider two pairs of values for ® and ¯, namely (:4; :4) and

(:2; :6), in order to obtain persistent but volatile conditional variances, and the

more realistic persistent but smooth garch behaviour. Given that this model

is four times as costly to estimate as the previous one, we only generated 2000

samples of 240 observations each. The remaining estimation details are the same

as in section 5.1.6

Table 4 presents mean biases and standard deviations across replications for

joint and two step maximum likelihood estimates, as well as a restricted ML es-

timator which imposes the same identifying restriction as the two step estimator,

namely c62 = 0. Such an estimator is e¢cient when the overidentifying restriction

is true, but becomes inconsistent when it is false. More precisely, ifC is not uncon-

ditionally identi…able, restricted and two-step ML estimators of c are consistent

for the orthogonal transformation of the true parameter values which zeroes c62.

For simplicity of exposition, only certain averages across equations are included (in

particular, ca1 = (c11+c21+c31)=3, cb1 = (c41+c51+c61)=3, ca2 = (c12+c22+c32)=3,

cb2 = (c42 + c52)=2, and ° = (°1 + °2 + °3 + °4 + °5 + °6)=6).

The …rst panel of Table 4 contains the results for those designs in which

c0=(0; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 0). Not surprisingly, the restricted ML estimator is

clearly the best as far as estimates of the factor loadings are concerned. However,

it turns out that the two-step estimator performs very similarly, except when there

is signi…cant variability in conditional variances, which is in line with the results

for the single factor model. On the other hand, the joint ML estimator is the

6One additional issue that arose during the simulations with two factor models was that,
occasionally, some idiosyncratic variances were estimated as 0. The incidence of these so-called
Heywood cases increased with the value of °; and especially c62. Nevertheless, since at worst
only 35 out of 2000 replications had this problem, we discarded them, and replaced them by
new ones.
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worst performer when the signal to noise ratio and the variability in ¸11;t are low,

but comes very close to the restricted ML in the opposite case.7 This behaviour

is not unexpected, given that the identi…ability of the joint ML estimator comes

from the fact that ¸11;t changes over time, while the identi…ability of the other two

estimators is obtained from the restriction c62 = 0. Nevertheless, it seems that the

latter identi…ability condition is more informative than the former, which should

be borne in mind in empirical work.

In contrast, there are only minor di¤erences between the di¤erent estimates

of the idiosyncratic variance parameters, which are always identi…ed. Obviously,

their Monte Carlo standard deviations increase when ° changes from 1=2 to 2,

but the coe¢cients of variation remain approximately the same.

The second panel of Table 4 contains the results for those designs in which

c0=(1
4
; 1
4
; 1
4
; 1; 1; 1; 1; 1; 1; 1

4
; 1
4
; 1
4
). Note that the di¤erent estimates of °j are hardly

a¤ected. As expected, though, the behaviour of both restricted and two-step

factor loading estimators radically changes, as they clearly become inconsistent.

In contrast, the performance of the joint estimates of c is basically the same as in

the …rst panel.

In order to summarize the performance of the estimates of the asymptotic

covariance matrix of these estimators, we computed the experimental distribution

of some simple test statistics. In particular, we test c11 = c21 = c31; c41 = c51 = c61;

c12 = c22 = c32; °1 = °2 = °3 and °4 = °5 = °6: Given our choice of parameter

values, the plims of all the estimators satisfy these restrictions even when the

assumption c62 = 0 is false. Therefore, all …ve tests should have asymptotic Â22

distributions. The results, not reported for conciseness, suggest that the size

distortions associated with the two-step estimator, for which the usual sandwich

expression with a 4-lag triangular window is employed, are small, but larger than

7Since the joint estimates of c are not identi…ed when ® = 0; the reported values correspond
to those cases in which ® is not estimated as 0.
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those for joint and restricted ML estimators.

Our design also allows us to consider the …nite sample distribution of the like-

lihood ratio test for the restriction c62 = 0, both under the null and under the

alternative. The p-value discrepancy plot presented in Figure 3 shows that nomi-

nal test sizes are fairly accurate at the 5% level, although less so when ° is small.

For very large signi…cance levels, however, the size distortions are higher, because

the LR test takes the value 0 when ® is estimated as 0. The distribution of this

test under the alternative, though, is far more interesting, as it provides a sum-

mary indicator of the determinants of the information content in our identi…ability

restrictions. Figure 4 present the size-power curves for the four experimental de-

signs in which c62 6= 0. Although null and alternative experimental designs di¤er

in more than one parameter, we have done the required implicit size-corrections

in these plots using the closest match (cf. Davidson and MacKinnon (1996)). Not

surprisingly, the absolute power of the test is small, as the Monte Carlo variability

in the joint estimator of c62 is large relative to the re-scaled value of this parame-

ter (' :14) for the sample size considered (see Table 4). Nevertheless, it is clear

that the power of the test increases with the signal-to-noise ratio, and especially,

with the variability of the conditional variance of the factor. This con…rms the

crucial role that changes in ¸11;t play in the identi…ability of the model, as stated

in Proposition 1.

Table 5 presents the proportion of estimates of ® and ¯ which are at the

boundary of the parameter space. In all cases, the proportions of ® = ¯ = 0

and ® 6= 0; ¯ = 0 should be (0; 0) asymptotically. But as in the single factor

model, the results show that ® = 0; and especially ¯ = 0 occur more frequently

than what the asymptotic distribution would suggest. This is particularly true

when the signal-to-noise ratio is small. These results are con…rmed in Table 6,

which presents mean biases and standard deviations across replications for joint,
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restricted and two-step maximum likelihood estimators of ® and ¯:Once more, the

®0s are estimated rather more accurately than the ¯ 0s, which re‡ects the larger

proportion of zero ¯ 0s in Table 5. As in Table 4, though, there are signi…cant

di¤erences between the …rst and second panel. While the performance of joint ML

estimator is by and large independent of whether or not c62 = 0, the behaviour of

the restricted and two-step estimators radically changes, and they clearly become

inconsistent.

6 Conclusions

In this paper we investigate some important issues related to the identi…cation,

estimation and testing of multivariate conditionally heteroskedastic factor models.

We begin by re-examining the identi…cation problems of traditional factor analysis.

It turns out that the model considered here only su¤ers from lack of identi…cation

in as much as the variances of some of the common factors are constant. Thus,

there is a non-trivial advantage in explicitly recognizing the existence of dynamic

heteroskedasticity when estimating factor analytic models. Our results also apply

to other popular time series models, and in particular, to dynamic versions of

the APT in which the variances of the common factors a¤ect the mean of xt.

Importantly, our result could also be useful in the interpretation of common trend-

dynamic factor models, and in the identi…cation of fundamental disturbances from

vector autoregressions.

Secondly, we propose a root-T consistent two-step estimation procedure for

these models which does not rely on knowledge of (some consistent estimates

of) the factors. For those cases in which the idiosyncratic covariance matrix is

diagonal, and the factor loadings are identi…ed even if we ignore the time-variation

in the factor variances, our procedure involves estimating the factor loadings and

idiosyncratic variances by pseudo-maximum likelihood based on the unconditional
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covariance matrix. Then, the conditional variance parameters are estimated by

maximizing the log-likelihood function of the observed variables keeping the static

factor model parameters …xed at their pseudo-maximum likelihood estimates. In

this respect, we also explain how to compute correct standard errors.

Thirdly, we develop a simple preliminary moment test for the presence of arch

e¤ects in the common factors, which can also be employed as a model diagnostic.

This is particularly relevant because the way in which standard errors are usually

computed in static factor models is only valid under conditional homoskedasticity.

Importantly, we prove that our proposed test is precisely the standard LM test

for conditional homoskedasticity in the common factors based on the score of the

joint model evaluated under the null. Not surprisingly, it can be computed as T

times the uncentred R2 from an auxiliary regression involving squares of the best

estimates of the factors and their lags. In fact, more powerful versions of these

tests can be obtained by taking the one-sided nature of the alternative hypothesis

into account.

Finally, we investigate the …nite sample properties of our proposed estimators

and hypothesis tests by simulation methods in order to assess the reliability of

their asymptotic distributions in practice. Our results suggest that: (i) the e¢-

ciency of joint ML estimates of c and ° relative to two-step estimates increases

with the variability in conditional variances; (ii) standard errors of the estimates

are fairly accurate; (iii) size distortions of the LM test for arch are far smaller for

Hessian-based versions than for outer-product ones; (iv) the power of this test is

an increasing function of ® and the signal-to-noise ratio, with one-sided versions

being preferred; (v) arch and garch parameters are estimated as 0 more fre-

quently than they should, especially when the signal-to-noise ratio is small, which

results in signi…cant downward biases; and (vi) although time-variation in factor

variances ensures identi…cation in practice, traditional conditions on C are more
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informative, as long as they are correct.

The conditionally heteroskedastic factor model in (1-2) is a special case of

the general approximate conditional factor representation §t= CtCt+¡t, where

Ct is a N £ k matrix of measurable functions of the information set and ¡t is

such that its eigenvalues remain bounded as N increases. In this framework, our

model can be-written as xt = Ctf
#
t +wt, where V (wtjXt¡1) = ¡;V (f

#
t jXt¡1) = I

and Ct= C¤
1=2
t , so that the loadings of di¤erent variables on each condition-

ally homoskedastic factor change proportionately over time (see Engle, Ng and

Rothschild (1990)). The motivation for such an assumption is twofold. First, it

provides a parsimonious and plausible speci…cation of the time variation in §t,

and for that reason has been the only one adopted so far in empirical applications.

Second, it implies that the unconditional factor representation of xt is well de…ned

(provided unconditional variances are bounded), which makes it compatible with

the standard approach based on §, and therefore empirically relevant. Notice

that even if ¡t is diagonal, the unconditional variance of a process characterized

by a conditional factor representation may very well lack an unconditional factor

structure for any k < N (see Hansen and Richard (1987)). Although the model is

not identi…able if Ct is unspeci…ed, this paper shows that the statistical properties

of alternative plausible formulations of the general conditional factor model would

certainly merit a close look.
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Appendices

A Proofs

A.1 Proposition 1

Let Q be an arbitrary k£k orthogonal matrix with typical element [Q]ij = qij

such thatQ0Q = QQ0= Ik. Since the covariance matrix of the transformed factors

f ¤t = Qf t, is ¤¤t = Q¤tQ
0, with typical element [¤¤t ]ij =

Pk
l=1 ¸ll;tqilqjl, conditional

orthogonality requires
Pk
l=1 ¸ll;tqilqjl = 0 for j > i; i = 1; 2; : : : k and t = 1; 2; : : : T:

For a given i; j (j > i), these restrictions can be expressed in matrix notation as:

~¤Tqij = 0 ¢ ¶T (A1)

where ~¤T =

0
BBBBBBBB@

¸11;1 ¸22;1 ¢ ¢ ¢ ¸kk;1

¸11;2 ¸22;2 ¢ ¢ ¢ ¸kk;2
...

...
...

¸11;T ¸22;T ¢ ¢ ¢ ¸kk;T

1
CCCCCCCCA

=

0
BBBBBBBB@

¸01

¸02
...

¸0T

1
CCCCCCCCA

is a T £k matrix, ¶T a T £1

vector of ones and qij =
µ
qi1qj1 qi2qj2 : : : qikqjk

¶0
a k £ 1 vector. We can

regard (A1) as a set of T homogenous linear equations in k unknowns, qij. Given

that rank
³
~¤T

´
= k when the stochastic processes in ¸t are linearly independent,

the only solution to the above system of equations is ~¤Tqij = 0 ¢ ¶k. irrespectively

of i and j. That is, we must have that for all j > i; i = 1; 2; : : : k, qilqjl = 0 for

l = 1; 2; : : : ; k; which in turn requires qil = 0 and/or qjl = 0. Therefore, there

cannot be two elements in any column of Q which are di¤erent from 0. Given that

Q is an orthogonal matrix, the only admissible transformations are permutations

of Cholesky square roots of the unit matrix, I1=2k , where
n
I
1=2
k

o
ij
= §1 for i = j

and 0 otherwise. 2
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A.2 Proposition 2

In this case (A1) also applies, but since ¸0t = (¸
0
1t; ¸kk;t¶

0
k2
), we can re-write it

as

¹¤T¹qij = 0 ¢ ¶T (A2)

where ¹¤T =

0
BBBBBBBB@

¸11;1 ¸22;1 ¢ ¢ ¢ ¸k1k1;1 ¸kk;1

¸11;2 ¸22;2 ¢ ¢ ¢ ¸k1k1;2 ¸kk;2
...

...
...

...

¸11;T ¸22;T ¢ ¢ ¢ ¸k1k1;T ¸kk;T

1
CCCCCCCCA

=

0
BBBBBBBB@

¸011; ¸kk;1

¸012 ¸kk;2
...

...

¸01T ¸kk;T

1
CCCCCCCCA

is a T £

(k1 + 1) matrix, and ¹qij =
µ
qi1qj1 qi2qj2 : : : qik1qjk1

Pk
l=k1+1

qilqjl

¶0
a (k +

1)£ 1 vector.

Since rank
³
¹¤T

´
= k1+1 by assumption, ¹qij = 0 ¢ ¶k1+1 irrespectively of i and

j. That is, for all j > i; i = 1; 2; : : : k we must have qilqjl = 0 for l = 1; 2; : : : ; k1

and also
Pk
l=k1+1

qilqjl = 0. The …rst set of restrictions implies that there cannot

be two elements in the …rst k1 columns of Q which are di¤erent from 0. Let’s

partition Q comformably as:
0
B@
Q11 Q12

Q21 Q22

1
CA

Then, given that Q is orthogonal, if we exclude mere permutations of the factors,

it must be the case that Q11 = I
1=2
k1
; Q21 = 0; Q12 = 0 and Q22 is orthogonal. 2

A.3 Proposition 3

First of all, note that ¤¤t = Q¤tQ
0 = Qdg(¤t)Q

0 + Q[¤t ¡ dg(¤t)]Q
0. But

since¤t¡dg(¤t) is time-invariant by assumption, constant conditional covariances

for ¤¤t simply requires that Qdg(¤t)Q
0 is also time-invariant. Given that the

ijth element of Qdg(¤t)Q
0 is

Pk
l=1 ¸ll;tqilqjl, this requires

Pk
l=1 ¸ll;tqilqjl = Áij for

j > i; i = 1; 2; : : : k and t = 1; 2; : : : T: For a given i; j (j > i), these restrictions
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can be expressed in matrix notation as:

~¤Tqij = Áij ¢ ¶T (A3)

We can regard (A3) as a set of T non-homogenous linear equations in k unknowns,

qij. Given that rank
³
~¤T j¶T

´
= k+ 1 when the stochastic processes in (¸0t; 1) are

linearly independent, the only way the above system of equations can have a

solution is if Áij = 0 for all j > i; i = 1; 2; : : : k. That is, if Qdg(¤t)Q
0 remains

diagonal for t = 1; 2; : : : T . In that case, the proof of Proposition 1 applies. 2

B The score and information matrix of a condi-
tionally heteroskedastic factor model

Let Á0=(c0;° 0;Ã0) denote the vector of parameters of interest, with c =vec(C)

and ° =vecd(¡). Bollerslev and Wooldridge (1992) and Kroner (1987) show that

the score function st(Á) =@lt(Á)=@Á of any conditionally heteroskedastic multi-

variate model with zero conditional mean is given by the following expression:

st(Á) =
1

2

@vec0 [§t]

@Á

h
§¡1t §¡1t

i
vec [xtx

0
t ¡§t]

Then, since the di¤erential of §t is

d(C¤tC
0 + ¡) = (dC)¤tC

0 +C(d¤t)C
0 +C¤t(dC

0) + d¡

(cf. Magnus and Neudecker (1988)), we have that the three terms of the Jacobian

corresponding to c;° and Ã will be:

@vec [§t]

@c0
= (IN2 +KN)(C¤tIN) + (CC)Ek

@¸t(Á)

@c0

@vec [§t]

@° 0
= EN + (CC)Ek

@¸t(Á)

@° 0

@vec [§t]

@Ã0
= (CC)Ek

@¸t(Á)

@Ã0
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where En is the unique n£n2 “diagonalization” matrix which transforms vec(A)

into vecd(A) as vecd(A) = E0nvec(A), and Kn is the square commutation matrix

(see Magnus (1988)).

After some straightforward algebraic manipulations, we get

st(Á) =

2
666664

vec
h
§¡1t xtx

0
t§

¡1
t C¤t ¡§¡1t C¤t

i

1
2
vecd

h
§¡1t xtx

0
t§

¡1
t ¡§¡1t

i

0

3
777775
+

1

2

2
666664

@¸0t(Á)=@c

@¸0t(Á)=@°

@¸0t(Á)=@Ã

3
777775
vecd

h
C0§¡1t xtx

0
t§

¡1
t C¡C0§¡1t C

i

Assuming that rank(¡) =N , we can use the Woodbury formula to prove that

§¡1t xtx
0
t§

¡1
t C¤t ¡§¡1t C¤t = ¡¡1E [(xt ¡Cf t)f 0tjXT ;Á]

§¡1t xtx
0
t§

¡1
t ¡§¡1t = ¡¡1E [(xt ¡Cf t)(xt ¡Cf t)0jXT ;Á]¡

¡1

C0§¡1t xtx
0
t§

¡1
t C¡C0§¡1t C = ¤¡1t E [ftf 0t ¡¤tjXT ;Á]¤

¡1
t

where E [¢jXT ;Á] refers to expectations conditional on all observed x0ts and the

parameter values Á. Therefore, we can interpret the score of the log-likelihood

function for xt as the expected value given XT of the sum of the (unobserv-

able) scores corresponding to the conditional log-likelihood function of xt given ft,

and the marginal log-likelihood function of ft (cf. Demos and Sentana (1996b)).

Note that these expressions only involve ftjT = E [ftjXT ;Á] = ftjt and ¤tjT =

E [ftf
0
tjXT ;Á] = ¤tjt.

As a simple yet important example, consider the following arch(1)-type con-

ditional variance speci…cation

¸jj;t = (1¡ ®j1) + ®j1(f2jt¡1jt¡1 + ¸jj;t¡1jt¡1)

34



so that Ã0 = (®11; ®21; :::; ®k1). If the true parameter con…guration corresponds

to the case of conditional homoskedasticity, i.e. Ã0= 0; so that ¤t = I; 8t, then

@¸jj;t(Á0)=@c = 0; @¸jj;t(Á0)=@° = 0 and @¸jj;t(Á0)=@®j1 = (f
2
jt¡1jt¡1+¸jj;t¡1jt¡1¡

1). Since ¸jj;t = 1 under the null, and

E
h
f 2jtjt + ¸jj;tjt ¡ 1

i
= E

h
E

³
f2jt ¡ 1jXt

´i
= E

h
f 2jt ¡ 1

i
= 0

then the orthogonality conditions implicit in the last k elements of the score are

simply cov(f 2jtjt; f
2
jt¡1jt¡1) = 0.

Let Ht(Á) =@
2lt(Á)=@Á@Á

0 denote Hessian matrix of lt(Á). Bollerslev and

Wooldridge (1992) also prove that

¡E [Ht(Á0)jXt¡1] =
1

2

@vec0 [§t]

@Á

h
§¡1t §¡1t

i @vec [§t]
@Á0

When Ã0= 0,

¡E
"
@2lt(Á0)

@Ã@c0
jXt¡1

#
=
@¸0t(Á0)

@Ã
E0k(C

0§¡1CC0§¡1C)

¡E
"
@2lt(Á0)

@Ã@° 0
jXt¡1

#
=
1

2

@¸0t(Á0)

@Ã
(C0§¡1¯C0§¡1)

where we use the fact that the Hadamard (or element by element) product of two

m£n matrices, R and S; can be written as R¯ S = E0m(R S)En (see Magnus

(1988)).

Since E [@¸jj;t(Á0)=@®j1] = E
h
f 2jt¡1jt¡1 + ¸jj;t¡1jt¡1 ¡ 1

i
= 0, it is clear that

the information matrix is block diagonal between static and dynamic variance

parameters under the null of conditional homoskedasticity.

Finally, it is also worth noting that under conditional homoskedasticity

¡E
"
@2lt(Á0)

@c@c0
jXt¡1

#
= 2(C0§¡1C§¡1)

¡E
"
@2lt(Á0)

@°@c0
jXt¡1

#
= E0N(§

¡1C§¡1)

¡E
"
@2lt(Á0)

@°@° 0
jXt¡1

#
=
1

2
(§¡1¯§¡1)

35



Table 1: One Factor Model

Mean biases and standard deviations

for unconditional variance parameters

°0=0.5 °0=2.0

c ° c °

ML 2S ML 2S ML 2S ML 2S

®0=0.0 bias -.0006 -.0006 -.0036 -.0036 -.0054 -.0051 -.0297 -.0287

¯0=0.0 std.dev. .0265 .0265 .0729 .0730 .0789 .0771 .3093 .3025

®0=0.2 bias -.0006 -.0006 -.0036 -.0036 -.0055 -.0054 -.0290 -.0292

®0=0.6 std.dev. .0269 .0270 .0720 .0729 .0795 .0786 .3045 .3034

®0=0.4 bias -.0006 -.0006 -.0035 -.0037 -.0055 -.0058 -.0282 -.0300

¯0=0.4 std.dev. .0277 .0282 .0700 .0729 .0795 .0818 .2913 .3047

Table 2: One Factor Model

Proportion of estimates at the boundary of the parameter space

°0=0.5 °0=2.0

® = 0; ¯ = 0 ® 6= 0; ¯ = 0 ® = 0; ¯ = 0 ® 6= 0; ¯ = 0

ML 2S ML 2S ML 2S ML 2S

®0=0.0,¯0=0.0 .556 .557 .265 .264 .552 .552 .286 .282

®0=0.2,¯0=0.6 .022 .027 .091 .086 .118 .137 .198 .167

®0=0.4,¯0=0.4 .003 .005 .074 .070 .049 .059 .218 .185

Table 3: One Factor Model

Mean biases and standard deviations

for conditional variance parameters

°0=0.5 °0=2.0

® ¯ ® ¯

ML 2S ML 2S ML 2S ML 2S

®0=0.2 bias .007 -.002 -.106 -.103 .019 -.007 -.183 -.162

¯0=0.6 std.dev. .112 .104 .253 .250 .172 .149 .302 .299

®0=0.4 bias -.004 -.030 -.043 -.039 -.015 -.065 -.081 -.058

¯0=0.4 std.dev. .151 .134 .196 .195 .222 .190 .257 .257



Table 4: Two Factor Model

Mean biases and standard deviations

for unconditional variance parameters

c0 = (0; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 0)0

®0 = 0:2 ¯0 = 0:6 ®0 = 0:4 ¯0 = 0:4

°0 = 0:5 °0 = 2:0 °0 = 0:5 °0 = 2:0

ML R 2S ML R 2S ML R 2S ML R 2S

ca1 bias .0014 -.0013 -.0012 .0215 -.0001 -.0004 .0026 -.0014 -.0014 .0136 -.0003 -.0004

s.d. .1349 .0554 .0556 .1912 .1006 .1003 .1018 .0570 .0577 .1603 .1005 .1034

cb1 bias -.0120 -.0033 -.0034 -.0504 -.0147 -.0149 -.0011 -.0035 -.0037 -.0357 -.0145 -.0159

s.d. .0600 .0279 .0282 .1365 .0814 .0829 .0578 .0286 .0295 .1187 .0803 .0858

ca2 bias -.0178 -.0016 -.0016 -.0549 -.0117 -.0117 -.0069 -.0015 -.0016 -.0347 -.0113 -.0117

s.d. .0611 .0269 .0269 .1513 .0810 .0809 .0306 .0271 .0271 .1208 .0808 .0807

cb2 bias .0033 -.0005 -.0006 .0098 -.0026 -.0020 -.0004 -.0003 -.0005 .0036 -.0018 -.0012

s.d. .1285 .0405 .0407 .1934 .1010 .1011 .0835 .0396 .0408 .1556 .0974 .0974

° bias -.0058 -.0057 -.0058 -.0437 -.0428 -.0441 -.0059 -.0058 -.0059 -.0429 -.0417 -.0444

s.d. .0724 .0723 .0730 .3141 .3100 .3136 .0712 .0712 .0730 .3048 .3018 .3142

c0 = (14 ;
1
4 ;
1
4 ; 1; 1; 1; 1; 1; 1; 14 ;

1
4 ;
1
4)
0

®0 = 0:2 ¯0 = 0:6 ®0 = 0:4 ¯0 = 0:4

°0 = 0:5 °0 = 2:0 °0 = 0:5 °0 = 2:0

ML R 2S ML R 2S ML R 2S ML R 2S

ca1 bias -.0121 .0955 .1040 -.0038 .0920 .0987 -.0072 .0955 .1076 -.0045 .0841 .1007

s.d. .1296 .0424 .0417 .1820 .0815 .0809 .0939 .0473 .0455 .1526 .0841 .0838

cb1 bias -.0158 -.0373 -.0394 -.0457 -.0437 -.0468 -.0079 -.0360 -.0415 -.0305 -.0406 -.0486

s.d. .0622 .0296 .0297 .1305 .0787 .0785 .0439 .0315 .0317 .1057 .0778 .0813

ca2 bias -.0151 .0151 .0150 -.0562 -.0021 -.0035 -.0048 .0149 .0150 -.0337 -.0009 -.0038

s.d. .0611 .0309 .0312 .1655 .0997 .1012 .0324 .0306 .0313 .1326 .0977 .1018

cb2 bias -.0142 -.1339 -.1418 -.0164 -.1433 -.1561 -.0075 -.1210 -.1417 -.0210 -.1260 -.1566

s.d. .1293 .0480 .0485 .1916 .1344 .1399 .0796 .0473 .0488 .1564 .1283 .1413

° bias -.0060 -.0063 -.0060 -.0517 -.0519 -.0524 -.0060 -.0067 -.0061 -.0505 -.0525 -.0537

s.d. .0725 .0726 .0732 .3269 .3267 .3210 .0711 .0715 .0732 .3117 .3266 .3114



Table 5: Two Factor Model

Proportion of estimates at the boundary of the parameter space

c0 = (0; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 0)0

°0=0.5 °0=2.0

® = 0; ¯ = 0 ® 6= 0; ¯ = 0 ® = 0; ¯ = 0 ® 6= 0; ¯ = 0

ML R 2S ML R 2S ML R 2S ML R 2S

®0=0.2,¯0=0.6 .034 .034 .038 .114 .088 .084 .146 .145 .153 .226 .190 .166

®0=0.4,¯0=0.4 .004 .004 .004 .097 .077 .072 .064 .064 .072 .260 .222 .188

c0 = (14 ;
1
4 ;
1
4 ; 1; 1; 1; 1; 1; 1; 14 ;

1
4 ;
1
4)
0

°0=0.5 °0=2.0

® = 0; ¯ = 0 ® 6= 0; ¯ = 0 ® = 0; ¯ = 0 ® 6= 0; ¯ = 0

ML R 2S ML R 2S ML R 2S ML R 2S

®0=0.2,¯0=0.6 .034 .048 .054 .095 .124 .117 .156 .167 .195 .201 .225 .183

®0=0.4,¯0=0.4 .004 .011 .015 .095 .099 .093 .062 .095 .109 .297 .227 .186

Table 6: Two Factor Model

Mean biases and standard deviations

for conditional variance parameters

c0 = (0; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 0)0

°0=0.5 °0=2.0

® ¯ ® ¯

ML R 2S ML R 2S ML R 2S ML R 2S

®0=0.2 bias .025 .007 -.003 -.128 -.109 -.106 .062 .025 -.014 -.219 -.192 -.166

¯0=0.6 std.dev. .115 .112 .103 .259 .248 .246 .192 .181 .146 .305 .301 .301

®0=0.4 bias .010 -.003 -.032 -.057 -.047 -.041 .017 -.012 -.081 -.108 -.089 -.055

¯0=0.4 std.dev. .150 .150 .131 .197 .193 .193 .224 .226 .186 .258 .256 .258

c0 = (14 ;
1
4 ;
1
4 ; 1; 1; 1; 1; 1; 1; 14 ;

1
4 ;
1
4)
0

°0=0.5 °0=2.0

® ¯ ® ¯

ML R 2S ML R 2S ML R 2S ML R 2S

®0=0.2 bias .027 -.021 -.030 -.116 -.120 -.115 .064 -.013 -.047 -.201 -.207 -.175

¯0=0.6 std.dev. .120 .108 .100 .256 .273 .269 .208 .164 .134 .306 .312 .311

®0=0.4 bias .012 -.061 -.088 -.055 -.027 -.019 .017 -.079 -.144 -.095 -.074 -.036

¯0=0.4 std.dev. .156 .150 .133 .202 .214 .215 .234 .217 .176 .266 .271 .275



Figure 1: Test for ARCH in common factor

P-value discrepancy plots
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Figure 2: Test for ARCH in common factor
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Figure 3: Likelihood Ratio Test for overidentifying restriction

P-value discrepancy plots
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